JPH10273740A - Method for recovering valuable metal from powdery wet raw material - Google Patents

Method for recovering valuable metal from powdery wet raw material

Info

Publication number
JPH10273740A
JPH10273740A JP7690497A JP7690497A JPH10273740A JP H10273740 A JPH10273740 A JP H10273740A JP 7690497 A JP7690497 A JP 7690497A JP 7690497 A JP7690497 A JP 7690497A JP H10273740 A JPH10273740 A JP H10273740A
Authority
JP
Japan
Prior art keywords
exhaust gas
sludge
smelting reduction
raw material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7690497A
Other languages
Japanese (ja)
Inventor
Shoji Miyagawa
昌治 宮川
Natsuo Ishiwatari
夏生 石渡
Yoshiaki Hara
義明 原
Hiroshi Itaya
宏 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7690497A priority Critical patent/JPH10273740A/en
Publication of JPH10273740A publication Critical patent/JPH10273740A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce the thermal load needed to vaporize water and decompose powdery wet raw material in a smelting reduction furnace by regulating the exhaust gas temp. after heat-exchanging to a specific value or higher, at the time of drying the powdery raw material while executing the heat exchange with the powdery wet raw material containing metal high in vaporizing pressure by utilizing the exhaust gas sensible heat in a vertical type smelting reduction. SOLUTION: The exhaust gas generated in the vertical type smelting reduction furnace 1 is supplied to an exhaust gas piping 5 arranged in a heat exchanger 4 through a cyclone 14 and metallic sludge, etc., containing valuable metal is brought into contact with the heated piping surface to dry and remove the moisture contained in the metallic sludge, etc. At this time, the exhaust gas temp. after heat-exchanging, is made to >=800 deg.C and the dried metallic sludge is transported to a powder injecting device 8 through a hopper 6 for dried sludge and a hopper 7 for discharging and injected from upper step tuyeres 9 in the vertical type smelting reduction furnace 1 and smelted. By this method, the metallic sludge can be dried within the wide range of about 10-50% water without casing the problem such as the sticking of low m.p. metal in the heat exchanger 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上下二段に設けた
羽口を有する竪型溶融還元炉を用いる粉末湿原料からの
有価金属の回収方法に関し、亜鉛、鉛等の低融点金属を
含有する金属スラジ類等の粉末湿原料から有価金属を回
収する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering valuable metals from wet powdery raw materials using a vertical smelting reduction furnace having tuyeres provided in upper and lower stages, and containing a low melting point metal such as zinc and lead. The present invention relates to a technique for recovering valuable metals from powdery wet raw materials such as metal sludge.

【0002】[0002]

【従来の技術】近年、資源の有効利用、エネルギー節減
の観点から有価物の回収やリサイクルの必要が言われ、
種々の取り組みが報告されている。現在の日本の鉄鋼製
品の製造法の主流は高炉−転炉法である。高炉−転炉法
は製銑工程、製鋼工程、圧延工程とそれに続く二次加工
工程からなり、各工程から種々雑多なダスト、スラグ、
スラジ等が発生する。ダスト、スラグ、スラジからの有
価金属の回収、あるいは副製品の製造の取り組みが鋭意
行われているものの、現状は必ずしも十分でなく、特に
スラジ類のリサイクルは水分を多量に含有することがそ
の処理を難しくしている。
2. Description of the Related Art In recent years, it has been said that it is necessary to collect and recycle valuable resources from the viewpoint of effective use of resources and energy saving.
Various approaches have been reported. The mainstream of the current method of manufacturing steel products in Japan is the blast furnace-converter method. The blast furnace-converter method consists of a steelmaking process, a steelmaking process, a rolling process and a subsequent secondary processing process, and various dust, slag,
Sludge etc. are generated. Efforts are being made to collect valuable metals from dust, slag, and sludge, or to manufacture by-products.However, the current situation is not always sufficient. Is difficult.

【0003】鉄スクラップのリサイクルに付随する問題
として電気炉ダスト処理の問題がある。電気炉ダストに
は、クロム、カドミウム、鉛等の埋め立て廃棄した場合
には溶出して環境汚染を起こす元素が数%、亜鉛分が1
0〜40%、鉄分が25〜50%程度含まれており、こ
れらの処理、再資源化、すなわちクロム等の有害金属の
安価な固定化とZn、Fe等の有価金属の回収、再資源
化の技術が望まれていた。
[0003] A problem associated with the recycling of iron scrap is the problem of electric furnace dust treatment. In electric furnace dust, chromium, cadmium, lead and other elements that elute out when landfilled and cause environmental pollution are several percent, and zinc content is 1%.
It contains about 0 to 40% and about 25 to 50% of iron. These are treated and recycled, that is, inexpensive fixation of harmful metals such as chromium and recovery and recycling of valuable metals such as Zn and Fe. Technology was desired.

【0004】本発明者らは、電気炉ダスト処理の問題に
取組み、電気炉ダストを初めとする亜鉛含有ダスト類を
対象として、特開平7−173548号公報において、
炭素系固体還元剤の充填層を有する竪型溶融還元炉に、
羽口を通して亜鉛含有ダスト等の亜鉛含有ダストを吹き
込み、該ダスト中の亜鉛分を還元、蒸発させる一方、こ
の蒸発させた亜鉛蒸気を含む排ガスを炉外で冷却するこ
とにより亜鉛を回収する技術を開示している。さらに、
この時、亜鉛含有ダストを吹き込んでいる間中、竪型溶
融還元炉の炉頂温度を600℃以上に保持すること、あ
るいは、竪型溶融還元炉の炉頂温度を、炉内で発生した
排ガスを2次燃焼させる複数本の燃焼用ランスによって
調整することにより、亜鉛含有ダストから亜鉛を効率よ
く回収できる技術を開発した。
[0004] The present inventors have addressed the problem of electric furnace dust treatment, and disclosed in Japanese Patent Application Laid-Open No. 7-173548, for zinc-containing dusts such as electric furnace dust.
In a vertical smelting reduction furnace having a packed bed of carbon-based solid reducing agent,
Zinc-containing dust such as zinc-containing dust is blown through the tuyere to reduce and evaporate the zinc content in the dust, while recovering zinc by cooling the exhaust gas containing the evaporated zinc vapor outside the furnace. Has been disclosed. further,
At this time, while the zinc-containing dust is being blown, the furnace temperature of the vertical smelting reduction furnace is maintained at 600 ° C. or higher, or the furnace temperature of the vertical smelting reduction furnace is changed to the exhaust gas generated in the furnace. A technology has been developed that can efficiently recover zinc from zinc-containing dust by adjusting a plurality of combustion lances for secondary combustion.

【0005】竪型溶融還元炉は、コークス充填層に二段
羽口を設置することによって強力な還元力を実現したも
のであって、有価金属を水酸化物や酸化物として含有す
る金属スラジ類の処理に好適であると考えて、竪型溶融
還元炉を用いた金属スラジ類の処理を検討した。検討の
結果、最も大きな問題点は金属スラジ類中の水分であっ
た。すなわち、竪型溶融還元炉で処理される物質は基本
的に乾燥した粉体である必要があること、金属スラジの
水分が溶融還元炉に持ち込まれると炉内で水分の蒸発と
水分の分解に大きな熱量が必要で、熱的負荷が著しく増
加することの二点がその理由である。このため竪型溶融
還元炉の排ガスを利用した金属スラジの類の乾燥方法を
検討した。
[0005] A vertical smelting reduction furnace is one in which a strong reducing power is realized by installing a two-stage tuyere in a coke packed bed, and a metal sludge containing valuable metals as hydroxides or oxides. Considering that it is suitable for the treatment of slag, treatment of metal sludge using a vertical smelting reduction furnace was studied. As a result of the examination, the biggest problem was the moisture in the metal sludge. In other words, the substance to be treated in the vertical smelting reduction furnace must basically be a dry powder, and when the moisture of the metal sludge is brought into the smelting reduction furnace, it evaporates and decomposes water in the furnace. Two reasons are that a large amount of heat is required and the thermal load is significantly increased. For this reason, a drying method for metal sludges using the exhaust gas of a vertical smelting reduction furnace was studied.

【0006】排ガスとスラジが直接接触する直接加熱
と、隔壁を介して熱交換する間接加熱の両面から検討し
た。先ず、直接加熱法として、図3に示すように、竪型
溶融還元炉の排ガスを導入する流動層型の乾燥装置に金
属スッラジ類を装入して乾燥を行った。この場合、溶融
還元炉の発生排ガスの顕熱と還元力を利用した流動層予
備還元と同様の構成であるが、乾燥結果はスラジの乾燥
は可能であったが排ガス中の亜鉛、鉛、ナトリウム、カ
リウム、カドミウム等の低融点金属が乾燥装置でスラジ
側に移行し、金属スラジ類がもともと含有している低融
点金属と乾燥装置で新たに付加された低融点金属は溶融
還元炉で排ガス中に移行し、この排ガス中の低融点金属
の蒸気は乾燥装置で凝縮し、再度金属スラジに移行する
というサイクルを形成して循環してしまうことが判明し
た。この方式では低融点金属は系外に排出されず、有価
金属として回収できない。
[0006] Both direct heating, in which exhaust gas and sludge are in direct contact, and indirect heating, in which heat is exchanged through partition walls, were studied. First, as a direct heating method, as shown in FIG. 3, metal sludges were charged into a fluidized bed type drying apparatus for introducing exhaust gas from a vertical smelting reduction furnace and dried. In this case, the configuration is the same as that of the fluidized bed pre-reduction using the sensible heat and reducing power of the exhaust gas generated in the smelting reduction furnace, but the drying result was that sludge could be dried, but zinc, lead, and sodium in the exhaust gas Low melting point metals such as potassium, cadmium, etc. migrate to the sludge side in the drying unit, and the low melting point metal originally contained in the metal sludge and the low melting point metal newly added in the drying unit It was found that the vapor of the low-melting metal in the exhaust gas was condensed in the drying device and circulated in a cycle of shifting to the metal sludge again. In this method, the low melting point metal is not discharged out of the system and cannot be recovered as valuable metal.

【0007】ついでスラジの直接加熱として、排ガスの
潜熱(燃焼熱)を利用する場合も、低融点金属の排出に
関する根本的な改善がなされなかった。間接加熱とし
て、乾燥装置内に配した熱交換用配管パイプの中を排ガ
スが通過するようにした場合は、低融点金属が配管内面
に付着成長し、最終的には閉塞にいたるという問題点が
あった。
[0007] Also, when the latent heat (combustion heat) of the exhaust gas is used as the direct heating of the sludge, no fundamental improvement in the emission of low melting point metals has been made. When the exhaust gas passes through the heat exchange pipe pipe arranged in the drying device as indirect heating, there is a problem that the low-melting-point metal adheres and grows on the pipe inner surface, eventually leading to blockage. there were.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、金属
スラジ類等の粉末湿原料の乾燥を竪型溶融還元炉の排ガ
スを用いて行うに際して、(1)低融点金属が系内を循
環して排出されないという問題、(2)低融点金属が熱
交換用の配管内面に付着成長し、最終的には配管を閉塞
に至らしめるという問題を解消することであり、この問
題点を解消することによって金属スラジ類からの有価金
属の回収を実現することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to dry powdery raw materials such as metal sludge using the exhaust gas of a vertical smelting reduction furnace, and (1) circulate the low melting point metal in the system. (2) to solve the problem that the low melting point metal adheres to and grows on the inner surface of the pipe for heat exchange and eventually causes the pipe to be clogged. Accordingly, an object of the present invention is to realize the recovery of valuable metals from metal sludge.

【0009】[0009]

【課題を解決するための手段】本発明は、炭材充填層、
及び高温空気を吹き込む上下二段に設けた複数個の羽口
を有する竪型溶融還元炉を用いて、蒸気圧の高い金属を
含む粉末湿原料から有価金属を回収するに際し、竪型溶
融還元炉の排ガス顕熱を利用し粉末湿原料と熱交換後の
排ガス温度を800℃以上として該粉末湿原料を乾燥
し、少なくとも上段羽口よりこの乾燥粉末原料を吹込む
ことを特徴とする粉末湿原料からの有価金属の回収方法
である。ここで炭材とは、コークスもしくは石炭あるい
はその両者からなる炭素系固体還元剤を言う。
SUMMARY OF THE INVENTION The present invention provides a carbon material-filled bed,
A vertical smelting and reducing furnace for recovering valuable metals from powdered wet raw materials containing metals with high vapor pressure using a vertical smelting and reducing furnace having a plurality of tuyeres provided in upper and lower stages that blow high-temperature air. Using the sensible heat of flue gas of the exhaust gas to raise the temperature of the flue gas after heat exchange with the wet powder material to 800 ° C. or higher, drying the wet powder material, and blowing the dry powder material from at least the upper tuyere. Of valuable metals from coal. Here, the carbonaceous material refers to a carbon-based solid reducing agent made of coke or coal or both.

【0010】前記熱交換は間接加熱とし、蒸気圧の高い
金属を含む排ガスからこれらの金属が間接加熱装置の内
部に沈積固着するのを防止する。また、直接加熱では、
熱交換後の粉末原料の温度を600℃以上とすることに
よって、低融点金属の同伴を解消し、蒸気圧の高い金属
が系内を循環するのを防止する。熱交換後の排ガス温度
を800℃以上とするのは、金属スラジ類が含有する低
融点金属の系内の蓄積を防止すると共に、間接加熱用の
熱交換器内での析出、沈漬、管路閉塞等の問題点を解消
し、低融点金属を排ガスと共に系外に排出するためであ
る。
[0010] The heat exchange is performed by indirect heating to prevent the metals from depositing and fixing inside the indirect heating device from exhaust gas containing metals having a high vapor pressure. Also, with direct heating,
By setting the temperature of the powder raw material after the heat exchange to 600 ° C. or higher, entrainment of the low-melting-point metal is eliminated, and metal having a high vapor pressure is prevented from circulating in the system. The reason why the temperature of the exhaust gas after the heat exchange is set to 800 ° C. or more is to prevent accumulation of the low-melting-point metal contained in the metal sludge in the system and to precipitate, sink, and pipe in the heat exchanger for indirect heating. This is to eliminate problems such as road blockage and discharge the low-melting metal to the outside of the system together with the exhaust gas.

【0011】[0011]

【発明の実施の形態】図1は、本発明を実現するのに用
いた設備構成を示したものである。竪型溶融還元炉1に
はコークスもしくは石炭、あるいはその両者からなる炭
素系固体還元剤(以下、炭材と称する)の充填層2が形
成されており、その炭材は炭材用ホッパ3から供給さ
れ、竪型溶融還元炉1の炉頂で所定のストックラインを
維持するよう炉内に装入される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the equipment configuration used to realize the present invention. The vertical smelting reduction furnace 1 is formed with a packed layer 2 of a carbon-based solid reducing agent (hereinafter referred to as carbonaceous material) composed of coke or coal or both, and the carbonaceous material is supplied from a carbon material hopper 3 It is supplied and charged into the furnace so as to maintain a predetermined stock line at the furnace top of the vertical smelting reduction furnace 1.

【0012】熱交換器4内部には竪型溶融還元炉1で発
生した排ガスが流れるようにした配管5が配置され、熱
交換器4に供給された金属スラジ類は、高温に加熱させ
た配管表面で加熱され、金属スラジ類に含まれる水分は
乾燥除去される。乾燥された金属スラジ類は、ホッパ6
とホッパ7を経由して粉体吹込み装置8から竪型溶融還
元炉1の上段羽口9に吹き込まれる。さらに、粉状の金
属スラジ類を溶融する際、スラグの粘度や融点を調整す
る目的で添加される石灰石と硅石の製錬用溶剤は、所定
の割合で粉体吹込み装置8で金属スラジ類とともに適量
切り出され、竪型溶融還元炉1の上段羽口9に吹き込ま
れる。
A pipe 5 through which the exhaust gas generated in the vertical smelting reduction furnace 1 flows is disposed inside the heat exchanger 4, and the metal sludge supplied to the heat exchanger 4 is heated to a high temperature by a pipe. Heated on the surface, the moisture contained in the metal sludge is dried and removed. The dried metal sludge is supplied to the hopper 6
Then, the powder is blown from the powder blowing device 8 into the upper tuyere 9 of the vertical smelting reduction furnace 1 via the hopper 7. Further, when melting the powdery metal sludge, the smelting solvent for limestone and silica stone added for the purpose of adjusting the viscosity and melting point of the slag is supplied at a predetermined ratio by the powder blowing device 8 to the metal sludge. A suitable amount is cut out and blown into the upper tuyere 9 of the vertical smelting reduction furnace 1.

【0013】送風空気は800〜1000℃に加熱さ
れ、送風管を通じて熱風として上段羽口9および下段羽
口10からそれぞれ竪型溶融還元炉1内に送風される。
その際、必要に応じて適量の酸素が熱風中に富化され
る。その熱風は竪型溶融還元炉1内において炭材を燃焼
させる。その際に発生する燃焼熱と還元ガスにより、上
段羽口9に吹き込まれた金属スラジ類は溶融し、金属ス
ラジ類中の酸化物や水酸化物は還元され、低融点金属類
は蒸気となり、炭材の充填層を通り、炉頂部から排出さ
れる。この時、充填層上部の温度を上げる目的で炉頂部
に複数の2次燃焼ランス11を設置して排ガスを燃焼さ
せて、炉頂温度600〜1000℃に保持するようにす
れば安定して低融点金属類の蒸気を炉頂のダクトより排
出することができる。
The blown air is heated to 800 to 1000 ° C., and is blown as hot air into the vertical smelting reduction furnace 1 from the upper tuyere 9 and the lower tuyere 10 through a blower tube.
At that time, an appropriate amount of oxygen is enriched in the hot air as needed. The hot air burns the carbonaceous material in the vertical smelting reduction furnace 1. By the combustion heat and the reducing gas generated at that time, the metal sludge blown into the upper tuyere 9 is melted, the oxides and hydroxides in the metal sludge are reduced, and the low-melting metals are turned into steam, It is discharged from the furnace top through a packed bed of carbonaceous material. At this time, a plurality of secondary combustion lances 11 are installed at the furnace top for the purpose of raising the temperature of the upper portion of the packed bed, and the exhaust gas is burned. The vapor of the melting metal can be discharged from the duct at the top of the furnace.

【0014】また、金属スラジ中の鉄、クロム、ニッケ
ルの酸化物もしくは水酸化物は、炭材の燃焼熱により上
段羽口9の羽口先レースウェイ内で溶融し、生成した融
体は炭材充填層2を下段羽口10に向かって降下する。
そして、その過程において、下段羽口10の羽口先で生
成した還元ガスと向流接触し、還元されるとともに、滴
下途中での炭材充填層2の炭材と接触して、直接還元さ
れてメタルとスラグに分離する。そして、最終的に炉床
に溜まった溶融メタルは出銑口12から、スラグは出滓
口13から排出され、同時にクロム等は溶融メタル中に
固定され無害化される。
Further, the oxides or hydroxides of iron, chromium, and nickel in the metal sludge are melted in the tuyere tip raceway of the upper tuyere 9 by the heat of combustion of the carbonaceous material. The packed layer 2 descends toward the lower tuyere 10.
In the process, the gas is brought into countercurrent contact with the reducing gas generated at the tuyere tip of the lower tuyere 10 and reduced, and at the same time, comes into contact with the carbon material of the carbon material packed layer 2 in the middle of dripping and is directly reduced. Separate into metal and slag. Then, the molten metal finally accumulated in the hearth is discharged from the tap hole 12 and the slag is discharged from the slag port 13, and at the same time, chromium and the like are fixed in the molten metal and made harmless.

【0015】熱交換器4に供給されるガスは、竪型溶融
還元炉1の排ガス出側にサイクロン14を配置して、竪
型溶融還元炉1から飛び出したダストのうち炭材に起因
しカーボン分を含む約10μm以上の比較的粗いダスト
を補集してダストに含まれるカーボン分の大部分を分離
した後に、全量あるいはその一部を分岐させて、竪型溶
融還元炉1に供給するように構成したものである。サイ
クロンを設置することで、熱交換器内部に配置された配
管5中での異物の蓄積、あるいは異物による配管閉塞が
回避される。カーボン分を主体とするダストは、ダスト
溜めホッパ15を経由し、回収ダストの一部はダスト輸
送装置16を用いて竪型溶融還元炉1の上段羽口9に吹
き込まれる。そして、ダスト溜めホッパー15のダスト
の一部はバルブ17a,17bを開閉し、ダスト排出ホ
ッパ18を経由して系外に排出される。
The gas supplied to the heat exchanger 4 is provided by a cyclone 14 on the exhaust gas discharge side of the vertical smelting and reducing furnace 1, and the carbon which is generated by the carbon material among the dust that has flown out of the vertical smelting and reducing furnace 1. After collecting relatively coarse dust of about 10 μm or more including the carbon and separating most of the carbon contained in the dust, the whole or a part thereof is branched and supplied to the vertical smelting reduction furnace 1. It is what was constituted. By installing a cyclone, accumulation of foreign substances in the pipe 5 arranged inside the heat exchanger, or clogging of the pipe by foreign substances is avoided. Dust mainly composed of carbon passes through a dust storage hopper 15 and a part of the collected dust is blown into an upper tuyere 9 of the vertical smelting reduction furnace 1 using a dust transport device 16. Then, part of the dust in the dust storage hopper 15 opens and closes the valves 17a and 17b, and is discharged out of the system via the dust discharge hopper 18.

【0016】ここで金属スラジ類の乾燥について説明す
ると、本発明法では熱交換器出側で排ガス温度を常時測
定し、その温度を800℃以上に確保することで、金属
スラジに含有され溶融還元炉で還元揮発し排ガス中に移
行した低融点金属蒸気の配管内部への付着が防止でき
る。ここで、熱交換器出側で排ガス温度を800℃以上
とした根拠は、800℃未満では低融点金属蒸気の配管
内部への付着が防止できなかったことによる。特に長期
に操業を継続する場合は低融点金属蒸気の配管内部に付
着し層状に成長し、いったん付着すると強固で除去する
のは困難である。なお付着防止には800℃より高温で
あることが望ましい。
Here, the drying of metal sludge will be described. In the method of the present invention, the temperature of exhaust gas is constantly measured at the exit side of the heat exchanger, and the temperature is maintained at 800 ° C. or higher to reduce the smelting content contained in the metal sludge. Low-melting-point metal vapor which has been reduced and volatilized in the furnace and transferred into the exhaust gas can be prevented from adhering to the inside of the pipe. Here, the reason why the exhaust gas temperature was set to 800 ° C. or higher on the exit side of the heat exchanger is that if the temperature was lower than 800 ° C., adhesion of the low-melting metal vapor to the inside of the pipe could not be prevented. In particular, when the operation is continued for a long period of time, the low-melting-point metal vapor adheres to the inside of the pipe and grows in a layered form. Once adhered, it is strong and difficult to remove. The temperature is desirably higher than 800 ° C. for preventing adhesion.

【0017】次いで、付着防止操作として排ガスの温度
補償を行うが具体的には、 (1)金属スラジ類の乾燥のために分岐する排ガス流量
を増加させる (2)補助燃料を燃焼させる (3)排ガスに酸素を供給して排ガスを燃焼させる などの方法があり、この中から適当な方法を選択すれば
よい。
Next, temperature compensation of the exhaust gas is performed as an adhesion preventing operation. Specifically, (1) increase the flow rate of the exhaust gas branched for drying the metal sludge (2) burn the auxiliary fuel (3) There are methods such as supplying oxygen to the exhaust gas and burning the exhaust gas, and an appropriate method may be selected from these methods.

【0018】冷却槽5で熱交換後のガスは除塵器19に
導入され、水スプレー配管20から直接に水スプレーし
て、排ガス中のZn分を主体とした低融点金属の回収及
び冷却を行い、除塵器19で冷却水と懸濁してスラリ液
21として溜められる。水スプレーで200℃以下に冷
却された除塵後の排ガスは系外に送られる。なお、除塵
器19内のスラリ液21の液面レベルはレベル計23と
流量調節弁24を用いて制御される。そして、Zn分を
主体としたダストはスラリ液21として、スラリポンプ
22を用いて脱水機25に輸送され、スラリ濃度40〜
80%の範囲で脱水後、スラリ輸送装置26を経由し
て、Zn分が酸化されたスラリとして容器27に排出さ
れる。
The gas after the heat exchange in the cooling tank 5 is introduced into a dust remover 19 and sprayed directly with water from a water spray pipe 20 to recover and cool the low melting point metal mainly composed of Zn in the exhaust gas. Is suspended in the cooling water in the dust remover 19 and stored as a slurry liquid 21. Exhaust gas after dust removal cooled to 200 ° C. or lower by water spray is sent out of the system. The level of the slurry liquid 21 in the dust remover 19 is controlled by using a level meter 23 and a flow control valve 24. The dust mainly composed of Zn is transported as a slurry liquid 21 to a dehydrator 25 using a slurry pump 22 and has a slurry concentration of 40 to 50%.
After dehydration in the range of 80%, the Zn content is discharged to the container 27 as a oxidized slurry via the slurry transport device 26.

【0019】さらに、脱水機25の排液は沈澱槽28に
送られて排液中に多少含まれるダスト等の固形分を沈降
させ、固形分の大半を取り除いた処理水29を処理水ポ
ンプ30で水スプレー配管20を経由し、除塵器19に
循環させる。なお、図1において竪型溶融還元炉1で発
生した排ガスを除塵器19に直接導いてもかまわない。
この場合は、サイクロン14、ダスト溜めホッパ15を
省略することによって、設備の簡便化を図ることができ
る。
Further, the effluent of the dehydrator 25 is sent to a sedimentation tank 28 to sediment solids such as dust contained in the effluent to some extent, and a treated water 29 from which most of the solids have been removed is supplied to a treated water pump 30. Circulates through the water spray pipe 20 to the dust remover 19. In FIG. 1, the exhaust gas generated in the vertical smelting reduction furnace 1 may be directly guided to the dust remover 19.
In this case, the equipment can be simplified by omitting the cyclone 14 and the dust storage hopper 15.

【0020】また、製品の回収方法としては、水スプレ
ーを用いて排ガスに対して直接水を噴霧し、排ガスの冷
却と排ガス中から亜鉛をとするダストを回収する図1に
示す湿式回収法に対して、図2に示す乾式回収法を用い
てもよい。すなわち、図2は竪型溶融還元炉1の後段に
サイクロン集塵装置14、間接冷却式の除塵器31、お
よびバグフィルタ33を配置したものである。除塵器3
1に導入される。除塵器31の内部には冷却水配管32
が装入されており、高温のガスやダストは、それらが持
つ顕熱と冷却水が熱交換することにより約200℃以下
に冷却後、バグフィルタ33に送られる。そして、除塵
器31とバグフィルタ33に溜った冷却されたダストは
切り出し装置34a,34bを用いて輸送装置35から
切り出されて、系外に排出される。排気は排気管36か
ら系外に排出され副生ガスとして回収される。
Further, as a method for recovering the product, a wet recovery method shown in FIG. 1 in which water is directly sprayed on the exhaust gas using a water spray to cool the exhaust gas and recover dust containing zinc from the exhaust gas is used. On the other hand, the dry recovery method shown in FIG. 2 may be used. That is, in FIG. 2, the cyclone dust collecting device 14, the indirect cooling type dust remover 31, and the bag filter 33 are arranged at the subsequent stage of the vertical smelting reduction furnace 1. Dust remover 3
Introduced in 1. A cooling water pipe 32 is provided inside the dust remover 31.
The high-temperature gas or dust is cooled to about 200 ° C. or lower by heat exchange between the sensible heat and cooling water of the high-temperature gas and dust, and then sent to the bag filter 33. Then, the cooled dust accumulated in the dust remover 31 and the bag filter 33 is cut out from the transport device 35 using the cut-out devices 34a and 34b, and is discharged out of the system. The exhaust gas is exhausted out of the system from the exhaust pipe 36 and collected as a by-product gas.

【0021】[0021]

【実施例】下記の仕様からなる図1に示す竪型溶融還元
炉を用いて、表1にその組成を示す金属スラジ類を対象
として、金属スラジ類処理の操業試験を行った。 (1)溶融還元炉 炉径;1.2m、高さ;8.0m、羽口;上段、下段各
3本 (2)送風条件 送風量;1500、1600Nm3 /hr、送風温度;
900℃ 富化酸素量;200Nm3 /hr (3)粉体吹込み 配合比;金属スラジ90%(ドライスペース) 溶剤(石灰石+硅石)10% 吹込み量;800kg/hr(金属スラジ、ドライベー
ス) (4)金属スラジの配合と水分 配合;スラジA:スラジB:スラジC:スラジD =3:3:3:1 スラジ平均水分; 10,20,30,50重量%(外数) その際に得られたメタルは90〜93%Fe、1〜2%
Si、4.0〜4.3%C、0.8〜1.2%Mn、
0.6〜0.9%Crを含む銑鉄であった。また、スラ
グ組成は24〜27%SiO2 、16〜24%、Al2
3 、22〜25%CaO、2.3〜2.6%MgO、
5.7〜6.8%MnOであった。
EXAMPLES Using a vertical smelting reduction furnace having the following specifications and shown in FIG. 1, an operation test of metal sludge treatment was conducted on metal sludges having the composition shown in Table 1. (1) Smelting reduction furnace Furnace diameter: 1.2 m, height: 8.0 m, tuyere: upper and lower three each (2) Ventilation conditions Ventilation amount: 1500, 1600 Nm 3 / hr, ventilation temperature;
900 ° C Enriched oxygen content; 200 Nm 3 / hr (3) Powder injection Mixing ratio: Metal sludge 90% (dry space) Solvent (limestone + silica stone) 10% Injection amount: 800 kg / hr (metal sludge, dry base) (4) Mixing of metal sludge and water mixing; sludge A: sludge B: sludge C: sludge D = 3: 3: 3: 1 average sludge water content: 10, 20, 30, 50% by weight (external number) 90-93% Fe, 1-2%
Si, 4.0 to 4.3% C, 0.8 to 1.2% Mn,
It was pig iron containing 0.6 to 0.9% Cr. The slag composition is 24 to 27% SiO 2 , 16 to 24%, Al 2
O 3, 22~25% CaO, 2.3~2.6 % MgO,
It was 5.7 to 6.8% MnO.

【0022】試験結果を表2に示す。溶融還元炉の操業
条件をそろえるため、金属スラジの吹き込み量を調整し
た。スラジ水分は4種類のスラジの混合後の操業試験に
際しての値である。表1に示したように、スラジ本来の
水分は30〜70%であるが、試験のために10〜50
%に脱水・調整した。発明例と従来例を表2に示す。本
発明例は、金属スラジとの熱交換後の排ガス温度を80
0℃以上とすることで熱交換器での低融点金属の付着等
の問題を発生することなく、水分10から50%の広い
範囲で金属スラジを乾燥できた。なお、排ガス温度を8
00℃以上とするため、水分の高い条件では排ガスの全
量を熱交換器に供給するとともに排ガスの一部を燃焼さ
せる必要があった。これに対して、水分の低い条件で
は、、排ガスの一部を熱交換器に導入することで充分で
あった。一方、比較例は図3に示す装置を使用してスラ
ジ水分10%で行ったものであるが、熱交換器内で低融
点金属の凝縮が生じた結果、流動化並びにスラジの装入
と抜き出しがうまくいかず、排ガスの全量を供給する結
果となった。さらに、乾燥後の結果もバラツキが大き
く、本発明例との差は明らかであった。
Table 2 shows the test results. In order to make the operating conditions of the smelting reduction furnace uniform, the blowing amount of metal sludge was adjusted. The sludge moisture is a value in an operation test after mixing four types of sludge. As shown in Table 1, the original water content of the sludge is 30-70%, but it is 10-50% for the test.
Dewatered and adjusted to%. Table 2 shows an invention example and a conventional example. In the example of the present invention, the temperature of exhaust gas after heat exchange with
By setting the temperature to 0 ° C. or more, the metal sludge could be dried in a wide range of water content of 10 to 50% without causing a problem such as adhesion of a low melting point metal in the heat exchanger. When the exhaust gas temperature is 8
Since the temperature is set to 00 ° C. or higher, it is necessary to supply the entire amount of the exhaust gas to the heat exchanger and burn a part of the exhaust gas under the condition of high moisture. On the other hand, under conditions of low moisture, it was sufficient to introduce a part of the exhaust gas into the heat exchanger. On the other hand, the comparative example was carried out using the apparatus shown in FIG. 3 at a sludge moisture of 10%. However, as a result of condensation of the low melting point metal in the heat exchanger, fluidization and introduction and removal of the sludge were performed. Did not work, resulting in the supply of all of the exhaust gas. Furthermore, the results after drying also showed large variations, and the difference from the examples of the present invention was apparent.

【0023】なお、亜鉛、鉛等の蒸気圧の高い元素を含
まないスラジ処理では排ガスの熱交換器出口温度が80
0℃を下回っても問題ない。
In the case of sludge treatment that does not contain elements having a high vapor pressure such as zinc and lead, the temperature of the exhaust gas at the heat exchanger outlet is reduced to 80%.
There is no problem if the temperature falls below 0 ° C.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明により、竪型溶融還元炉を用いて
金属スラジ類を処理し、低融点金属回収及び溶銑と溶滓
として分離回収する操業において、金属スラジの乾燥に
竪型溶融還元炉で発生する排ガスの顕熱の有効利用を実
現し、金属スラジが乾燥されることで溶融還元炉に持ち
込まれる水分が事前に除去され、溶融還元炉で水分の蒸
発と分解に必要な熱的負担が著しく減少する。
According to the present invention, in the operation of treating metal sludge using a vertical smelting reduction furnace and recovering low melting metal and separating and recovering it as hot metal and slag, the vertical smelting reduction furnace is used for drying metal sludge. Effective utilization of the sensible heat of the exhaust gas generated in the furnace, the moisture introduced into the smelting reduction furnace is removed in advance by drying the metal sludge, and the thermal burden required for evaporation and decomposition of the moisture in the smelting reduction furnace Is significantly reduced.

【0027】処理システム全体のエネルギー効率が向上
し、その結果炭酸ガスの抑制に効果がある。また、本発
明の適用は、その原理から明らかなように、金属スラジ
類以外にも適用することを妨げるものではない。電気炉
ダストの脱塩素処理として事前に水洗した場合に発生す
るような、低融点金属を含有する含水ダストからの有価
金属回収処理や、湿式集塵して得られたスラリー状のダ
ストの処理においても、同様のすぐれた結果が得られる
ことが明らかである。
The energy efficiency of the entire processing system is improved, and as a result, it is effective in suppressing carbon dioxide gas. Further, as apparent from the principle, application of the present invention does not prevent application to other than metal sludge. In the process of recovering valuable metals from water-containing dust containing low-melting-point metals and the processing of slurry-type dust obtained by wet dust collection, such as occurs when water is previously washed as dechlorination of electric furnace dust. It is clear that similar excellent results can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のプロセスフロー図である。FIG. 1 is a process flow diagram of an embodiment of the present invention.

【図2】本発明に好適なプロセスフローの例である。FIG. 2 is an example of a process flow suitable for the present invention.

【図3】比較例のプロセスフロー図である。FIG. 3 is a process flow diagram of a comparative example.

【符号の説明】 1 竪型溶融還元炉 2 炭素系固体還元剤の充填層 3 炭材用ホッパ 4 熱交換器 5 熱交換器内部に配置した排ガス配管 6 乾燥後スラジ用ホッパ 7 乾燥後スラジの排出用ホッパ 8 粉体吹込み装置 9 上段羽口 10 下段羽口 11 2次燃焼ランス 12 出銑口 13 出滓口 14 サイクロン 15 ダスト溜めホッパ 16 ダスト輸送装置 17a、17b バルブ 18 ダスト排出ホッパ 19 除塵器 20 水スプレー配管 21 スラリ液 22 スラリポンプ 23 液面レベル計 24 流量調節弁 25 脱水機 26 スラリ輸送装置 27 容器 28 沈澱槽 29 処理水 30 処理水ポンプ 31 間接冷却式の除塵器 32 冷却水配管 33 バグフィルター 34a、34b 切出装置 35 輸送装置 36 排気管 37 製錬用溶剤 38 熱風[Description of Signs] 1 vertical smelting reduction furnace 2 packed bed of carbon-based solid reducing agent 3 hopper for carbon material 4 heat exchanger 5 exhaust gas pipe arranged inside heat exchanger 6 hopper for dried sludge 7 dried sludge Discharge hopper 8 Powder blowing device 9 Upper tuyere 10 Lower tuyere 11 Secondary combustion lance 12 Tap hole 13 Slag outlet 14 Cyclone 15 Dust reservoir hopper 16 Dust transport device 17a, 17b Valve 18 Dust discharge hopper 19 Dust removal 20 Water spray pipe 21 Slurry liquid 22 Slurry pump 23 Liquid level gauge 24 Flow control valve 25 Dehydrator 26 Slurry transport device 27 Container 28 Precipitation tank 29 Treated water 30 Treated water pump 31 Indirect cooling type dust remover 32 Cooling water pipe 33 Bag filter 34a, 34b Cutting device 35 Transport device 36 Exhaust pipe 37 Smelting solvent 38 Hot air

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 義明 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 板谷 宏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshiaki Hara 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. (72) Inventor Hiroshi Itaya 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭材充填層及び高温空気を吹き込む上下
二段に設けた複数個の羽口を有する竪型溶融還元炉を用
いて、蒸気圧の高い金属を含む粉末湿原料から有価金属
を回収するに際し、竪型溶融還元炉の排ガス顕熱を利用
し粉末湿原料と熱交換後の排ガス温度を800℃以上と
して該粉末湿原料を乾燥し、少なくとも上段羽口よりこ
の乾燥粉末原料を吹込むことを特徴とする粉末湿原料か
らの有価金属の回収方法。
1. Use of a vertical smelting reduction furnace having a plurality of tuyeres provided in two upper and lower stages into which a carbon material-filled layer and high-temperature air are blown, to convert valuable metals from a powdery wet raw material containing a metal having a high vapor pressure. At the time of recovery, the exhaust gas temperature after heat exchange with the powder wet raw material is set to 800 ° C. or higher using the exhaust gas sensible heat of the vertical smelting reduction furnace to dry the powder wet raw material, and the dried powder raw material is blown from at least the upper tuyere. A method for recovering valuable metals from a wet powder raw material.
【請求項2】 前記熱交換は間接加熱であることを特徴
とする請求項1記載の粉末湿原料からの有価金属の回収
方法。
2. The method according to claim 1, wherein the heat exchange is indirect heating.
JP7690497A 1997-03-28 1997-03-28 Method for recovering valuable metal from powdery wet raw material Withdrawn JPH10273740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7690497A JPH10273740A (en) 1997-03-28 1997-03-28 Method for recovering valuable metal from powdery wet raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7690497A JPH10273740A (en) 1997-03-28 1997-03-28 Method for recovering valuable metal from powdery wet raw material

Publications (1)

Publication Number Publication Date
JPH10273740A true JPH10273740A (en) 1998-10-13

Family

ID=13618663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7690497A Withdrawn JPH10273740A (en) 1997-03-28 1997-03-28 Method for recovering valuable metal from powdery wet raw material

Country Status (1)

Country Link
JP (1) JPH10273740A (en)

Similar Documents

Publication Publication Date Title
US7513929B2 (en) Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
EP0174641B1 (en) A process for recovering valuable metals from an iron dust containing a higher content of zinc
CN105441687B (en) Dust of Iron And Steel Works recycles technique and system
US4530101A (en) Electric arc fired cupola for remelting of metal chips
CN209039549U (en) A kind of device that iron content solid wastes recycling containing zinc utilizes
CN114807484B (en) Method and system for recovering iron and zinc from steel mill ash
CA2132548C (en) Process and plant for removing lead and zinc from metallurgical-works dust
US4963182A (en) Continuous feed shaft retort process for recovery of non-ferrous metals from process dust
JPH08245243A (en) Treatment of harmful gas for water granulation system of blast furnace molten slag and treating equipment therefor
CN108754056A (en) A kind of high density total oxygen short flow high efficiency cleaning iron-smelting process
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
ES2286827T3 (en) PROCEDURE FOR THE TREATMENT OF DUSTS IN THE DUCTS OF ELECTRICAL STEELS.
JPH059529A (en) Treatment of iron making dust
JPS58221241A (en) Smelting method in flash smelting furnace using coke breeze
JPH10273740A (en) Method for recovering valuable metal from powdery wet raw material
CN107192271A (en) Spuious off-gas recovery utilizes system and method in a kind of smelting process for production
US4238222A (en) Waelz process of volatilizing zinc and lead from iron oxide-containing materials
JP3336167B2 (en) Electric furnace dust treatment method
JP2001221418A (en) Furnace for processing waste battery cell
US3365340A (en) Method of removing iron oxide particles from fumes
KR910000013B1 (en) Process for recovering valuable metals from an iron dust containing a higher content of zinc
JPS60251234A (en) Method for recovering valuable metal from iron dust containing high zinc
JPH10265860A (en) Method for recovering valuable metal from metal sludge and the like
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JPH0499231A (en) Method and equipment for recovering zinc oxide in electric furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601