JPS58221241A - Smelting method in flash smelting furnace using coke breeze - Google Patents

Smelting method in flash smelting furnace using coke breeze

Info

Publication number
JPS58221241A
JPS58221241A JP10352282A JP10352282A JPS58221241A JP S58221241 A JPS58221241 A JP S58221241A JP 10352282 A JP10352282 A JP 10352282A JP 10352282 A JP10352282 A JP 10352282A JP S58221241 A JPS58221241 A JP S58221241A
Authority
JP
Japan
Prior art keywords
slag
furnace
smelting
copper
flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10352282A
Other languages
Japanese (ja)
Inventor
Takefumi Watanabe
渡辺 威文
Shiyuuichirou Okada
岡田 収一郎
Masachika Hashiuchi
正親 橋内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10352282A priority Critical patent/JPS58221241A/en
Priority to PH28060A priority patent/PH18707A/en
Publication of JPS58221241A publication Critical patent/JPS58221241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To lower the grade of copper in discharged slag and the cost of fuel by simultaneously charging a copper concentrate and coke breeze or a mixture of coke breeze with pulverized coal into a flash smelting furnace together with heavy oil and smelting the concentrate. CONSTITUTION:Coke breeze or a mixture of coke breeze with pulverized coal is charged into a shaft section through a concentrate burner together with prepared ore, flue ash and heavy oil. The ore is melted by the metallurgical reaction of the charged materials and heat of combustion of the fuel, and the molten ore flows into a settler section, where it is separated into matte as an under layer and slag as an upper layer by the difference in specific gravity. The slag contains magnetite formed by the metallurgical reaction, yet the magnetite is reduced by the reaction with the unburned coke covering the surface of the slag, so the grade of copper in the slag is lowered. At this time, the slag is preferably fluidized or agitated by putting an electrode or blowing gas.

Description

【発明の詳細な説明】 本発明は、銅の乾式製錬法、詳しくけ自溶製錬法の改良
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in copper pyrometallurgical smelting and more specifically self-smelting smelting.

銅製錬の方法は、原料鉱石の性状成分によって種々ある
が、大別すると乾式製錬法と湿式製錬法の二種類がある
。乾式製錬法は主に硫化銅鉱の処理に用いられ、予備処
理、溶鉱、製鋼、粗銅精製、電解などの工程よりなって
いる。銅精鉱を団鉱。
There are various copper smelting methods depending on the properties and components of the raw material ore, but they can be roughly divided into two types: pyrometallurgical smelting and hydrometallurgical smelting. The pyrometallurgical method is mainly used to process copper sulfide ores, and consists of steps such as preliminary treatment, smelting, steelmaking, blister refining, and electrolysis. Pack copper concentrate.

乾燥あるいけ焙焼などの処理を行い、溶鉱炉、反射炉、
自熔炉などに装入し加熱溶融して硫化銅を主成分とする
マットと鉄、けい酸を主成分とするスラグに分ける。マ
ットはさらに転炉で処理し粗銅と転炉スラグに分け、粗
銅はさらに精製炉で陽極型に鋳込んで電解工程に送り陽
極を電気分解して電気銅にする。以上述べた乾式製錬法
のうち、溶鉱処理を自熔炉で溶錬する所謂自溶炉製錬(
フラッシュスメルテイング法)が近年多く用いられてい
る。本方法は銅□及びニッケル等の硫化精鉱を、鉱石中
の硫化鉄の酸化熱によって溶錬するので他の溶鉱炉、反
射炉等を用いる製錬法に比して燃料が少くてすみ、高い
熱効率と無公害性および操業管理が容易で省力化も可能
等の利点をもつため広く採用されてきた。
Processes such as drying and roasting are performed, and blast furnaces, reverberatory furnaces,
It is charged into a flash-melting furnace, heated and melted, and separated into matte, whose main component is copper sulfide, and slag, whose main components are iron and silicic acid. The matte is further processed in a converter and separated into blister copper and converter slag, and the blister copper is further cast into an anode mold in a refining furnace and sent to an electrolytic process where the anode is electrolyzed to become electrolytic copper. Among the pyrometallurgical methods mentioned above, so-called flash furnace smelting (flash furnace smelting) involves smelting blast ore in a flash furnace.
Flash smelting method) has been widely used in recent years. This method smelts sulfide concentrates such as copper and nickel using the oxidation heat of iron sulfide in the ore, so it requires less fuel and is more expensive than other smelting methods that use blast furnaces, reverberatory furnaces, etc. It has been widely adopted because of its advantages such as thermal efficiency, non-pollution, easy operation management, and labor saving.

以上の如く自熔炉製錬法は多くを利点を持つ反面、自溶
炉セットラ部よシ排出されるスラグ中の銅品位が他の溶
鉱炉、反射炉からの排出スラグ等に比して高いのでスラ
グ中の銀回収のため別処理工程が必要であることが欠点
の一つである。
As mentioned above, although the flash smelting furnace smelting method has many advantages, the copper content of the slag discharged from the flash furnace settling section is higher than that of other blast furnaces, reverberatory furnaces, etc. One drawback is that a separate processing step is required to recover the silver inside.

自熔炉製錬法が他の溶錬法に比してスラグ中の銅品位が
高い原因としては、自熔炉では冶金反応が急激であり、
酸化雰囲気であるため鉄の過酸化が進み、マグネタイ)
 (Feas4)の生成が多く、スラグの融点及び粘度
が上昇し、銅の物理的混入が多いためである。このマグ
ネタイトの発生を減少させる方法としては、 1)スラグ中の珪酸品位を上昇せしめること11)  
炉内の酸素分圧を下げること1;I)生成マット中の銅
品位を下けること又は操業温度を上げること等が考えら
れるが 1)に於ては溶剤(フラックス)量の増加を招
き全体としてスラグ量が増加し、銅品位は低下しても銅
純分としての損失はあまり減少(−ない。又I+ )に
於ては、自溶炉自体は急激な冶金反応を特徴とするが、
炉内の酸素分圧を意図的に局部のみを制御することは困
難であり、又 111)に於てはマット量が増加し。
The reason why the flash smelting method produces higher copper content in the slag than other smelting methods is that the metallurgical reaction is rapid in the flash smelting furnace.
Because it is an oxidizing atmosphere, overoxidation of iron progresses, resulting in magnetite)
This is because a large amount of (Feas4) is produced, the melting point and viscosity of the slag increase, and there is a large amount of physical copper contamination. The methods to reduce the generation of magnetite are as follows: 1) Increasing the silicic acid grade in the slag11)
Lowering the oxygen partial pressure in the furnace 1) I) Lowering the copper grade in the produced matte or raising the operating temperature can be considered, but 1) will increase the amount of solvent (flux) and reduce the overall Although the amount of slag increases and the copper grade decreases, the loss as a pure copper content does not decrease much (-).Also, in I+, the flash furnace itself is characterized by rapid metallurgical reactions,
It is difficult to intentionally control the oxygen partial pressure in the furnace only locally, and in 111) the amount of matte increases.

後処理工程に悪影替を及ぼすと共に燃料の増加をも来す
等により、従来有効な方法が見出されず、通常a)自溶
炉から一度スラグを排出した後、別に設けられた錬かん
炉にて昇温静置するかあるいは硫化鉄、石炭およびコー
クスを単独で添加することによって還元しスラグ中の含
銅品位を低下させる方法 b)排出スラグを冷却後粉砕
して浮選法によってCu分を回収する方法 C)自溶炉
のセトラ一部に電極を装入しくこれを自電炉という。)
電極材の還元力と電力による発熱及び攪拌を利用して、
スラグ中の銅品位全低下させる方法等が従来採用されて
いた。
Conventionally, no effective method has been found because it has a negative impact on the post-treatment process and also increases the amount of fuel, so usually a) after the slag is discharged from the flash furnace, it is transferred to a separately installed smelter A method of reducing the copper content in the slag by leaving it at a raised temperature or adding iron sulfide, coal, and coke alone.b) After cooling the discharged slag, it is crushed and the Cu content is removed by flotation. Method of recovery C) An electrode is inserted into the settler part of the flash furnace, and this is called a flash furnace. )
Utilizing the reducing power of the electrode material and the heat generation and stirring caused by electricity,
Conventionally, methods have been adopted in which the copper quality in the slag is completely reduced.

本発明者等は前記の自溶炉製錬における問題点を解決す
べく、理論的考察をもとに実操業で試験した結果、自電
炉型式の自溶炉において、高マット品位操業を実施する
にあたシ、銅精鉱と共に粉コークス又は粉コークスと微
粉炭を吹込み重油と共に使用すれば、スラグ中の銅品位
を低下させうろことを見出し本発明を完成したものであ
る。
In order to solve the above-mentioned problems in flash smelting furnace smelting, the present inventors conducted tests in actual operation based on theoretical considerations, and as a result, carried out high matte quality operation in a flash smelting furnace of the flash furnace type. The inventors have completed the present invention by discovering that if coke powder or coke powder and pulverized coal are used together with blown heavy oil together with copper concentrate, the copper quality in the slag can be reduced.

又本発明は、エネルギーコストの上昇する今日燃料費の
低下をももたらすものである。
The present invention also lowers fuel costs in today's world where energy costs are rising.

本発明の目的は自溶炉製錬法において、排出スラグ中の
含銅品位を低下させること及び燃料費の低減を図る方法
を提供するにある。
An object of the present invention is to provide a method for reducing the copper content in discharged slag and reducing fuel costs in a flash furnace smelting method.

本発明の要旨とするところは、銅精鉱と共に粉コークス
又は粉コークスと微粉炭を重油と共に同時に自溶炉に吹
込み、溶錬することを特徴とする自溶炉製錬法にある。
The gist of the present invention is a flash smelting furnace smelting method characterized in that coke powder or coke powder and pulverized coal are simultaneously injected into a flash smelting furnace together with heavy oil and smelted.

更に本発明の詳細について、図に基づき説明する。第1
図は自溶炉製錬法のプロセスを示す工程説明図であり、
第2図は本発明を適用した実施態様例を示す工程説明図
である。
Further details of the present invention will be explained based on the drawings. 1st
The figure is a process explanatory diagram showing the process of the flash furnace smelting method.
FIG. 2 is a process explanatory diagram showing an embodiment to which the present invention is applied.

自溶炉製錬法のプロセスについて例えばオートクンブ方
式の例を第1図に従って説明すると、各種銅精鉱を予じ
め銅と硫黄との比重その他不純物を勘案し、例えばオア
ベツディング等の方法によ#)p1合し調合鉱とし、調
合鉱に更に予じめ粉砕機で適当な粒度に粉砕した珪酸鉱
等の溶剤を添加する。これら装入物は水分を含んでいる
ので水分を1%以下殆んど0チ程度迄に例えば熱風を用
いた気流乾燥機或はロータリキルンにて乾燥し炉頂装入
ビン(図示なし)に一旦貯鉱される。又調合鉱の乾燥工
程から集塵された煙灰並びに自熔炉排ガス処理工程から
の煙灰も炉頂煙灰装入ビン(図示なし)に貯鉱される。
Regarding the process of the flash furnace smelting method, for example, an example of the autocumbu method will be explained with reference to Fig. 1. Various copper concentrates are processed in advance by a method such as or bedding, taking into account the specific gravity of copper and sulfur and other impurities. #) P1 is combined to form a blended ore, and to the blended ore is added a solvent such as silicate ore that has been crushed in advance to an appropriate particle size using a pulverizer. Since these charges contain moisture, they are dried to a moisture content of 1% or less to almost 0% using a flash dryer using hot air or a rotary kiln, and then placed in a furnace top charging bin (not shown). Once stored. In addition, the smoke ash collected from the drying process of the mixed ore and the smoke ash from the flash-melting furnace exhaust gas treatment process are also stored in a top-of-the-furnace smoke ash charging bin (not shown).

これら調合鉱及び煙灰は各装入ビンからチェンコンベア
−等で抜き出され、ボイラーで回収された蒸気を利用し
て熱交換器や熱風炉叫で加熱された約500℃の   
 空気の熱風と重油と共に自溶炉炉頂の精鉱バーナを経
由し炉のシャフト部内へ噴出される。銅精鉱はここで鉄
、硫黄などの酸化熱及び重油等の燃焼熱により、130
0℃以上の高温となり、瞬間的に装入物がシャフト部内
に落下する間に冶金反応を起し、熔融してセラトラ内に
たまる。セトラ一部で#′i。
These mixed ores and smoke ash are extracted from each charging bin using a chain conveyor, etc., and are heated to about 500℃ using a heat exchanger or hot blast stove using steam recovered from a boiler.
Together with hot air and heavy oil, it is ejected into the shaft of the furnace via the concentrate burner at the top of the flash furnace. Copper concentrate is heated here by oxidation heat of iron, sulfur, etc. and combustion heat of heavy oil,
The temperature reaches a high temperature of 0° C. or more, and a metallurgical reaction occurs while the charge momentarily falls into the shaft, melting and accumulating in the Ceratra. #'i in part of setra.

重油バーナにより高r!Aを保持しつつ比重差を利用し
てマットとスラグに分離する。即ち比重の大きいマット
は下部に、小さいスラグは上部妬分離される。マットは
次工程である転炉へ取鍋を用いて輸送され、スラグは含
銅品位を低下させるため錬かん炉に抜き出し、fK昇温
靜#あるいけ、硫化鉄およびコークス等を添加して還元
しスラグ中の銅品位を低下せしめた後水砕する。一方約
1600℃の燃焼排ガスはアップテーク部を通り、ボイ
ラー、サイクロン、コットレル等により集塵し%煙灰は
回収し炉頂煙灰装入ンンに繰返される。排ガスは硫酸工
場に送られる。転炉にては、造かん、製鋼のステップを
経てマット中の鉄及び硫黄を除去し粗銅とし更に粗銅を
精製炉にて精製し電解工程に適する粗銅陽極に鋳造し電
解工程にて電気銅とする。以上が自熔炉を用いた乾式製
錬法の概要である。
High R due to heavy oil burner! Separate into mat and slag while maintaining A and utilizing the difference in specific gravity. That is, the mat with a large specific gravity is separated into the lower part, and the small slag is separated into the upper part. The matte is transported to the next process, a converter, using a ladle, and the slag is taken out to an smelting furnace to reduce the copper content, and is reduced by adding fK heating steel, iron sulfide, coke, etc. After reducing the copper content in the slag, it is granulated. On the other hand, the combustion exhaust gas at about 1,600°C passes through the uptake section, collects dust using a boiler, cyclone, Cottrell, etc., and collects smoke ash, which is then repeatedly charged to the top of the furnace. Exhaust gas is sent to a sulfuric acid plant. In the converter, the iron and sulfur in the matte are removed through the steps of can making and steelmaking to produce blister copper.The blister copper is then refined in a refining furnace and cast into a blister copper anode suitable for the electrolytic process. do. The above is an overview of the pyrometallurgical smelting method using a flash furnace.

次に第2図に基づいて本発明を説明する。第2図に示す
如く第、1図と異なる点は錬かん炉がなくセラトラ部に
電極を有する自電炉型式の自熔炉に本発明を適用したも
のである。
Next, the present invention will be explained based on FIG. As shown in FIG. 2, the difference from FIG. 1 is that the present invention is applied to a flash melting furnace of the electric furnace type, which does not have a smelting furnace but has an electrode in the ceratra section.

本発明の特徴は、粉コークス又は粉コークスと微粉炭を
、前述の従来法の調合鉱、煙灰および重油と共に精鉱バ
ーナを経由してシャフト部への吹込みにあり、従来プロ
セスに適用ができ、設備として粉コークス及び微粉炭に
係る設備を除いて、そのま\使用できるものである。シ
ャフト部への粉コークス、微粉炭の使用方法としては、
自溶炉シャフト部内への専用バーナを設けて使用して屯
よいし、又調合鉱の運搬途中で連続又は断続して一定量
宛添加し使用してもよい。
A feature of the present invention is that coke breeze or coke breeze and pulverized coal are injected into the shaft via a concentrate burner together with the above-mentioned conventional method of mixed ore, smoke ash, and heavy oil, and it cannot be applied to conventional processes. The equipment can be used as is, with the exception of equipment related to coke breeze and pulverized coal. How to use pulverized coke and pulverized coal in the shaft part is as follows:
It may be used by installing a dedicated burner in the flash furnace shaft, or it may be added to a fixed amount continuously or intermittently during transportation of the mixed ore.

一方粉コークスは一般に使用されている各種粉コークス
を乾燥したものが使用できる。その性状け、粉状で灰分
が低く、揮発分が高いコークスの使用が有利であり、一
般に灰分12%以下揮発分0.5チ以上のコークスが使
用されるが、好ましくは灰分2.0%以下揮発分6チ以
−トのコークスである。又その粒18“は微粉であるほ
ど重油の使用を減少することができる。然しなから超微
粉コークスの使用は1重油の代替率を向上せしめるが、
本発明の特徴の一つであるマグネタイトの還元率が低下
することが考えられ月つ又粉砕経費も増加するので、コ
ークスや微粉炭の粉砕粒度は16〜325mesh  
の粒度分布範囲になることが好まし7い。
On the other hand, as coke powder, dried various commonly used coke powder can be used. Due to its properties, it is advantageous to use coke that is in powder form and has a low ash content and a high volatile content. Generally, coke with an ash content of 12% or less and a volatile content of 0.5% or more is used, but preferably ash content is 2.0%. The following coke has a volatile content of 6 points or more. In addition, the finer the grains 18'', the more the use of heavy oil can be reduced. However, although the use of ultrafine coke improves the replacement rate of single heavy oil,
Since the reduction rate of magnetite, which is one of the features of the present invention, may decrease and the monthly grinding cost will increase, the grinding particle size of coke and pulverized coal should be 16 to 325 mesh.
It is preferable that the particle size distribution falls within the range of 7.

これら粉コークス微粉炭を配合した粉コークスは、炉頂
精鉱バーナより又は別に設けられた粉コークスや微粉炭
配合の粉コークスの専用バーナを経由して炉内に均一に
分布され、一部燃焼(〜ながらシャフト部を落下し、未
燃焼の粉コークスは。
The coke powder containing these coke powder and pulverized coal is uniformly distributed in the furnace from the furnace top concentrate burner or via a separate burner dedicated to coke powder and coke powder containing pulverized coal, and is partially combusted. (The unburned coke powder falls down the shaft.

炉内の溶体の表面を覆う。特に装入された粉コークスは
七ットラ部処入った後、セラトラの溶体全面を均一に覆
っていることが好ましい。斯くして、装入物の冶金反応
及び燃料の燃焼熱により、鉱石は溶体となり、セラトラ
部に流入し、セラトラ内では比重の差によりマットは下
層、スラグは上層の二層に分離される。上層のスラグは
冶金反応によって生成されたマグネタイトを包含してい
るが、このマグネタイトは、前述のスラグの表面に覆わ
れた未燃焼の粉コークスと反応し、マグネタイトが還元
され、スラグ中の銅品位が低下する。この際界面反応を
助長するためスラグを流動攪拌することが好ましく、特
に自電炉の如く電極の装入や、ガスの吹込み等によって
本目的を達成することができる。
Cover the surface of the solution in the furnace. In particular, it is preferable that the charged coke powder uniformly covers the entire surface of the melt in the Ceratra after entering the seven-layer treatment. In this way, the ore becomes a solution due to the metallurgical reaction of the charge and the combustion heat of the fuel, and flows into the seratra section, where it is separated into two layers, the lower layer of matte and the upper layer of slag, due to the difference in specific gravity. The upper layer of slag contains magnetite produced by metallurgical reactions, and this magnetite reacts with the unburned coke powder covered on the surface of the slag, reducing the magnetite and reducing the copper grade in the slag. decreases. At this time, it is preferable to fluidize and stir the slag in order to promote the interfacial reaction, and this purpose can be achieved in particular by charging electrodes, blowing gas, etc., as in a self-electric furnace.

スラグ中のマグネタイトの減少は重油を粉コークスに代
替することKよって起シうるが、自溶炉シャフト部での
急激な冶金反応?阻害しない程度jtJ)コークスは使
用し得る。その好ましい量は重油量の60〜50チであ
る。又粉コークスは単味で供用するだけでなく、前述の
如く粉コークスの灰分や揮発分を調整するために通常の
微粉炭を粉コークスと共に供用することにより、本発明
の目的を達成することが出来る。
The decrease in magnetite in the slag may be caused by replacing heavy oil with coke breeze, but could it be due to a sudden metallurgical reaction in the flash furnace shaft? Coke can be used to the extent that it does not inhibit. The preferred amount is 60 to 50 inches of heavy oil. In addition, the object of the present invention can be achieved not only by using coke powder alone, but also by using ordinary pulverized coal together with coke powder to adjust the ash content and volatile content of coke powder, as described above. I can do it.

本発明の粉コークス又は粉コークスと微粉炭を使用する
自溶炉製錬法では、粉コークス又は粉コークスと微粉炭
の使用量を重油の50%以上代替することによりスラグ
中のマグネタイトは従来法では6%以上であったものが
4.5チ以下に減少し、スラグの持去る銅損失を15%
以上減少せしめるととが可能となった。又粉コークスや
微粉炭をセラトラ部にて燃焼反応せしめることにより、
従来セラトラ部にて燃焼せしめていた重油バーナによる
重油の燃焼は行なわずに、電極による電熱攪拌のみでセ
ラトラ内でのマットとスラグの溶離を可能とし、自溶炉
全体の燃料使用コストは大巾建節減された。
In the flash-smelting furnace smelting method using coke breeze or coke breeze and pulverized coal of the present invention, the amount of coke breeze or coke breeze and pulverized coal used can replace 50% or more of heavy oil, so that the magnetite in the slag can be reduced by the conventional method. , the copper loss carried away by the slag was reduced by 15% from 6% or more to less than 4.5cm.
It has become possible to reduce the amount by more than 100%. In addition, by causing a combustion reaction of coke powder and pulverized coal in the Ceratra section,
Instead of burning heavy oil using a heavy oil burner, which was conventionally used in the Ceratra, it is now possible to elute matte and slag in the Ceratra using only electric agitation using electrodes, significantly reducing the fuel cost for the entire flash-smelting furnace. Construction savings were made.

又排ガス温、#即ちアップテーク入口温度は従来の12
50〜1600℃に比して約50℃低下し、アップテー
ク部及びボイラ部における煙灰によるトラブルを減少せ
しめる効果をもたらした。
Also, the exhaust gas temperature #, that is, the uptake inlet temperature is 12
The temperature was lowered by about 50°C compared to 50 to 1600°C, which had the effect of reducing troubles caused by smoke ash in the uptake section and boiler section.

セラトラからのマット、及び排ガスは従来と同様の処理
法にて処理され、スラグは別妬錬かん炉を設けることな
く水砕スラグとしてセメントその他の用途に供用される
The matte and exhaust gas from Ceratra are treated in the same manner as in the past, and the slag is used as granulated slag for cement and other uses without the need for a separate furnace.

以下本発明を本発明の実施態様例に基き従来法と比較し
て説明する。
The present invention will be described below based on embodiments of the present invention in comparison with conventional methods.

(実施例) 本発明及び従来法共に自電炉型式の自溶炉を用いその大
きさは、次の通りである。
(Example) Both the present invention and the conventional method use a flash furnace type flash furnace, and the sizes thereof are as follows.

シャフト部 ・・・・・・・・・ 6mφ×(高さ)6
.9mmセラトラ ・・・・・・・・・ 巾 7.Om
x(高さ)++X(長さ)19.75m アップテーク ・・・・・・・・・ 2.5mφ×(高
1  q、4mm上記電電炉型自溶炉本発明法において
は、各種鉱石の調合鉱に下記に示す如き粉コークス単味
及び微粉炭を混合した粉コークスをベツディング時に鉱
石を当り約15に9の割合で混合し装入した。
Shaft part ・・・・・・・・・ 6mφ×(height) 6
.. 9mm Seratra ・・・・・・・・・ Width 7. Om
x (height) + + X (length) 19.75m Uptake 2.5mφ Coke powder, which is a mixture of single coke powder and pulverized coal as shown below, was charged to the blended ore at a ratio of approximately 15 to 9 parts per ore at the time of bedding.

粉コークス及び微粉炭の粒度分布および性状は次の通り 更に本発明方法並びに従来法共、9気を450℃の熱風
とし48,000 m” /hの条件にて精鉱バーナよ
り吹込み溶錬を行なった。
The particle size distribution and properties of pulverized coke and pulverized coal are as follows. In both the method of the present invention and the conventional method, 9 air is blown into hot air at 450°C and smelted from a concentrate burner at a rate of 48,000 m"/h. I did this.

次に本発明方法即ち粉コークス単味及び微粉炭を混合し
た粉コークスを1油と共に用いた場合と従来の重油のみ
を用いた場合の操業条件ならびに成績について第1表に
示す。
Next, Table 1 shows the operating conditions and results for the method of the present invention, that is, when single coke powder and coke powder mixed with pulverized coal were used together with one oil, and when conventional heavy oil alone was used.

第1表に明らかなように% 1)セラトラ部よりのスラグ中の銅損失量は従来に比し
て品位が0.58%よ、90.48%に、マットとスラ
グの銅純分比率で0.90 %よ、90.76%及び0
.74 %に、従来法100に対して16チ及び17%
損失が減少して居シ、これはスラグ中のマグネタイトの
品位が6.8%より 4.1 %及び4.2%即ち2,
7%及び2.6%低下に起因することは明らかであり、
経済的効果は甚だ大である。
As is clear from Table 1, the amount of copper loss in the slag from the Ceratra section has increased from 0.58% to 90.48% compared to the conventional one, and the copper purity ratio of matte and slag has increased. 0.90%, 90.76% and 0
.. 74%, 16chi and 17% compared to 100 in the conventional method
The loss is reduced when the grade of magnetite in the slag is 6.8%, 4.1% and 4.2%, i.e. 2.
It is clear that this is due to the decrease of 7% and 2.6%,
The economic effects are enormous.

2)更に燃料の原単位は鉱石処理量を当シ28千騙及び
13千らの節減をみているが、重油の一部をコークスに
代替することにょシ、スラグ中の銅品位を下げるために
使用していた電極用電力の減少と従来セラトラに使用し
ていた重油を使用しなくなったことによるもので燃料コ
ストは約20チの節減を図ることが可能となった。
2) In addition, the fuel consumption rate is estimated to be 28,000 yen and 13,000 yen less than the amount of ore processed, but it is necessary to replace part of the heavy oil with coke and to lower the copper content in the slag. Due to the reduction in the electricity used for the electrodes and the elimination of the heavy oil used in the conventional Ceratra, it has become possible to save approximately 20 centimeters in fuel costs.

6)又アップテーク部入口温度は、従来法に比して50
℃低下しているがこれは溶体表面が未燃焼コークス粉で
覆われ、未燃焼コークスの発熱が持絆され容体への熱伝
導が良好となるためであシ、アップテーク部並びにボイ
ラーへのダストトラブルを減少せしめる効果を有するも
のである。
6) Also, the uptake part inlet temperature is 50% lower than that of the conventional method.
The temperature decreases in temperature, but this is because the surface of the melt is covered with unburned coke powder, which retains heat and improves heat conduction to the container. This has the effect of reducing troubles.

以上の如く本発明方法は、従来の自溶炉製錬法での問題
点であるスラグ中の銅損失減を減少せしめるばかシでな
く、エネルギーコストが上昇する今日燃料費コストを大
巾に節減せしめるもので、経済上甚だ有用な発明である
As described above, the method of the present invention not only reduces copper loss in slag, which is a problem with conventional flash furnace smelting methods, but also significantly reduces fuel costs in today's world where energy costs are rising. This is an extremely useful invention economically.

尚本発明は自重炉型自溶炉のみに限定せず他の自溶炉製
錬法にも適用できることは云う迄もない。
It goes without saying that the present invention is not limited to the dead weight furnace type flash smelting furnace, but can also be applied to other flash smelting furnace smelting methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自溶炉製錬法のプロセスを示す工程説明図であ
シ、第2図は本発明を自重炉型自溶炉に適用した場合の
実施態様例を示す工程説明図である。 代理人 弁理士 木 村 三 朗 (至) 第1図 井襲炉−椅ts: 手続補正書(自発) 士、Y許庁長止゛殿        昭和5了年 91
’l  6r11、事件の表示 特願昭57−103522 2、発明の名称 粉コークスを用いる自溶炉製錬法 名 称 (618)三井金属鉱業株式会社用−一一 4、代理人 (発送]」 昭和  年  月  「1)(1)2頁1
2行目の「多くを」を「多くの」と訂正する。 (2)8頁12行目の「粉コークス微粉炭」を「粉コー
クス、微粉炭」と訂正する。 (3)11頁9行目の「×(長さ)」を「2.6  X
(長さ)Jと訂正する。 (4)11頁11行目の「自熔炉に本発明法」を「自熔
炉に本実施例」と訂正する。 (5)12頁1行目の「粒度分布(メツシュ)」を「粒
度分布(メツシュ%)」と訂正する。 (6)13頁6行目「16千Kail、Jを「10千K
Jjと訂正する。 (7)14頁第1表の差の欄を次の如く訂正する。 ア、(2) −(1)欄13行の「△10.3.Jを「
△10.9」に、イ、  〃  19行の「△196」
を「△195」に、つ、(3) −(1)欄14行の「
△13」を「△10」に、工、     19行の「△
18.IJを「△1Z6」に、以上 (2)
FIG. 1 is a process explanatory diagram showing a flash smelting furnace smelting process, and FIG. 2 is a process explanatory diagram showing an embodiment example when the present invention is applied to a dead weight furnace type flash smelting furnace. Agent: Patent attorney Sanro Kimura (To) Figure 1: Illumination furnace - Chair: Amendment to procedure (voluntary) Attorney, Director General of the Agency, End of 1930, 91
'l 6r11, Indication of the case Patent application 1983-103522 2, Name of the invention Name of flash smelting furnace smelting method using coke powder Name (618) For Mitsui Mining & Mining Co., Ltd. - 114, Agent (Shipping) Showa year month "1) (1) 2 pages 1
Correct "many" in the second line to "many". (2) On page 8, line 12, "coke powder, pulverized coal" is corrected to "coke powder, pulverized coal." (3) Change “× (length)” on page 11, line 9 to “2.6
(Length) Correct as J. (4) On page 11, line 11, "the method of the present invention applied to a self-melting furnace" is corrected to "this embodiment applied to a self-melting furnace". (5) Correct "particle size distribution (mesh)" in the first line of page 12 to "particle size distribution (mesh %)". (6) Page 13, line 6 “16,000 Kail, J” to “10,000 K”
I corrected it with Jj. (7) The Difference column in Table 1 on page 14 is corrected as follows. A, (2) − (1) column 13 line “△10.3.J”
△10.9'', A, 〃 19th line ``△196''
to "△195", and (3) - (1) column 14 line "
△13” to “△10”, engineering, line 19 “△
18. IJ to "△1Z6", or more (2)

Claims (1)

【特許請求の範囲】[Claims] (1)銅精鉱等を自溶炉にて製錬する方法において、前
記銅精鉱とともに粉コークス又は粉コークスと微粉炭を
重油と共に吹込み溶錬することを特徴とする自熔炉製錬
法。
(1) A method of smelting copper concentrate, etc. in a flash furnace, characterized in that coke breeze or coke breeze and pulverized coal are injected together with heavy oil and smelted together with the copper concentrate. .
JP10352282A 1982-06-16 1982-06-16 Smelting method in flash smelting furnace using coke breeze Pending JPS58221241A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10352282A JPS58221241A (en) 1982-06-16 1982-06-16 Smelting method in flash smelting furnace using coke breeze
PH28060A PH18707A (en) 1982-06-16 1982-10-28 Flash smelting process using powdered coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352282A JPS58221241A (en) 1982-06-16 1982-06-16 Smelting method in flash smelting furnace using coke breeze

Publications (1)

Publication Number Publication Date
JPS58221241A true JPS58221241A (en) 1983-12-22

Family

ID=14356256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352282A Pending JPS58221241A (en) 1982-06-16 1982-06-16 Smelting method in flash smelting furnace using coke breeze

Country Status (2)

Country Link
JP (1) JPS58221241A (en)
PH (1) PH18707A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196336A (en) * 1987-10-08 1989-04-14 Sumitomo Metal Mining Co Ltd Method for controlling fuel supply to shaft part in autogenous smelting furnace operation
JPH01275721A (en) * 1988-04-27 1989-11-06 Mitsubishi Metal Corp Method for smelting metal sulfide ore
JPH0586422A (en) * 1991-05-17 1993-04-06 Sumitomo Metal Mining Co Ltd Method for operating self-melting smelting furnace
US6755890B1 (en) 1999-05-14 2004-06-29 Outokumpu Oyj Method for reducing non-ferrous metal content in slag in the production of non-ferrous metals occurring in suspension smelting furnace
US6887298B1 (en) 1999-05-14 2005-05-03 Outokumpu Oyj Method and equipment for smelting non-ferrous metal sulphides in a suspension smelting furnace in order to produce matte of a high non-ferrous metal content and disposable slag
US8382879B2 (en) 2008-06-02 2013-02-26 Pan Pacific Copper Co., Ltd. Copper smelting method
WO2013079762A1 (en) 2011-11-29 2013-06-06 55Outotec Oyj Method for controlling the suspension in a suspension smelting furnace, a suspension smelting furnace, and a concentrate burner
US20130269481A1 (en) * 2012-04-16 2013-10-17 Xiangguang Copper Co., Ltd. Method for producing blister copper directly from copper concentrate
JP2016035114A (en) * 2015-12-17 2016-03-17 オウトテック オサケイティオ ユルキネンOutotec Oyj Method for controlling floating matter in floating melting furnace, floating melting furnace, and concentrate burner
RU2710810C1 (en) * 2018-12-13 2020-01-14 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Method of reducing copper from sulphide compounds
US10852065B2 (en) 2011-11-29 2020-12-01 Outotec (Finland) Oy Method for controlling the suspension in a suspension smelting furnace

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196336A (en) * 1987-10-08 1989-04-14 Sumitomo Metal Mining Co Ltd Method for controlling fuel supply to shaft part in autogenous smelting furnace operation
JPH01275721A (en) * 1988-04-27 1989-11-06 Mitsubishi Metal Corp Method for smelting metal sulfide ore
JPH0586422A (en) * 1991-05-17 1993-04-06 Sumitomo Metal Mining Co Ltd Method for operating self-melting smelting furnace
US6755890B1 (en) 1999-05-14 2004-06-29 Outokumpu Oyj Method for reducing non-ferrous metal content in slag in the production of non-ferrous metals occurring in suspension smelting furnace
US6887298B1 (en) 1999-05-14 2005-05-03 Outokumpu Oyj Method and equipment for smelting non-ferrous metal sulphides in a suspension smelting furnace in order to produce matte of a high non-ferrous metal content and disposable slag
BG65570B1 (en) * 1999-05-14 2008-12-30 Outokumpu Oyj A Public Limited Company Of Espoo Method for reducing non-ferrous metal content in slag in the production of non-ferrous metals occurring in suspension smelting furnaces
US8382879B2 (en) 2008-06-02 2013-02-26 Pan Pacific Copper Co., Ltd. Copper smelting method
KR101523890B1 (en) * 2011-11-29 2015-05-28 오토텍 오와이제이 Method for controlling the suspension in a suspension smelting furnace, a suspension smelting furnace, and a concentrate burner
CN104053798A (en) * 2011-11-29 2014-09-17 奥图泰有限公司 Method for controlling suspension in suspension smelting furnace, suspension smelting furnace, and concentrate burner
JP2014533781A (en) * 2011-11-29 2014-12-15 オウトテック オサケイティオ ユルキネンOutotec Oyj Control method of suspended solids in floating melting furnace, floating melting furnace and concentrate burner
WO2013079762A1 (en) 2011-11-29 2013-06-06 55Outotec Oyj Method for controlling the suspension in a suspension smelting furnace, a suspension smelting furnace, and a concentrate burner
EP2785885A4 (en) * 2011-11-29 2015-12-09 Outotec Oyj Method for controlling the suspension in a suspension smelting furnace, a suspension smelting furnace, and a concentrate burner
US9677815B2 (en) 2011-11-29 2017-06-13 Outotec Oyj Method for controlling the suspension in a suspension smelting furnace, a suspension smelting furnace, and a concentrate burner
EA028492B1 (en) * 2011-11-29 2017-11-30 Ототек Оюй Method for controlling the suspension in a suspension smelting furnace, suspension smelting furnace, and concentrate burner
US10852065B2 (en) 2011-11-29 2020-12-01 Outotec (Finland) Oy Method for controlling the suspension in a suspension smelting furnace
US20130269481A1 (en) * 2012-04-16 2013-10-17 Xiangguang Copper Co., Ltd. Method for producing blister copper directly from copper concentrate
US8771396B2 (en) * 2012-04-16 2014-07-08 Xiangguang Copper Co., Ltd. Method for producing blister copper directly from copper concentrate
JP2016035114A (en) * 2015-12-17 2016-03-17 オウトテック オサケイティオ ユルキネンOutotec Oyj Method for controlling floating matter in floating melting furnace, floating melting furnace, and concentrate burner
RU2710810C1 (en) * 2018-12-13 2020-01-14 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Method of reducing copper from sulphide compounds

Also Published As

Publication number Publication date
PH18707A (en) 1985-09-05

Similar Documents

Publication Publication Date Title
CA1073215A (en) Production of blister copper directly from roasted copper-iron sulfide concentrates
EP0122768B1 (en) An electric arc fired cupola for remelting of metal chips
CN111411234A (en) Jet smelting electrothermal reduction furnace and method for smelting zinc-containing material
JPH021216B2 (en)
JPS58221241A (en) Smelting method in flash smelting furnace using coke breeze
CN111440957A (en) System and method for treating zinc concentrate and zinc slag
CN101210280A (en) Comprehensive utilization method for copper-containing sulfuric acid thermal baking slag
CN205556750U (en) Direct smelting system of while output metallic lead, zinc
JP2003519288A (en) Method of producing blister copper in suspension furnace
RU2126455C1 (en) Method of producing high-grade nickel matte
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
US4304595A (en) Method of manufacturing crude iron from sulphidic iron-containing material
CN212247151U (en) Jet smelting electric heating reduction furnace
US4421552A (en) Dead roast-oxide flash reduction process for copper concentrates
CN106011496A (en) Double-area molten pool smelting furnace and lead and tin co-smelting smelting method thereof
CN112143908A (en) Smelting process for treating complex gold ore
CN111041225A (en) Oxygen-enriched side-blown smelting method for lean high-silicon copper concentrate
JPH09268332A (en) Apparatus for recognition zinc oxide from iron making dust
CN219793074U (en) Comprehensive recovery and harmless treatment device for valuable metal elements of copper smelting slag
JPS60251234A (en) Method for recovering valuable metal from iron dust containing high zinc
Siegmund Modern applied technologies for primary lead smelting at the beginning of the 21st century
CN101317067B (en) Unit for processing pulverized lead- and zinc-containing raw material
CN211057203U (en) Well type extraction system for antimony metal
Moosavi-Khoonsari et al. Technology selection for slag zinc fuming process
Rath et al. Lead smelting in a submerged arc furnace