JPH0213017B2 - - Google Patents

Info

Publication number
JPH0213017B2
JPH0213017B2 JP19015385A JP19015385A JPH0213017B2 JP H0213017 B2 JPH0213017 B2 JP H0213017B2 JP 19015385 A JP19015385 A JP 19015385A JP 19015385 A JP19015385 A JP 19015385A JP H0213017 B2 JPH0213017 B2 JP H0213017B2
Authority
JP
Japan
Prior art keywords
pellets
zinc
reduction
iron
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19015385A
Other languages
Japanese (ja)
Other versions
JPS6250421A (en
Inventor
Toshio Matsuoka
Shinichi Kuromame
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP60190153A priority Critical patent/JPS6250421A/en
Priority to US06/774,503 priority patent/US4612041A/en
Priority to DE8585111448T priority patent/DE3584865D1/en
Priority to EP19850111448 priority patent/EP0174641B1/en
Priority to CA000490303A priority patent/CA1239798A/en
Publication of JPS6250421A publication Critical patent/JPS6250421A/en
Publication of JPH0213017B2 publication Critical patent/JPH0213017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、例えば電気炉製鋼で発生する高亜
鉛含鉄ダストから亜鉛、鉄などの有価金属を回収
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for recovering valuable metals such as zinc and iron from high-zinc iron-containing dust generated, for example, in electric furnace steelmaking.

<従来の技術> 例えば電気炉において発生するダストは集塵機
により捕集されているが、そのダスト量は通常粗
鋼の1−1.5%に当り、さらに、その成分は鉄25
−30%、亜鉛20−25%、鉛3−4%と多量の有価
金属を含有しているにもかかわらず、小規模でか
つ簡易な回収方法がないため、特定の精錬メーカ
ーに引き渡して集中処理しているのが現状であ
る。
<Prior art> For example, dust generated in an electric furnace is collected by a dust collector, but the amount of dust is usually 1-1.5% of crude steel, and its composition is 25% of iron.
-30%, zinc 20-25%, and lead 3-4%, which is a large amount of valuable metals, but because it is small-scale and there is no easy recovery method, it is handed over to a specific smelter and concentrated. The current situation is that it is being processed.

<発明が解決しようとする問題点> このような回収方法として、ロータリーキルン
−溶鉱炉法、あるいは最近、プラズマ熱を利用し
た処理方法が提案されている。
<Problems to be Solved by the Invention> As such a recovery method, a rotary kiln-blast furnace method, or recently, a treatment method using plasma heat has been proposed.

前者は、主としてダスト中の亜鉛の回収を目的
としたものであつて、ロータリーキルンによつて
ダスト中の亜鉛と鉄酸化物を還元して分離するも
のであるが、ロータリーキルン内は強酸化雰囲気
であるため、一旦還元して分離された亜鉛蒸気は
ロータリーキルンから取り出されれる過程で再酸
化されるため、金属亜鉛として回収するために
は、これを再び溶鋼炉で溶融還元しなければなら
ず処理プロセスが複雑であると共に、エネルギー
消費量が大きく、鉄分はその還元生成物が脈石成
分を多量に含有する海綿鉄状のもので、資源とし
て回収して利用するための熱消費(損失)は過大
なものとなる故、依然として金属鉄として回収さ
れないままであつた。
The former is mainly aimed at recovering zinc in dust, and uses a rotary kiln to reduce and separate zinc and iron oxides in the dust, but the inside of the rotary kiln is a strongly oxidizing atmosphere. Therefore, the zinc vapor that has been reduced and separated is reoxidized during the process of being taken out of the rotary kiln, so in order to recover it as metallic zinc, it must be melted and reduced again in the steel melting furnace, which requires a long treatment process. It is complex and requires a large amount of energy.The reduction product of iron is a sponge iron-like substance containing a large amount of gangue components, and the heat consumption (loss) required to recover and use it as a resource is excessive. Therefore, it remained uncollected as metallic iron.

また、後者においては、プラズマ発生のために
多大なエネルギーを消費するために消費エネルギ
ーの割に、回収される亜鉛や鉄が安価なため処理
コストに見会う成果が得られていなかつた。
In addition, in the latter case, a large amount of energy is consumed to generate plasma, and the recovered zinc and iron are cheap compared to the energy consumed, so that the results have not been achieved commensurate with the processing cost.

この発明は、前述のような現状に鑑みて提案さ
れたもので、その目的は、高亜鉛製鋼ダストから
有価金属を容易に且つ少い処理エネルギーで回収
し得る有価金属回収方法を提供することにある。
This invention was proposed in view of the current situation as described above, and its purpose is to provide a method for recovering valuable metals from high-zinc steel dust easily and with less processing energy. be.

<問題点を解決するための手段> この発明に係る有価金属の回収方法は、高亜鉛
製鋼ダストを造粒してペレツトにして、このペレ
ツトを上部に予熱部、下部に還元部を備えたシヤ
フトタイプの炉に装入し、後段の誘導炉からの
CO排ガスを利用して、予熱部で予熱し、還元部
では酸化亜鉛の還元を極力抑制して酸化鉄の還元
を積極的に起こすCO2/CO比率のガス条件下でペ
レツトの予備還元を行なう。予備還元されたペレ
ツトは、炭素質固体還元剤と共に誘導炉に投入
し、誘導炉で溶融還元させ、亜鉛は蒸留により分
離して粗亜鉛として、鉄と鉛は比重分離して、鉄
は溶融銑鉄として、鉛は粗鉛として容易にかつ低
い処理エネルギーで回収出来るようにしたもので
ある。
<Means for Solving the Problems> The method for recovering valuable metals according to the present invention involves granulating high-zinc steel dust into pellets, and transferring the pellets to a shaft having a preheating section in the upper part and a reducing part in the lower part. type of furnace, and from the downstream induction furnace.
The pellets are preheated in the preheating section using CO exhaust gas, and the pellets are pre-reduced in the reduction section under gas conditions with a CO 2 /CO ratio that actively reduces the reduction of iron oxide while suppressing the reduction of zinc oxide as much as possible. . The pre-reduced pellets are put into an induction furnace together with a carbonaceous solid reducing agent and melted and reduced in the induction furnace. Zinc is separated by distillation as crude zinc, iron and lead are separated by specific gravity, and iron is converted into molten pig iron. As a result, lead can be easily recovered as crude lead with low processing energy.

<実施例> 以下、この発明を図示する一実施例に基ずいて
説明する。高亜鉛製鋼ダストDは造粒機1で6−
15MMのペレツトに造粒される。造粒されたペレ
ツトは、シヤフトタイプの予熱・予熱還元炉2に
装入される。この予熱・予備還元炉の予熱部にお
いては、予備還元部を通過上昇したCO−CO2
ス中のCOおよびペレツト含有の炭素が燃焼空気
A2(必要に応じて酸素富化も行なう)によつて
燃焼され、ペレツトは短時間で加熱される。この
予熱部では、またペレツト中の水分および強熱減
量成分も除去される。加熱されたペレツトは、還
元部に移行し、ガス温度・成分調整炉8によつて
調整された還元ガスと反応し、鉄酸化物は予備還
元される。この還元部に装入されるガス条件は、
鉄酸化物の還元を積極的に起さしめる FeO+CO=Fe+CO2の平衡線および C+CO2=2COの平衡線に囲まれた領域にあるよ
う調整される。また、更に亜鉛酸化物の還元を極
力抑制するため、例えばPZo=0.02気圧と設定し
ZnO+CO=Zn+CO2の平衡線を付加し、第2図
において斜線部分で示した領域にガス条件を設定
する。例えば、ガス温度・成分調整炉8によつて
温度を約700〜950℃、CO2/COの比率を0.1〜1.0
に設定すればよい。
<Example> The present invention will be described below based on an illustrative example. High zinc steel dust D is 6-
Granulated into 15MM pellets. The granulated pellets are charged into a shaft type preheating/preheating reduction furnace 2. In the preheating section of this preheating/prereduction furnace, CO in the CO-CO 2 gas that has passed through the prereduction section and the carbon contained in the pellets are removed by combustion air A2 (oxygen enrichment is also performed as necessary). The pellets are burned and heated in a short time. In this preheating section, moisture and ignition loss components in the pellets are also removed. The heated pellets move to the reduction section and react with the reducing gas adjusted by the gas temperature/component adjustment furnace 8, whereby the iron oxide is preliminarily reduced. The gas conditions charged into this reduction section are as follows:
It is adjusted to be in a region surrounded by the equilibrium line of FeO + CO = Fe + CO 2 and the equilibrium line of C + CO 2 = 2CO, which actively cause the reduction of iron oxide. Furthermore, in order to suppress the reduction of zinc oxide as much as possible, for example, set P Zo = 0.02 atm.
An equilibrium line of ZnO+CO=Zn+CO 2 is added, and gas conditions are set in the shaded area in FIG. For example, the gas temperature/component adjustment furnace 8 adjusts the temperature to approximately 700 to 950°C and the CO 2 /CO ratio to 0.1 to 1.0.
You can set it to .

予備還元されたペレツトは、コークス乾燥機9
により乾燥されたコークスCと共に低周波誘導炉
3に投入され、鉄酸化物、亜鉛酸化物、鉛酸化物
は還元・溶融され、残り金属酸化物は大部分スラ
グS1を形成する。
The pre-reduced pellets are sent to a coke dryer 9.
The iron oxide, zinc oxide, and lead oxide are put into a low frequency induction furnace 3 together with the dried coke C, and the iron oxide, zinc oxide, and lead oxide are reduced and melted, and most of the remaining metal oxides form slag S1.

還元された鉄は、溶融銑鉄(約4%C)Feと
して低周波誘導炉3から排出され、後段の電気炉
へホツトチヤージされる。
The reduced iron is discharged from the low frequency induction furnace 3 as molten pig iron (approximately 4% C) Fe and is hot-charged to the subsequent electric furnace.

生成したスラグS1は、前記誘導炉に通電した
まま撹拌状態で溶銑と共に抜き出すか、通電を止
めて一時的に静置し、高炉で通常行われているご
とく別々の排出口より排出される。
The generated slag S1 is extracted together with the hot metal while being stirred while the induction furnace is energized, or the slag S1 is temporarily left standing with the energization turned off and discharged from separate discharge ports as is normally done in blast furnaces.

還元された鉛Pbは、比重が比較的大きいため、
溶融銑鉄と比重分離し、炉下部の鉛溜4に溜り、
定期的に粗鉛として抜きとられる。
Reduced lead Pb has a relatively large specific gravity, so
It separates from the molten pig iron by specific gravity and accumulates in the lead reservoir 4 at the bottom of the furnace.
It is periodically extracted as crude lead.

還元された亜鉛Znは沸点が比較的低いため、
溶融・蒸発し、還元ガスCOと共ガス状態で亜鉛
凝縮器5に導かれ、亜鉛循環(又は鉛循環)ポン
プ7により循環された溶融亜鉛(又は溶融鉛)に
より冷却され、液状物として凝縮し、冷却樋6で
冷却、不純物を除去された後、粗亜鉛として回収
される。
Reduced zinc Zn has a relatively low boiling point, so
It is melted and evaporated, led to the zinc condenser 5 in a co-gas state with the reducing gas CO, cooled by the molten zinc (or molten lead) circulated by the zinc circulation (or lead circulation) pump 7, and condensed as a liquid. After being cooled in the cooling gutter 6 and removing impurities, it is recovered as crude zinc.

凝縮器5を出た還元ガスのCOは、ガス温度・
成分調整炉8に導かれる。この調整炉8では、還
元ガスCOは燃焼空気A2(必要に応じて酸素富
化を行なう)によつて燃焼され前述の予備還元条
件を満足するガス条件に調整される。
The reducing gas CO that has exited the condenser 5 has a temperature of
It is guided to a component adjustment furnace 8. In this conditioning furnace 8, the reducing gas CO is combusted by combustion air A2 (oxygen enriched if necessary) and adjusted to gas conditions that satisfy the above-mentioned preliminary reduction conditions.

予熱・予備還元炉2の排ガスは、コークス乾燥
機9に導かれコークスの乾燥に利用された後、集
塵機10、塩素除去装置11、脱硫装置12を経
て系外へ排出される。
The exhaust gas from the preheating/prereducing furnace 2 is led to a coke dryer 9 and used for drying coke, and then is discharged to the outside of the system via a dust collector 10, a chlorine removal device 11, and a desulfurization device 12.

<発明の効果> 前述のとおり、この発明によれば、高亜鉛製鋼
ダストを造粒し、予熱・予備還元炉でペレツト中
の水分、炭素、強熱減量成分の除去および酸化鉄
の予備還元を起こさせた後、誘導炉で溶融・還元
させ、亜鉛は蒸留により分離して粗亜鉛として、
鉄と鉛は比重分離して、鉄は溶融銑鉄として、鉛
は粗鉛として回収するようにしたため、次のよう
な効果を奏する。
<Effects of the Invention> As described above, according to the present invention, high-zinc steelmaking dust is granulated, and moisture, carbon, and ignition loss components in the pellets are removed and iron oxide is pre-reduced in a preheating/pre-reduction furnace. After raising the zinc, it is melted and reduced in an induction furnace, and the zinc is separated by distillation to produce crude zinc.
Iron and lead are separated by specific gravity, and the iron is recovered as molten pig iron and the lead is recovered as crude lead, resulting in the following effects.

(1) 予熱・予備還元炉で誘導炉に装入する鉄酸化
物の予備還元を行なうため、誘導炉に装入され
る鉄酸化物の還元率が向上し、鉄酸化物還元の
ための電力負荷を低減できるので、特に誘導炉
における電気エネルギーの省エネルギー化が図
れる。
(1) Since the preheating/prereduction furnace pre-reduces the iron oxide charged to the induction furnace, the reduction rate of the iron oxide charged to the induction furnace is improved, and the electric power required for iron oxide reduction is improved. Since the load can be reduced, electrical energy can be saved, especially in the induction furnace.

(2) 鉄酸化物の予備還元により、誘導炉耐火物と
反応し耐火物の寿命を著しく低下させるFeO成
分を減少することが出来、従つて耐火物寿命の
延長が期待される。
(2) Preliminary reduction of iron oxides can reduce the FeO component that reacts with induction furnace refractories and significantly shortens the life of the refractories, and is therefore expected to extend the life of the refractories.

(3) 予備還元部で亜鉛酸化物の還元を極力抑制し
鉄酸化物の還元は積極的に起こさせるガス条件
で操業を行うため、装入されるガス条件を FeO+CO=Fe+CO2、 C+CO2=2CO更に亜鉛の蒸気圧に応じたZnO
+CO=Zn+CO2の3つの平衡線に囲まれた領
域に限定すれば、仮に予熱・予備還元炉底部の
COの分圧が最も高い部分で PZo=0.02気圧程度に対応するCOの分圧及び温
度を設定すれば、当該炉上部では炉内を反反応
しながら上昇するガスのCO分圧は炉底よりも
相当下がり温度も下がるから炉の還元部を通過
直後のガス中の亜鉛は実際的に零とすることも
期待できる。
(3) In order to operate under gas conditions that suppress the reduction of zinc oxide as much as possible in the preliminary reduction section and actively reduce the iron oxide, the charged gas conditions are set as FeO + CO = Fe + CO 2 , C + CO 2 = 2CO and ZnO depending on the vapor pressure of zinc
If we limit the area to the area surrounded by the three equilibrium lines of +CO=Zn+CO 2 , we can assume that the area at the bottom of the preheating/prereduction furnace
By setting the CO partial pressure and temperature corresponding to P Zo = 0.02 atm at the part where the CO partial pressure is highest, the CO partial pressure of the gas rising while reacting in the furnace at the top of the furnace will be lower than the bottom of the furnace. It can be expected that the zinc content in the gas immediately after passing through the reduction section of the furnace can be practically reduced to zero since the temperature is considerably lower than that of the previous one.

(4) 誘導炉は撹拌力が大きく且つ炉体を気密のあ
る構造にすることがあるため、ペレツトの溶
融・還元、亜鉛の蒸留に適しており、有価金属
を容易に回収出来る。
(4) Induction furnaces have a large stirring force and the furnace body may have an airtight structure, so they are suitable for melting and reducing pellets and distilling zinc, and can easily recover valuable metals.

(5) 強熱減量分を予め除去することにより、ペレ
ツトを誘導炉に装入した場合バーステイングを
起こすことが無く、溶湯の安定した操業が可能
になり、ダストの発生も抑制出来る。
(5) By removing the loss on ignition in advance, bursting will not occur when the pellets are charged into the induction furnace, allowing stable operation of the molten metal and suppressing the generation of dust.

(6) ペレツトの炭素分を予め燃焼することによ
り、ペレツトを予熱出来る他、誘導炉における
ペレツトの還元に必要な還元剤としての炭素
は、ペレツト内に存在する炭材、所謂内炭から
供給されるのではなく、誘導炉内の溶銑の炭素
から供給されるため、ペレツト中の金属酸化物
の還元は、ペレツト表面のみで起こる。そのた
め、内炭を有するペレツトが急激に高温にさら
された時に生ずる急激なガス発生やそれに伴う
ペレツトの破壊を防止することが出来、溶湯の
突沸、ダストの発生を抑制出来、従つて溶湯の
安定な操業が可能になる。
(6) In addition to preheating the pellets by pre-combusting the carbon content of the pellets, carbon as a reducing agent necessary for reducing the pellets in the induction furnace is supplied from the carbonaceous material present in the pellets, the so-called internal coal. The reduction of metal oxides in the pellets occurs only on the surface of the pellets because the carbon is supplied from the hot metal in the induction furnace rather than from the hot metal in the induction furnace. Therefore, it is possible to prevent the sudden generation of gas that occurs when pellets with inner coal are exposed to high temperatures and the accompanying destruction of the pellets, suppress the bumping of the molten metal and the generation of dust, and thereby stabilize the molten metal. operation becomes possible.

(7) 誘導炉のみで装入物の還元を行うと過剰の還
元ガスが発生し、立地条件によつてはその有効
利用を期し難い。予備還元、更には予備還元に
使用した後の還元ガスを燃焼することによるペ
レツトの予熱により、ガスの有するエネルギー
を有効に利用することが出来、全体として省エ
ネルギー化に資することが出来る。
(7) If the charge is reduced only using an induction furnace, excessive reducing gas will be generated, and depending on the location conditions, it is difficult to use it effectively. By preheating the pellets by pre-reducing and further by burning the reducing gas used for the pre-reducing, the energy contained in the gas can be used effectively, contributing to energy saving as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る有価金属回収方法を実
施するための装置のフローチヤートである。 1……造粒機、2……予熱・予備還元炉、3…
…低周波誘導炉、4……鉛溜、5……亜鉛凝縮
器、6……冷却樋、7……亜鉛(又は鉛)循環ポ
ンプ、8……ガス温度・成分調整炉、9……コー
クス乾燥機、10……集塵機、11……塩素除去
装置、12……脱硫装置、D……高亜鉛製鋼ダス
ト、C……コークス、S1……スラグ、Fe……
溶融銑鉄、Zn……溶融亜鉛、Pb……溶融鉛、G
……排ガス、A,A1,A2……空気、CO……
COガス。 第2図は予熱・予備還元炉の予備還元炉内での
ガス分圧関係図で、特に斜線部はPZo=0.02気圧
と設定し、PCO+PCO2=0.98気圧における各成分
分圧の平衡線によつて囲まれた領域を示す。
FIG. 1 is a flowchart of an apparatus for carrying out the method for recovering valuable metals according to the present invention. 1... Granulator, 2... Preheating/pre-reduction furnace, 3...
...Low frequency induction furnace, 4...Lead reservoir, 5...Zinc condenser, 6...Cooling gutter, 7...Zinc (or lead) circulation pump, 8...Gas temperature/component adjustment furnace, 9...Coke Dryer, 10... Dust collector, 11... Chlorine removal device, 12... Desulfurization device, D... High zinc steel dust, C... Coke, S1... Slag, Fe...
Molten pig iron, Zn...molten zinc, Pb...molten lead, G
...Exhaust gas, A, A1, A2...Air, CO...
CO gas. Figure 2 is a diagram showing the relationship between gas partial pressures in the pre-reduction furnace of the preheating/pre-reduction furnace. In particular, the shaded area is set at P Zo = 0.02 atm, and the equilibrium of the partial pressures of each component at P CO + P CO2 = 0.98 atm. Indicates the area enclosed by the line.

Claims (1)

【特許請求の範囲】 1 高亜鉛製鋼ダストを造粒してペレツトにし、
このペレツトを上部に予熱部、下部に還元部を備
えたシヤフトタイプの予熱・予備還元炉に装入
し、予熱部で、ペレツト中の水分、炭素および強
熱減量成分を除去し、還元部で、酸化亜鉛の還元
は極力抑制し鉄酸化物の還元は積極的に起こさし
めるガス条件下で予備還元し、次いで予備還元し
たペレツトを、炭素質固体還元剤と共に誘導炉に
投入し、該誘導炉で溶融還元させ、亜鉛は蒸留に
より分離して粗亜鉛として回収し、鉄と鉛は比重
分離して、鉄は溶融銑鉄として、鉛は粗鉛として
回収することを特徴とする高亜鉛製鋼ダストから
の有価金属の回収方法。 2 予熱・予備還元炉の還元部の装入ガス条件
(温度、CO/CO2比率)を ZnO+CO=Zn+CO2の平衡線と、 FeO+CO=Fe+CO2の平衡線および C+CO2=2COの平衡線に囲まれた領域に設定す
ることを特徴とする特許請求の範囲第1項記載の
有価金属の回収方法。
[Claims] 1 High zinc steel dust is granulated into pellets,
The pellets are charged into a shaft-type preheating and pre-reducing furnace equipped with a preheating section at the top and a reduction section at the bottom. In the preheating section, water, carbon, and ignition loss components are removed from the pellets, and in the reduction section. The pellets are pre-reduced under gas conditions that suppress the reduction of zinc oxide as much as possible and actively promote the reduction of iron oxide, and then the pre-reduced pellets are charged into an induction furnace together with a carbonaceous solid reducing agent. Zinc is separated by distillation and recovered as crude zinc, iron and lead are separated by specific gravity, iron is recovered as molten pig iron, and lead is recovered as crude lead. method for recovering valuable metals. 2 The charging gas conditions (temperature, CO/CO 2 ratio) in the reduction section of the preheating/pre-reduction furnace are surrounded by the equilibrium line of ZnO + CO = Zn + CO 2 , the equilibrium line of FeO + CO = Fe + CO 2 , and the equilibrium line of C + CO 2 = 2CO. 2. The method for recovering valuable metals according to claim 1, wherein the method is set in an area where the metals are recovered.
JP60190153A 1984-09-11 1985-08-29 Method for recovering valuable metal from oust in steel making Granted JPS6250421A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60190153A JPS6250421A (en) 1985-08-29 1985-08-29 Method for recovering valuable metal from oust in steel making
US06/774,503 US4612041A (en) 1984-09-11 1985-09-10 Process for recovering valuable metals from an iron dust containing a higher content of zinc
DE8585111448T DE3584865D1 (en) 1984-09-11 1985-09-10 METHOD FOR RECOVERING HIGH QUALITY METALS FROM IRON DUST WITH HIGH ZINC CONTENT.
EP19850111448 EP0174641B1 (en) 1984-09-11 1985-09-10 A process for recovering valuable metals from an iron dust containing a higher content of zinc
CA000490303A CA1239798A (en) 1984-09-11 1985-09-10 Process for recovering valuable metals from an iron dust containing a higher content of zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60190153A JPS6250421A (en) 1985-08-29 1985-08-29 Method for recovering valuable metal from oust in steel making

Publications (2)

Publication Number Publication Date
JPS6250421A JPS6250421A (en) 1987-03-05
JPH0213017B2 true JPH0213017B2 (en) 1990-04-03

Family

ID=16253297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60190153A Granted JPS6250421A (en) 1984-09-11 1985-08-29 Method for recovering valuable metal from oust in steel making

Country Status (1)

Country Link
JP (1) JPS6250421A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840722B1 (en) * 2006-10-18 2008-06-23 세연에스앤알 주식회사 Method and device for making pig iron and zinc oxide from material including iron oxide and zinc oxide
US8845780B2 (en) * 2011-08-16 2014-09-30 Empire Technology Development Llc Electric arc furnace dust recycling apparatus and method

Also Published As

Publication number Publication date
JPS6250421A (en) 1987-03-05

Similar Documents

Publication Publication Date Title
JP2671053B2 (en) Method for recovering valuable metals from zinc-containing dust
EP0174641B1 (en) A process for recovering valuable metals from an iron dust containing a higher content of zinc
JP5336472B2 (en) Recycling method for high zinc and sulfate content residues
EP2191025B1 (en) Direct smelting of zinc bearing compounds to produce metallic zinc
US4006010A (en) Production of blister copper directly from dead roasted-copper-iron concentrates using a shallow bed reactor
US6685761B1 (en) Method for producing beneficiated titanium oxides
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
US6136059A (en) Process for reducing the electric steelworks dusts and facility for implementing it
WO1999036581A1 (en) Sustainable steelmaking by efficient direct reduction of iron oxide and solid waste minimisation
JPS58221241A (en) Smelting method in flash smelting furnace using coke breeze
WO1999063119A1 (en) Sustainable steelmaking by intensified direct reduction of iron oxide and solid waste minimisation
JPH10147806A (en) Production of high quality reduced iron from ironmaking dust
JPH0213017B2 (en)
KR910000013B1 (en) Process for recovering valuable metals from an iron dust containing a higher content of zinc
JPS60251234A (en) Method for recovering valuable metal from iron dust containing high zinc
JP3317137B2 (en) Recovery device for zinc oxide from steelmaking dust
KR900006695B1 (en) Process for recovering valuable metals from an iron dust constaining a higher content of zinc
RU2182184C1 (en) Technology of processing of iron-carrying materials
WO1997000333A1 (en) The processing of zinc bearing materials in a dc arc furnace
JPH11302712A (en) Reduction dissolution refining method for iron oxide
JP4024647B2 (en) Electric furnace operation method using steelmaking dust
JPS59104419A (en) Steel-making process in arc furnace
JPH0723490B2 (en) Batch production method of hot metal
AU4124199A (en) Sustainable steelmaking by intensified direct reduction of iron oxide and solid waste minimisation