JPH10265272A - Production of ferrite magnet - Google Patents

Production of ferrite magnet

Info

Publication number
JPH10265272A
JPH10265272A JP9093156A JP9315697A JPH10265272A JP H10265272 A JPH10265272 A JP H10265272A JP 9093156 A JP9093156 A JP 9093156A JP 9315697 A JP9315697 A JP 9315697A JP H10265272 A JPH10265272 A JP H10265272A
Authority
JP
Japan
Prior art keywords
mixture
powder
solvent
wet
ferrite magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9093156A
Other languages
Japanese (ja)
Inventor
Seiichi Hosokawa
誠一 細川
Yukio Toyoda
幸夫 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP9093156A priority Critical patent/JPH10265272A/en
Publication of JPH10265272A publication Critical patent/JPH10265272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To considerably shorten the time required to pulverize calcined powder by adding a specified amt. of a water-soluble carbonate and/or a COOH-contg. salt to a mixture of the calcined powder with a solvent and carrying out wet pulverization when the mixture is wet-pulverized, molded and sintered to obtain a ferrite magnet. SOLUTION: A water-soluble carbonate such as sodium carbonate and/or a COOH-contg. salt such as ammonium polycarboxylate is added by <=1 wt.%, preferably 0.4-0.8 wt.% to a mixture of stock powder such as calcined powder obtd. by calcining an SrCO3 -Fe2 O3 mixture with a solvent such as water, and wet pulverization is carried out. The powder-solvent mixture may be wet- pulverized in gaseous CO2 or gas contg. gaseous CO2 . The time required to pulverize the powder can be shortened by 30-50% as compared with the conventional method and the objective low-cost ferrite magnets having high performance are stably mass-produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、フェライト磁石
の製造方法に係り、仮焼粉と溶媒との混合物に特定の添
加物を添加した後、湿式微粉砕するか、あるいは該混合
物を特定の雰囲気中で湿式微粉砕することによって、大
幅な粉砕時間の短縮を図り、安価で高性能なフェライト
磁石を得る製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferrite magnet, which comprises adding a specific additive to a mixture of a calcined powder and a solvent and then subjecting the mixture to wet pulverization or mixing the mixture in a specific atmosphere. The present invention relates to a method for producing an inexpensive and high-performance ferrite magnet by greatly reducing the pulverization time by performing wet pulverization in a medium.

【0002】[0002]

【従来の技術】SrO・6Fe23で代表される酸化物
磁石材料であるマグネトプランバイト型六方晶フェライ
ト(以下M型フェライトという)、いわゆるM型フェラ
イトは、1952年PhilipsのJ.J.Went
らによって提唱されて以来、その優れた磁気特性、コス
トパフォーマンスから現在でも大量生産され、様々な分
野で活用されている。
2. Description of the Related Art Magnetoplumbite-type hexagonal ferrite (hereinafter referred to as M-type ferrite) which is an oxide magnet material represented by SrO.6Fe 2 O 3 , so-called M-type ferrite, is disclosed in Philips, J. J. Went
Since their proposal, they have been mass-produced today due to their excellent magnetic properties and cost performance, and have been used in various fields.

【0003】近年、環境問題から自動車の低燃費化実現
のために自動車本体の軽量化が進められ、それに対応し
て電装品の小型軽量化を図るため、その主要構成部品で
あるフェライト磁石の小型、高性能化が強く要望されて
いる。
In recent years, the weight of automobile bodies has been reduced in order to realize low fuel consumption of automobiles due to environmental problems. In order to reduce the size and weight of electrical components correspondingly, the size of ferrite magnets, which are the main component of the automobile, has been reduced. There is a strong demand for higher performance.

【0004】従来から、フェライト磁石の高性能化の手
段としては、仮焼後の粉末の結晶粒子径を単磁区粒径ま
で小さくすることによって、焼結後の結晶粒径の微細化
を図り、磁気特性、特に保磁力を向上させることが知ら
れている。
Conventionally, as means for improving the performance of ferrite magnets, the crystal grain size after sintering has been reduced by reducing the crystal grain size of the calcined powder to a single magnetic domain size. It is known to improve magnetic properties, especially coercivity.

【0005】[0005]

【発明が解決しようとする課題】しかし、結晶粒子を小
さくするためには、ボールミルやアトライターといった
粉砕機によって長時間の微粉砕が必要となる。そのた
め、生産能率が低下するとともに粉砕機の寿命低下を招
くことになり、コストアップの要因になっていた。
However, in order to reduce the size of crystal grains, it is necessary to carry out long-time fine pulverization using a pulverizer such as a ball mill or an attritor. For this reason, the production efficiency is reduced and the life of the crusher is shortened, resulting in an increase in cost.

【0006】また、粉砕時間が長くなると超微粒子の量
が増加するため、プレス成形時の脱水性が悪くなり、プ
レス効率の悪化、成形機の故障などの要因になってい
た。
In addition, when the grinding time becomes longer, the amount of the ultrafine particles increases, so that the dewatering property at the time of press molding is deteriorated, and the press efficiency is deteriorated and the molding machine is broken down.

【0007】一方、他の高性能化手段として、M型フェ
ライトの主成分であるSrO−Fe23を、SrO−M
eO−Fe23(MeはCo、Zn、Feなどの2値の
金属イオン)の三元系に拡張し、飽和磁化の向上を図っ
た4種(W型、X型、Y型、Z型)の複雑な六方晶構造
を有する強磁性のフェライト磁石も提案されている。
On the other hand, as another means for improving the performance, SrO—Fe 2 O 3 , which is a main component of M-type ferrite, is replaced with SrO-M
eO-Fe 2 O 3 (Me is Co, Zn, a metal ion of 2 values such as Fe) was extended to ternary, four with improved saturation magnetization (W type, X-type, Y-type, Z Ferromagnetic ferrite magnets having a complex hexagonal structure (type) have also been proposed.

【0008】しかし、上記のフェライトにおいても、満
足する特性を得るためには、仮焼後の粉末の結晶粒子径
をできるだけ小さくしなければならないのは、従来のM
型フェライトと同様であり、根本的な問題解決には至っ
ていない。
However, in order to obtain satisfactory properties even in the above ferrite, the crystal grain size of the calcined powder must be as small as possible in the conventional M ferrite.
It is the same as mold ferrite, and has not yet solved the fundamental problem.

【0009】この発明は、従来の問題点を解決し、微粉
砕に要する時間を大幅に短縮することが可能で、安価で
かつ高性能なフェライト磁石を安定的に量産できる製造
方法の提供を目的としている。
An object of the present invention is to solve the conventional problems and to provide a manufacturing method capable of significantly reducing the time required for fine pulverization and capable of stably mass-producing inexpensive and high-performance ferrite magnets. And

【0010】[0010]

【課題を解決するための手段】発明者らは、湿式微粉砕
におけるフェライト粉末の粉砕性について種々検討の結
果、仮焼後の粉末を湿式微粉砕するに際して、該粉末と
溶媒との混合物に、水溶性の炭酸塩及びCOOHを含む
塩を所定量添加した後に湿式微粉砕するか、あるいは該
混合物を炭酸ガスまたは炭酸ガスを含有するガス中で湿
式微粉砕することにより、微粉砕に要する時間が、従来
に比べ30%〜50%短縮できることを知見した。
The inventors of the present invention have conducted various studies on the pulverizability of ferrite powder in wet pulverization. As a result, when the powder after calcination is wet pulverized, a mixture of the powder and a solvent is added to the mixture. By adding a predetermined amount of a salt containing a water-soluble carbonate and COOH and then performing wet pulverization, or by wet pulverizing the mixture in carbon dioxide or a gas containing carbon dioxide, the time required for pulverization is reduced. It has been found that it can be reduced by 30% to 50% as compared with the related art.

【0011】すなわち、この発明は、仮焼粉と溶媒との
混合物を湿式微粉砕した後、成形、焼結するフェライト
磁石の製造方法において、原料粉末と溶媒との混合物
に、水溶性の炭酸塩及びCOOHを含む塩の1種または
2種を1wt%以下添加した後、湿式微粉砕することを
特徴とするフェライト磁石の製造方法である。
That is, the present invention provides a method for producing a ferrite magnet in which a mixture of a calcined powder and a solvent is wet-milled, and then molded and sintered. And at least 1% by weight of a salt containing COOH and COOH, followed by wet pulverization.

【0012】また、この発明は、仮焼粉と溶媒との混合
物を湿式微粉砕した後、成形、焼結するフェライト磁石
の製造方法において、原料粉末と溶媒との混合物を、炭
酸ガスまたは炭酸ガスを含有するガス中で湿式微粉砕す
ることを特徴とするフェライト磁石の製造方法である。
Further, the present invention provides a method for manufacturing a ferrite magnet in which a mixture of a calcined powder and a solvent is wet-milled, and then molded and sintered, wherein the mixture of the raw material powder and the solvent is mixed with carbon dioxide or carbon dioxide. Is a method for producing a ferrite magnet, characterized in that the ferrite magnet is wet-milled in a gas containing

【0013】[0013]

【発明の実施の形態】この発明において、対象とするフ
ェライト磁石は、SrO・6Fe23またはBaO・6
Fe23で代表されるM型フェライト磁石、あるいはS
rO−MeO−Fe23(Me=Co、Zn、Feなど
の2値の金属イオン)で表されるW型フェライト磁石な
ど、公知の組成からなるフェライト磁石を適用すること
ができ、いずれのフェライト磁石においても同様な効果
を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the target ferrite magnet is SrO.6Fe 2 O 3 or BaO.6.
M type ferrite magnet represented by Fe 2 O 3 or S
A ferrite magnet having a known composition such as a W-type ferrite magnet represented by rO-MeO-Fe 2 O 3 (Me = binary metal ions such as Co, Zn, and Fe) can be used. A similar effect can be obtained with a ferrite magnet.

【0014】また、この発明において、仮焼粉を得るた
めの製造方法、仮焼粉に添加する溶媒、仮焼粉と溶媒と
の混合物を湿式微粉砕するための粉砕機などはすべて公
知のものを採用することができる。例えば、溶媒として
は水、粉砕機としては、ボールミル、アトライターなど
を挙げることができる。
Further, in the present invention, known production methods for obtaining a calcined powder, a solvent to be added to the calcined powder, and a pulverizer for wet-milling a mixture of the calcined powder and the solvent are all known. Can be adopted. For example, water can be used as a solvent, and a ball mill, an attritor and the like can be used as a pulverizer.

【0015】この発明は、上述した仮焼粉と溶媒との混
合物に、水溶性の炭酸塩及びCOOHを含む塩の1種ま
たは2種を1wt%以下添加した後、湿式微粉砕するこ
とにより、粉砕時間を大幅に短縮できることを特徴とし
ている。水溶性の炭酸塩としては、炭酸カリウム、炭酸
ナトリウム、炭酸バリウム、炭酸水素アンモニウム(重
炭酸アンモニウム)、炭酸水素カリウム、炭酸水素ナト
リウムなどを挙げることができ、また、COOHを含む
塩としては、ポリカルボン酸アンモニウムなどを用いる
ことができる。
According to the present invention, a mixture of the above-mentioned calcined powder and a solvent is added with 1% or less of a water-soluble carbonate and / or a salt containing COOH by 1% by weight or less, followed by wet pulverization. It is characterized in that the grinding time can be greatly reduced. Examples of the water-soluble carbonate include potassium carbonate, sodium carbonate, barium carbonate, ammonium hydrogencarbonate (ammonium bicarbonate), potassium hydrogencarbonate, sodium hydrogencarbonate, and the like. Ammonium carboxylate and the like can be used.

【0016】上記の添加物は、それぞれを単独あるいは
複合して用いることが可能であるが、添加量が1wt%
を超えると粉砕性が向上し過ぎ、例えば、M型フェライ
トの場合、フェライトがスピネル及び炭酸Srあるいは
炭酸Baに一部分解して、磁気特性の劣化を招くため好
ましくない。従って、添加量は1wt%以下に限定す
る。特に好ましい添加量は0.4〜0.8wt%であ
る。
Each of the above additives can be used alone or in combination.
If it exceeds, the pulverizability is excessively improved. For example, in the case of M-type ferrite, the ferrite is partially decomposed into spinel and Sr carbonate or Ba carbonate, which is not preferable because magnetic properties are deteriorated. Therefore, the amount of addition is limited to 1 wt% or less. A particularly preferred addition amount is 0.4 to 0.8 wt%.

【0017】また、この発明は、仮焼粉と溶媒との混合
物を、炭酸ガスを含有する雰囲気中で湿式微粉砕するこ
とによっても、前記の添加物を添加した場合と同様に、
粉砕時間を大幅に短縮することができる。この炭酸ガス
を含有する雰囲気とは、炭酸ガス、炭酸ガスとその他の
ガスとの混合ガスあるいはそれらと空気との混合雰囲気
などが好ましい。
The present invention also provides a method of wet-milling a mixture of a calcined powder and a solvent in an atmosphere containing carbon dioxide gas, as in the case where the above-mentioned additives are added.
The pulverization time can be greatly reduced. The atmosphere containing carbon dioxide is preferably carbon dioxide, a mixed gas of carbon dioxide and other gases, or a mixed atmosphere of them and air.

【0018】上記の雰囲気制御は、例えば、ボールミル
等の密閉型の粉砕機であれば、仮焼粉と溶媒との混合物
を粉砕機に装入する際に、粉砕機内を上記の雰囲気に調
整して密閉するか、あるいは混合物を粉砕機に装入後、
吸排気口を通して内部を置換するなどの手段が採用でき
る。
In the case of a closed pulverizer such as a ball mill, when the mixture of the calcined powder and the solvent is charged into the pulverizer, the atmosphere is adjusted to the above-mentioned atmosphere. Or after the mixture has been charged into the crusher,
Means such as replacing the inside through the intake / exhaust port can be adopted.

【0019】また、アトライター等の開放型の粉砕機の
場合は、上述したガスなどによって粉砕中のスラリーを
バブリングしたり、スラリーに直接ガスを吹き付けるな
どの手段を採用することができる。なお、上述のバブリ
ングや直接ガスを吹き付けるなど、積極的にガスを注入
する場合に限れば、空気(微量な炭酸ガスが含有されて
いる)でも可能である。
In the case of an open type pulverizer such as an attritor, a means such as bubbling the slurry being pulverized with the above-mentioned gas or spraying a gas directly on the slurry can be employed. In addition, as long as the gas is positively injected, such as the above-described bubbling and direct gas blowing, air (containing a small amount of carbon dioxide) can be used.

【0020】上述した湿式微粉砕を用いることにより、
微粉砕に要する時間を従来に比べ30%〜50%と大幅
に短縮することができるため、生産能率が向上するとと
もに粉砕機の長寿命化を図ることができ、また、得られ
た微粉末は、超微粒子の量が極めて少ないため、プレス
成形時の脱水性が良好であり、プレス効率の向上、成形
機の長寿命化を図ることができる。
By using the wet pulverization described above,
The time required for the pulverization can be significantly reduced to 30% to 50% as compared with the conventional method, so that the production efficiency can be improved and the life of the pulverizer can be prolonged. Since the amount of the ultrafine particles is extremely small, the dewatering property at the time of press molding is good, so that the press efficiency can be improved and the life of the molding machine can be extended.

【0021】湿式微粉砕後のスラリー状の微粉末は、上
記の如くそのまま成形するか、あるいはスラリーを一旦
乾燥させて乾粉となし、該乾粉を用いて成形するなど、
公知の成形手段を採用することができ、また、成形後の
焼結も公知の条件で行なうことができる。
The fine powder in the form of a slurry after the wet pulverization may be formed as it is as described above, or the slurry may be dried once to form a dry powder, and then formed using the dry powder.
Known molding means can be employed, and sintering after molding can be performed under known conditions.

【0022】[0022]

【実施例】 実施例1 SrCO3とFe23を1:5.9のモル比で秤量し、
混合後、大気中で1300℃×1時間の条件で仮焼して
仮焼粉を得た。該仮焼粉と溶媒となる水をボールミルポ
ット内に装入し、さらに水溶性の炭酸塩として炭酸ナト
リウムを0.8wt%加えた後、該ボールミルを回転さ
せ、粉砕を行なった。粉砕時間と粉砕粒度との関係を図
1に示す。なお、粉砕粒度はBETによって測定した。
EXAMPLES Example 1 SrCO 3 and Fe 2 O 3 were weighed at a molar ratio of 1: 5.9,
After mixing, the mixture was calcined in the atmosphere at 1300 ° C. for 1 hour to obtain a calcined powder. The calcined powder and water as a solvent were charged in a ball mill pot, and 0.8 wt% of sodium carbonate as a water-soluble carbonate was further added. Then, the ball mill was rotated to perform pulverization. FIG. 1 shows the relationship between the grinding time and the grinding particle size. The pulverized particle size was measured by BET.

【0023】比較例1 実施例1と同じ仮焼粉を用いて、炭酸ナトリウムを添加
せずに、実施例1と同じ条件で粉砕を行なった。粉砕時
間と粉砕粒径との関係を図1に示す。
Comparative Example 1 The same calcined powder as in Example 1 was used and pulverized under the same conditions as in Example 1 without adding sodium carbonate. FIG. 1 shows the relationship between the crushing time and the crushed particle size.

【0024】図1から明らかなように、この発明による
水溶性の炭酸塩を添加した湿式微粉砕によれば、それを
添加しない場合に比べ、粉砕能率が非常に向上している
ことが分かる。例えば、粉砕粒径を0.05μmにする
場合、比較例では、34時間も粉砕を行なわねばならな
いが、この発明によれば24時間で粉砕ができ、約30
%の粉砕時間の短縮を行なうことができる。
As is clear from FIG. 1, it can be seen that the wet pulverization according to the present invention to which a water-soluble carbonate is added significantly improves the pulverization efficiency as compared with the case where no water-soluble carbonate is added. For example, when the pulverized particle size is 0.05 μm, in the comparative example, pulverization must be performed for 34 hours, but according to the present invention, pulverization can be performed in 24 hours, and about 30 hours.
% Of the pulverization time can be reduced.

【0025】実施例2 実施例1と同じ仮焼粉を用いて、炭酸ナトリウムを0、
0.2、0.4、0.8wt%をそれぞれ添加し、実施
例1と同じ条件で粉砕を行なった。粉砕粒径と得られた
微粉末におけるスピネルのメインピーク(311)の相
対強度値との関係を図2に示す。
Example 2 Using the same calcined powder as in Example 1, sodium carbonate was reduced to 0,
Pulverization was performed under the same conditions as in Example 1 by adding 0.2, 0.4, and 0.8 wt%, respectively. FIG. 2 shows the relationship between the crushed particle size and the relative intensity value of the main peak (311) of spinel in the obtained fine powder.

【0026】図2から明らかなように、水溶性の炭酸塩
を添加しない場合に比べ、0.2wt%の添加では若干
ながらスピネル量が増え、さらに0.4wt%、0.8
wt%と添加量を増やすに従ってスピネルの量も増えて
いることが分かる。前述のごとく、スピネルの増加は磁
気特性の劣化を招くため好ましくない。従って、この発
明においては、水溶性の炭酸塩及びCOOHを含む塩の
添加量は1wt%以下、さらに好ましくは0.4〜0.
8wt%とした。
As is clear from FIG. 2, the addition of 0.2 wt% slightly increases the spinel amount, and the addition of 0.4 wt%, 0.8 wt%
It can be seen that the amount of spinel increases as the addition amount increases to wt%. As described above, an increase in spinel is not preferable because it causes deterioration of magnetic properties. Therefore, in the present invention, the addition amount of the salt containing the water-soluble carbonate and COOH is 1% by weight or less, and more preferably 0.4 to 0.4%.
8 wt%.

【0027】また、図2からは、粉砕時間が長くなって
粉砕粒径が小さくなるにつれてスピネルの量が増加する
ことも分かる。従って、特に粉砕粒径を小さくする場合
には、水溶性の炭酸塩及びCOOHを含む塩の添加量を
1wt%以下の範囲内において適切に調整することが必
要である。
FIG. 2 also shows that the amount of spinel increases as the grinding time increases and the grinding particle size decreases. Therefore, in particular, when the ground particle size is reduced, it is necessary to appropriately adjust the addition amount of the water-soluble carbonate and the salt containing COOH within a range of 1 wt% or less.

【0028】[0028]

【発明の効果】この発明によるフェライト磁石の製造方
法は、湿式微粉砕に要する時間を従来に比べ30%〜5
0%と大幅に短縮することができるため、生産能率が飛
躍的に向上するとともに粉砕機の長寿命化を図ることが
でき、工業生産上、極めて有効な製造方法である。
According to the method for producing a ferrite magnet according to the present invention, the time required for wet pulverization is reduced by 30% to 5% compared with the conventional method.
Since it can be greatly reduced to 0%, the production efficiency can be drastically improved and the life of the crusher can be extended, which is a very effective production method for industrial production.

【0029】また、この発明は、湿式微粉砕時に発生す
る超微粒子の量が極めて少ないため、プレス成形時の脱
水性が良好であり、プレス効率の向上、成形機の長寿命
化を図ることができ、安定的な生産性の向上効果から高
性能なフェライト磁石を安価に提供することができる。
Further, according to the present invention, since the amount of ultrafine particles generated at the time of wet pulverization is extremely small, the dewatering property at the time of press molding is good, the press efficiency is improved, and the life of the molding machine is extended. As a result, a high-performance ferrite magnet can be provided at a low cost from a stable productivity improvement effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1における、粉砕時間と粉砕
粒径の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a pulverizing time and a pulverized particle size in Example 1 of the present invention.

【図2】この発明の実施例1における、粉砕粒径と粉砕
粉におけるスピネルのメインピーク(311)の相対強
度値との関係示すグラフである。
FIG. 2 is a graph showing a relationship between a crushed particle size and a relative intensity value of a main peak (311) of spinel in crushed powder in Example 1 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 仮焼粉と溶媒との混合物を湿式微粉砕し
た後、成形、焼結するフェライト磁石の製造方法におい
て、原料粉末と溶媒との混合物に、水溶性の炭酸塩及び
COOHを含む塩の1種または2種を1wt%以下添加
した後、湿式微粉砕することを特徴とするフェライト磁
石の製造方法。
1. A method for producing a ferrite magnet in which a mixture of a calcined powder and a solvent is wet-pulverized and then molded and sintered, wherein the mixture of the raw material powder and the solvent contains a water-soluble carbonate and COOH. A method for producing a ferrite magnet, wherein one or two kinds of salts are added in an amount of 1 wt% or less, and then wet pulverization is performed.
【請求項2】 仮焼粉と溶媒との混合物を湿式微粉砕し
た後、成形、焼結するフェライト磁石の製造方法におい
て、原料粉末と溶媒との混合物を、炭酸ガスまたは炭酸
ガスを含有するガス中で湿式微粉砕することを特徴とす
るフェライト磁石の製造方法。
2. A method for producing a ferrite magnet in which a mixture of a calcined powder and a solvent is finely pulverized after being wet-pulverized, and then the mixture of the raw material powder and the solvent is mixed with carbon dioxide or a gas containing carbon dioxide. A method for producing a ferrite magnet, comprising performing wet pulverization in a ferrite magnet.
JP9093156A 1997-03-26 1997-03-26 Production of ferrite magnet Pending JPH10265272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9093156A JPH10265272A (en) 1997-03-26 1997-03-26 Production of ferrite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9093156A JPH10265272A (en) 1997-03-26 1997-03-26 Production of ferrite magnet

Publications (1)

Publication Number Publication Date
JPH10265272A true JPH10265272A (en) 1998-10-06

Family

ID=14074692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9093156A Pending JPH10265272A (en) 1997-03-26 1997-03-26 Production of ferrite magnet

Country Status (1)

Country Link
JP (1) JPH10265272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11959831B1 (en) 2013-02-01 2024-04-16 Automotive Test Solutions, Inc. Leak detection formula, analyze and methods of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11959831B1 (en) 2013-02-01 2024-04-16 Automotive Test Solutions, Inc. Leak detection formula, analyze and methods of use

Similar Documents

Publication Publication Date Title
JP4254897B2 (en) Magnetic oxide material
US10720272B2 (en) Ferrite magnetic material and ferrite sintered magnet
WO2011001831A1 (en) Ferrite sintered magnet producing method and ferrite sintered magnet
EP3473606B1 (en) Ferrite sintered magnet
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
WO1999034376A1 (en) Ferrite magnet and process for producing the same
JP4046196B2 (en) Ferrite magnet, ferrite magnet powder and method for producing the same
US5958284A (en) Ferrite magnet and method for producing same
JP2021141151A (en) Ferrite powder for bond magnet and production method thereof
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JPH10265272A (en) Production of ferrite magnet
TW202308965A (en) Method of fabricating modified ferrite magnetic powder and ferrite magnet
KR102430475B1 (en) Method for preparing ferrite sintered magnet and ferrite sintered magnet
KR102407046B1 (en) Ferrite magnetic material and ferrite sintered magnet
JPH11307331A (en) Ferrite magnet
KR100521305B1 (en) Magnetoplumbite type ferrite particle, anisotropic sintered magnet, and producing method of the same
KR100538874B1 (en) High performance ferrite sintered magnet and producing method of the same
KR102610891B1 (en) Method for preparing ferrite sintered magnet
TWI766827B (en) Method of fabricating modified ferrite magnetic powder and ferrite magnet
KR20180111041A (en) Ferrite magnetic material and sintered ferrite magnet
JP2001274010A (en) Polar anisotropic cylindrical ferrite magnet and magnetic field granular material
JP3696705B2 (en) Manufacturing method of high performance ferrite magnet
KR102588230B1 (en) Ferrite magnetic material and ferrite sintered magnet
KR20200090038A (en) Method for preparing ferrite sintered magnet and ferrite sintered magnet
JP2022084472A (en) Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061023