JP2022084472A - Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof - Google Patents

Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof Download PDF

Info

Publication number
JP2022084472A
JP2022084472A JP2020196390A JP2020196390A JP2022084472A JP 2022084472 A JP2022084472 A JP 2022084472A JP 2020196390 A JP2020196390 A JP 2020196390A JP 2020196390 A JP2020196390 A JP 2020196390A JP 2022084472 A JP2022084472 A JP 2022084472A
Authority
JP
Japan
Prior art keywords
powder
ferrite magnetic
hexagonal ferrite
magnetic powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020196390A
Other languages
Japanese (ja)
Inventor
智也 山田
Tomoya Yamada
雄大 山田
Takehiro Yamada
将貴 越湖
Masaki KOSHIKO
禅 坪井
Zen Tsuboi
進一 山田
Shinichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa F Tec Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa F Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa F Tec Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2020196390A priority Critical patent/JP2022084472A/en
Publication of JP2022084472A publication Critical patent/JP2022084472A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Compounds Of Iron (AREA)

Abstract

To provide a hexagonal a ferrite magnetic powder for a bond magnet and a manufacturing method thereof capable of obtaining a high residual magnetic flux density Br when used for a bond magnet, and a bond magnet having a high residual magnetic flux density Br and a manufacturing method thereof.SOLUTION: A hexagonal ferrite magnetic powder for a bond magnet is represented by a composition formula (Sr1-xLax)(Fe1-yZny)nO19-z (however, 0.01≤x≤0.50, 0.010≤y≤0.040, 10.00≤n≤12.50, z=19-[2(1-x)+3x+n{3(1-y)+2y}]/2), in the volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device, the proportion of particles with a particle size of less than 1 μm is 25 volume% or more and 40 volume% or less, the proportion of particles with a particle size of 1 μm or more and less than 5 μm is 30 volume% or more and 65 volume% or less, and the proportion of particles with a particle size of 5 μm or more is 7 volume% or more and 30 volume% or less.SELECTED DRAWING: Figure 1

Description

本発明は、ボンド磁石用六方晶フェライト磁性粉とその製造方法、およびボンド磁石とその製造方法に関し、特に、六方晶フェライト磁性粉の粗粉と微粉を含むボンド磁石用六方晶フェライト磁性粉およびその製造方法に関する。 The present invention relates to a hexagonal ferrite magnetic powder for a bonded magnet and its manufacturing method, and a bonded magnet and its manufacturing method, in particular, a hexagonal ferrite magnetic powder for a bonded magnet containing coarse powder and fine powder of the hexagonal ferrite magnetic powder and its manufacturing method. Regarding the manufacturing method.

従来、AV機器、OA機器、自動車電装部品などに使用される小型モータや、複写機のマグネットロールなどに使用される磁石のような高磁力の磁石として、フェライト系焼結磁石が使用されている。しかし、フェライト系焼結磁石は、欠け割れが発生したり、研磨が必要なために生産性に劣るという問題があることに加えて、複雑な形状への加工が困難であるという問題がある。そのため、近年では、AV機器、OA機器、自動車電装部品などに使用される小型モータなどの高磁力の磁石として、希土類磁石のボンド磁石が使用されている。しかし、希土類磁石はフェライト系焼結磁石の約20倍のコストがかかり、また錆びやすいという問題があるため、フェライト系焼結磁石の代わりにフェライト系ボンド磁石を使用することが望まれている。 Conventionally, ferrite-based sintered magnets have been used as magnets with high magnetic force such as magnets used in small motors used in AV equipment, OA equipment, automobile electrical components, etc., and magnet rolls in copiers. .. However, the ferrite-based sintered magnet has a problem that it is inferior in productivity due to cracking and polishing, and it is difficult to process it into a complicated shape. Therefore, in recent years, rare earth magnet bond magnets have been used as high magnetic force magnets for small motors used in AV equipment, OA equipment, automobile electrical components, and the like. However, since rare earth magnets cost about 20 times as much as ferritic sintered magnets and have a problem of being easily rusted, it is desired to use ferritic bonded magnets instead of ferritic sintered magnets.

このようなボンド磁石用フェライト粉末として特許文献1には、組成が(Sr1-x)O・n[(Fe1-y](但し、AはLa、La-Nd、La-Pr又はLa-Nd-Pr、BはZn又はZn-Co、n=5.80~6.10、x=0.10~0.50、y=0.0083~0.042)であって、飽和磁化値σsが73Am/kg(73emu/g)以上である平均粒径が1~3μmのマグネトプランバイト型ストロンチウムフェライト粒子粉末であり、且つ、前記マグネトプランバイト型ストロンチウムフェライト粒子粉末中に板状粒子を個数割合で60%以上含んでいるストロンチウムフェライト粒子粉末が開示されている。また、実施例1および2には、前記組成式においてAがLaであり、BがZnである、SrLaZnフェライト粉末が開示されている。また、ストロンチウムフェライト粒子粉末の製造方法として、ストロンチウムフェライト粒子粉末の原料となる粉末を混合し、焼成し、粉砕した後にアニールする、製造方法が開示されている。 As such a ferrite powder for a bonded magnet, Patent Document 1 states that the composition is (Sr 1-x A x ) O · n [(Fe 1- y By) 2 O 3 ] (where A is La, La-. Nd, La-Pr or La-Nd-Pr, B is Zn or Zn-Co, n = 5.80 to 6.10, x = 0.10 to 0.50, y = 0.0083 to 0.042) It is a magnesium ferrite particle powder having a saturation magnetization value σs of 73 Am 2 / kg (73 emu / g) or more and an average particle size of 1 to 3 μm, and the magnesium ferrite particles. A strontium ferrite particle powder containing 60% or more of plate-like particles in the powder is disclosed. Further, Examples 1 and 2 disclose SrLaZn ferrite powder in which A is La and B is Zn in the composition formula. Further, as a method for producing strontium ferrite particle powder, a production method is disclosed in which a powder as a raw material for strontium ferrite particle powder is mixed, fired, pulverized and then annealed.

特開2001-189210号公報Japanese Unexamined Patent Publication No. 2001-189210

特許文献1に記載のボンド磁石用六方晶フェライト磁性粉は、高配向と高充填とを指向して開発されたものであったが、その圧縮密度は3.4g/cm程度にとどまり、またその磁性粉を用いて製造されたボンド磁石の残留磁束密度Brは3000G程度にとどまっており、ボンド磁石としてより高い残留磁束密度Brを達成することができるボンド磁石用六方晶フェライト磁性粉が求められている。
本発明は、ボンド磁石に用いた際に高い残留磁束密度Brを得ることができるボンド磁石用六方晶フェライト磁性粉とその製造方法、および高い残留磁束密度Brを持つボンド磁石とその製造方法を提供することを目的とする。
The hexagonal ferrite magnetic powder for bonded magnets described in Patent Document 1 was developed with the aim of high orientation and high filling, but its compression density is only about 3.4 g / cm 3 and also. The residual magnetic flux density Br of a bond magnet manufactured using the magnetic powder is only about 3000 G, and a hexagonal ferrite magnetic powder for a bond magnet that can achieve a higher residual magnetic flux density Br as a bond magnet is required. ing.
The present invention provides a hexagonal ferrite magnetic powder for a bond magnet capable of obtaining a high residual magnetic flux density Br when used in a bond magnet and a method for producing the same, and a bond magnet having a high residual magnetic flux density Br and a method for producing the same. The purpose is to do.

以上の課題を解決するための本発明は、ボンド磁石用六方晶フェライト磁性粉であって、組成式(Sr1-xLa)(Fe1-yZn19-z(ただし、0.01≦x≦0.50、0.010≦y≦0.040、10.00≦n≦12.50、z=19-[2(1-x)+3x+n{3(1-y)+2y}]/2)で表され、レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布(以下、単に「粒度分布」という)において、粒径1μm未満の粒子の割合が25体積%以上40体積%以下であり、粒径1μm以上5μm未満の粒子の割合が30体積%以上65体積%以下であり、粒径5μm以上の粒子の割合が7体積%以上30体積%以下であることを特徴とする。 The present invention for solving the above problems is a hexagonal ferrite magnetic powder for a bonded magnet, wherein the composition formula (Sr 1-x La x ) (Fe 1-y Zn y ) n O 19-z (however, 0.01 ≦ x ≦ 0.50, 0.010 ≦ y ≦ 0.040, 10.00 ≦ n ≦ 12.50, z = 19- [2 (1-x) + 3x + n {3 (1-y) + 2y }] / 2), and in the volume-based particle size distribution measured by the laser diffraction type particle size distribution measuring device (hereinafter, simply referred to as "particle size distribution"), the proportion of particles having a particle size of less than 1 μm is 25% by volume. The proportion of particles having a particle size of 1 μm or more and less than 5 μm is 30% by volume or more and 65% by volume or less, and the proportion of particles having a particle size of 5 μm or more is 7% by volume or more and 30% by volume or less. It is characterized by.

このボンド磁石用六方晶フェライト磁性粉は、ボンド磁石用六方晶フェライト磁性粉92.0質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂6.6質量部とをミキサーに充填して混練し、得られた混練物をメルトインデクサーに入れて、混練物が270℃、荷重10kgで押し出された重量を測定し、この重量を10分当たりで押し出された質量に換算することにより求められる、混練物の流動度が、100g/10min以上であることが好ましい。 The hexagonal ferrite magnetic powder for bonded magnets includes 92.0 parts by mass of hexagonal ferrite magnetic powder for bonded magnets, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and a powdered polyamide resin. 6.6 parts by mass was filled in a mixer and kneaded, and the obtained kneaded product was put into a melt indexer, and the weight of the kneaded product extruded at 270 ° C. and a load of 10 kg was measured, and this weight was measured for 10 minutes. The fluidity of the kneaded product, which is obtained by converting it into the mass extruded by hitting, is preferably 100 g / 10 min or more.

また、ボンド磁石用六方晶フェライト磁性粉は、ボンド磁石用六方晶フェライト磁性粉10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮した成形体の圧縮密度が3.60g/cm以上であることが好ましく、粒度分布において、粒径1μm以上5μm未満の粒子の割合が50体積%以上65体積%以下であり、粒径5μm以上の粒子の割合が7体積%以上20体積%以下であってもよい。 The hexagonal ferrite magnetic powder for bond magnets is obtained by filling a cylindrical mold having an inner diameter of 2.54 cmφ with 10 g of hexagonal ferrite magnetic powder for bond magnets and then compressing the molded product at a pressure of 1 ton / cm 3 . The density is preferably 3.60 g / cm 3 or more, and in the particle size distribution, the proportion of particles having a particle size of 1 μm or more and less than 5 μm is 50% by volume or more and 65% by volume or less, and the proportion of particles having a particle size of 5 μm or more is It may be 7% by volume or more and 20% by volume or less.

また、別観点での本発明は、ボンド磁石用六方晶フェライト磁性粉の製造方法であって、組成式(Sr1-x1Lax1)(Fe1-y1Zny1n119-z1(ただし、0.01≦x1≦0.50、0.010≦y1≦0.040、10.00≦n1≦12.50、z1=19-[2(1-x1)+3x1+n1{3(1-y1)+2y1}]/2)で表される六方晶フェライト磁性粉の原料となる粉末を混合した後に第一の温度で焼成して六方晶フェライトの粗粉を得る工程と、組成式(Sr1-x2Lax2)(Fe1-y2Zny2n219-z2(ただし、0≦x2≦0.50、0≦y2≦0.040、10.00≦n2≦12.50、z2=19-[2(1-x2)+3x2+n2{3(1-y2)+2y2}]/2)で表される六方晶フェライト磁性粉の原料となる粉末を混合した後に第一の温度よりも低い第二の温度で焼成して六方晶フェライト磁性粉の微粉を得る工程と、前記粗粉と前記微粉とを、前記粗粉と前記微粉の合計質量に対する前記粗粉の質量割合が60質量%以上90質量%以下となる比率で混合粉砕して、粉砕処理した混合粉を得る工程と、前記粉砕処理した混合粉をアニールする工程と、を含むことを特徴とする。
この製造方法において、微粉の圧縮密度が3.00g/cm以上4.00g/cm以下になるように微粉を得る工程において粉砕処理を行うのが好ましい。
また、この製造方法において、第一の温度が1220℃以上1400℃以下であることが好ましく、第二の温度が900℃以上1000℃以下であることが好ましい。
Further, the present invention from another viewpoint is a method for producing a hexagonal ferrite magnetic powder for a bonded magnet, wherein the composition formula (Sr 1-x1 La x1 ) (Fe 1-y1 Zn y1 ) n1 O 19-z1 (however). , 0.01 ≦ x1 ≦ 0.50, 0.010 ≦ y1 ≦ 0.040, 10.00 ≦ n1 ≦ 12.50, z1 = 19- [2 (1-x1) + 3x1 + n1 {3 (1-y1) + 2y1}] / 2) The process of mixing the powder that is the raw material of the hexagonal ferrite magnetic powder and then firing at the first temperature to obtain the coarse powder of hexagonal ferrite, and the composition formula (Sr 1-x2 ). La x2 ) (Fe 1-y2 Zn y2 ) n2 O 19-z2 (However, 0 ≦ x2 ≦ 0.50, 0 ≦ y2 ≦ 0.040, 10.00 ≦ n2 ≦ 12.50, z2 = 19- [ 2 (1-x2) + 3x2 + n2 {3 (1-y2) + 2y2}] / 2) After mixing the powder that is the raw material of the hexagonal ferrite magnetic powder, at the second temperature lower than the first temperature. The step of obtaining fine powder of hexagonal ferrite magnetic powder by firing, and the mass ratio of the coarse powder to the total mass of the coarse powder and the fine powder is 60% by mass or more and 90% by mass or less. It is characterized by including a step of obtaining a pulverized mixed powder by mixing and pulverizing at a certain ratio, and a step of annealing the pulverized mixed powder.
In this production method, it is preferable to carry out a pulverization treatment in a step of obtaining fine powder so that the compression density of the fine powder is 3.00 g / cm 3 or more and 4.00 g / cm 3 or less.
Further, in this production method, the first temperature is preferably 1220 ° C. or higher and 1400 ° C. or lower, and the second temperature is preferably 900 ° C. or higher and 1000 ° C. or lower.

また、さらに別観点での本発明は、本発明のボンド磁石用六方晶フェライト磁性粉および樹脂を含む、ボンド磁石である。
また、さらに別観点での本発明は、本発明のボンド磁石用六方晶フェライト磁性粉の製造方法により得られたボンド磁石用六方晶フェライト磁性粉を用いる、ボンド磁石の製造方法である。
Further, the present invention from another viewpoint is a bonded magnet containing the hexagonal ferrite magnetic powder for a bonded magnet and a resin of the present invention.
Further, the present invention from another viewpoint is a method for manufacturing a bonded magnet using the hexagonal ferrite magnetic powder for a bonded magnet obtained by the method for producing a hexagonal ferrite magnetic powder for a bonded magnet of the present invention.

本発明によれば、ボンド磁石に用いた際に高い残留磁束密度Brを得ることができるボンド磁石用六方晶フェライト磁性粉が提供される。また、ボンド磁石に用いた際に高い残留磁束密度Brを得ることができるボンド磁石用六方晶フェライト磁性粉の製造方法、高い残留磁束密度Brを持つボンド磁石を提供される。 According to the present invention, there is provided a hexagonal ferrite magnetic powder for a bonded magnet capable of obtaining a high residual magnetic flux density Br when used in a bonded magnet. Further provided are a method for producing a hexagonal ferrite magnetic powder for a bond magnet capable of obtaining a high residual magnetic flux density Br when used in a bond magnet, and a bond magnet having a high residual magnetic flux density Br.

実施例1および比較例1のボンド磁石用六方晶フェライト磁性粉の粒度分布をレーザー回折式粒度分布測定装置で測定した結果を示すグラフである。It is a graph which shows the result of having measured the particle size distribution of the hexagonal ferrite magnetic powder for a bond magnet of Example 1 and Comparative Example 1 by a laser diffraction type particle size distribution measuring apparatus.

(ボンド磁石用六方晶フェライト磁性粉)
本発明のボンド磁石用六方晶フェライト磁性粉は、組成式(Sr1-xLa)(Fe1-yZn19-z(ただし、0.01≦x≦0.50、0.010≦y≦0.040、10.00≦n≦12.50、z=19-[2(1-x)+3x+n{3(1-y)+2y}]/2)で表され、粒度分布において、粒径1μm未満の粒子の割合が25体積%以上40体積%以下であり、粒径1μm以上5μm未満の粒子の割合が30体積%以上65体積%以下であり、粒径5μm以上の粒子の割合が7体積%以上30体積%以下であることを特徴とする。以下で、本発明のボンド磁石用六方晶フェライト磁性粉の組成、粒度分布等の態様について説明する。
(Hexagonal ferrite magnetic powder for bonded magnets)
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention has a composition formula (Sr 1-x La x ) (Fe 1-y Zn y ) n O 19-z (however, 0.01 ≦ x ≦ 0.50, 0). .010≤y≤0.040, 10.00≤n≤12.50, z = 19- [2 (1-x) + 3x + n {3 (1-y) + 2y}] / 2), particle size distribution The proportion of particles having a particle size of less than 1 μm is 25% by volume or more and 40% by volume or less, the proportion of particles having a particle size of 1 μm or more and less than 5 μm is 30% by volume or more and 65% by volume or less, and particles having a particle size of 5 μm or more. The proportion of the particles is 7% by volume or more and 30% by volume or less. Hereinafter, aspects such as the composition and particle size distribution of the hexagonal ferrite magnetic powder for bonded magnets of the present invention will be described.

[組成]
本発明のボンド磁石用六方晶フェライト磁性粉は、組成式(Sr1-xLa)(Fe1-yZn19-z(ただし、0.01≦x≦0.50、0.010≦y≦0.040、10.00≦n≦12.50、z=19-[2(1-x)+3x+n{3(1-y)+2y}]/2)で表され、Sr、LaおよびZnを必須元素として含むマグネトプランバイト型の結晶構造を有する六方晶フェライト磁性粉である。
ここで、Sr系の六方晶フェライト磁性粉の結晶構造においてSrサイトをLaで、FeサイトをZnで置換することにより、Sr系の六方晶フェライト磁性粉よりも高い磁力の六方晶フェライト磁性粉を得ることができる。磁力向上の効果を得るため、上記組成式におけるxの値を0.01以上とし、yの値を0.010以上とする。一方、LaおよびZnのそれぞれの添加が過剰になると結晶構造の維持が困難となるため、上記組成式におけるxの値を0.50以下とし、yの値を0.040以下とする。xの数値範囲は0.07以上0.50以下であることが好ましく、0.15以上0.40以下であることがさらに好ましい。yの数値範囲は0.005以上0.050以下であることが好ましく、0.015以上0.030以下であることがさらに好ましい。マグネトプランバイト型の結晶構造を有する六方晶フェライト磁性粉を得るため、上記組成式におけるnの値は、10.00以上12.50以下とする。焼成後の未反応物の残量を抑制する点から、nの値は、11.00以上12.00以下であることが好ましい。
zの値は、上記組成式においてSrの価数を+2、Laの価数を+3、Feの価数を+3、Znの価数を+2、Oの価数を-2として、組成式の価数の合計が0(ゼロ)になるように算出することができ、z=19-[2(1-x)+3x+n{3(1-y)+2y}]/2と示すことができる。
本発明のボンド磁石用六方晶フェライト磁性粉には、原料に含まれる不純物や製造設備に由来する不純物等の不可避的な成分が含まれ得る。このような成分としては、例えばMn及びBa等の各酸化物が挙げられる。これらの含有量は、0.4質量%以下に抑制することが好ましい。上記の組成式は、不可避的な成分を除いた組成式である。
[composition]
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention has a composition formula (Sr 1-x La x ) (Fe 1-y Zn y ) n O 19-z (however, 0.01 ≦ x ≦ 0.50, 0). .010≤y≤0.040, 10.00≤n≤12.50, z = 19- [2 (1-x) + 3x + n {3 (1-y) + 2y}] / 2), Sr. It is a hexagonal ferrite magnetic powder having a magnetoplumbite-type crystal structure containing La and Zn as essential elements.
Here, by substituting La for Sr sites and Zn for Fe sites in the crystal structure of the Sr-based hexagonal ferrite magnetic powder, a hexagonal ferrite magnetic powder having a higher magnetic force than the Sr-based hexagonal ferrite magnetic powder can be obtained. Obtainable. In order to obtain the effect of improving the magnetic force, the value of x in the above composition formula is 0.01 or more, and the value of y is 0.010 or more. On the other hand, if the addition of each of La and Zn is excessive, it becomes difficult to maintain the crystal structure. Therefore, the value of x in the above composition formula is set to 0.50 or less, and the value of y is set to 0.040 or less. The numerical range of x is preferably 0.07 or more and 0.50 or less, and more preferably 0.15 or more and 0.40 or less. The numerical range of y is preferably 0.005 or more and 0.050 or less, and more preferably 0.015 or more and 0.030 or less. In order to obtain a hexagonal ferrite magnetic powder having a magnetoplumbite-type crystal structure, the value of n in the above composition formula is 10.00 or more and 12.50 or less. The value of n is preferably 11.00 or more and 12.00 or less from the viewpoint of suppressing the remaining amount of unreacted material after firing.
The value of z is the value of the composition formula, where the valence of Sr is +2, the valence of La is +3, the valence of Fe is +3, the valence of Zn is +2, and the valence of O is -2 in the above composition formula. It can be calculated so that the total number is 0 (zero), and it can be shown as z = 19- [2 (1-x) + 3x + n {3 (1-y) + 2y}] / 2.
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention may contain unavoidable components such as impurities contained in raw materials and impurities derived from manufacturing equipment. Examples of such a component include oxides such as Mn and Ba. These contents are preferably suppressed to 0.4% by mass or less. The above composition formula is a composition formula excluding unavoidable components.

[粒度分布]
本発明のボンド磁石用六方晶フェライト磁性粉は、高い充填性を得るため、レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、粒径1μm未満の粒子の割合が25体積%以上40体積%以下、粒径1μm以上5μm未満の粒子の割合が30体積%以上65体積%以下、粒径5μm以上の粒子の割合が7体積%以上30体積%以下であることを特徴とし、粒径1μm未満の粒子の割合が25体積%以上35体積%以下、粒径1μm以上5μm未満の粒子の割合が40体積%以上65体積%以下、粒径5μm以上の粒子の割合が7体積%以上20体積%以下であることが好ましく、粒径1μm未満の粒子の割合が27体積%以上32体積%以下、粒径1μm以上5μm未満の粒子の割合が50体積%以上65体積%以下、粒径5μm以上の粒子の割合が7体積%以上15体積%以下であることがさらに好ましい。
その中でも最大の特徴点は、粒径1μm未満の粒子と5μm以上の粒子とをそれぞれ一定量以上の割合で含む点である。特許文献1のような従来のSrLaZn系六方晶フェライト磁性粉では、粒度分布の揃ったものが指向されており、本発明のボンド磁石用六方晶フェライト磁性粉のように粒度分布が広く、粒径1μm未満の粒子と5μm以上の粒子とをそれぞれ一定量以上の割合で含む磁性粉という技術思想は従来には無かった。
本発明のボンド磁石用六方晶フェライト磁性粉の、レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、粒径1μm未満の粒子の割合が25体積%以上であり、かつ粒径5μm以上の粒子の割合が7体積%以上であることにより初めてボンド磁石用六方晶フェライト磁性粉の高い充填性を得ることができる。もし、粒径1μm未満の粒子の割合が25体積%未満であるか、粒径5μm以上の粒子の割合が7体積%未満である場合には、ボンド磁石用六方晶フェライト磁性粉の高い充填性を達成することができず、本発明の効果を得ることはできない。
高い充填性を得る点から、粒径1μm未満の粒子の体積割合(a)と粒径5μm以上の粒子の体積割合(b)との比a/bの値が2.0以上3.5以下であることが好ましい。
[Particle size distribution]
In the hexagonal ferrite magnetic powder for bonded magnets of the present invention, in order to obtain high filling property, the proportion of particles having a particle size of less than 1 μm is 25 volumes in the particle size distribution on a volume basis measured by a laser diffraction type particle size distribution measuring device. % Or more and 40% by volume or less, the proportion of particles having a particle size of 1 μm or more and less than 5 μm is 30% by volume or more and 65% by volume or less, and the proportion of particles having a particle size of 5 μm or more is 7% by volume or more and 30% by volume or less. , The proportion of particles with a particle size of less than 1 μm is 25% by volume or more and 35% by volume or less, the proportion of particles with a particle size of 1 μm or more and less than 5 μm is 40% by volume or more and 65% by volume or less, and the proportion of particles with a particle size of 5 μm or more is 7 volumes. % Or more and 20% by volume or less, preferably 27% by volume or more and 32% by volume or less of particles having a particle size of 1 μm or less, and 50% by volume or more and 65% by volume or less of particles having a particle size of 1 μm or more and less than 5 μm. It is more preferable that the proportion of particles having a particle size of 5 μm or more is 7% by volume or more and 15% by volume or less.
Among them, the most distinctive feature is that particles having a particle size of less than 1 μm and particles having a particle size of 5 μm or more are contained in a certain amount or more. In the conventional SrLaZn-based hexagonal ferrite magnetic powder as in Patent Document 1, those having a uniform particle size distribution are aimed at, and the particle size distribution is wide and the particle size is wide like the hexagonal ferrite magnetic powder for bonded magnets of the present invention. Conventionally, there has been no technical idea of a magnetic powder containing particles of less than 1 μm and particles of 5 μm or more in a certain amount or more.
In the volume-based particle size distribution of the hexagonal ferrite magnetic powder for bonded magnets of the present invention measured by a laser diffraction type particle size distribution measuring device, the proportion of particles having a particle size of less than 1 μm is 25% by volume or more and the particles. High filling properties of hexagonal ferrite magnetic powder for bonded magnets can be obtained for the first time when the proportion of particles having a diameter of 5 μm or more is 7% by volume or more. If the proportion of particles with a particle size of less than 1 μm is less than 25% by volume, or the proportion of particles with a particle size of 5 μm or more is less than 7% by volume, the hexagonal ferrite magnetic powder for bonded magnets has a high filling property. Cannot be achieved, and the effect of the present invention cannot be obtained.
From the viewpoint of obtaining high filling property, the value of ratio a / b between the volume ratio (a) of particles having a particle size of less than 1 μm and the volume ratio (b) of particles having a particle size of 5 μm or more is 2.0 or more and 3.5 or less. Is preferable.

[圧縮密度]
本発明のボンド磁石用六方晶フェライト磁性粉は、前述したように高い充填性を備えている。この充填性は、上記のボンド磁石用六方晶フェライト磁性粉の粉末10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮した成形体の密度で評価することができる。本発明のボンド磁石用六方晶フェライト磁性粉は、この圧縮密度が3.60g/cm以上であることが好ましく、3.60g/cm以上3.80g/cm以下であることがより好ましい。圧縮密度が高いほど、当該ボンド磁石用六方晶フェライト磁性粉を用いてボンド磁石を製造した際に、高い残留磁束密度Brが得られやすい。
[Compression density]
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention has high filling property as described above. This filling property is evaluated by the density of a molded product obtained by filling 10 g of the above hexagonal ferrite magnetic powder powder for a bonded magnet into a cylindrical mold having an inner diameter of 2.54 cmφ and then compressing the powder at a pressure of 1 ton / cm 2 . be able to. The hexagonal ferrite magnetic powder for a bonded magnet of the present invention preferably has a compression density of 3.60 g / cm 3 or more, and more preferably 3.60 g / cm 3 or more and 3.80 g / cm 3 or less. .. The higher the compression density, the easier it is to obtain a high residual magnetic flux density Br when a bonded magnet is manufactured using the hexagonal ferrite magnetic powder for a bonded magnet.

[平均粒径および比表面積]
本発明のボンド磁石用六方晶フェライト磁性粉は、空気透過法により測定した平均粒径が1.0μm以上3.0μm以下であることが好ましく、1.0μm以上2.5μm以下であることがより好ましい。また、本発明のボンド磁石用六方晶フェライト磁性粉は、比表面積が1.0m/g以上3.0m/g以下であることが好ましく、1.5m/g以上3.0m/g以下であることがより好ましい。
[Average particle size and specific surface area]
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention preferably has an average particle size of 1.0 μm or more and 3.0 μm or less, and more preferably 1.0 μm or more and 2.5 μm or less, as measured by an air permeation method. preferable. Further, the hexagonal ferrite magnetic powder for a bonded magnet of the present invention preferably has a specific surface area of 1.0 m 2 / g or more and 3.0 m 2 / g or less, and 1.5 m 2 / g or more and 3.0 m 2 /. It is more preferably g or less.

[フェライト濃度92.0質量%とした際の流動度(MFR)]
本発明のボンド磁石用六方晶フェライト磁性粉は、当該ボンド磁石用六方晶フェライト磁性粉92.0質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂6.6質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して混練物を作製し、得られた混練物をメルトインデクサーに入れて、JISK7210-1:2014に準拠して、前記混練物が270℃、荷重10kgで溶融して押し出された重量を測定し、この重量を10分当たりで押し出された質量に換算することにより求められる、フェライト濃度92.0質量%とした際の混練物の流動度(本明細書中でMFRと呼ぶ)が、90g/10min以上であることが好ましく、100g/10min以上200g/10min以下であることがより好ましい。MFRを100g/10min以上とすることで、当該磁性粉を用いたボンド磁石として高い残留磁束密度Brを有するボンド磁石を得ることができる。また、流動性が高すぎることによる成形性が劣るといった事態を回避するため、200g/10min以下であることが好ましい。
なお、微粉製造の際に、圧縮密度が高くなるように粉砕処理の条件を制御することにより、ボンド磁石用六方晶フェライト磁性粉において高い流動性を実現することができる。
[Fluidity when the ferrite concentration is 92.0% by mass (MFR A )]
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention is in the form of a powder containing 92.0 parts by mass of the hexagonal ferrite magnetic powder for a bonded magnet, 0.6 parts by mass of a silane coupling agent, and 0.8 parts by mass of a lubricant. 6.6 parts by mass of the polyamide resin of the above was filled in a mixer and mixed, and the obtained mixture was kneaded at 230 ° C. to prepare a kneaded product. The ferrite concentration obtained by measuring the weight of the kneaded product melted and extruded at 270 ° C. and a load of 10 kg in accordance with 1: 2014 and converting this weight into the extruded mass per 10 minutes. The fluidity of the kneaded product (referred to as MFR A in the present specification) at 92.0% by mass is preferably 90 g / 10 min or more, and more preferably 100 g / 10 min or more and 200 g / 10 min or less. preferable. By setting the MFR A to 100 g / 10 min or more, a bond magnet having a high residual magnetic flux density Br can be obtained as a bond magnet using the magnetic powder. Further, in order to avoid a situation where the moldability is deteriorated due to the fluidity being too high, it is preferably 200 g / 10 min or less.
By controlling the conditions of the pulverization treatment so that the compression density becomes high during the production of fine powder, high fluidity can be realized in the hexagonal ferrite magnetic powder for bonded magnets.

[ボンド磁石Aの磁気特性]
本発明のボンド磁石用六方晶フェライト磁性粉は、ボンド磁石用フェライト磁性粉92.0質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂6.6質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して混練物を作製し、得られた混練物から平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石Aを作製することができる。
ボンド磁石Aの残留磁束密度Brおよび最大エネルギー積BHmaxは、測定磁場10kOeで測定することができ、本発明のボンド磁石用六方晶フェライト磁性粉を使用することで、残留磁束密度Brが3200G以上となるボンド磁石Aを得ることができる。さらに本発明のより好ましい態様によれば、3240G以上3400G以下のボンド磁石Aを得ることができる。また本発明により、最大エネルギー積BHmaxが2.50MGOe以上のボンド磁石Aを得ることができ、本発明のより好ましい態様によれば2.55MGOe以上2.70MGOe以下のボンド磁石Aを得ることができる。
[Magnetic characteristics of bonded magnet A]
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention contains 92.0 parts by mass of a ferrite magnetic powder for a bonded magnet, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and a powdery polyamide resin. The mixture obtained by filling 6.6 parts by mass in a mixer and mixing them is kneaded at 230 ° C. to prepare a kneaded product, and from the obtained kneaded product, kneaded pellets having an average diameter of 2 mm are prepared and kneaded. Pellets are ejected and formed in a magnetic field of 9.7 kOe at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 , and have a cylindrical shape with a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is along the central axis of the cylinder). ), The bond magnet A can be manufactured.
The residual magnetic flux density Br and the maximum energy product BHmax of the bond magnet A can be measured with a measurement magnetic field of 10 kOe, and by using the hexagonal ferrite magnetic powder for a bond magnet of the present invention, the residual magnetic flux density Br is 3200 G or more. Bond magnet A can be obtained. Further, according to a more preferable aspect of the present invention, a bonded magnet A of 3240 G or more and 3400 G or less can be obtained. Further, according to the present invention, a bond magnet A having a maximum energy product BH max of 2.50 MGOe or more can be obtained, and according to a more preferable embodiment of the present invention, a bond magnet A having a maximum energy product BH max of 2.55 MGOe or more and 2.70 MGOe or less can be obtained. can.

[フェライト濃度93.5質量%とした際の流動度(MFR)]
本発明のボンド磁石用六方晶フェライト磁性粉は、当該ボンド磁石用六方晶フェライト磁性粉93.5質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂5.1質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して混練物を作製し、得られた混練物をメルトインデクサーに入れて、JISK7210-1:2014に準拠して、前記混練物が270℃、荷重10kgで溶融して押し出された重量を測定し、この重量を10分当たりで押し出された質量に換算することにより求められる、フェライト濃度93.5質量%とした際の混練物の流動度(本明細書中でMFRと呼ぶ)が、25g/10min以上であることが好ましく、40g/10min以上であることがより好ましく、40g/10min以上110g/10min以下であることがさらに好ましい。このMFRを40g/10min以上とすることで、当該磁性粉を用いたボンド磁石として高い残留磁束密度Brを有するボンド磁石を得ることができる。
なお、微粉製造の際に、圧縮密度が高くなるように粉砕条件を制御することにより、ボンド磁石用六方晶フェライト磁性粉において高い流動性を実現することができる。
[Fluidity when the ferrite concentration is 93.5% by mass (MFR B )]
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention is in the form of a powder containing 93.5 parts by mass of the hexagonal ferrite magnetic powder for a bonded magnet, 0.6 parts by mass of a silane coupling agent, and 0.8 parts by mass of a lubricant. 5.1 parts by mass of the polyamide resin of the above was filled in a mixer and mixed, and the obtained mixture was kneaded at 230 ° C. to prepare a kneaded product. The ferrite concentration obtained by measuring the weight of the kneaded product melted and extruded at 270 ° C. and a load of 10 kg in accordance with 1: 2014 and converting this weight into the extruded mass per 10 minutes. The fluidity of the kneaded product (referred to as MFR B in the present specification) at 93.5% by mass is preferably 25 g / 10 min or more, more preferably 40 g / 10 min or more, and 40 g / 10 min or more. It is more preferably 10 min or more and 110 g / 10 min or less. By setting the MFR B to 40 g / 10 min or more, a bond magnet having a high residual magnetic flux density Br can be obtained as a bond magnet using the magnetic powder.
By controlling the pulverization conditions so that the compression density becomes high during the production of fine powder, high fluidity can be realized in the hexagonal ferrite magnetic powder for bonded magnets.

[ボンド磁石Bの磁気特性]
本発明のボンド磁石用六方晶フェライト磁性粉は、ボンド磁石用フェライト磁性粉93.5質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂6.6質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して混練物を作製し、得られた混錬物から平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石Bを作製することができる。
ボンド磁石Bの残留磁束密度Brおよび最大エネルギー積BHmaxは、測定磁場10kOeで測定することができ、本発明のボンド磁石用六方晶フェライト磁性粉を使用することで、残留磁束密度Brが3300G以上となるボンド磁石Bを得ることができる。さらに本発明のより好ましい態様によれば、3350G以上3500G以下のボンド磁石Bを得ることができる。また本発明により、最大エネルギー積BHmaxが2.60MGOe以上のボンド磁石Bを得ることができ、本発明のより好ましい態様によれば2.70MGOe以上2.95MGOe以下のボンド磁石Bを得ることができる。
[Magnetic characteristics of bond magnet B]
The hexagonal ferrite magnetic powder for a bonded magnet of the present invention contains 93.5 parts by mass of a ferrite magnetic powder for a bonded magnet, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and a powdery polyamide resin. A mixture obtained by filling a mixer with 6.6 parts by mass and mixing them was kneaded at 230 ° C. to prepare a kneaded product, and a kneaded pellet having an average diameter of 2 mm was prepared from the obtained kneaded product. The kneaded pellets were injection-formed in a magnetic field of 9.7 kOe at a temperature of 300 ° C. and a forming pressure of 8.5 N / mm 2 , and formed into a cylinder having a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field was along the central axis of the cylinder). The bond magnet B in the direction) can be manufactured.
The residual magnetic flux density Br and the maximum energy product BHmax of the bond magnet B can be measured with a measurement magnetic field of 10 kOe, and by using the hexagonal ferrite magnetic powder for a bond magnet of the present invention, the residual magnetic flux density Br is 3300 G or more. Bond magnet B can be obtained. Further, according to a more preferable aspect of the present invention, a bonded magnet B of 3350 G or more and 3500 G or less can be obtained. Further, according to the present invention, a bond magnet B having a maximum energy product BHmax of 2.60 MGOe or more can be obtained, and according to a more preferable embodiment of the present invention, a bond magnet B having a maximum energy product BHmax of 2.70 MGOe or more and 2.95 MGOe or less can be obtained. ..

(ボンド磁石用六方晶フェライト磁性粉の製造方法)
本発明のボンド磁石用六方晶フェライト磁性粉の製造方法は、組成式(Sr1-x1Lax1)(Fe1-y1Zny1n119-z1(ただし、0.01≦x1≦0.50、0.010≦y1≦0.040、10.00≦n1≦12.50、z1=19-[2(1-x1)+3x1+n1{3(1-y1)+2y1}]/2)で表される六方晶フェライト磁性粉の原料となる粉末を混合した後に第一の温度で焼成して六方晶フェライト磁性粉の粗粉を得る工程と、組成式(Sr1-x2Lax2)(Fe1-y2Zny2n219-z2(ただし、0≦x2≦0.50、0≦y2≦0.040、10.00≦n2≦12.50、z2=19-[2(1-x2)+3x2+n2{3(1-y2)+2y2}]/2)で表される六方晶フェライト磁性粉の原料となる粉末を混合した後に第一の温度よりも低い第二の温度で焼成して六方晶フェライト磁性粉の微粉を得る工程と、前記粗粉と前記微粉とを、粗粉と微粉の合計質量に対する粗粉の質量割合が60質量%以上90質量%以下となる比率で混合粉砕して、粉砕処理した混合粉を得る工程と、前記粉砕処理した混合粉をアニールする工程とを備える。粗粉を得る際の焼成温度である第一の温度よりも低い第二の温度で焼成した微粉を用いることで、得られるボンド磁石用六方晶フェライト磁性粉の充填性を高めることができ、その結果、当該磁性粉を使用してボンド磁石を製造した際に残留磁束密度Brが高いボンド磁石を得ることができる。ここで、粗粉の比表面積は、通常、微粉の比表面積よりも小さい。以下で、各工程を詳細に説明する。
(Manufacturing method of hexagonal ferrite magnetic powder for bonded magnets)
The method for producing the hexagonal ferrite magnetic powder for a bonded magnet of the present invention is a composition formula (Sr 1-x1 La x1 ) (Fe 1-y1 Zn y1 ) n1 O 19-z1 (where 0.01 ≦ x1 ≦ 0. 50, 0.010 ≦ y1 ≦ 0.040, 10.00 ≦ n1 ≦ 12.50, z1 = 19- [2 (1-x1) + 3x1 + n1 {3 (1-y1) + 2y1}] / 2) After mixing the powder that is the raw material of the hexagonal ferrite magnetic powder, it is fired at the first temperature to obtain a coarse powder of the hexagonal ferrite magnetic powder, and the composition formula (Sr 1-x2 La x2 ) (Fe 1- ). y2 Zn y2 ) n2 O 19-z2 (However, 0 ≦ x2 ≦ 0.50, 0 ≦ y2 ≦ 0.040, 10.00 ≦ n2 ≦ 12.50, z2 = 19- [2 (1-x2) + 3x2 + n2 {3 (1-y2) + 2y2}] / 2) After mixing the powder that is the raw material of the hexagonal ferrite magnetic powder, it is fired at a second temperature lower than the first temperature to hexagonal ferrite magnetic. The step of obtaining fine powder of powder and the coarse powder and the fine powder are mixed and pulverized at a ratio of the mass ratio of the coarse powder to the total mass of the coarse powder and the fine powder to be 60% by mass or more and 90% by mass or less, and pulverized. The present invention includes a step of obtaining the mixed powder obtained by the above-mentioned powder and a step of annealing the mixed powder obtained by the pulverized treatment. By using the fine powder fired at a second temperature lower than the first temperature, which is the firing temperature at the time of obtaining the coarse powder, the filling property of the obtained hexagonal ferrite magnetic powder for a bonded magnet can be improved. As a result, it is possible to obtain a bond magnet having a high residual magnetic flux density Br when the bond magnet is manufactured using the magnetic powder. Here, the specific surface area of the coarse powder is usually smaller than the specific surface area of the fine powder. Each process will be described in detail below.

[粗粉の製造工程]
組成式(Sr1-x1Lax1)(Fe1-y1Zny1n119-z1(ただし、0.01≦x1≦0.50、0.010≦y1≦0.040、10.00≦n1≦12.50、z1=19-[2(1-x1)+3x1+n{3(1-y1)+2y1}]/2)で表される六方晶フェライト磁性粉の原料となる粉末を混合した後に第一の温度で焼成して六方晶フェライト磁性粉の粗粉を得る工程である。
六方晶フェライト磁性粉の粗粉の原料となる粉末としては、構成元素であるSr、La、FeおよびZnの各化合物を用いることができ、例えば、Sr化合物としては炭酸ストロンチウム、塩化ストロンチウム、硫酸ストロンチウム、La化合物としては酸化ランタン、水酸化ランタン、硫酸ランタンを、Fe化合物としては酸化鉄(ヘマタイト、マグネタイト)、塩化鉄、硫酸鉄、好ましくはヘマタイトを、Zn化合物としては酸化亜鉛、塩化亜鉛、硫酸亜鉛を、それぞれ用いることができる。
粗粉の磁力向上の効果を得るため、上記組成式におけるx1の値を0.01以上とし、y1の値を0.01以上とする。また、LaおよびZnのそれぞれの添加が過剰になると六方晶フェライト結晶構造の維持が困難となるため、x1の値を0.50以下とし、y1の値を0.04以下とする。x1の数値範囲は0.07以上0.50以下であることが好ましく、0.15以上0.40以下であることがさらに好ましい。y1の数値範囲は0.005以上0.050以下であることが好ましく、0.015以上0.030以下であることがさらに好ましい。
また、マグネトプランバイト型の結晶構造を有する六方晶フェライト磁性粉を得るため、上記組成式におけるn1の値は、10.00以上12.50以下とする。焼成後の未反応物の残留を抑制する点から、n1の値は、11.00以上12.00以下であることが好ましい。
z1の値の算出方法は、ボンド磁石用六方晶フェライト磁性粉の組成式におけるzの場合と同様である。
粗粉には、原料に含まれる不純物や製造設備に由来する不純物等の不可避的な成分が含まれ得る。このような成分としては、例えばMn及びBa等の各酸化物が挙げられる。これらの含有量は、0.4質量%以下に抑制することが好ましい。上記の組成式は、不可避的な成分を除いた組成式である。
[Coarse powder manufacturing process]
Composition formula (Sr 1-x1 La x1 ) (Fe 1-y1 Zn y1 ) n1 O 19-z1 (However, 0.01 ≦ x1 ≦ 0.50, 0.010 ≦ y1 ≦ 0.040, 10.00 ≦ n1 ≦ 12.50, z1 = 19- [2 (1-x1) + 3x1 + n {3 (1-y1) + 2y1}] / 2) After mixing the powder that is the raw material of the hexagonal ferrite magnetic powder, the first This is a step of firing at one temperature to obtain a coarse powder of hexagonal ferrite magnetic powder.
As the raw material of the crude powder of hexagonal ferrite magnetic powder, each compound of constituent elements Sr, La, Fe and Zn can be used. For example, as the Sr compound, strontium carbonate, strontium chloride and strontium sulfate can be used. , La compound is lanthanum oxide, lanthanum hydroxide, lanthanum sulfate, Fe compound is iron oxide (hematite, magnetite), iron chloride, iron sulfate, preferably hematite, and Zn compound is zinc oxide, zinc chloride, sulfuric acid. Zinc can be used respectively.
In order to obtain the effect of improving the magnetic force of the coarse powder, the value of x1 in the above composition formula is 0.01 or more, and the value of y1 is 0.01 or more. Further, if the addition of each of La and Zn is excessive, it becomes difficult to maintain the hexagonal ferrite crystal structure. Therefore, the value of x1 is set to 0.50 or less, and the value of y1 is set to 0.04 or less. The numerical range of x1 is preferably 0.07 or more and 0.50 or less, and more preferably 0.15 or more and 0.40 or less. The numerical range of y1 is preferably 0.005 or more and 0.050 or less, and more preferably 0.015 or more and 0.030 or less.
Further, in order to obtain a hexagonal ferrite magnetic powder having a magnetoplumbite-type crystal structure, the value of n1 in the above composition formula is set to 10.00 or more and 12.50 or less. The value of n1 is preferably 11.00 or more and 12.00 or less from the viewpoint of suppressing the residual unreacted material after firing.
The method for calculating the value of z1 is the same as that for z in the composition formula of the hexagonal ferrite magnetic powder for bonded magnets.
The coarse powder may contain unavoidable components such as impurities contained in the raw material and impurities derived from the manufacturing equipment. Examples of such a component include oxides such as Mn and Ba. These contents are preferably suppressed to 0.4% by mass or less. The above composition formula is a composition formula excluding unavoidable components.

粗粉の製造工程における焼成温度である第一の温度は、1220℃以上1400℃以下が好ましく、1220℃以上1300℃以下がより好ましい。第一の温度を1220℃以上とすることで、最終的に得られるボンド磁石用六方晶フェライト磁性粉のレーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、粒径5μm以上の粒子の割合を容易に7体積%以上にすることができる。
粗粉の製造工程においては、原料の粉末の混合物を造粒して焼成してもよい。焼成時の雰囲気は、酸化性雰囲気が好ましく、大気雰囲気がより好ましい。また、焼成後に粉砕処理をすることが好ましい。粉砕処理の方法は、特に限定されず、ローラーミル等を用いる公知の方法が挙げられる。
The first temperature, which is the firing temperature in the crude powder manufacturing process, is preferably 1220 ° C. or higher and 1400 ° C. or lower, and more preferably 1220 ° C. or higher and 1300 ° C. or lower. By setting the first temperature to 1220 ° C. or higher, the particle size distribution on a volume basis measured by a laser diffraction type particle size distribution measuring device for the hexagonal ferrite magnetic powder for bonded magnets finally obtained has a particle size of 5 μm or more. The proportion of particles in the above can be easily increased to 7% by volume or more.
In the process of producing the crude powder, a mixture of the raw material powders may be granulated and fired. The atmosphere at the time of firing is preferably an oxidizing atmosphere, and more preferably an atmospheric atmosphere. Further, it is preferable to carry out a pulverization treatment after firing. The method of the pulverization treatment is not particularly limited, and examples thereof include known methods using a roller mill or the like.

粗粉は、BET一点法で測定した比表面積が0.2m/g以上0.6m/g以下であることが好ましく、0.3m/g以上0.5m/g以下であることがより好ましい。 The specific surface area of the coarse powder measured by the BET one-point method is preferably 0.2 m 2 / g or more and 0.6 m 2 / g or less, and 0.3 m 2 / g or more and 0.5 m 2 / g or less. Is more preferable.

[微粉の製造工程]
組成式(Sr1-x2Lax2)(Fe1-y2Zny2n219-z2(ただし、0≦x2≦0.50、0≦y2≦0.040、10.00≦n2≦12.50、z2=19-[2(1-x2)+3x2+n2{3(1-y2)+2y2}]/2)で表される六方晶フェライト磁性粉の微粉の原料となる粉末を混合した後に第一の温度よりも低い第二の温度で焼成して六方晶フェライト磁性粉の微粉を得る工程である。
六方晶フェライト磁性粉の微粉の原料となる粉末としては、構成元素であるSr、La、FeおよびZnの各化合物を用いることができ、例えば、Sr化合物としては炭酸ストロンチウム、塩化ストロンチウム、硫酸ストロンチウム、La化合物としては酸化ランタン、水酸化ランタン、硫酸ランタンを、Fe化合物としては酸化鉄(ヘマタイト、マグネタイト)、塩化鉄、硫酸鉄、好ましくはヘマタイトを、Zn化合物としては酸化亜鉛、塩化亜鉛、硫酸亜鉛を、それぞれ用いることができる。
六方晶フェライト結晶構造の維持が困難となるため、組成式においてx2の値を0.50以下とし、y2の値を0.040以下とする。x2の数値範囲は0.00以上0.50以下であることが好ましく、0以上0.30以下であることがさらに好ましい。y2の数値範囲は0以上0.030以下であることが好ましく、0以上0.015以下であることがさらに好ましい。
また、マグネトプランバイト型の結晶構造を有する六方晶フェライト磁性粉を得るため、上記組成式におけるn2の値は、10.00以上12.50以下とする。焼成後の未反応物の残留を抑制する点から、n2の値は、10.50以上12.00以下であることが好ましい。
z2の値の算出方法は、ボンド磁石用六方晶フェライト磁性粉の組成式におけるzの場合と同様である。
一方、上記組成式は、x2=0および/またはy2=0の場合を含んでおり、本工程で得られる微粉は六方晶SrLaフェライト、六方晶SrZnフェライトおよび六方晶Srフェライトのいずれかであってもよく、六方晶Srフェライトが好ましい。
ここで、粗粉としてSrLaZnフェライトを用いるのに対し、微粉としてLa、Znで置換されていない、未置換のSrフェライトを用いた際に、ボンド磁石は極めて優れた磁気特性を発現することが分かった。微粉は粗粉に比べ大きな保磁力を持つため、より保磁力に優れるSrフェライトを微粉に用いることで、飽和磁束密度の特性に優れるSrLaZnフェライトとの組合せにおいて、結果的に磁気特性のバランスに優れたボンド磁石用六方晶フェライト磁性粉が得られたものと推定される。
微粉には、原料に含まれる不純物や製造設備に由来する不可避的な成分が含まれ得る。このような成分としては、例えばMn(マンガン)及びV(バナジウム)等の各酸化物が挙げられる。これらの含有量は、0.4質量%以下に抑制することが好しい。上記組成式は、不可避な成分を除いた組成式である。
[Fine powder manufacturing process]
Composition formula (Sr 1-x2 La x2 ) (Fe 1-y2 Zn y2 ) n2 O 19-z2 (However, 0 ≦ x2 ≦ 0.50, 0 ≦ y2 ≦ 0.040, 10.00 ≦ n2 ≦ 12. 50, z2 = 19- [2 (1-x2) + 3x2 + n2 {3 (1-y2) + 2y2}] / 2) After mixing the powder that is the raw material of the fine powder of the hexagonal ferrite magnetic powder, the first This is a step of obtaining fine powder of hexagonal ferrite magnetic powder by firing at a second temperature lower than the temperature.
As the raw material of the fine powder of hexagonal ferrite magnetic powder, each compound of constituent elements Sr, La, Fe and Zn can be used. For example, as the Sr compound, strontium carbonate, strontium chloride, strontium sulfate, etc. can be used. The La compound is lanthanum oxide, lanthanum hydroxide, or lanthanum sulfate, the Fe compound is iron oxide (hematite, magnetite), iron chloride, iron sulfate, preferably hematite, and the Zn compound is zinc oxide, zinc chloride, or zinc sulfate. Can be used respectively.
Since it is difficult to maintain the hexagonal ferrite crystal structure, the value of x2 is set to 0.50 or less and the value of y2 is set to 0.040 or less in the composition formula. The numerical range of x2 is preferably 0.00 or more and 0.50 or less, and more preferably 0 or more and 0.30 or less. The numerical range of y2 is preferably 0 or more and 0.030 or less, and more preferably 0 or more and 0.015 or less.
Further, in order to obtain a hexagonal ferrite magnetic powder having a magnetoplumbite-type crystal structure, the value of n2 in the above composition formula is set to 10.00 or more and 12.50 or less. The value of n2 is preferably 10.50 or more and 12.00 or less from the viewpoint of suppressing the residual unreacted material after firing.
The method for calculating the value of z2 is the same as that for z in the composition formula of the hexagonal ferrite magnetic powder for bonded magnets.
On the other hand, the above composition formula includes the case of x2 = 0 and / or y2 = 0, and the fine powder obtained in this step is any one of hexagonal SrLa ferrite, hexagonal SrZn ferrite and hexagonal Sr ferrite. Hexagonal Sr ferrite is preferable.
Here, it was found that the bonded magnet exhibits extremely excellent magnetic properties when SrLaZn ferrite is used as the coarse powder, whereas when unsubstituted Sr ferrite not substituted with La or Zn is used as the fine powder. rice field. Since fine powder has a larger coercive force than coarse powder, by using Sr ferrite, which has better coercive force, for fine powder, the balance of magnetic characteristics is excellent as a result in combination with SrLaZn ferrite, which has excellent characteristics of saturation magnetic flux density. It is presumed that the hexagonal ferrite magnetic powder for the bonded magnet was obtained.
The fine powder may contain impurities contained in the raw material and unavoidable components derived from the manufacturing equipment. Examples of such a component include oxides such as Mn (manganese) and V (vanadium). These contents are preferably suppressed to 0.4% by mass or less. The above composition formula is a composition formula excluding unavoidable components.

微粉の製造工程における焼成温度である第二の温度は、900℃以上1000℃以下が好ましく、950℃以上1000℃以下がより好ましい。第二の温度を900℃以上とすることで、六方晶フェライト結晶構造をもつ微粉が得られやすくなる。また、第二の温度を1000℃以下とすることで、最終的に得られるボンド磁石用六方晶フェライト磁性粉のレーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、粒径1μm未満の粒子の割合を容易に25体積%以上とすることができる。
微粉の製造工程においては、原料粉末の混合物を造粒して焼成してもよい。焼成時の雰囲気は、酸化性雰囲気が好ましく、大気雰囲気がより好ましい。また、焼成後に粉砕処理をすることが好ましい。粉砕処理は、ローラーミル等を用いる公知の方法により実施することができるが、湿式粉砕処理を行うことが好ましい。ローラーミル等の乾式粉砕処理と湿式粉砕処理を組み合わせてもよい。
The second temperature, which is the firing temperature in the process for producing fine powder, is preferably 900 ° C. or higher and 1000 ° C. or lower, and more preferably 950 ° C. or higher and 1000 ° C. or lower. By setting the second temperature to 900 ° C. or higher, fine powder having a hexagonal ferrite crystal structure can be easily obtained. Further, by setting the second temperature to 1000 ° C. or lower, the particle size in the volume-based particle size distribution measured by the laser diffraction type particle size distribution measuring device of the hexagonal ferrite magnetic powder for bonded magnets finally obtained The proportion of particles smaller than 1 μm can be easily increased to 25% by volume or more.
In the process of producing fine powder, a mixture of raw material powder may be granulated and fired. The atmosphere at the time of firing is preferably an oxidizing atmosphere, and more preferably an atmospheric atmosphere. Further, it is preferable to carry out a pulverization treatment after firing. The pulverization treatment can be carried out by a known method using a roller mill or the like, but it is preferable to perform a wet pulverization treatment. A dry pulverization treatment such as a roller mill and a wet pulverization treatment may be combined.

湿式粉砕処理は、回転式の攪拌羽根による攪拌機構を有する湿式粉砕機を用いることができ、攪拌羽根の周速は0.5m/s以上2.5m/s以下が好ましく、1.0m/s以上2.0m/s以下がより好ましい。ここで、攪拌羽根の周速とは、攪拌羽根の回転軸からの距離が最も離れた箇所の速度を指し、湿式粉砕機における粉砕の強度を表す指標となる。このように攪拌羽根の周速を0.5m/s以上2.5m/s以下とすることにより、粉砕後の微粉10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮した成形体の圧縮密度が2.80g/cm以上4.00g/cm以下となるように粉砕することできる。これにより、得られたボンド磁石用六方晶フェライト磁性粉を用いて作製された混練物の流動度を高めることができる。そして、その結果得られたボンド磁石用六方晶フェライト磁性粉を用いて製造されたボンド磁石の残留磁束密度Brを高めることができる。
このように粉砕後の微粉の成形体の圧縮密度が2.80g/cm以上4.00g/cm以下とすることで最終的に得られるボンド磁石の残留磁束密度Brを高めることができるメカニズムは明らかではないが、圧縮密度の高さは粒子形状が均整化される一方で、過剰な粉砕による、粒度分布測定に反映されない極微小な粒子の発生が抑制されていることを反映していると考えられる。特に、比表面積を増加させ、コンパウンド化時に流動性を著しく低下させる極微小な粒子が少ないことは高充填時には好適である。結果として高充填に適した微粉が得られ、微粉と粗粉とを混合してボンド磁石を製造した際に、微粉および粗粉の粒子の配向性の向上につながったことによるものと推定される。
攪拌羽根による攪拌機構を有する湿式粉砕機としてはアトライターを用いることが好ましく、溶媒としては水を用いることが好ましく、メディア径は2mm以上15mm以下とすることが好ましい。
For the wet pulverization treatment, a wet pulverizer having a stirring mechanism with a rotary stirring blade can be used, and the peripheral speed of the stirring blade is preferably 0.5 m / s or more and 2.5 m / s or less, preferably 1.0 m / s. More preferably 2.0 m / s or less. Here, the peripheral speed of the stirring blade refers to the speed at the position where the distance from the rotation axis of the stirring blade is the furthest, and is an index showing the strength of crushing in the wet crusher. By setting the peripheral speed of the stirring blade to 0.5 m / s or more and 2.5 m / s or less in this way, 10 g of fine powder after crushing is filled in a cylindrical mold having an inner diameter of 2.54 cmφ and then 1 ton / cm. The compact can be crushed so that the compression density of the molded product compressed at the pressure of 3 is 2.80 g / cm 3 or more and 4.00 g / cm 3 or less. Thereby, the fluidity of the kneaded product produced by using the obtained hexagonal ferrite magnetic powder for a bonded magnet can be increased. Then, the residual magnetic flux density Br of the bond magnet manufactured by using the hexagonal ferrite magnetic powder for the bond magnet obtained as a result can be increased.
By setting the compression density of the molded fine particles after crushing to 2.80 g / cm 3 or more and 4.00 g / cm 3 or less in this way, a mechanism capable of increasing the residual magnetic flux density Br of the finally obtained bond magnet. Although it is not clear, the high compression density reflects that while the particle shape is proportioned, the generation of ultrafine particles that are not reflected in the particle size distribution measurement due to excessive grinding is suppressed. it is conceivable that. In particular, it is preferable at the time of high filling that there are few ultrafine particles that increase the specific surface area and significantly reduce the fluidity at the time of compounding. As a result, fine powder suitable for high filling was obtained, and it is presumed that this was due to the fact that when the fine powder and the coarse powder were mixed to produce a bonded magnet, the orientation of the fine powder and the coarse powder particles was improved. ..
It is preferable to use an attritor as a wet crusher having a stirring mechanism with a stirring blade, water is preferably used as a solvent, and the media diameter is preferably 2 mm or more and 15 mm or less.

微粉は、BET一点法で測定した比表面積は、4m/g以上20m/g以下であることが好ましく、5m/g以上15m/g以下であることがより好ましい。 The specific surface area of the fine powder measured by the BET one-point method is preferably 4 m 2 / g or more and 20 m 2 / g or less, and more preferably 5 m 2 / g or more and 15 m 2 / g or less.

[混合粉砕工程]
別々に得られた粗粉と微粉とを、粗粉と微粉の合計質量に対する粗粉の質量割合が60質量%以上90質量%以下となる比率で混合粉砕して、粉砕処理した混合粉を得る工程である。混合時の粗粉の質量割合を60質量%以上とすることで、ボンド磁石用六方晶フェライト磁性粉の粒度分布において、粒径5μm以上の粒子の割合を7体積%以上とすることができる。また、混合時の粗粉の質量割合を90質量%以下(すなわち微粉の質量割合を10質量%以上)とすることで、ボンド磁石用六方晶フェライト磁性粉の粒度分布において、粒径1μm未満の粒子の割合を25体積%以上とすることができる。
混合には湿式粉砕装置を用いることが好ましく、アトライターを用いることがより好ましく、攪拌羽根の周速は1.5m/s以上3.5m/s以下が好ましい。
また、混合後の粉砕には振動ボールミルを用いることが好ましく、振動ボールミルによる粉砕処理においては媒体径5mm以上20mm以下のボールを用いることが好ましく、1段目として媒体径10mm以上20mm以下のボールを用いて粉砕処理を実施した後に2段目として媒体径5mm以上10mm以下のボールを用いて粉砕処理を実施することが好ましい。振動ボールミルを用いることによって、アトライターでは粉砕できなかった粗大粒子を粉砕することができる。
[Mixed crushing process]
The separately obtained coarse powder and fine powder are mixed and pulverized at a ratio of the mass ratio of the coarse powder to the total mass of the coarse powder and the fine powder to be 60% by mass or more and 90% by mass or less to obtain a pulverized mixed powder. It is a process. By setting the mass ratio of the crude powder at the time of mixing to 60% by mass or more, the proportion of particles having a particle size of 5 μm or more can be set to 7% by volume or more in the particle size distribution of the hexagonal ferrite magnetic powder for bonded magnets. Further, by setting the mass ratio of the coarse powder at the time of mixing to 90% by mass or less (that is, the mass ratio of the fine powder is 10% by mass or more), the particle size distribution of the hexagonal ferrite magnetic powder for bond magnets has a particle size of less than 1 μm. The proportion of particles can be 25% by mass or more.
It is preferable to use a wet pulverizer for mixing, more preferably an attritor, and the peripheral speed of the stirring blade is preferably 1.5 m / s or more and 3.5 m / s or less.
Further, it is preferable to use a vibrating ball mill for crushing after mixing, and it is preferable to use balls having a medium diameter of 5 mm or more and 20 mm or less in the crushing process by the vibrating ball mill. It is preferable to carry out the crushing treatment using a ball having a medium diameter of 5 mm or more and 10 mm or less as the second stage after the crushing treatment is carried out. By using a vibrating ball mill, coarse particles that could not be crushed by an attritor can be crushed.

[アニール工程]
混合粉砕工程で得られた、混合粉砕処理した混合粉をアニールして、ボンド磁石用六方晶フェライト磁性粉を得る工程である。アニール条件は、特に限定されず、ボンド磁石用六方晶フェライト磁性粉の製造方法として公知の条件にて実施することができる。アニールの温度は900℃以上1000℃以下が好ましく、930℃以上980℃以下がより好ましい。また、アニール時の雰囲気は酸化性雰囲気が好ましく、大気雰囲気がより好ましい。
[Annealing process]
This is a step of annealing the mixed powder obtained in the mixed pulverization treatment to obtain a hexagonal ferrite magnetic powder for a bonded magnet. The annealing conditions are not particularly limited, and can be carried out under conditions known as a method for producing hexagonal ferrite magnetic powder for bonded magnets. The annealing temperature is preferably 900 ° C. or higher and 1000 ° C. or lower, and more preferably 930 ° C. or higher and 980 ° C. or lower. Further, the atmosphere at the time of annealing is preferably an oxidizing atmosphere, and more preferably an atmospheric atmosphere.

(ボンド磁石とその製造方法)
本発明のボンド磁石用六方晶フェライト磁性粉の製造方法により得られたボンド磁石用六方晶フェライト磁性粉と、樹脂と滑剤等を混合し、混練した後に磁場中成形することで、ボンド磁石を得ることができる。ここで、ボンド磁石の製造方法は特に限定されず、公知の方法を使用することができる、
(Bond magnet and its manufacturing method)
A bonded magnet is obtained by mixing the hexagonal ferrite magnetic powder for a bonded magnet obtained by the method for producing a hexagonal ferrite magnetic powder for a bonded magnet of the present invention with a resin and a lubricant, kneading the mixture, and then molding the mixture in a magnetic field. be able to. Here, the method for manufacturing the bonded magnet is not particularly limited, and a known method can be used.

以下、実施例により、本発明によるボンド磁石用フェライト磁性粉およびその製造方法について詳細に説明する。 Hereinafter, the ferrite magnetic powder for a bonded magnet according to the present invention and a method for producing the same will be described in detail by way of examples.

実施例における評価は以下のようにして行った。
[平均粒径測定]
平均粒径(APD)は、比表面積測定装置(株式会社島津製作所製のSS-100)を用いて空気浸透法により測定した。
The evaluation in the examples was performed as follows.
[Measurement of average particle size]
The average particle size (APD) was measured by an air permeation method using a specific surface area measuring device (SS-100 manufactured by Shimadzu Corporation).

[比表面積測定]
比表面積は比表面積測定装置(カンタクローム社製のモノソーブ)によりBET一点法で測定した。
[Specific surface area measurement]
The specific surface area was measured by the BET one-point method using a specific surface area measuring device (Monosorb manufactured by Kantachrome).

[組成分析]
組成分析は、蛍光X線分析装置(株式会社リガク製のZSX100e)を使用して、ファンダメンタル・パラメータ法(FP法)により、各元素の成分量を算出することにより行った。この組成分析では、測定対象の粉末を測定用セルに詰め、10トン/cmの圧力を20秒間加えて成型し、測定モードをEZスキャンモード、測定径を30mm、試料形態を酸化物、測定時間を標準時間とし、真空雰囲気中において定性分析を行った後に、検出された構成元素に対して定量分析を行った。
[Composition analysis]
The composition analysis was performed by calculating the component amount of each element by the fundamental parameter method (FP method) using a fluorescent X-ray analyzer (ZSX100e manufactured by Rigaku Co., Ltd.). In this composition analysis, the powder to be measured is packed in a measurement cell, and a pressure of 10 tons / cm 2 is applied for 20 seconds for molding. The measurement mode is EZ scan mode, the measurement diameter is 30 mm, the sample form is oxide, and measurement is performed. With the time as the standard time, qualitative analysis was performed in a vacuum atmosphere, and then quantitative analysis was performed on the detected constituent elements.

[圧縮密度測定]
圧縮密度は、測定対象の粉末10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮した成形体の密度を圧縮密度(CD)として測定した。
[Compression density measurement]
The compression density was measured as the compression density (CD) by filling 10 g of the powder to be measured into a cylindrical mold having an inner diameter of 2.54 cmφ and then compressing it at a pressure of 1 ton / cm 2 .

[粒度分布測定]
粒度分布は、乾式レーザー回折式粒度分布測定装置(株式会社日本レーザー製:HELOS&RODOS)を使用して、焦点距離20mm、分散圧5.0bar、吸引圧130mbarで体積基準の粒度分布を測定した。
[Measurement of particle size distribution]
For the particle size distribution, a volume-based particle size distribution was measured at a focal length of 20 mm, a dispersion pressure of 5.0 bar, and an attraction pressure of 130 mbar using a dry laser diffraction type particle size distribution measuring device (manufactured by Nippon Laser Co., Ltd .: HELOS & RODOS).

[磁気特性測定]
ボンド磁石用六方晶フェライト磁性粉の圧粉体の磁気特性は、ボンド磁石用六方晶フェライト磁性粉8gとポリエステル樹脂(日本地科学社製のP-レジン)0.4cmを乳鉢中で混練し、得られた混練物7gを内径15mmφの金型に充填し、2トン/cmの圧力で60秒間圧縮して得られた成形品を金型から抜き取り、150℃で30分間乾燥させて圧粉体を得て、圧粉体の磁気特性として、BHトレーサー(東英工業株式会社製のTRF-5BH)を使用して、測定磁場10kOeで圧粉体の保磁力iHcおよび残留磁束密度Brを測定した。
[Magnetic characteristic measurement]
For the magnetic properties of the green compact of hexagonal ferrite magnetic powder for bond magnets, 8 g of hexagonal ferrite magnetic powder for bond magnets and 0.4 cm 3 polyester resin (P-resin manufactured by Nippon Geographical Sciences Co., Ltd.) are kneaded in a dairy pot. 7 g of the obtained kneaded product was filled in a mold having an inner diameter of 15 mmφ, compressed at a pressure of 2 ton / cm 2 for 60 seconds, and the obtained molded product was withdrawn from the mold and dried at 150 ° C. for 30 minutes under pressure. A powder is obtained, and as the magnetic properties of the green compact, a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.) is used to obtain the coercive magnetic force iHc and residual magnetic flux density Br of the green compact with a measurement magnetic field of 10 kOe. It was measured.

[MFRの測定]
ボンド磁石用六方晶フェライト磁性粉92.0質量部と、シランカップリング剤(東レダウコーニング株式会社製のZ-6094N)0.6質量部と、滑剤(ヘンケル社製のVPN-212P)0.8質量部と、バインダとして粉末状のポリアミド樹脂(宇部興産株式会社製のP-1011F)6.6質量部とを秤量し、ミキサーに充填して混合して得られた混合物を230℃で混練して混練物を作製し、得られた混錬物から平均径2mmの混練ペレットを得た。
得られた混練ペレットをメルトインデクサー(株式会社東洋精機製作所製のメルトインデクサーC-5059D2)に入れて、前記混練物が270℃、荷重10kgで押し出された重量を測定し、この重量を10分当たりで押し出された量に換算することにより、ボンド磁石用六方晶フェライト磁性粉のMFRを求めた。
[Measurement of MFR A ]
92.0 parts by mass of hexagonal ferrite magnetic powder for bond magnets, 0.6 parts by mass of silane coupling agent (Z-6094N manufactured by Toray Couning Co., Ltd.), and lubricant (VPN-212P manufactured by Henkel Co., Ltd.) 0. 8 parts by mass and 6.6 parts by mass of powdered polyamide resin (P-1011F manufactured by Ube Kosan Co., Ltd.) as a binder were weighed, filled in a mixer and mixed, and the obtained mixture was kneaded at 230 ° C. A kneaded product was prepared, and kneaded pellets having an average diameter of 2 mm were obtained from the obtained kneaded product.
The obtained kneaded pellets were placed in a melt indexer (melt indexer C-5059D2 manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the weight of the kneaded material extruded at 270 ° C. and a load of 10 kg was measured, and this weight was measured as 10. The MFR A of the hexagonal ferrite magnetic powder for bonded magnets was determined by converting to the amount extruded per minute.

[ボンド磁石Aの磁気特性測定]
MFRの測定において記載した方法で得られた混練ペレットを射出成形機(住友重機械工業株式会社製)に装填して、9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石A(F.C.92.0質量%、9.7kOe)を得た。このボンド磁石AをBHトレーサー(東英工業株式会社製のTRF-5BH)を使用して磁気特性を測定した。
[Measurement of magnetic properties of bonded magnet A]
The kneaded pellets obtained by the method described in the measurement of MFR A were loaded into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.), and the temperature was 300 ° C. and the molding pressure was 8.5 N / mm in a magnetic field of 9.7 kOe. Bonded magnet A (FC 92.0 mass%, 9.7 kOe) formed by injection in step 2 and having a cylindrical shape with a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is along the central axis of the cylinder). Got The magnetic characteristics of this bonded magnet A were measured using a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.).

[MFRの測定]
ボンド磁石用六方晶フェライト磁性粉93.5質量部と、シランカップリング剤(東レダウコーニング株式会社製のZ-6094N)0.6質量部と、滑剤(ヘンケル社製のVPN-212P)0.8質量部と、バインダとして粉末状のポリアミド樹脂(宇部興産株式会社製のP-1011F)5.1質量部とを秤量し、ミキサーに充填して混合して得られた混合物を230℃で混練して混練物を作製し、得られた混錬物から平均径2mmの混練ペレットを得た。
得られた混練ペレットをメルトインデクサー(株式会社東洋精機製作所製のメルトインデクサーC-5059D2)に入れて、前記混練物が270℃、荷重10kgで押し出された重量を測定し、この重量を10分当たりで押し出された量に換算することにより、ボンド磁石用六方晶フェライト磁性粉のMFRを求めた。
[Measurement of MFR B ]
93.5 parts by mass of hexagonal ferrite magnetic powder for bond magnets, 0.6 parts by mass of silane coupling agent (Z-6094N manufactured by Toray Dow Corning Co., Ltd.), and lubricant (VPN-212P manufactured by Henkel Co., Ltd.) 0. 8 parts by mass and 5.1 parts by mass of powdered polyamide resin (P-1011F manufactured by Ube Kosan Co., Ltd.) as a binder were weighed, filled in a mixer and mixed, and the obtained mixture was kneaded at 230 ° C. A kneaded product was prepared, and kneaded pellets having an average diameter of 2 mm were obtained from the obtained kneaded product.
The obtained kneaded pellets were placed in a melt indexer (melt indexer C-5059D2 manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the weight of the kneaded material extruded at 270 ° C. and a load of 10 kg was measured, and this weight was measured as 10. The MFR B of hexagonal ferrite magnetic powder for bonded magnets was determined by converting to the amount extruded per minute.

[ボンド磁石Bの磁気特性測定]
MFRの測定において記載した方法で得られた混練ペレットを射出成形機(住友重機械工業株式会社製)に装填して、9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石B(F.C.93.5質量%、9.7kOe)を得た。このボンド磁石BをBHトレーサー(東英工業株式会社製のTRF-5BH)を使用して磁気特性を測定した。
[Measurement of magnetic properties of bond magnet B]
The kneaded pellets obtained by the method described in the measurement of MFR B were loaded into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.), and the temperature was 300 ° C. and the molding pressure was 8.5 N / mm in a magnetic field of 9.7 kOe. Bonded magnet B (FC 93.5 mass%, 9.7 kOe) formed by injection in step 2 and having a cylindrical shape with a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is along the central axis of the cylinder). Got The magnetic characteristics of this bonded magnet B were measured using a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.).

(実施例1)
1.実施例1に係る六方晶フェライト磁性粉の製造
(1)粗粉の製造工程
酸化鉄を83.2質量部、炭酸ストロンチウムを9.4質量部、水酸化ランタンを5.2質量部および酸化亜鉛を2.2質量部となるように秤量した。当該秤量物に対して、0.18質量%のホウ酸、および2.45質量%の塩化カリウムを加えて混合後、水を加えて直径3~10mmの球状に造粒した。
(Example 1)
1. 1. Production of hexagonal ferrite magnetic powder according to Example 1 (1) Production process of crude powder 83.2 parts by mass of iron oxide, 9.4 parts by mass of strontium carbonate, 5.2 parts by mass of lanthanum hydroxide and zinc oxide Was weighed to be 2.2 parts by mass. To the weighed product, 0.18% by mass of boric acid and 2.45% by mass of potassium chloride were added and mixed, and then water was added to granulate into spheres having a diameter of 3 to 10 mm.

得られた造粒物をロータリーキルン中において大気の流通雰囲気下、第一の温度として1250℃で20分間焼成し、得られた焼成物をローラーミルで処理することで、粗粉を得た。 The obtained granulated product was fired in a rotary kiln at 1250 ° C. for 20 minutes at a primary temperature of 1250 ° C. in a rotary kiln, and the obtained calcined product was treated with a roller mill to obtain coarse powder.

得られた粗粉の平均粒径を測定したところ、1.20μmであった。
得られた粗粉のBET比表面積を測定したところ、0.4m/gであった。
得られた粗粉の組成分析を行い、Sr、La、Fe、Znの分析値から、粗粉の組成式を(Sr1-x1Lax1)(Fe1-y1Zny1n119-z1と表記した場合のx1、y1、n1、z1を算出したところ、x1=0.32、y1=0.021、n1=11.23、z1=1.11という結果であった。
The average particle size of the obtained coarse powder was measured and found to be 1.20 μm.
The BET specific surface area of the obtained crude powder was measured and found to be 0.4 m 2 / g.
The composition of the obtained crude powder was analyzed, and the composition formula of the crude powder was determined from the analytical values of Sr, La, Fe, and Zn (Sr 1-x1 La x1 ) (Fe 1-y1 Zn y1 ) n1 O 19-z1 . When x1, y1, n1, and z1 were calculated, the results were x1 = 0.32, y1 = 0.021, n1 = 11.23, and z1 = 1.11.

(2)微粉の製造工程
酸化鉄85.5質量部と炭酸ストロンチウム14.5質量部を秤量および混合した後、水を加えて直径3~10mmの球状に造粒した。
(2) Production process of fine powder After weighing and mixing 85.5 parts by mass of iron oxide and 14.5 parts by mass of strontium carbonate, water was added to granulate into spheres having a diameter of 3 to 10 mm.

得られた造粒物を、ロータリーキルン中において大気の流通雰囲気下、第二の温度として970℃で20分間焼成し、得られた焼成物をローラーミルで処理することで微粉を得た。得られた微粉に水を加えて、微粉の濃度が40質量%となるようにスラリー化したのち、直径5.56mmのスチール製ボールとともにアトライターに投入して120分間(粉砕処理時間)攪拌して粉砕処理することにより、湿式粉砕後の微粉を含むスラリーを得た。ここで、攪拌羽根の回転速度は、攪拌羽根の周速が3.2m/sとなるように調整した。得られた湿式粉砕後の微粉をスラリーからサンプリングし、ろ過により固液分離した後乾燥をすることで評価用の微粉サンプルを得た。 The obtained granulated product was calcined in a rotary kiln at a second temperature of 970 ° C. for 20 minutes in an atmospheric distribution atmosphere, and the obtained calcined product was treated with a roller mill to obtain fine powder. Water is added to the obtained fine powder to form a slurry so that the concentration of the fine powder is 40% by mass, and then the mixture is put into an attritor together with a steel ball having a diameter of 5.56 mm and stirred for 120 minutes (crushing treatment time). And pulverized to obtain a slurry containing fine powder after wet pulverization. Here, the rotation speed of the stirring blade was adjusted so that the peripheral speed of the stirring blade was 3.2 m / s. The obtained fine powder after wet pulverization was sampled from the slurry, separated into solid and liquid by filtration, and then dried to obtain a fine powder sample for evaluation.

得られた微粉サンプルのBET比表面積を測定したところ13.7m/gであった。
得られた微粉の圧縮密度を測定したところ2.87g/cmであった。
微粉サンプルの組成分析を行い、Sr、Feの分析値から、ボンド磁石用六方晶フェライト磁性粉の組成式を(Sr1-x2Lax2)(Fe1-y2Znn219-z2と表記した場合のx2、y2、n2、z2を算出したところ、x2=0、y2=0、n2=10.80、z2=1.80という結果であった。
結果を表1に示す。
The BET specific surface area of the obtained fine powder sample was measured and found to be 13.7 m 2 / g.
The compression density of the obtained fine powder was measured and found to be 2.87 g / cm 3 .
The composition of the fine powder sample was analyzed, and the composition formula of the hexagonal ferrite magnetic powder for bonded magnets was (Sr 1-x2 La x2 ) (Fe 1-y2 Zn y ) n2 O 19-z2 based on the analysis values of Sr and Fe. When x2, y2, n2, and z2 in the notation were calculated, the results were x2 = 0, y2 = 0, n2 = 10.80, and z2 = 1.80.
The results are shown in Table 1.

(3)混合粉砕工程
アトライターの粉砕容器内に入っている、得られた湿式粉砕後の微粉を含むスラリーに、微粉:粗粉の割合が30:70となるように(1)の粗粉製造工程で得られた粗粉を追加し、アトライターによりさらに20分間の混合粉砕処理を行った。ここで攪拌羽根の回転数は、攪拌羽根の周速が3.2m/sとなるよう制御した。そして、当該スラリーをろ過して固液分離した後に、大気中150℃で10時間乾燥させて乾燥ケーキを得た。当該乾燥ケーキを解砕処理することで混合粉を得た。得られた混合粉を、振動ボールミル(村上精機製作所製:Uras Vibrator KEC-8-YH)で粉砕処理することにより、粉砕処理した混合粉を得た。粉砕処理条件としては、媒体径12mmのスチール製ボールを用い、回転数1800rpm、振幅8mmの条件で28分間実施し、得られた粉砕粉に対してさらに、媒体径8mmのスチール製ボールを用いて回転数1800rpm、振幅8mmの条件で粉砕処理を28分間実施した。
(3) Mixing and crushing step The coarse powder of (1) is so that the ratio of fine powder to coarse powder is 30:70 in the slurry containing the obtained fine powder after wet crushing contained in the crushing container of Atreiter. The crude powder obtained in the manufacturing process was added, and a mixing and pulverizing treatment was further carried out for 20 minutes by an attritor. Here, the rotation speed of the stirring blade was controlled so that the peripheral speed of the stirring blade was 3.2 m / s. Then, the slurry was filtered and separated into solid and liquid, and then dried in the air at 150 ° C. for 10 hours to obtain a dried cake. The dried cake was crushed to obtain a mixed powder. The obtained mixed powder was pulverized with a vibrating ball mill (manufactured by Murakami Seiki Seisakusho: Uras Vibrator KEC-8-YH) to obtain a pulverized mixed powder. As the crushing treatment conditions, a steel ball having a medium diameter of 12 mm was used, and the process was carried out for 28 minutes under the conditions of a rotation speed of 1800 rpm and an amplitude of 8 mm. The pulverization treatment was carried out for 28 minutes under the conditions of a rotation speed of 1800 rpm and an amplitude of 8 mm.

(4)アニール工程
粉砕処理した混合粉を大気中970℃で30分間アニールして、実施例1に係るボンド磁石用六方晶フェライト磁性粉を得た。
(4) Annealing Step The pulverized mixed powder was annealed in the air at 970 ° C. for 30 minutes to obtain a hexagonal ferrite magnetic powder for a bonded magnet according to Example 1.

(5)ボンド磁石用六方晶フェライト磁性粉の評価
実施例1に係るボンド磁石用六方晶フェライト磁性粉について、粉末X線回折装置(株式会社リガク製のMiniflex600)を使用して、管電圧を40kV、管電流を15mA、測定範囲を15°~60°、スキャン速度を1°/分、スキャン幅を0.02°として、粉末X線回折法(XRD)による測定を行った。その結果、すべてのピークがSrFe1219と同じ位置に観測され、本実施例のボンド磁石用六方晶フェライト磁性粉がマグネトプランバイト型の結晶構造を有することが確認された。この結果は、以下に説明する実施例2~4および比較例1~5でも同様であった。
実施例1に係るボンド磁石用六方晶フェライト磁性粉の組成分析を行い、Sr、La、Fe、Znの分析値から、ボンド磁石用六方晶フェライト磁性粉の組成式を(Sr1-xLa)(Fe1-yZn19-zと表記した場合のx、y、n、zを算出すると、x=0.21、y=0.014、z=0.90、n=11.38であった。
(5) Evaluation of Hexagonal Ferrite Magnetic Powder for Bonded Magnet The hexagonal ferrite magnetic powder for bonded magnet according to Example 1 was subjected to a tube voltage of 40 kV using a powder X-ray diffractometer (Miniflex 600 manufactured by Rigaku Co., Ltd.). The measurement was performed by powder X-ray diffraction method (XRD) with a tube current of 15 mA, a measurement range of 15 ° to 60 °, a scan speed of 1 ° / min, and a scan width of 0.02 °. As a result, all the peaks were observed at the same positions as SrFe 12 O 19 , and it was confirmed that the hexagonal ferrite magnetic powder for the bonded magnet of this example had a magnetoplumbite-type crystal structure. This result was the same in Examples 2 to 4 and Comparative Examples 1 to 5 described below.
The composition of the hexagonal ferrite magnetic powder for bond magnets according to Example 1 was analyzed, and the composition formula of the hexagonal ferrite magnetic powder for bond magnets was determined from the analytical values of Sr, La, Fe, and Zn (Sr 1-x La x) . ) (Fe 1-y Zn y ) When x, y, n, z when expressed as n O 19-z are calculated, x = 0.21, y = 0.014, z = 0.90, n = It was 11.38.

実施例1に係るボンド磁石用六方晶フェライト磁性粉の粒度分布を測定したところ、1μm未満の粒子の割合は29.1体積%であり、1μm以上5μm未満の粒子の割合は61.4体積%であり、5μm以上の粒子の割合は9.5体積%であった。 When the particle size distribution of the hexagonal ferrite magnetic powder for a bonded magnet according to Example 1 was measured, the proportion of particles having a size of less than 1 μm was 29.1% by volume, and the proportion of particles having a size of 1 μm or more and less than 5 μm was 61.4% by volume. The proportion of particles having a size of 5 μm or more was 9.5% by volume.

実施例1に係るボンド磁石用六方晶フェライト磁性粉について、圧縮密度を測定したところ3.67g/cmであり、比表面積を測定したところ2.51m/gであり、平均粒径を測定したところ、1.20μmであった。 Regarding the hexagonal ferrite magnetic powder for bonded magnets according to Example 1, the compression density was measured to be 3.67 g / cm 3 , and the specific surface area was measured to be 2.51 m 2 / g, and the average particle size was measured. As a result, it was 1.20 μm.

実施例1に係るボンド磁石用六方晶フェライト磁性粉の圧粉体の磁気特性を測定したところ、圧粉体の保磁力p-iHcは2390Oe、圧粉体の残留磁束密度p-Brは1990Gであった。 When the magnetic properties of the green compact of the hexagonal ferrite magnetic powder for bonded magnets according to Example 1 were measured, the coercive force p-iHc of the green compact was 2390 Oe, and the residual magnetic flux density p-Br of the green compact was 1990 G. there were.

実施例1に係るボンド磁石用六方晶フェライト磁性粉のMFRは、91.0g/10minであった。
実施例1に係るボンド磁石用六方晶フェライト磁性粉を用いたボンド磁石Aの磁気特性を測定したところ、保磁力iHcは2355Oe、残留磁束密度Brは3211G、最大エネルギー積BHmaxは2.52MGOeであった。
The MFR A of the hexagonal ferrite magnetic powder for a bonded magnet according to Example 1 was 91.0 g / 10 min.
When the magnetic characteristics of the bonded magnet A using the hexagonal ferrite magnetic powder for the bonded magnet according to Example 1 were measured, the coercive force iHc was 2355Oe, the residual magnetic flux density Br was 3211G, and the maximum energy product BH max was 2.52MGOe. there were.

実施例1に係るボンド磁石用六方晶フェライト磁性粉のMFRは、28.2g/10minであった。
実施例1に係るボンド磁石用六方晶フェライト磁性粉を用いたボンド磁石Bの磁気特性を測定したところ、保磁力iHcは2467Oe、残留磁束密度Brは3320G、最大エネルギー積BHmaxは2.69MGOeであった。
The MFR B of the hexagonal ferrite magnetic powder for a bonded magnet according to Example 1 was 28.2 g / 10 min.
When the magnetic characteristics of the bond magnet B using the hexagonal ferrite magnetic powder for the bond magnet according to Example 1 were measured, the coercive force iHc was 2467Oe, the residual magnetic flux density Br was 3320G, and the maximum energy product BH max was 2.69MGOe. there were.

(実施例2)
微粉を湿式粉砕する際および粉砕混合を行う際の攪拌羽根の回転数を、攪拌羽根の周速が1.6m/sとなるように調整したこと、ならびに微粉の湿式粉砕の粉砕処理時間を60分としたこと以外は、実施例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例と同じ条件で評価した。
(Example 2)
The rotation speed of the stirring blades when wet pulverizing the fine powder and performing pulverization and mixing was adjusted so that the peripheral speed of the stirring blade was 1.6 m / s, and the pulverization processing time for the wet pulverization of the fine powder was 60. Hexagonal ferrite magnetic powder for bonded magnets was prepared by the same procedure as in Example 1 except that the amount was divided, and the evaluation was performed under the same conditions as in Example 1.

(実施例3)
微粉を湿式粉砕する際および粉砕混合を行う際の攪拌羽根の回転数を、攪拌羽根の周速が1.6m/sとなるように調整したこと、ならびに微粉の製造工程において微粉の濃度が20質量%となるようにスラリー化したこと以外は、実施例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例と同じ条件で評価した。
(Example 3)
The rotation speed of the stirring blades when wet pulverizing the fine powder and performing pulverization and mixing was adjusted so that the peripheral speed of the stirring blade was 1.6 m / s, and the concentration of the fine powder was 20 in the process of producing the fine powder. Hexagonal ferrite magnetic powder for bonded magnets was prepared by the same procedure as in Example 1 except that the slurry was made into a slurry so as to be by mass%, and evaluated under the same conditions as in Example.

(実施例4)
微粉を湿式粉砕する際および粉砕混合を行う際の攪拌羽根の回転数を、攪拌羽根の周速が1.6m/sとなるように調整したこと、微粉の製造工程において微粉の濃度が20質量%となるようにスラリー化したこと、ならびに媒体径8mmのスチール製ボールを用いての粉砕処理を実施しなかったこと以外は、実施例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例1と同じ条件で評価した。
(Example 4)
The rotation speed of the stirring blades when wet pulverizing and pulverizing and mixing the fine powder was adjusted so that the peripheral speed of the stirring blade was 1.6 m / s, and the concentration of the fine powder was 20 mass in the fine powder manufacturing process. Hexagonal ferrite magnetic powder for bonded magnets was prepared by the same procedure as in Example 1 except that it was made into a slurry so as to be% and that the pulverization treatment using a steel ball having a medium diameter of 8 mm was not performed. It was prepared and evaluated under the same conditions as in Example 1.

(実施例5)
微粉を湿式粉砕する際および粉砕混合を行う際の湿式粉砕の粉砕処理時間を60分としたこと以外は、実施例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例1と同じ条件で評価した。
(Example 5)
Hexagonal ferrite magnetic powder for bonded magnets was prepared by the same procedure as in Example 1 except that the pulverization treatment time for wet pulverization when wet pulverizing fine powder and pulverizing and mixing was set to 60 minutes. It was evaluated under the same conditions as 1.

(実施例6)
微粉を湿式粉砕する際および粉砕混合を行う際の湿式粉砕の粉砕処理時間を30分としたこと以外は、実施例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例1と同じ条件で評価した。
(Example 6)
Hexagonal ferrite magnetic powder for bonded magnets was prepared by the same procedure as in Example 1 except that the pulverization treatment time for wet pulverization was 30 minutes when the fine powder was wet pulverized and when the pulverization and mixing were performed. It was evaluated under the same conditions as 1.

(比較例1)
実施例1の(1)粗粉の製造工程と同様の操作により粗粉を得た。得られた粗粉に水を加えて粗粉の濃度が40質量%となるようにスラリー化したのち、直径5.56mmのスチール製ボールとともにアトライターに投入して20分間粉砕処理することにより、粗粉の湿式粉砕後粉を含むスラリーを得た。ここで、攪拌羽根の周速は3.2m/sとなるように調整した。そして、当該スラリーをろ過し、大気中150℃で10時間乾燥させて乾燥ケーキを得た。当該乾燥ケーキを解砕処理した後に、振動ボールミル(村上精機製作所製:Uras Vibrator KEC-8-YH)で乾式粉砕処理した。乾式粉砕処理条件としては、媒体径12mmのスチール製ボールを用い、回転数1800rpm、振幅8mmの条件で28分間実施し、得られた粉砕粉に対してさらに、媒体径8mmのスチール製ボールを用いて回転数1800rpm、振幅8mmの条件で粉砕処理を28分間実施した。乾式粉砕処理で得られた粉末を大気中970℃で30分間アニールして、比較例1に係るボンド磁石用六方晶フェライト磁性粉を作製し、実施例と同じ条件で評価した。
ここで、実施例1と同様の手順でボンド磁石Bの製造を試みたところ、混合物を混練して得られた混練物が流動せず、MFRの測定およびボンド磁石Bの製造を実施することができなかった。
(Comparative Example 1)
The crude powder was obtained by the same operation as in the process of producing the crude powder in (1) of Example 1. Water was added to the obtained coarse powder to form a slurry so that the concentration of the coarse powder was 40% by mass, and then the mixture was put into an attritor together with a steel ball having a diameter of 5.56 mm and pulverized for 20 minutes. After wet pulverization of the coarse powder, a slurry containing the powder was obtained. Here, the peripheral speed of the stirring blade was adjusted to 3.2 m / s. Then, the slurry was filtered and dried in the air at 150 ° C. for 10 hours to obtain a dried cake. After the dried cake was crushed, it was crushed by a vibration ball mill (manufactured by Murakami Seiki Seisakusho: Uras Vibrator KEC-8-YH). As the dry pulverization treatment conditions, a steel ball having a medium diameter of 12 mm was used, and the process was carried out for 28 minutes under the conditions of a rotation speed of 1800 rpm and an amplitude of 8 mm. Further, a steel ball having a medium diameter of 8 mm was used for the obtained pulverized powder. The pulverization treatment was carried out for 28 minutes under the conditions of a rotation speed of 1800 rpm and an amplitude of 8 mm. The powder obtained by the dry pulverization treatment was annealed in the air at 970 ° C. for 30 minutes to prepare a hexagonal ferrite magnetic powder for a bonded magnet according to Comparative Example 1, which was evaluated under the same conditions as in Examples.
Here, when an attempt was made to manufacture the bond magnet B in the same procedure as in the first embodiment, the kneaded product obtained by kneading the mixture did not flow, and the MFR B was measured and the bond magnet B was manufactured. I couldn't.

(比較例2)
粗粉の製造工程における第一の温度を1300℃としたこと、媒体径8mmのスチールボールを用いての粉砕処理を実施しなかったこと以外は、比較例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例と同じ条件で評価した。
ここで、実施例1と同様の手順でボンド磁石Bの製造を試みたところ、混合物を混練して得られた混練物が流動せず、MFRの測定およびボンド磁石Bの製造を実施することができなかった。
(Comparative Example 2)
Hexagon for bonded magnets by the same procedure as in Comparative Example 1 except that the first temperature in the crude powder manufacturing process was set to 1300 ° C. and the pulverization treatment using a steel ball having a medium diameter of 8 mm was not performed. Crystalline ferrite magnetic powder was prepared and evaluated under the same conditions as in Examples.
Here, when an attempt was made to manufacture the bond magnet B in the same procedure as in the first embodiment, the kneaded product obtained by kneading the mixture did not flow, and the MFR B was measured and the bond magnet B was manufactured. I couldn't.

(比較例3)
粗粉の製造工程における第一の温度を1250℃としたこと、媒体径8mmのスチールボールを用いての粉砕処理を実施しなかったこと以外は、比較例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例と同じ条件で評価した。
ここで、実施例1と同様の手順でボンド磁石Bの製造を試みたところ、混合物を混練して得られた混練物が流動せず、MFRの測定およびボンド磁石Bの製造を実施することができなかった。
(Comparative Example 3)
Hexagon for bonded magnets by the same procedure as in Comparative Example 1 except that the first temperature in the crude powder manufacturing process was set to 1250 ° C. and the pulverization treatment using a steel ball having a medium diameter of 8 mm was not performed. Crystalline ferrite magnetic powder was prepared and evaluated under the same conditions as in Examples.
Here, when an attempt was made to manufacture the bond magnet B in the same procedure as in the first embodiment, the kneaded product obtained by kneading the mixture did not flow, and the MFR B was measured and the bond magnet B was manufactured. I couldn't.

(比較例4)
粗粉の製造工程における第一の温度を1200℃としたこと、媒体径8mmのスチールボールを用いての粉砕処理を実施しなかったこと以外は、比較例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例と同じ条件で評価した。
ここで、実施例1と同様の手順でボンド磁石Bの製造を試みたところ、混合物を混練して得られた混練物が流動せず、MFRの測定およびボンド磁石Bの製造を実施することができなかった。
(Comparative Example 4)
Hexagon for bonded magnets by the same procedure as in Comparative Example 1 except that the first temperature in the crude powder manufacturing process was set to 1200 ° C. and the pulverization treatment using a steel ball having a medium diameter of 8 mm was not performed. Crystalline ferrite magnetic powder was prepared and evaluated under the same conditions as in the examples.
Here, when an attempt was made to manufacture the bond magnet B in the same procedure as in the first embodiment, the kneaded product obtained by kneading the mixture did not flow, and the MFR B was measured and the bond magnet B was manufactured. I couldn't.

(比較例5)
粗粉の製造工程における第一の温度を1150℃としたこと、媒体径8mmのスチールボールを用いての粉砕処理を実施しなかったこと以外は、比較例1と同様の手順によりボンド磁石用六方晶フェライト磁性粉を作製し、実施例と同じ条件で評価した。
また、得られたボンド磁石用六方晶フェライト磁性粉に対して、実施例1と同様の手順でボンド磁石Aおよびボンド磁石Bの製造を試みたところ、いずれの場合も混合物を混練して得られた混練物が流動せず、MFRおよびMFRの測定、ならびにボンド磁石Aおよびボンド磁石Bの製造を実施することができなかった。
(Comparative Example 5)
Hexagon for bonded magnets by the same procedure as in Comparative Example 1 except that the first temperature in the crude powder manufacturing process was set to 1150 ° C. and the pulverization treatment using a steel ball having a medium diameter of 8 mm was not performed. Crystalline ferrite magnetic powder was prepared and evaluated under the same conditions as in Examples.
Further, when the production of the bond magnet A and the bond magnet B was attempted with respect to the obtained hexagonal ferrite magnetic powder for the bond magnet by the same procedure as in Example 1, in each case, the mixture was kneaded and obtained. The kneaded product did not flow, and the measurement of MFR A and MFR B and the production of the bond magnet A and the bond magnet B could not be performed.

以上の結果を表1~3に示す。 The above results are shown in Tables 1 to 3.

Figure 2022084472000002
Figure 2022084472000002

Figure 2022084472000003
Figure 2022084472000003

Figure 2022084472000004
Figure 2022084472000004

実施例1および比較例1の結果から、粗粉を得る際の焼成温度である第一の温度より低い第二の温度で焼成することにより得られた微粉を、粗粉と混合粉砕してアニールすることにより、ボンド磁石用六方晶フェライト磁性粉として、粒度分布において、粒径1μm未満の粒子の割合を25体積%以上、かつ粒径5μm以上の粒子の割合を7体積%以上とすることができ、圧縮密度が3.60g/cm以上である磁性粉を得ることができ、さらに得られたボンド磁石用六方晶フェライト磁性粉を用いてボンド磁石を製造した際の残留磁束密度Brが高いボンド磁石を得られることが分かる。
また、実施例1および実施例2~4の結果からは、ボンド磁石用六方晶フェライト磁性粉の製造方法において、微粉を攪拌羽根の周速を0.5m/s以上2.5m/s以下に制御して行う湿式ビーズミルによる粉砕処理に供した後に、前記微粉と前記粗粉とを混合することで、得られるボンド磁石用六方晶フェライト磁性粉のMFRを100g/10min以上とすることができ、さらに得られたボンド磁石用六方晶フェライト磁性粉を用いてボンド磁石を製造した際の残留磁束密度Brが高いボンド磁石を得られることが分かる。
そして、実施例2と6との比較及び実施例3と5との比較からは、微粉の比表面積がほぼ同等であるにも関わらず、実施例2及び3の微粉の圧縮密度は、実施例6及び5の圧縮密度と比べて大きく、ボンド磁石の特性も優れている。これは、湿式粉砕時の撹拌羽の周速を落とすことにより、高充填に適した微粉が得られ、微粉と粗粉とを混合してボンド磁石を製造した際に、微粉および粗粉の粒子の配向性が向上したためと考えることができる。
比較例2~5の結果から、従来のSrLaZn系の六方晶フェライト磁性粉の製造方法では、粒度分布において、粒径1μm未満の粒子の割合が25体積%以上、かつ粒径5μm以上の粒子の割合が7体積%以上である六方晶フェライト磁性粉を得ることはできず、結果としてその六方晶フェライト磁性粉のMFRは90g/10min未満と小さく、当該六方晶フェライト磁性粉を用いてボンド磁石を製造しても残留磁束密度Brが低いボンド磁石しか得られないことが分かった。
From the results of Example 1 and Comparative Example 1, the fine particles obtained by firing at a second temperature lower than the first firing temperature at which the coarse powder is obtained are mixed and pulverized with the coarse powder and annealed. As a result, the proportion of particles having a particle size of less than 1 μm is 25% by volume or more and the proportion of particles having a particle size of 5 μm or more is 7% by volume or more in the particle size distribution as the hexagonal ferrite magnetic powder for bonded magnets. It is possible to obtain magnetic powder having a compression density of 3.60 g / cm 3 or more, and the residual magnetic flux density Br when a bonded magnet is manufactured using the obtained hexagonal ferrite magnetic powder for bonded magnets is high. It can be seen that a bond magnet can be obtained.
Further, from the results of Examples 1 and 2 to 4, in the method for producing hexagonal ferrite magnetic powder for bonded magnets, the peripheral speed of the stirring blade for the fine powder is set to 0.5 m / s or more and 2.5 m / s or less. The MFR A of the obtained hexagonal ferrite magnetic powder for bonded magnets can be 100 g / 10 min or more by mixing the fine powder and the coarse powder after subjecting to the pulverization treatment by a controlled wet bead mill. Further, it can be seen that a bond magnet having a high residual magnetic flux density Br when a bond magnet is manufactured using the obtained hexagonal ferrite magnetic powder for a bond magnet can be obtained.
From the comparison between Examples 2 and 6 and the comparison with Examples 3 and 5, the compression densities of the fine powders of Examples 2 and 3 are found to be in Examples even though the specific surface areas of the fine powders are almost the same. It is larger than the compression densities of 6 and 5, and the characteristics of the bonded magnet are also excellent. By reducing the peripheral speed of the stirring blade during wet pulverization, fine powder suitable for high filling can be obtained, and when the fine powder and coarse powder are mixed to produce a bonded magnet, fine powder and coarse powder particles are obtained. It can be considered that this is because the orientation of the particles has improved.
From the results of Comparative Examples 2 to 5, in the conventional method for producing SrLaZn-based hexagonal ferrite magnetic powder, the proportion of particles having a particle size of less than 1 μm is 25% by volume or more and the particle size is 5 μm or more in the particle size distribution. It is not possible to obtain hexagonal ferrite magnetic powder having a ratio of 7% by volume or more, and as a result, the MFR A of the hexagonal ferrite magnetic powder is as small as 90 g / 10 min or less, and the hexagonal ferrite magnetic powder is used to bond magnets. It was found that only a bonded magnet having a low residual magnetic flux density Br can be obtained even if the magnet is manufactured.

Claims (10)

組成式(Sr1-xLa)(Fe1-yZn19-z(ただし、0.01≦x≦0.50、0.010≦y≦0.040、10.00≦n≦12.50、z=19-[2(1-x)+3x+n{3(1-y)+2y}]/2)で表され、レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、粒径1μm未満の粒子の割合が25体積%以上40体積%以下であり、粒径1μm以上5μm未満の粒子の割合が30体積%以上65体積%以下であり、粒径5μm以上の粒子の割合が7体積%以上30体積%以下である、ボンド磁石用六方晶フェライト磁性粉。 Composition formula (Sr 1-x La x ) (Fe 1-y Zn y ) n O 19-z (However, 0.01 ≦ x ≦ 0.50, 0.010 ≦ y ≦ 0.040, 10.00 ≦ n ≦ 12.50, z = 19- [2 (1-x) + 3x + n {3 (1-y) + 2y}] / 2), based on the volume measured by the laser diffraction type particle size distribution measuring device. In the particle size distribution, the proportion of particles having a particle size of less than 1 μm is 25% by volume or more and 40% by volume or less, the proportion of particles having a particle size of 1 μm or more and less than 5 μm is 30% by volume or more and 65% by volume or less, and the particle size is 5 μm or more. Hexagonal ferrite magnetic powder for bonded magnets, wherein the proportion of particles in the particle is 7% by volume or more and 30% by volume or less. 前記ボンド磁石用六方晶フェライト磁性粉92.0質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂6.6質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して混練物を作製し、得られた混練物をメルトインデクサーに入れて、前記混練物が270℃、荷重10kgで押し出された重量を測定し、この重量を10分当たりで押し出された質量に換算することにより求められる、前記混練物の流動度MFRが、100g/10min以上である、請求項1に記載のボンド磁石用六方晶フェライト磁性粉。 The mixer is filled with 92.0 parts by mass of the hexagonal ferrite magnetic powder for a bond magnet, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and 6.6 parts by mass of a powdered polyamide resin. The resulting mixture was kneaded at 230 ° C. to prepare a kneaded product, and the obtained kneaded product was placed in a melt indexer to weigh the kneaded product extruded at 270 ° C. and a load of 10 kg. The hexagonal crystal for a bond magnet according to claim 1, wherein the fluidity MFR A of the kneaded product, which is measured and converted into the mass extruded per 10 minutes, is 100 g / 10 min or more. Ferrite magnetic powder. 前記ボンド磁石用六方晶フェライト磁性粉10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮した成形体の圧縮密度が3.60g/cm以上である、請求項1または2に記載のボンド磁石用六方晶フェライト磁性粉。 The compression density of the molded product obtained by filling 10 g of the hexagonal ferrite magnetic powder for a bonded magnet into a cylindrical mold having an inner diameter of 2.54 cmφ and then compressing it at a pressure of 1 ton / cm 3 is 3.60 g / cm 3 or more. , The hexagonal ferrite magnetic powder for a bonded magnet according to claim 1 or 2. レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、粒径1μm以上5μm未満の粒子の割合が50体積%以上65体積%以下であり、粒径5μm以上の粒子の割合が7体積%以上20体積%以下である、請求項1~3のいずれか一項に記載のボンド磁石用六方晶フェライト磁性粉。 In the volume-based particle size distribution measured by the laser diffraction type particle size distribution measuring device, the proportion of particles having a particle size of 1 μm or more and less than 5 μm is 50% by volume or more and 65% by volume or less, and the proportion of particles having a particle size of 5 μm or more is The hexagonal ferrite magnetic powder for a bonded magnet according to any one of claims 1 to 3, which is 7% by volume or more and 20% by volume or less. 組成式(Sr1-x1Lax1)(Fe1-y1Zny1n119-z1(ただし、0.01≦x1≦0.50、0.010≦y1≦0.040、10.00≦n1≦12.50、z1=19-[2(1-x1)+3x1+n1{3(1-y1)+2y1}]/2)で表される六方晶フェライト磁性粉の原料となる粉末を混合した後に第一の温度で焼成して六方晶フェライト磁性粉の粗粉を得る工程と、
組成式(Sr1-x2Lax2)(Fe1-y2Zny2n219-z2(ただし、0≦x2≦0.50、0≦y2≦0.040、10.00≦n2≦12.50、z2=19-[2(1-x2)+3x2+n{3(1-y2)+2y2}]/2)で表される六方晶フェライト磁性粉の原料となる粉末を混合した後に第一の温度よりも低い第二の温度で焼成して六方晶フェライト磁性粉の微粉を得る工程と、
前記粗粉と前記微粉とを、前記粗粉と前記微粉の合計質量に対する前記粗粉の質量割合が60質量%以上90質量%以下となる比率で混合粉砕して、粉砕処理した混合粉を得る工程と、
前記粉砕処理した混合粉をアニールする工程と、
を含む、ボンド磁石用六方晶フェライト磁性粉の製造方法。
Composition formula (Sr 1-x1 La x1 ) (Fe 1-y1 Zn y1 ) n1 O 19-z1 (However, 0.01 ≦ x1 ≦ 0.50, 0.010 ≦ y1 ≦ 0.040, 10.00 ≦ n1 ≦ 12.50, z1 = 19- [2 (1-x1) + 3x1 + n1 {3 (1-y1) + 2y1}] / 2) After mixing the powder that is the raw material of the hexagonal ferrite magnetic powder, the first The process of firing at one temperature to obtain coarse powder of hexagonal ferrite magnetic powder,
Composition formula (Sr 1-x2 La x2 ) (Fe 1-y2 Zn y2 ) n2 O 19-z2 (However, 0 ≦ x2 ≦ 0.50, 0 ≦ y2 ≦ 0.040, 10.00 ≦ n2 ≦ 12. 50, z2 = 19- [2 (1-x2) + 3x2 + n {3 (1-y2) + 2y2}] / 2) After mixing the powder that is the raw material of the hexagonal ferrite magnetic powder, from the first temperature The process of obtaining fine powder of hexagonal ferrite magnetic powder by firing at a low second temperature,
The coarse powder and the fine powder are mixed and pulverized at a ratio of the mass ratio of the coarse powder to the total mass of the coarse powder and the fine powder to be 60% by mass or more and 90% by mass or less to obtain a pulverized mixed powder. Process and
The step of annealing the pulverized mixed powder and
A method for producing hexagonal ferrite magnetic powder for bonded magnets, including.
前記微粉を得る工程が、前記原料となる粉末を混合した後に第二の温度で焼成してから粉砕処理することを含み、前記粉砕処理を、前記微粉10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮した成形体の圧縮密度が3.00g/cm以上4.00g/cm以下になるように行う、請求項5に記載のボンド磁石用六方晶フェライト磁性粉の製造方法。 The step of obtaining the fine powder includes mixing the powder as a raw material, baking the powder at a second temperature, and then pulverizing the powder. The bond magnet according to claim 5, wherein the compression density of the molded product compressed at a pressure of 1 ton / cm 3 after being filled in a mold is 3.00 g / cm 3 or more and 4.00 g / cm 3 or less. A method for producing hexagonal ferrite magnetic powder. 前記第一の温度が1220℃以上1400℃以下である、請求項5または6に記載のボンド磁石用六方晶フェライト磁性粉の製造方法。 The method for producing a hexagonal ferrite magnetic powder for a bonded magnet according to claim 5 or 6, wherein the first temperature is 1220 ° C. or higher and 1400 ° C. or lower. 前記第二の温度が900℃以上1000℃以下である、請求項5~7のいずれか一項に記載のボンド磁石用六方晶フェライト磁性粉の製造方法。 The method for producing a hexagonal ferrite magnetic powder for a bonded magnet according to any one of claims 5 to 7, wherein the second temperature is 900 ° C. or higher and 1000 ° C. or lower. 請求項1~4のいずれか一項に記載のボンド磁石用六方晶フェライト磁性粉および樹脂を含む、ボンド磁石。 A bonded magnet containing the hexagonal ferrite magnetic powder for a bonded magnet according to any one of claims 1 to 4 and a resin. 請求項5~8のいずれか一項に記載の製造方法により得られたボンド磁石用六方晶フェライト磁性粉を用いる、ボンド磁石の製造方法。
A method for manufacturing a bonded magnet using hexagonal ferrite magnetic powder for a bonded magnet obtained by the manufacturing method according to any one of claims 5 to 8.
JP2020196390A 2020-11-26 2020-11-26 Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof Pending JP2022084472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020196390A JP2022084472A (en) 2020-11-26 2020-11-26 Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020196390A JP2022084472A (en) 2020-11-26 2020-11-26 Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2022084472A true JP2022084472A (en) 2022-06-07

Family

ID=81868134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020196390A Pending JP2022084472A (en) 2020-11-26 2020-11-26 Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2022084472A (en)

Similar Documents

Publication Publication Date Title
TWI434302B (en) Oxide magnetic material and preparation method thereof, and ferrite iron sintered magnet and preparation method thereof
JP4367649B2 (en) Ferrite sintered magnet
KR101649242B1 (en) Method for producing sintered ferrite magnet, and sintered ferrite magnet
KR101515251B1 (en) Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same
WO2007105398A1 (en) Rotating machine, bonded magnet, magnet roll, and process for producing ferrite sintered magnet
WO1999038174A1 (en) Bonded magnet, magnet roll and ferrite powder to be used for their preparation, and method for producing the same
KR20080081935A (en) Oxide magnetic material
JP2006104050A (en) Oxide magnetic material and sintered magnet
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
CN110663094A (en) Sintered ferrite magnet
JP7405648B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JP5521622B2 (en) Magnetic oxide material, sintered ferrite magnet, and method for producing sintered ferrite magnet
US20070023970A1 (en) Method for producing ferrite sintered magnet
WO2014058067A1 (en) Sr ferrite powder, method for manufacturing sr ferrite sintered magnet, motor, and generator
JP2018030751A (en) Ferrite compound
EP1650772A1 (en) Ferrite magnetic material and method for producing hexagonal w type ferrite magnetic material
JP7082033B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JP7111150B2 (en) Calcined ferrite body, sintered ferrite magnet and method for producing the same
JP2018174175A (en) Ferrite powder for bond magnet, and manufacturing method thereof
JP2022084472A (en) Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof
WO2020045573A1 (en) Ferrite powder for bond magnet and production method therefor
JP2000331813A (en) Ferrite magnet powder
CN113436822A (en) Ferrite sintered magnet
JP2021150620A (en) Ferrite sintered magnet
JP2023134239A (en) Hexagonal crystal ferrite magnetic powder for bonded magnet and method for manufacturing the same, and bonded magnet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240402