JP7111150B2 - Calcined ferrite body, sintered ferrite magnet and method for producing the same - Google Patents

Calcined ferrite body, sintered ferrite magnet and method for producing the same Download PDF

Info

Publication number
JP7111150B2
JP7111150B2 JP2020507336A JP2020507336A JP7111150B2 JP 7111150 B2 JP7111150 B2 JP 7111150B2 JP 2020507336 A JP2020507336 A JP 2020507336A JP 2020507336 A JP2020507336 A JP 2020507336A JP 7111150 B2 JP7111150 B2 JP 7111150B2
Authority
JP
Japan
Prior art keywords
ferrite
sintered
calcined body
powder
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020507336A
Other languages
Japanese (ja)
Other versions
JPWO2019181056A1 (en
Inventor
泰明 谷奥
義徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2019181056A1 publication Critical patent/JPWO2019181056A1/en
Application granted granted Critical
Publication of JP7111150B2 publication Critical patent/JP7111150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、フェライト仮焼体、フェライト焼結磁石及びその製造方法に関する。 The present invention relates to a calcined ferrite body, a sintered ferrite magnet, and a method for producing the same.

フェライト焼結磁石は最大エネルギー積が希土類系焼結磁石(例えばNdFeB系焼結磁石)の1/10にすぎないが、主原料が安価な酸化鉄であることからコストパフォーマンスに優れており、化学的に極めて安定であるという特長を有している。そのため、各種モータやスピーカなど様々な用途に用いられており、世界的な生産重量は現在でも磁石材料の中で最大である。 Although the maximum energy product of ferrite sintered magnets is only 1/10 that of rare earth sintered magnets (e.g., NdFeB sintered magnets), their main raw material is inexpensive iron oxide, making them excellent in terms of cost performance. It has the advantage of being extremely stable. Therefore, it is used in a variety of applications such as various motors and speakers, and its global production weight is still the largest among magnetic materials.

代表的なフェライト焼結磁石は、マグネトプランバイト構造を有するSrフェライトであり、基本組成はSrFe12O19で表される。1990年代後半にSrFe12O19のSr2+の一部をLa3+で置換し、Fe3+の一部をCo2+で置換したSr-La-Co系フェライト焼結磁石が実用化されたことによりフェライト磁石の磁石特性は大きく向上した。また、2007年には、磁石特性をさらに向上させたCa-La-Co系フェライト焼結磁石が実用化された。A typical sintered ferrite magnet is Sr ferrite having a magnetoplumbite structure, and its basic composition is represented by SrFe12O19 . In the latter half of the 1990s, Sr-La-Co ferrite sintered magnets in which Sr 2+ in SrFe 12 O 19 was partly replaced with La 3+ and Fe 3+ was partly replaced with Co 2+ were put into practical use. The magnetic properties of the magnet are greatly improved. In 2007, Ca-La-Co ferrite sintered magnets with further improved magnetic properties were put to practical use.

前記のSr-La-Co系フェライト焼結磁石及びCa-La-Co系フェライト焼結磁石ともに、高い磁石特性を得るためにはCoが不可欠である。Sr-La-Co系フェライト焼結磁石は原子比で0.2程度、Ca-La-Co系フェライト焼結磁石では原子比で0.3程度のCoを含有している。Co(酸化Co)の価格はフェライト焼結磁石の主原料である酸化鉄の十倍から数十倍に相当する。従って、Ca-La-Co系フェライト焼結磁石では、Sr-La-Co系フェライト焼結磁石に比べ原料コストの増大が避けられない。フェライト焼結磁石の最大の特徴は安価であるという点にあるため、たとえ高い磁石特性を有していても、価格が高いと市場では受け入れられ難い。従って、世界的には、未だSr-La-Co系フェライト焼結磁石の需要が高い。 In both the Sr--La--Co system ferrite sintered magnets and the Ca--La--Co system ferrite sintered magnets described above, Co is indispensable for obtaining high magnetic properties. The Sr-La-Co system ferrite sintered magnet contains Co in an atomic ratio of about 0.2, and the Ca-La-Co system ferrite sintered magnet contains Co in an atomic ratio of about 0.3. The price of Co (Co oxide) is ten to several ten times that of iron oxide, which is the main raw material of sintered ferrite magnets. Therefore, the Ca--La--Co system ferrite sintered magnet inevitably increases the raw material cost compared to the Sr--La--Co system ferrite sintered magnet. The most important feature of sintered ferrite magnets is that they are inexpensive, so even if they have excellent magnetic properties, they will not be accepted in the market if the price is high. Therefore, worldwide demand for Sr-La-Co ferrite sintered magnets is still high.

近年、電気自動車の供給量増加によるLiイオン電池の需要増大に伴い、Coの価格が急騰している。その余波を受け、コストパフォーマンスに優れるSr-La-Co系フェライト焼結磁石においても、製品価格を維持することが困難な状況にある。このような背景から、磁石特性を維持しながら、いかにしてCoの使用量を削減するかが喫緊の課題となっている。 In recent years, the price of Co has skyrocketed as demand for Li-ion batteries has increased due to an increase in the supply of electric vehicles. In the aftermath, even Sr-La-Co ferrite sintered magnets, which have excellent cost performance, are in a situation where it is difficult to maintain product prices. Against this background, how to reduce the amount of Co used while maintaining the magnetic properties is an urgent issue.

Co量低減を目的とするものではないが、例えば、Sr-La-Co系フェライト焼結磁石において、Coの一部をZnで置換することにより、残留磁束密度(以下「Br」という)が向上することが知られている(特開平11-154604号など)。Although it is not intended to reduce the amount of Co, for example, in a Sr-La-Co ferrite sintered magnet, by substituting a part of Co with Zn, the residual magnetic flux density (hereinafter referred to as "B r ") is increased. It is known to improve (JP-A-11-154604, etc.).

しかし、Sr-La-Co系フェライト焼結磁石においてCoの一部をZnで置換した場合、Brの向上幅はそれほど大きくなく、一方で保磁力(以下「HcJ」という)が著しく低下するという問題があり、実用化には至っていない。However, when part of Co is replaced with Zn in the Sr -La-Co ferrite sintered magnet, the improvement in Br is not so large, but the coercive force (hereinafter referred to as " HcJ ") is significantly reduced. However, it has not yet been put to practical use.

従って本発明の目的は、高いBrを有し、HcJの低下が少なく(Sr-La-Co系フェライト焼結磁石においてCoの一部をZnで置換した場合よりもHcJが高く)、かつ従来のSr-La-Co系フェライト焼結磁石(原子比で0.2程度のCoを含有)よりもCoの使用量を25%以上削減したフェライト焼結磁石の提供することにある。Therefore, an object of the present invention is to have a high Br and a small decrease in HcJ (higher HcJ than in a Sr-La-Co ferrite sintered magnet in which a part of Co is replaced with Zn), Moreover, it is another object of the present invention to provide a sintered ferrite magnet in which the amount of Co used is reduced by 25% or more compared to a conventional Sr-La-Co system ferrite sintered magnet (containing Co in an atomic ratio of about 0.2).

すなわち、本発明のフェライト仮焼体は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも1種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-xRxFe2n-y-zCoyZnzにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4≦x≦0.6、
0<y<0.15、
0.1≦z≦0.4、
0.2≦(y+z)≦0.4、及び
4≦n≦6
を満足する。
That is, the ferrite calcined body of the present invention is
General formula showing the atomic ratio of the metal elements Ca, R, Fe, Co and Zn (where R is at least one rare earth element and essentially contains La): Ca 1-x R x Fe 2n- In yz Co y Zn z ,
The x, y and z, and n (where 2n is the molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4≤x≤0.6,
0 < y < 0.15,
0.1≤z≤0.4,
0.2≤(y+z)≤0.4, and
4≤n≤6
satisfy.

前記yは、0<y≦0.13を満足するのが好ましい。 The y preferably satisfies 0<y≦0.13.

前記1-x、x、y及びzは、0.2≦(y+z)≦0.3のとき1-x≧xを満足し、0.3<(y+z)≦0.4のとき1-x<xを満足するのが好ましい。 The 1-x, x, y and z preferably satisfy 1-x≧x when 0.2≦(y+z)≦0.3 and 1-x<x when 0.3<(y+z)≦0.4. .

本発明のフェライト焼結磁石は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも1種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-xRxFe2n-y-zCoyZnzにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.3≦x≦0.6、
0<y<0.15、
0.05≦z≦0.4、
0.15≦(y+z)≦0.4、及び
3.4≦n≦6
を満足する。
The ferrite sintered magnet of the present invention is
General formula showing the atomic ratio of the metal elements Ca, R, Fe, Co and Zn (where R is at least one rare earth element and essentially contains La): Ca 1-x R x Fe 2n- In yz Co y Zn z ,
The x, y and z, and n (where 2n is the molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.3≤x≤0.6,
0 < y < 0.15,
0.05≤z≤0.4,
0.15≤(y+z)≤0.4, and
3.4≤n≤6
satisfy.

本発明のフェライト焼結磁石は、1.5質量%以下のSiO2をさらに含有するのが好ましい。The sintered ferrite magnet of the present invention preferably further contains SiO 2 in an amount of 1.5% by mass or less.

本発明のフェライト焼結磁石の製造方法は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも1種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-xRxFe2n-y-zCoyZnzにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4≦x≦0.6、
0<y<0.15、
0.1≦z≦0.4、
0.2≦(y+z)≦0.4、及び
4≦n≦6
を満足する原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、
前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、
前記仮焼体を粉砕し、仮焼体の粉末を得る粉砕工程、
前記仮焼体の粉末を成形し、成形体を得る成形工程、及び
前記成形体を焼成し、焼結体を得る焼成工程
を含む。
The method for producing a sintered ferrite magnet of the present invention comprises:
General formula showing the atomic ratio of the metal elements Ca, R, Fe, Co and Zn (where R is at least one rare earth element and essentially contains La): Ca 1-x R x Fe 2n- In yz Co y Zn z ,
The x, y and z, and n (where 2n is the molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4≤x≤0.6,
0 < y < 0.15,
0.1≤z≤0.4,
0.2≤(y+z)≤0.4, and
4≤n≤6
A raw material powder mixing step for obtaining a mixed raw material powder by mixing raw material powders satisfying
a calcining step of calcining the mixed raw material powder to obtain a calcined body;
a pulverizing step of pulverizing the calcined body to obtain powder of the calcined body;
It includes a molding step of molding the powder of the calcined body to obtain a molded body, and a firing step of firing the molded body to obtain a sintered body.

本発明のフェライト焼結磁石の製造方法において、前記仮焼工程後、前記成形工程前に、前記仮焼体又は仮焼体の粉末100質量%に対して1.5質量%以下のSiO2を添加する工程をさらに含むのが好ましい。In the method for producing a sintered ferrite magnet of the present invention, after the calcining step and before the forming step, 1.5% by mass or less of SiO 2 is added to 100% by mass of the calcined body or powder of the calcined body. Preferably, further steps are included.

本発明のフェライト焼結磁石の製造方法において、前記仮焼工程後、前記成形工程前に、前記仮焼体又は仮焼体の粉末100質量%に対してCaO換算で1.5質量%以下のCaCO3を添加する工程をさらに含むのが好ましい。In the method for producing a sintered ferrite magnet of the present invention, after the calcining step and before the forming step, CaCO 3 is added in an amount of 1.5% by mass or less in terms of CaO with respect to 100% by mass of the calcined body or the powder of the calcined body. preferably further comprising the step of adding

本発明のフェライト焼結磁石の製造方法において、前記仮焼体の原子比yは、0<y≦0.13を満足するのが好ましい。 In the method for producing a sintered ferrite magnet of the present invention, the atomic ratio y of the calcined body preferably satisfies 0<y≦0.13.

本発明のフェライト焼結磁石の製造方法において、前記仮焼体の原子比1-x、x、y及びzは、0.2≦(y+z)≦0.3のとき1-x≧xを満足し、0.3<(y+z)≦0.4のとき1-x<xを満足するのが好ましい。 In the method for producing a sintered ferrite magnet of the present invention, the atomic ratios 1-x, x, y and z of the calcined body satisfy 1-x≧x when 0.2≦(y+z)≦0.3 and 0.3< It is preferable to satisfy 1-x<x when (y+z)≤0.4.

本発明によれば、高いBrを有し、HcJの低下が少なく(Sr-La-Co系フェライト焼結磁石においてCoの一部をZnで置換した場合よりもHcJが高く)、かつ従来のSr-La-Co系フェライト焼結磁石(原子比で0.2程度のCoを含有)よりもCoの使用量を25%以上削減したフェライト焼結磁石の提供が可能となる。According to the present invention, it has a high Br, a small decrease in HcJ (higher HcJ than in a Sr-La-Co ferrite sintered magnet in which a part of Co is replaced with Zn), and It is possible to provide a ferrite sintered magnet in which the amount of Co used is reduced by 25% or more compared to conventional Sr-La-Co system ferrite sintered magnets (containing Co at an atomic ratio of about 0.2).

1.フェライト仮焼体
本発明のフェライト仮焼体は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも1種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-xRxFe2n-y-zCoyZnzにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4≦x≦0.6、
0<y<0.15、
0.1≦z≦0.4、
0.2≦(y+z)≦0.4、及び
4≦n≦6
を満足する。
1. Ferrite calcined body The ferrite calcined body of the present invention is
General formula showing the atomic ratio of the metal elements Ca, R, Fe, Co and Zn (where R is at least one rare earth element and essentially contains La): Ca 1-x R x Fe 2n- In yz Co y Zn z ,
The x, y and z, and n (where 2n is the molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4≤x≤0.6,
0 < y < 0.15,
0.1≤z≤0.4,
0.2≤(y+z)≤0.4, and
4≤n≤6
satisfy.

本発明のフェライト仮焼体において、原子比x(Rの含有量)は、0.4≦x≦0.6である。xが0.4未満又は0.6を超えると高いBrを得ることができない。Rは希土類元素の少なくとも1種であってLaを必須に含む元素である。La以外の希土類元素の含有量はモル比でRの合計量の50%以下であるのが好ましい。In the ferrite calcined body of the present invention, the atomic ratio x (content of R) is 0.4≦x≦0.6. If x is less than 0.4 or more than 0.6, a high Br cannot be obtained. R is at least one rare earth element and an element essentially containing La. The content of rare earth elements other than La is preferably 50% or less of the total amount of R in terms of molar ratio.

原子比y(Coの含有量)は、0<y<0.15である。yが0.15以上ではCo使用量の削減効果を得ることができない。yが0(含有されない)ではHcJの低下が大きくなるため好ましくない。原子比yは0<y≦0.13であることが好ましく、0.08<y≦0.13であることがより好ましく、0.10≦y≦0.13であることがさらに好ましい。The atomic ratio y (content of Co) is 0<y<0.15. If y is 0.15 or more, the effect of reducing the amount of Co used cannot be obtained. If y is 0 (does not contain), the decrease in H cJ becomes large, which is not preferable. The atomic ratio y is preferably 0<y≦0.13, more preferably 0.08<y≦0.13, and even more preferably 0.10≦y≦0.13.

原子比z(Znの含有量)は、0.1≦z≦0.4である。zが0.1未満又は0.4を超えると高いBrを得ることができない。The atomic ratio z (content of Zn) is 0.1≦z≦0.4. A high Br cannot be obtained when z is less than 0.1 or exceeds 0.4.

原子比y及びzは、0.2≦(y+z)≦0.4の関係を満足する。(y+z)が0.2未満又は0.4を超えると高いBrを得ることができない。さらに原子比1-x及びxは、0.2≦(y+z)≦0.3のとき1-x≧xを満足し、0.3<(y+z)≦0.4のとき1-x<xを満足することがより好ましい。The atomic ratios y and z satisfy the relationship 0.2≤(y+z)≤0.4. If (y+z) is less than 0.2 or more than 0.4, high Br cannot be obtained. Further, the atomic ratios 1-x and x more preferably satisfy 1-x≧x when 0.2≦(y+z)≦0.3 and 1-x<x when 0.3<(y+z)≦0.4.

前記一般式において、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される。nは4≦n≦6である。nが4未満又は6を超えると高いBrを得ることができない。In the above general formula, 2n is a molar ratio, expressed as 2n=(Fe+Co+Zn)/(Ca+R). n is 4≦n≦6. If n is less than 4 or more than 6, high B r cannot be obtained.

前記一般式は、金属元素の原子比で示したが、酸素(O)を含む組成は、一般式:Ca1-xRxFe2n-y-zCoyZnzOαで表される。酸素のモル数αは基本的にはα=19であるが、Fe及びCoの価数、x、y及びzやnの値などによって異なってくる。また、還元性雰囲気で焼成した場合の酸素の空孔(ベイカンシー)、フェライト相におけるFeの価数の変化、Coの価数の変化等により金属元素に対する酸素の比率が変化する。従って、実際の酸素のモル数αは19からずれる場合がある。そのため、本発明においては、最も組成が特定し易い金属元素の原子比で組成を表記している。Although the general formula is expressed by the atomic ratio of metal elements, the composition containing oxygen ( O ) is represented by the general formula : Ca1 - xRxFe2n - yzCoyZnzOα . The number of moles α of oxygen is basically α=19, but varies depending on the valences of Fe and Co, the values of x, y and z, and n. In addition, the ratio of oxygen to the metal element changes due to oxygen vacancies (vacancy) when firing in a reducing atmosphere, changes in the valence of Fe in the ferrite phase, changes in the valence of Co, and the like. Therefore, the actual number of moles α of oxygen may deviate from 19. Therefore, in the present invention, the composition is represented by the atomic ratio of the metal elements, which is the easiest to specify.

本発明のフェライト仮焼体を構成する主相は、六方晶のマグネトプランバイト(M型)構造を有する化合物相(フェライト相)である。一般に、磁性材料、特に焼結磁石は、複数の化合物から構成されており、その磁性材料の特性(物性、磁石特性など)を決定づけている化合物が「主相」と定義される。 The main phase constituting the ferrite calcined body of the present invention is a compound phase (ferrite phase) having a hexagonal magnetoplumbite (M-type) structure. In general, magnetic materials, particularly sintered magnets, are composed of multiple compounds, and the compound that determines the properties (physical properties, magnetic properties, etc.) of the magnetic material is defined as the "main phase".

「六方晶のマグネトプランバイト(M型)構造を有する」とは、フェライト仮焼体のX線回折を一般的な条件で測定した場合に、六方晶のマグネトプランバイト(M型)構造のX線回折パターンが主として観察されることを言う。 “Hexagonal magnetoplumbite (M type) structure” means that X It means that a line diffraction pattern is mainly observed.

上述した本発明のフェライト仮焼体の製造方法を含む、本発明のフェライト焼結磁石の製造方法の一例を以下に説明する。 An example of the method for producing the sintered ferrite magnet of the present invention, including the method for producing the ferrite calcined body of the present invention described above, will be described below.

2.フェライト焼結磁石の製造方法
原料粉末としては、価数にかかわらず、それぞれの金属の酸化物、炭酸塩、水酸化物、硝酸塩、塩化物等の化合物を使用することができる。原料粉末を溶解した溶液であってもよい。Caの化合物としては、Caの炭酸塩、酸化物、塩化物等が挙げられる。Laの化合物としては、La2O3等の酸化物、La(OH)3等の水酸化物、La2(CO3)3・8H2O等の炭酸塩等が挙げられる。Feの化合物としては、酸化鉄、水酸化鉄、塩化鉄、ミルスケール等が挙げられる。Coの化合物としては、CoO、Co3O4等の酸化物、CoOOH、Co(OH)2等の水酸化物、CoCO3等の炭酸塩、及びm2CoCO3・m3Co(OH)2・m4H2O等の塩基性炭酸塩(m2、m3、m4は正の数である)が挙げられる。Znの化合物としてはZnOが挙げられる
2. Manufacturing method of ferrite sintered magnet As raw material powder, compounds such as oxides, carbonates, hydroxides, nitrates, and chlorides of respective metals can be used regardless of valence. A solution obtained by dissolving the raw material powder may be used. Ca compounds include carbonates, oxides and chlorides of Ca. Examples of La compounds include oxides such as La2O3, hydroxides such as La(OH)3 , and carbonates such as La2 ( CO3 ) 3.8H2O . Examples of Fe compounds include iron oxide, iron hydroxide, iron chloride, and millscale. Co compounds include oxides such as CoO and Co3O4 , hydroxides such as CoOOH and Co ( OH) 2 , carbonates such as CoCO3 , and m2CoCO3 · m3Co ( OH) 2 . · Basic carbonates such as m 4 H 2 O (m 2 , m 3 and m 4 are positive numbers). A compound of Zn includes ZnO .

仮焼時の反応促進のため、必要に応じてB2O3、H3BO3等のB(硼素)を含む化合物を1質量%程度まで添加してもよい。特にH3BO3の添加は、磁石特性の向上に有効である。H3BO3の添加量は0.3質量%以下であるのが好ましく、0.1質量%程度が最も好ましい。H3BO3は、焼成時に結晶粒の形状やサイズを制御する効果も有するため、仮焼後(微粉砕前や焼成前)に添加してもよく、仮焼前及び仮焼後の両方で添加してもよい。A compound containing B (boron), such as B 2 O 3 and H 3 BO 3 , may be added up to about 1% by mass, if necessary, in order to promote the reaction during calcination. Addition of H 3 BO 3 is particularly effective in improving magnetic properties. The amount of H 3 BO 3 added is preferably 0.3% by mass or less, most preferably about 0.1% by mass. H 3 BO 3 also has the effect of controlling the shape and size of crystal grains during firing, so it may be added after calcination (before pulverization or before calcination). may be added.

上述した本発明のフェライト仮焼体の成分、組成を満足する原料粉末を混合し、混合原料粉末とする。原料粉末の配合、混合は、湿式及び乾式のいずれで行ってもよい。スチールボール等の媒体とともに撹拌すると原料粉末をより均一に混合することができる。湿式の場合は、分散媒に水を用いるのが好ましい。原料粉末の分散性を高める目的でポリカルボン酸アンモニウム、グルコン酸カルシウム等の公知の分散剤を用いてもよい。混合した原料スラリーはそのまま仮焼してもよいし、原料スラリーを脱水した後、仮焼してもよい。 Raw material powders satisfying the components and composition of the ferrite calcined body of the present invention are mixed to form a mixed raw material powder. Blending and mixing of raw material powders may be carried out by either a wet method or a dry method. Stirring with a medium such as a steel ball allows the raw material powder to be mixed more uniformly. In the wet method, it is preferable to use water as a dispersion medium. A known dispersant such as ammonium polycarboxylate and calcium gluconate may be used for the purpose of enhancing the dispersibility of the raw material powder. The mixed raw material slurry may be calcined as it is, or may be calcined after dewatering the raw material slurry.

乾式混合又は湿式混合することによって得られた混合原料粉末は、電気炉、ガス炉等を用いて加熱することで、固相反応により、六方晶のマグネトプランバイト(M型)構造のフェライト化合物を形成する。このプロセスを「仮焼」と呼び、得られた化合物を「仮焼体」と呼ぶ。 The mixed raw material powder obtained by dry-mixing or wet-mixing is heated using an electric furnace, a gas furnace, etc., and a ferrite compound with a hexagonal magnetoplumbite (M-type) structure is formed by a solid phase reaction. Form. This process is called "calcination", and the resulting compound is called "calcined body".

仮焼工程では、温度の上昇とともにフェライト相が形成される固相反応が進行する。仮焼温度が1100℃未満では、未反応のヘマタイト(酸化鉄)が残存するため磁石特性が低くなる。一方、仮焼温度が1450℃を超えると結晶粒が成長し過ぎるため、粉砕工程において粉砕に多大な時間を要することがある。従って、仮焼温度は1100℃~1450℃であるのが好ましい。仮焼時間は0.5時間~5時間であるのが好ましい。仮焼後の仮焼体はハンマーミルなどによって粗粉砕することが好ましい。 In the calcining step, a solid phase reaction that forms a ferrite phase progresses as the temperature rises. If the calcining temperature is less than 1100°C, unreacted hematite (iron oxide) remains, resulting in poor magnetic properties. On the other hand, if the calcining temperature exceeds 1450° C., the crystal grains grow too much, which may require a long time for pulverization in the pulverization step. Therefore, the calcination temperature is preferably 1100°C to 1450°C. The calcining time is preferably 0.5 to 5 hours. It is preferable to coarsely pulverize the calcined body after calcination with a hammer mill or the like.

以上のような工程を経ることによって、本発明のフェライト仮焼体を得ることができる。引き続き、本発明のフェライト焼結磁石の製造方法を説明する。 The calcined ferrite body of the present invention can be obtained through the steps described above. Next, the method for producing the sintered ferrite magnet of the present invention will be explained.

仮焼体を、振動ミル、ジェットミル、ボールミル、アトライター等によって粉砕(微粉砕)し、仮焼体の粉末(微粉砕粉末)とする。仮焼体の粉末の平均粒径は0.4μm~0.8μm程度にするのが好ましい。なお、本発明においては、粉体比表面積測定装置(例えば島津製作所製SS-100)などを用いて空気透過法によって測定した値を粉末の平均粒径(平均粒度)という。粉砕工程は、乾式粉砕及び湿式粉砕のいずれでもよく、双方を組み合わせてもよい。湿式粉砕の場合は、分散媒として水及び/又は非水系溶剤(アセトン、エタノール、キシレン等の有機溶剤)を用いて行う。典型的には、水(分散媒)と仮焼体とを含むスラリーを生成する。スラリーには公知の分散剤及び/又は界面活性剤を固形分比率で0.2~2質量%を添加してもよい。湿式粉砕後は、スラリーを濃縮してもよい。 The calcined body is pulverized (pulverized) by a vibration mill, a jet mill, a ball mill, an attritor, or the like to obtain calcined powder (finely pulverized powder). The average particle size of the calcined powder is preferably about 0.4 μm to 0.8 μm. In the present invention, the value measured by the air permeation method using a powder specific surface area measuring device (for example, SS-100 manufactured by Shimadzu Corporation) is referred to as the average particle size of the powder (average particle size). The pulverization step may be either dry pulverization or wet pulverization, or both may be combined. In the case of wet pulverization, water and/or a non-aqueous solvent (organic solvent such as acetone, ethanol, xylene, etc.) is used as a dispersion medium. Typically, a slurry containing water (dispersion medium) and a calcined body is produced. A known dispersant and/or surfactant may be added to the slurry at a solid content ratio of 0.2 to 2% by mass. After wet grinding, the slurry may be concentrated.

成形工程は、粉砕工程後のスラリーを、分散媒を除去しながら磁界中又は無磁界中でプレス成形する。磁界中でプレス成形することにより、粉末粒子の結晶方位を整列(配向)させることができ、磁石特性を飛躍的に向上させることができる。さらに、配向を向上させるために、成形前のスラリーに分散剤及び潤滑剤をそれぞれ0.1~1質量%添加してもよい。また成形前にスラリーを必要に応じて濃縮してもよい。濃縮は遠心分離、フィルタープレス等により行うのが好ましい。 In the molding step, the slurry after the pulverization step is press-molded in a magnetic field or in a non-magnetic field while removing the dispersion medium. By press-molding in a magnetic field, the crystal orientation of the powder particles can be aligned (orientated), and the magnetic properties can be dramatically improved. Furthermore, in order to improve orientation, 0.1 to 1 mass % each of a dispersant and a lubricant may be added to the slurry before molding. Also, the slurry may be concentrated before molding, if necessary. Concentration is preferably carried out by centrifugation, filter press or the like.

前記仮焼工程後、成形工程前に、仮焼体又は仮焼体の粉末(粗粉砕粉末又は微粉砕粉末)に焼結助剤を添加してもよい。焼結助剤としてはSiO2及びCaCO3が好ましい。本発明のフェライト焼結磁石は、その組成から明らかなようにCa-La-Co系フェライト焼結磁石に属する。Ca-La-Co系フェライト焼結磁石においては、主相成分としてCaが含まれているため、従来のSr-La-Co系フェライト焼結磁石などのようにSiO2やCaCO3などの焼結助剤を添加しなくても、液相が生成し、焼結することができる。すなわち、フェライト焼結磁石において主として粒界相を形成するSiO2やCaCO3を添加しなくても本発明のフェライト焼結磁石を製造することができる。但し、HcJの低下を抑制するために、以下に示す量のSiO2及びCaCO3を添加してもよい。A sintering aid may be added to the calcined body or powder of the calcined body (coarsely pulverized powder or finely pulverized powder) after the calcining step and before the molding step. SiO 2 and CaCO 3 are preferred as sintering aids. The sintered ferrite magnet of the present invention belongs to the Ca-La-Co system sintered ferrite magnet, as is apparent from its composition. Since Ca-La-Co ferrite sintered magnets contain Ca as the main phase component, SiO 2 and CaCO 3 are not sintered like conventional Sr-La-Co ferrite sintered magnets. A liquid phase is formed and can be sintered without the addition of auxiliary agents. In other words, the sintered ferrite magnet of the present invention can be produced without adding SiO 2 and CaCO 3 which mainly form grain boundary phases in the sintered ferrite magnet. However, in order to suppress the decrease in HcJ , SiO 2 and CaCO 3 may be added in the amounts shown below.

SiO2の添加量は、添加する対象となる仮焼体又は仮焼体の粉末100質量%に対して1.5質量%以下が好ましい。また、CaCO3の添加量は、添加する対象となる仮焼体又は仮焼体の粉末100質量%に対してCaO換算で1.5質量%以下が好ましい。焼結助剤の添加は、例えば、仮焼工程によって得られた仮焼体に添加した後、粉砕工程を実施する、粉砕工程の途中で添加する、又は粉砕工程後の仮焼体の粉末(微粉砕粉末)に添加、混合した後成形工程を実施する、などの方法を採用することができる。焼結助剤として、SiO2及びCaCO3の他に、Cr2O3、Al2O3等を添加してもよい。これらの添加量は、それぞれ1質量%以下であってよい。The amount of SiO 2 to be added is preferably 1.5% by mass or less with respect to 100% by mass of the calcined body to be added or the powder of the calcined body. The amount of CaCO 3 to be added is preferably 1.5% by mass or less in terms of CaO with respect to 100% by mass of the calcined body or powder of the calcined body to be added. The sintering aid is added, for example, by adding it to the calcined body obtained by the calcining process and then performing the crushing process, adding it during the crushing process, or adding the powder of the calcined body after the crushing process ( It is possible to adopt a method such as adding to a finely pulverized powder) and performing a molding step after mixing. As a sintering aid, in addition to SiO 2 and CaCO 3 , Cr 2 O 3 , Al 2 O 3 and the like may be added. The amount of each of these added may be 1% by mass or less.

なお、本発明においては、CaCO3の添加量は全てCaO換算で表記する。CaO換算での添加量からCaCO3の添加量は、式:(CaCO3の分子量×CaO換算での添加量)/CaOの分子量によって求めることができる。例えば、CaO換算で0.5質量%のCaCO3を添加する場合、その量は{(40.08[Caの原子量]+12.01[Cの原子量]+48.00[Oの原子量×3]=100.09[CaCO3の分子量])×0.5質量%[CaO換算での添加量]}/(40.08[Caの原子量]+16.00[Oの原子量]=56.08[CaOの分子量])=0.892質量%[CaCO3の添加量]となる。
In the present invention, the amount of CaCO 3 added is expressed in terms of CaO. The added amount of CaCO 3 can be obtained from the added amount in terms of CaO by the formula: (molecular weight of CaCO 3 × added amount in terms of CaO)/molecular weight of CaO. For example, when adding 0.5% by mass of CaCO3 in terms of CaO, the amount is {(40.08 [atomic weight of Ca] + 12.01 [atomic weight of C] + 48.00 [atomic weight of O x 3] = 100.09 [ CaCO3 molecular weight]) × 0.5 mass% [addition amount in terms of CaO]} / (40.08 [atomic weight of Ca] + 16.00 [atomic weight of O] = 56.08 [molecular weight of CaO]) = 0.892 mass% [addition of CaCO3 amount].

プレス成形により得られた成形体を、必要に応じて脱脂した後、焼成(焼結)する。焼成は電気炉、ガス炉等を用いて行う。焼成は酸素濃度が10体積%以上の雰囲気中で行うことが好ましい。より好ましくは20体積%以上であり、最も好ましくは100体積%である。焼成温度は1150℃~1250℃が好ましい。焼成時間は0時間(焼成温度での保持無し)~2時間が好ましい。 A compact obtained by press molding is degreased as necessary, and then fired (sintered). Firing is performed using an electric furnace, a gas furnace, or the like. Firing is preferably carried out in an atmosphere with an oxygen concentration of 10% by volume or more. More preferably 20% by volume or more, most preferably 100% by volume. The firing temperature is preferably 1150°C to 1250°C. The firing time is preferably from 0 hours (no holding at the firing temperature) to 2 hours.

焼成工程の後は、加工工程、洗浄工程、検査工程等の公知の製造プロセスを経て、最終的にフェライト焼結磁石を製造する。 After the firing process, a sintered ferrite magnet is finally manufactured through known manufacturing processes such as a working process, a cleaning process, and an inspection process.

3.フェライト焼結磁石
前記の通り、本発明のフェライト仮焼体は、SiO2やCaCO3などの焼結助剤を添加しなくても、液相が生成し、焼結することができ、本発明のフェライト焼結磁石を得ることができる。この時、フェライト仮焼体の成分、組成と、フェライト焼結磁石の成分、組成は、基本的に同じとなる(製造工程における不純物の混入などは考慮しない)。
3. Ferrite sintered magnet As described above, the ferrite calcined body of the present invention can be sintered by generating a liquid phase without adding a sintering aid such as SiO2 or CaCO3 . A ferrite sintered magnet of the present invention can be obtained. At this time, the components and composition of the calcined ferrite body and the components and composition of the sintered ferrite magnet are basically the same (inclusion of impurities in the manufacturing process is not considered).

一方、焼結助剤を添加した場合、特にフェライト仮焼体の主成分でもあるCa成分(例えばCaCO3)を焼結助剤として添加した場合は、フェライト焼結磁石全体としてはCa成分が増加するため、相対的に他の元素が減少することとなる。例えば、本発明のフェライト仮焼体を用いて、焼結助剤としてCaO換算でCaCO3を1.5質量%添加すると、最も変動する場合で、0.4≦x≦0.6(仮焼体)が0.3≦x≦0.6(焼結磁石)に、0.1≦z≦0.4(仮焼体)が0.05≦z≦0.4(焼結磁石)に、0.2≦(y+z)≦0.4(仮焼体)が0.15≦(y+z)≦0.4(焼結磁石)に、4≦n≦6(仮焼体)が3.4≦n≦6(焼結磁石)となる。On the other hand, when a sintering aid is added, especially when the Ca component (e.g. CaCO 3 ), which is also the main component of the ferrite calcined body, is added as a sintering aid, the Ca component of the sintered ferrite magnet as a whole increases. Therefore, other elements are relatively decreased. For example, when using the ferrite calcined body of the present invention and adding 1.5% by mass of CaCO3 in terms of CaO as a sintering aid, the most variable case is 0.4 ≤ x ≤ 0.6 (calcined body) is 0.3 ≤ x ≤ 0.6 (sintered magnet), 0.1 ≤ z ≤ 0.4 (calcined body), 0.05 ≤ z ≤ 0.4 (sintered magnet), 0.2 ≤ (y + z) ≤ 0.4 (calcined body), 0.15 ≤ (y + z) ≤ 0.4 (sintered magnet) and 4 ≤ n ≤ 6 (calcined body) become 3.4 ≤ n ≤ 6 (sintered magnet).

従って、本発明のフェライト焼結磁石は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも1種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-xRxFe2n-y-zCoyZnzにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.3≦x≦0.6、
0<y<0.15、
0.05≦z≦0.4、
0.15≦(y+z)≦0.4、及び
3.4≦n≦6
を満足するものとなる。
Therefore, the ferrite sintered magnet of the present invention is
General formula showing the atomic ratio of the metal elements Ca, R, Fe, Co and Zn (where R is at least one rare earth element and essentially contains La): Ca 1-x R x Fe 2n- In yz Co y Zn z ,
The x, y and z, and n (where 2n is the molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.3≤x≤0.6,
0 < y < 0.15,
0.05≤z≤0.4,
0.15≤(y+z)≤0.4, and
3.4≤n≤6
will be satisfied.

なお、本発明のフェライト焼結磁石の、酸素(O)を含む場合の組成、フェライト焼結磁石を構成する主相、六方晶のマグネトプランバイト(M型)構造の定義などは、本発明のフェライト仮焼体と同様である。また、前記の通り、フェライト仮焼体から範囲が変動しているものの、原子比x、y、zの限定理由、nの限定理由も前記フェライト仮焼体と同様であるため説明を省略する。 The composition of the sintered ferrite magnet of the present invention when oxygen (O) is included, the main phase constituting the sintered ferrite magnet, the definition of the hexagonal magnetoplumbite (M type) structure, etc. It is the same as the ferrite calcined body. Further, as described above, although the range varies from that of the ferrite calcined body, the reasons for limiting the atomic ratios x, y, and z, and the reasons for limiting n are the same as those for the ferrite calcined body, so the explanation is omitted.

前記の通り、本発明のフェライト焼結磁石の製造方法において、焼結助剤としてSiO2を、仮焼体又は仮焼体の粉末100質量%に対して1.5質量%以下添加する場合がある。焼結助剤として添加されたSiO2は焼成(焼結)時に液相成分となり、フェライト焼結磁石において粒界相の一成分として存在することとなる。従って、焼結助剤として前記添加量のSiO2を添加した場合は、得られるフェライト焼結磁石は1.5質量%以下のSiO2を含有する。この時、SiO2の含有により、前記一般式:Ca1-xRxFe2n-y-zCoyZnzで示される各元素の含有量が相対的に減少するととなるが、前記一般式におけるx、y、z、nなどの範囲は基本的に変化しない。なお、SiO2の含有量は、フェライト焼結磁石の成分分析結果(例えば、ICP発光分光分析装置による結果)におけるCa、R、Fe、Co、Zn及びSiの各組成(質量%)から、CaCO3、La(OH)3、Fe2O3、Co3O4、ZnO及びSiO2の質量に換算し、それらの合計100質量に対する含有比率(質量%)である。 As described above, in the method for producing a sintered ferrite magnet of the present invention, SiO 2 as a sintering aid may be added in an amount of 1.5% by mass or less with respect to 100% by mass of the calcined body or powder of the calcined body. SiO 2 added as a sintering aid becomes a liquid phase component during firing (sintering), and exists as one component of the grain boundary phase in the sintered ferrite magnet. Therefore, when SiO 2 is added in the above amount as a sintering aid, the resulting sintered ferrite magnet contains 1.5% by mass or less of SiO 2 . At this time, the content of each element represented by the general formula: Ca 1-x R x Fe 2n-yz Co y Zn z is relatively reduced due to the content of SiO 2 , but x , y, z, n, etc. basically do not change. The content of SiO 2 is determined from the composition (% by mass) of Ca, R, Fe, Co, Zn, and Si in the results of component analysis of the sintered ferrite magnet (for example, the results using an ICP emission spectrometer). 3 , La(OH) 3 , Fe 2 O 3 , Co 3 O 4 , ZnO and SiO 2 are converted into masses, and the content ratio (% by mass) with respect to the total 100 % by mass.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail by examples, but the present invention is not limited to them.

実験例1
本発明に基づく実験例として、一般式Ca1-xLaxFe2n-y-zCoyZnzにおいて、原子比が表1の試料No.1~18に示す1-x、x、y、z及び2nになるようにCaCO3粉末、La(OH)3粉末、Fe2O3粉末、Co3O4粉末及びZnO粉末を所定の組成で秤量し、秤量後の粉末の合計100質量%に対してH3BO3粉末を0.1質量%添加後、それぞれ湿式ボールミルで4時間混合した後、乾燥、整粒して18種類の混合原料粉末を得た。
Experimental example 1
As experimental examples based on the present invention, in the general formula Ca 1-x La x Fe 2n-yz Co y Zn z , the atomic ratios of 1-x, x, y, z and CaCO 3 powder, La(OH) 3 powder, Fe 2 O 3 powder, Co 3 O 4 powder, and ZnO powder were weighed according to a predetermined composition so that 2n was obtained. After 0.1% by mass of H 3 BO 3 powder was added, each mixture was mixed in a wet ball mill for 4 hours, dried, and granulated to obtain 18 kinds of mixed raw material powders.

また、比較例として、一般式Sr1-xLaxFe2n-y-zCoyZnzにおいて、Sr、La、Co、Znの原子比及びnが表1の試料No.19及び20に示す原子比になるようにSrCO3粉末、La(OH)3粉末、Fe2O3粉末、Co3O4粉末及びZnO粉末を所定の組成で秤量し、秤量後の粉末の合計100質量%に対してH3BO3粉末を0.1質量%添加後、それぞれ湿式ボールミルで4時間混合した後、乾燥、整粒して2種類の混合原料粉末を得た。Further, as a comparative example, in the general formula Sr1 - xLaxFe2n - yzCoyZnz , the atomic ratios of Sr, La, Co, and Zn and n are the atomic ratios shown in Sample Nos. 19 and 20 in Table 1. SrCO 3 powder, La(OH) 3 powder, Fe 2 O 3 powder, Co 3 O 4 powder, and ZnO powder were weighed with a predetermined composition so that H After 0.1% by mass of 3BO3 powder was added , the mixture was mixed in a wet ball mill for 4 hours, dried, and granulated to obtain two kinds of mixed raw material powders.

得られた全20種類の混合原料粉末をそれぞれ大気中において表1に示す仮焼温度で3時間仮焼し、20種類の仮焼体を得た。 A total of 20 types of mixed raw material powders thus obtained were calcined in air at the calcining temperature shown in Table 1 for 3 hours to obtain 20 types of calcined bodies.

得られた各仮焼体を小型ミルで粗粉砕して20種類の仮焼体の粗粉砕粉末を得た。得られた各仮焼体の粗粉砕粉末100質量%に対して、表1に示すCaCO3(添加量はCaO換算)及びSiO2を添加し、水を分散媒とした湿式ボールミルで、表1に示す平均粒度(粉体比表面積測定装置(島津製作所製SS-100)を用いて空気透過法により測定)になるまで微粉砕し、20種類の微粉砕スラリーを得た。Each of the obtained calcined bodies was coarsely pulverized with a small mill to obtain coarsely pulverized powder of 20 types of calcined bodies. To 100% by mass of the coarsely pulverized powder of each calcined body obtained, CaCO 3 (addition amount is calculated as CaO) and SiO 2 shown in Table 1 are added, and a wet ball mill using water as a dispersion medium is used. (measured by an air permeation method using a powder specific surface area measuring device (SS-100 manufactured by Shimadzu Corporation)) to obtain 20 kinds of finely pulverized slurries.

粉砕工程により得られた各微粉砕スラリーを、分散媒を除去しながら、加圧方向と磁界方向とが平行である平行磁界成形機(縦磁界成形機)を用い、約1 Tの磁界を印加しながら約2.4 MPaの圧力で成形し、20種類の成形体を得た。 A magnetic field of about 1 T is applied to each finely pulverized slurry obtained by the pulverization process using a parallel magnetic field forming machine (vertical magnetic field forming machine) in which the direction of pressure and the direction of the magnetic field are parallel while removing the dispersion medium. 20 types of compacts were obtained by compacting at a pressure of about 2.4 MPa.

得られた各成形体を焼結炉内に挿入し、大気中で、表1に示す焼成温度で1時間焼成することにより20種類のフェライト焼結磁石を得た。得られたフェライト焼結磁石のBr、HcJ及びHk/HcJの測定結果を表1に示す。表1において試料No.の横に*印を付していない試料No.1~14が本発明に基づく実験例であり、*印を付した試料No.15~18は本発明を満足しない実験例(比較例)であり、*印を付した試料No.19及び20が従来のSr-La-Co系焼結磁石においてCoの一部をZnで置換した実験例(比較例)である。なお、表1におけるHkは、J(磁化の大きさ)-H(磁界の強さ)曲線の第2象限において、Jが0.95×Jr(Jrは残留磁化、Jr=Br)の値になる位置のHの値である。以下の実験例2においても同様である。Each molded body obtained was inserted into a sintering furnace and fired in air at the firing temperature shown in Table 1 for 1 hour to obtain 20 types of sintered ferrite magnets. Table 1 shows the measurement results of B r , H cJ and H k /H cJ of the obtained sintered ferrite magnet. In Table 1, samples No. 1 to 14 not marked with * next to the sample No. are experimental examples based on the present invention, and samples No. 15 to 18 marked with * are experiments that do not satisfy the present invention. Sample Nos. 19 and 20 marked with * are experimental examples (comparative examples) in which a part of Co was replaced with Zn in conventional Sr--La--Co based sintered magnets. In Table 1, H k is 0.95×J r (J r is remanent magnetization, J r = B r ) in the second quadrant of the J (magnetization magnitude)-H (magnetic field strength) curve. is the value of H at the position where the value of The same applies to Experimental Example 2 below.

なお、表1における原子比は原料粉末の配合時の原子比(配合組成)を示す。焼成後の焼結体(フェライト焼結磁石)における原子比(焼結磁石の組成)は、配合時の原子比を元に、仮焼工程前に添加される添加物(H3BO3など)の添加量や、仮焼工程後成形工程前に添加される焼結助剤(CaCO3及びSiO2)の添加量を考慮し、計算によって求めることができ、その計算値は、フェライト焼結磁石をICP発光分光分析装置(例えば、島津製作所製ICPV-1017など)で分析した結果と基本的に同様となる。以下の実験例2においても同様である。The atomic ratio in Table 1 indicates the atomic ratio (blending composition) when the raw material powder was blended. The atomic ratio (composition of the sintered magnet) in the sintered body (ferrite sintered magnet) after firing is based on the atomic ratio at the time of blending, and the additives (H 3 BO 3 , etc.) added before the calcination process and the amount of sintering aids (CaCO 3 and SiO 2 ) added after the calcining process and before the forming process. is basically the same as the result of analysis by an ICP emission spectrometer (for example, ICPV-1017 manufactured by Shimadzu Corporation). The same applies to Experimental Example 2 below.

表1

Figure 0007111150000001
*比較例

表1(続き)
Figure 0007111150000002
*比較例
table 1
Figure 0007111150000001
*Comparative example

Table 1 (continued)
Figure 0007111150000002
*Comparative example

表1に示すように、Sr-La-Co系焼結磁石においてCoの一部をZnで置換した実験例(比較例)である試料No.19及び20に比べ、同量のCoを含有する試料No.1及び同量のZnを含有する試料No.2は高いBrを有し、HcJが高く、かつ、従来のSr-La-Co系焼結磁石(原子比で0.2程度のCoを含有)に比べCoの使用量を25%以上削減することができる。すなわち、従来のSr-La-Co系焼結磁石(原子比で0.2程度のCoを含有)に対してCoの使用量を25%以上削減した組成領域において、本発明に基づくフェライト焼結磁石(Ca-La-Co系焼結磁石)は、従来のSr-La-Co系焼結磁石に比べ、高いBr及び高いHcJを有している。As shown in Table 1, compared to Samples Nos. 19 and 20, which are experimental examples (comparative examples) in which part of Co was replaced with Zn in Sr-La-Co sintered magnets, the magnets contained the same amount of Co. Sample No. 1 and sample No. 2 containing the same amount of Zn have high Br and high HcJ , and are comparable to conventional Sr-La-Co sintered magnets (with an atomic ratio of Co of about 0.2). containing), the amount of Co used can be reduced by 25% or more. That is, the ferrite sintered magnet based on the present invention ( Ca—La—Co based sintered magnets) have higher Br and higher H cJ than conventional Sr—La—Co based sintered magnets.

また、表1から明らかなように、0.2≦(y+z)≦0.4を満足しない試料No.15(y+z=0.1)では磁石特性が大きく低下している。さらに、0.2≦(y+z)≦0.3のとき1-x≧xを満足し、0.3<(y+z)≦0.4のとき1-x<xを満足することにより、より高い磁石特性を得ることができる。0.2≦(y+z)≦0.3のとき1-x≧xを満足しない試料No.11(y+z=0.3、1-x<x)では磁石特性が低下する傾向にあることがわかる。また、さらに、0<y<0.15を満足しない、すなわち、y=0(Coを含有しない)である試料No.16~18ではHcJの低下が大きくなる傾向にあることがわかる。Moreover, as is clear from Table 1, the magnetic properties of sample No. 15 (y+z=0.1), which does not satisfy 0.2≦(y+z)≦0.4, are greatly deteriorated. Furthermore, by satisfying 1-x≧x when 0.2≦(y+z)≦0.3 and 1-x<x when 0.3<(y+z)≦0.4, higher magnetic properties can be obtained. When 0.2≦(y+z)≦0.3, sample No. 11 (y+z=0.3, 1-x<x), which does not satisfy 1-x≧x, shows a tendency for the magnetic properties to deteriorate. Further, it can be seen that samples Nos. 16 to 18, which do not satisfy 0<y<0.15, that is, y=0 (does not contain Co), tend to exhibit a greater decrease in HcJ .

実験例2
本発明に基づく実験例として、一般式Ca1-xLaxFe2n-y-zCoyZnzにおいて、原子比が表2の試料No.21~28に示す1-x、x、y、z及び2nになるようにCaCO3粉末、La(OH)3粉末、Fe2O3粉末、Co3O4粉末及びZnO粉末を所定の組成で秤量し、秤量後の粉末の合計100質量%に対してH3BO3粉末を0.1質量%添加後、それぞれ湿式ボールミルで4時間混合した後、乾燥、整粒して8種類の混合原料粉末を得た。
Experimental example 2
As experimental examples based on the present invention, in the general formula Ca 1-x La x Fe 2n-yz Co y Zn z , the atomic ratios of 1-x, x, y, z and CaCO 3 powder, La(OH) 3 powder, Fe 2 O 3 powder, Co 3 O 4 powder, and ZnO powder were weighed according to a predetermined composition so that 2n was obtained. After 0.1% by mass of H 3 BO 3 powder was added, each mixture was mixed in a wet ball mill for 4 hours, dried, and granulated to obtain 8 kinds of mixed raw material powders.

また、比較例として、一般式Sr1-xLaxFe2n-y-zCoyZnzにおいて、Sr、La、Co、Znの原子比及びnが表2の試料No.29に示す原子比になるようにSrCO3粉末、La(OH)3粉末、Fe2O3粉末、Co3O4粉末及びZnO粉末を所定の組成で秤量し、秤量後の粉末の合計100質量%に対してH3BO3粉末を0.1質量%添加後、それぞれ湿式ボールミルで4時間混合した後、乾燥、整粒して1種類の混合原料粉末を得た。As a comparative example, in the general formula Sr1 - xLaxFe2n - yzCoyZnz , the atomic ratios of Sr, La, Co, and Zn and n are the atomic ratios shown in Sample No. 29 in Table 2. SrCO 3 powder , La(OH) 3 powder, Fe 2 O 3 powder, Co 3 O 4 powder and ZnO powder were weighed in a predetermined composition as shown in FIG. After adding 0.1% by mass of the three powders, they were each mixed in a wet ball mill for 4 hours, then dried and granulated to obtain one type of mixed raw material powder.

表2に示す仮焼温度、CaCO3(添加量はCaO換算)及びSiO2の添加量、平均粒度、焼成温度で実施する以外は、実験例1と同様にして、仮焼、粗粉砕、微粉砕、成形及び焼成し、全9種類のフェライト焼結磁石を得た。得られたフェライト焼結磁石のBr、HcJ及びHk/HcJの測定結果を表2に示す。表2において試料No.の横に*印を付していない試料No.21~26が本発明に基づく実験例であり、*印を付した試料No.27及び28は本発明を満足しない実験例(比較例)であり、*印を付した試料No.29が従来のSr-La-Co系焼結磁石においてCoの一部をZnで置換した実験例(比較例)である。The calcination, coarse pulverization, and fine grinding were performed in the same manner as in Experimental Example 1 except that the calcination temperature, CaCO 3 (addition amount is calculated as CaO) and SiO 2 addition amount, average particle size, and sintering temperature shown in Table 2 were used. A total of 9 types of sintered ferrite magnets were obtained by pulverizing, molding and firing. Table 2 shows the measurement results of B r , H cJ and H k /H cJ of the obtained sintered ferrite magnet. In Table 2, samples No. 21 to 26 not marked with * next to sample No. are experimental examples based on the present invention, and samples No. 27 and 28 marked with * are experiments that do not satisfy the present invention. Sample No. 29 marked with an asterisk (*) is an example (comparative example) in which a portion of Co was replaced with Zn in a conventional Sr--La--Co based sintered magnet.

表2

Figure 0007111150000003
*比較例

表2(続き)
Figure 0007111150000004
*比較例
Table 2
Figure 0007111150000003
*Comparative example

Table 2 (continued)
Figure 0007111150000004
*Comparative example

試料No.21及び22は、実験例1の試料No.1と1-x、x、y及びzが同じで、2nを小さくした(10.26→9.76)実験例(試料No.21と22とはCaCO3及びSiO2の添加量が異なる)であり、試料No.23は試料No.21及び22からさらに2nを小さくした(9.76→9.26)した実験例である。表2に示すように、2nを小さくすることによりHcJが向上していることがわかる。Sample Nos. 21 and 22 have the same 1-x, x, y, and z as Sample No. 1 of Experimental Example 1, but 2n is reduced (10.26 → 9.76) Experimental example (Samples No. 21 and 22 are The added amounts of CaCO 3 and SiO 2 are different), and sample No. 23 is an experimental example in which 2n is further reduced (9.76→9.26) from sample Nos. 21 and 22. As shown in Table 2, it can be seen that H cJ is improved by decreasing 2n.

試料No.24、25は、試料No.21と1-x、x、y+z及び2nが同じで、y+zを0.26として試料No.21(y=0.13)よりもyを小さく(y=0.10、0.05)した実験例である。yが小さくなることによりHcJが低下する傾向にあることがわかる。これらの傾向から、より高い磁石特性を得ようとする場合は、yは0.10以上であることが好ましいといえる。Samples No. 24 and 25 have the same 1-x, x, y + z and 2n as sample No. 21, and y + z is 0.26 and y is smaller than sample No. 21 (y = 0.13) (y = 0.10, 0.05 ) is an experimental example. It can be seen that HcJ tends to decrease as y decreases. From these tendencies, it can be said that y is preferably 0.10 or more in order to obtain higher magnetic properties.

試料No.26は、0.3<(y+z)≦0.4のとき1-x<xを満足する実験例1の試料No.12と近い組成において、yを大きくした実験例である。yが大きくなることによりHcJが向上していることがわかる。Sample No. 26 is an experimental example in which y is increased in a composition close to sample No. 12 of Experimental Example 1, which satisfies 1-x<x when 0.3<(y+z)≦0.4. It can be seen that H cJ improves as y increases.

また、表2に示すように、0.2≦(y+z)≦0.4を満足しない試料No.27(y+z=0.16)ではBrの低下が著しく、0<y<0.15、0.1≦z≦0.4及び0.2≦(y+z)≦0.4をいずれも満足しない試料No.28(y=0、z=0.50、y+z=0.50)では、HcJの低下が著しいことがわかる。Further, as shown in Table 2, sample No. 27 (y + z = 0.16 ), which does not satisfy 0.2 ≤ (y + z) ≤ 0.4, has a significant decrease in Br, 0 < y < 0.15, 0.1 ≤ z ≤ 0.4 and 0.2 ≤ Sample No. 28 (y=0, z=0.50, y+z=0.50), which does not satisfy any of (y+z) ≤0.4 , shows a significant drop in HcJ.

さらに、表2に示すように、Sr-La-Co系焼結磁石においてCoの一部をZnで置換した実験例(比較例)である試料No.29に比べ、ほぼ同量のCoを含有する実験例1の試料No.12は、HcJはほぼ同程度であるが、Brが極めて高いことがわかる。Furthermore, as shown in Table 2, compared to Sample No. 29, which is an experimental example (comparative example) in which a part of Co was replaced with Zn in the Sr-La-Co sintered magnet, it contained almost the same amount of Co. It can be seen that Sample No. 12 of Experimental Example 1, which has a similar HcJ , is extremely high in Br .

本発明によれば、高いBrを有しかつHcJの低下が少なく、従来のSr-La-Co系フェライト焼結磁石よりもCo使用量を25%以上削減したフェライト焼結磁石の提供が可能となるので、各種モータなどに好適に利用することができる。According to the present invention, it is possible to provide a ferrite sintered magnet that has a high Br, a small decrease in HcJ , and uses 25% or more less Co than conventional Sr-La-Co ferrite sintered magnets. Since it becomes possible, it can be suitably used for various motors.

Claims (10)

Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも1種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-xRxFe2n-y-zCoyZnzにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4≦x≦0.6、
0<y<0.15、
0.1≦z≦0.4、
0.2≦(y+z)≦0.4、及び
4≦n≦6
を満足するフェライト仮焼体。
General formula showing the atomic ratio of the metal elements Ca, R, Fe, Co and Zn (where R is at least one rare earth element and essentially contains La): Ca 1-x R x Fe 2n- In yz Co y Zn z ,
The x, y and z, and n (where 2n is the molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4≤x≤0.6,
0 < y < 0.15,
0.1≤z≤0.4,
0.2≤(y+z)≤0.4, and
4≤n≤6
A ferrite calcined body that satisfies
請求項1に記載のフェライト仮焼体において、
前記yが、0<y≦0.13を満足することを特徴とするフェライト仮焼体。
In the ferrite calcined body according to claim 1,
A calcined ferrite body, wherein y satisfies 0<y≦0.13.
請求項1又は2に記載のフェライト仮焼体において、
前記1-x、x、y及びzが、
0.2≦(y+z)≦0.3のとき1-x≧xを満足し、
0.3<(y+z)≦0.4のとき1-x<xを満足することを特徴とするフェライト仮焼体。
In the ferrite calcined body according to claim 1 or 2,
1-x, x, y and z are
satisfies 1-x≧x when 0.2≦(y+z)≦0.3,
A calcined ferrite body characterized by satisfying 1-x<x when 0.3<(y+z)≤0.4.
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも1種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-xRxFe2n-y-zCoyZnzにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.3≦x≦0.6、
0<y<0.15、
0.05≦z≦0.4、
0.15≦(y+z)≦0.4、及び
3.4≦n≦6
を満足するフェライト焼結磁石。
General formula showing the atomic ratio of the metal elements Ca, R, Fe, Co and Zn (where R is at least one rare earth element and essentially contains La): Ca 1-x R x Fe 2n- In yz Co y Zn z ,
The x, y and z, and n (where 2n is the molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.3≤x≤0.6,
0 < y < 0.15,
0.05≤z≤0.4,
0.15≤(y+z)≤0.4, and
3.4≤n≤6
A sintered ferrite magnet that satisfies
請求項4に記載のフェライト焼結磁石において、
1.5質量%以下のSiO2をさらに含有することを特徴とするフェライト焼結磁石。
In the ferrite sintered magnet according to claim 4,
A sintered ferrite magnet, further comprising 1.5% by mass or less of SiO 2 .
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも1種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-xRxFe2n-y-zCoyZnzにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4≦x≦0.6、
0<y<0.15、
0.1≦z≦0.4、
0.2≦(y+z)≦0.4、及び
4≦n≦6
を満足する原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、
前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、
前記仮焼体を粉砕し、仮焼体の粉末を得る粉砕工程、
前記仮焼体の粉末を成形し、成形体を得る成形工程、及び
前記成形体を焼成し、焼結体を得る焼成工程
を含むフェライト焼結磁石の製造方法。
General formula showing the atomic ratio of the metal elements Ca, R, Fe, Co and Zn (where R is at least one rare earth element and essentially contains La): Ca 1-x R x Fe 2n- In yz Co y Zn z ,
The x, y and z, and n (where 2n is the molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4≤x≤0.6,
0 < y < 0.15,
0.1≤z≤0.4,
0.2≤(y+z)≤0.4, and
4≤n≤6
A raw material powder mixing step for obtaining a mixed raw material powder by mixing raw material powders satisfying
a calcining step of calcining the mixed raw material powder to obtain a calcined body;
a pulverizing step of pulverizing the calcined body to obtain powder of the calcined body;
A method for producing a sintered ferrite magnet, comprising: a molding step of molding the powder of the calcined body to obtain a molded body; and a firing step of firing the molded body to obtain a sintered body.
請求項6に記載のフェライト焼結磁石の製造方法において、
前記仮焼工程後、前記成形工程前に、前記仮焼体又は仮焼体の粉末100質量%に対して1.5質量%以下のSiO2を添加する工程をさらに含むことを特徴とするフェライト焼結磁石の製造方法。
In the method for producing a sintered ferrite magnet according to claim 6,
After the calcining step and before the forming step, a step of adding 1.5% by mass or less of SiO 2 to 100% by mass of the calcined body or powder of the calcined body. Method of manufacturing magnets.
請求項6又は7に記載のフェライト焼結磁石の製造方法において、
前記仮焼工程後、前記成形工程前に、前記仮焼体又は仮焼体の粉末100質量%に対してCaO換算で1.5質量%以下のCaCO3を添加する工程をさらに含むことを特徴とするフェライト焼結磁石の製造方法。
In the method for producing a ferrite sintered magnet according to claim 6 or 7,
After the calcining step and before the molding step, the method further includes a step of adding CaCO 3 in an amount of 1.5% by mass or less in terms of CaO with respect to 100% by mass of the calcined body or powder of the calcined body. A method for producing a sintered ferrite magnet.
請求項6~8のいずれかに記載のフェライト焼結磁石の製造方法において、
前記仮焼体の原子比yが、0<y≦0.13を満足することを特徴とするフェライト焼結磁石の製造方法
In the method for producing a sintered ferrite magnet according to any one of claims 6 to 8,
A method for producing a sintered ferrite magnet, wherein the atomic ratio y of the calcined body satisfies 0<y≦0.13.
請求項6~9のいずれかに記載のフェライト焼結磁石の製造方法において、
前記仮焼体の原子比1-x、x、y及びzが、
が、0.2≦(y+z)≦0.3のとき1-x≧xを満足し、0.3<(y+z)≦0.4のとき1-x<xを満足することを特徴とするフェライト焼結磁石の製造方法。
In the method for producing a sintered ferrite magnet according to any one of claims 6 to 9,
The atomic ratio 1-x, x, y and z of the calcined body is
satisfies 1-x≧x when 0.2≦(y+z)≦0.3, and satisfies 1-x<x when 0.3<(y+z)≦0.4.
JP2020507336A 2018-03-20 2018-11-07 Calcined ferrite body, sintered ferrite magnet and method for producing the same Active JP7111150B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018052107 2018-03-20
JP2018052107 2018-03-20
PCT/JP2018/041308 WO2019181056A1 (en) 2018-03-20 2018-11-07 Ferrite calcined body, ferrite sintered magnet, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2019181056A1 JPWO2019181056A1 (en) 2021-04-08
JP7111150B2 true JP7111150B2 (en) 2022-08-02

Family

ID=67987018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020507336A Active JP7111150B2 (en) 2018-03-20 2018-11-07 Calcined ferrite body, sintered ferrite magnet and method for producing the same

Country Status (4)

Country Link
JP (1) JP7111150B2 (en)
KR (1) KR102281215B1 (en)
CN (2) CN115732151A (en)
WO (1) WO2019181056A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287371B2 (en) * 2020-09-24 2023-06-06 株式会社プロテリアル Calcined ferrite body, sintered ferrite magnet and method for producing the same
JP7238917B2 (en) * 2021-03-19 2023-03-14 株式会社プロテリアル Method for producing calcined ferrite powder and sintered ferrite magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246243A (en) 2008-03-31 2009-10-22 Tdk Corp Ferrite sintered magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262109B2 (en) * 1999-08-31 2002-03-04 住友特殊金属株式会社 Magnet powder and method for producing the same
BRPI0620713B1 (en) * 2005-12-28 2018-07-03 Hitachi Metals, Ltd. “Magnetic oxide material, its magnetic recording medium, its combined magnet, its rotary machine and sintered magnetic magnet”
JP5521287B2 (en) * 2008-06-18 2014-06-11 日立金属株式会社 Ferrite particles for magnetic recording media
JP6860285B2 (en) * 2015-09-28 2021-04-14 日立金属株式会社 Manufacturing method of Ca-La-Co-based ferrite sintered magnet and Ca-La-Co-based ferrite sintered magnet
KR102277414B1 (en) * 2015-10-16 2021-07-14 유니온머티리얼 주식회사 Ferrite magnetic material and ferrite sintered magnet
JP2018030751A (en) * 2016-08-24 2018-03-01 日立金属株式会社 Ferrite compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246243A (en) 2008-03-31 2009-10-22 Tdk Corp Ferrite sintered magnet

Also Published As

Publication number Publication date
KR102281215B1 (en) 2021-07-22
KR20200062262A (en) 2020-06-03
CN111466000B (en) 2023-05-09
JPWO2019181056A1 (en) 2021-04-08
CN111466000A (en) 2020-07-28
WO2019181056A1 (en) 2019-09-26
CN115732151A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
KR102166901B1 (en) Ferrite sintered magnet
WO2011001831A1 (en) Ferrite sintered magnet producing method and ferrite sintered magnet
JP7247467B2 (en) Method for producing sintered ferrite magnet and sintered ferrite magnet
JP5521622B2 (en) Magnetic oxide material, sintered ferrite magnet, and method for producing sintered ferrite magnet
JP6414372B1 (en) Ferrite sintered magnet
JP7111150B2 (en) Calcined ferrite body, sintered ferrite magnet and method for producing the same
JP2015020926A (en) Ferrite compound
JP7347296B2 (en) Ferrite sintered magnets and rotating electrical machines
JP6927404B1 (en) Ferrite calcined body, ferrite sintered magnet and its manufacturing method
JP7468009B2 (en) Ferrite calcined body, sintered ferrite magnet and method for producing same
JP7367582B2 (en) ferrite sintered magnet
JP7367581B2 (en) ferrite sintered magnet
JP2020155609A (en) Method for manufacturing ferrite sintered magnet
JP7508967B2 (en) Ferrite calcined body, sintered ferrite magnet and method for producing same
JP7287371B2 (en) Calcined ferrite body, sintered ferrite magnet and method for producing the same
JP7238917B2 (en) Method for producing calcined ferrite powder and sintered ferrite magnet
KR102386512B1 (en) Calcined ferrite, and sintered ferrite magnet and its production method
JP7396137B2 (en) Ferrite calcined body, sintered ferrite magnet and manufacturing method thereof
JP7468045B2 (en) Ferrite calcined powder, sintered ferrite magnet and method for producing same
JP2024126609A (en) Ferrite calcined body, sintered ferrite magnet, and method for producing sintered ferrite magnet
JP2024122839A (en) Ferrite calcined body, sintered ferrite magnet, and method for producing sintered ferrite magnet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7111150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350