JP7287371B2 - Calcined ferrite body, sintered ferrite magnet and method for producing the same - Google Patents
Calcined ferrite body, sintered ferrite magnet and method for producing the same Download PDFInfo
- Publication number
- JP7287371B2 JP7287371B2 JP2020159217A JP2020159217A JP7287371B2 JP 7287371 B2 JP7287371 B2 JP 7287371B2 JP 2020159217 A JP2020159217 A JP 2020159217A JP 2020159217 A JP2020159217 A JP 2020159217A JP 7287371 B2 JP7287371 B2 JP 7287371B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- sintered
- calcined body
- powder
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2608—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
- C04B35/2633—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/605—Making or treating the green body or pre-form in a magnetic field
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本開示は、フェライト仮焼体、フェライト焼結磁石及びその製造方法に関する。 TECHNICAL FIELD The present disclosure relates to a calcined ferrite body, a sintered ferrite magnet, and a method for producing the same.
フェライト焼結磁石は最大エネルギー積が希土類系焼結磁石(例えばNdFeB系焼結磁石)の1/10にすぎないが、主原料が安価な酸化鉄であることからコストパフォーマンスに優れており、化学的に極めて安定であるという特長を有している。そのため、各種モータやスピーカなど様々な用途に用いられており、世界的な生産重量は現在でも磁石材料の中で最大である。 Although the maximum energy product of ferrite sintered magnets is only 1/10 that of rare earth sintered magnets (e.g. NdFeB sintered magnets), their main raw material is cheap iron oxide, which makes them excellent in terms of cost performance. It has the advantage of being extremely stable. Therefore, it is used in a variety of applications such as various motors and speakers, and its global production weight is still the largest among magnetic materials.
代表的なフェライト焼結磁石は、マグネトプランバイト構造を有するSrフェライトであり、基本組成はSrFe12O19で表される。1990年代後半にSrFe12O19のSr2+の一部をLa3+で置換し、Fe3+の一部をCo2+で置換したSr-La-Co系フェライト焼結磁石(以下、略して「SrLaCo磁石」という場合がある)が実用化されたことによりフェライト磁石の磁石特性は大きく向上した。また、2007年には、磁石特性をさらに向上させたCa-La-Co系フェライト焼結磁石(以下、略して「CaLaCo磁石」という場合がある)が実用化された。 A typical sintered ferrite magnet is Sr ferrite having a magnetoplumbite structure, and its basic composition is represented by SrFe 12 O 19 . In the latter half of the 1990s , a Sr— La —Co ferrite sintered magnet (hereinafter abbreviated as “ SrLaCo magnet ) has been put to practical use, the magnetic properties of ferrite magnets have greatly improved. In 2007, a Ca--La--Co system ferrite sintered magnet (hereinafter sometimes abbreviated as "CaLaCo magnet") with further improved magnetic properties was put to practical use.
前記SrLaCo磁石及びCaLaCo磁石ともに、高い磁石特性を得るためにはCoが不可欠である。一般的なSrLaCo磁石では原子比で0.2程度(Co/Fe=0.017、すなわちFe含有量の1.7%程度)のCoが、従来のCaLaCo磁石では原子比で0.3程度のCo(Co/Fe=0.03、すなわちFe含有量の3%程度)が含有されている。Co(酸化Co)の価格はフェライト焼結磁石の主原料である酸化鉄の十倍から数十倍に相当する。従って、従来のCaLaCo磁石では、一般的なSrLaCo磁石に比べ原料コストの増大が避けられない。フェライト焼結磁石の最大の特長は安価であるという点にあるため、たとえ高い磁石特性を有していても、価格が高いと市場では受け入れられ難い。従って、世界的には、未だSr-La-Co系フェライト焼結磁石の需要が高い。 Both SrLaCo magnets and CaLaCo magnets require Co to obtain high magnetic properties. In general SrLaCo magnets, Co has an atomic ratio of about 0.2 (Co/Fe=0.017, that is, about 1.7% of the Fe content), whereas in conventional CaLaCo magnets, Co has an atomic ratio of about 0.3. Co (Co/Fe=0.03, that is, about 3% of the Fe content) is contained. The price of Co (Co oxide) is ten to several ten times that of iron oxide, which is the main raw material of sintered ferrite magnets. Therefore, conventional CaLaCo magnets inevitably require an increase in raw material costs compared to general SrLaCo magnets. The greatest feature of sintered ferrite magnets is their low cost, so even if they have excellent magnetic properties, high prices will not be accepted in the market. Therefore, worldwide demand for Sr--La--Co ferrite sintered magnets is still high.
一方、モータやスピーカなどフェライト焼結磁石が用いられているさまざまな用途の中で、高性能化の要望が強いのは自動車電装用モータや家電用モータなどである。近年は、希土類原料の価格高騰や調達リスクの顕在化を背景に、これまで希土類磁石しか用いられていなかった産業用モータやEV(Electric Vehicle)/HEVの駆動用モータ・発電機などにもフェライト焼結磁石の応用が検討されている。 On the other hand, among the various applications where ferrite sintered magnets are used, such as motors and speakers, motors for automobile electrical equipment and motors for household appliances are in strong demand for higher performance. In recent years, against the backdrop of soaring prices of rare earth raw materials and the emergence of procurement risks, ferrites are also being used in industrial motors, EV (Electric Vehicle)/HEV drive motors and generators, etc., where only rare earth magnets were used until now. Applications of sintered magnets are being considered.
それらの用途に用いるためには、薄型化した際の強い反磁界による減磁及び高温下(例えば140℃)における減磁を抑制するため、高い残留磁束密度(以下「Br」という)、高い保磁力(以下「HcJ」という)及び高い角形比(以下、「Hk/HcJ」という)の全てを満足する磁石特性を有するフェライト焼結磁石が要求される。 In order to use them for such applications, high residual magnetic flux density (hereinafter referred to as " Br ") and high A sintered ferrite magnet having magnetic properties satisfying both coercive force (hereinafter referred to as “H cJ ”) and high squareness ratio (hereinafter referred to as “H k /H cJ ”) is required.
特許文献1には、Caの一部をSrで置換したCaLaCo磁石が提案されている。
特許文献1におけるCaLaCo磁石は、原子比で0.3程度のCoを含有し、高いBrとHcJを有するもののHk/HcJに関するデータは一切開示されていない。
Patent Document 1 proposes a CaLaCo magnet in which part of Ca is replaced with Sr.
Although the CaLaCo magnet in Patent Document 1 contains Co at an atomic ratio of about 0.3 and has high Br and HcJ , no data on Hk / HcJ is disclosed.
本開示の実施形態は、高いBr、高いHcJ及び高いHk/HcJの全てを満足する磁石特性を有するとともに、従来のCaLaCo磁石よりもCoの使用量を削減したフェライト焼結磁石の提供を可能にする。 Embodiments of the present disclosure are sintered ferrite magnets that have magnetic properties that satisfy all of high B r , high H cJ and high H k /H cJ , and that use less Co than conventional CaLaCo magnets. enable the offer.
発明者は、CaLaCo磁石が有する高いBrと高いHcJを維持しながら、Hk/HcJの向上とCo使用量の削減について鋭意研究した。そして、磁気的配向度(残留磁束密度/飽和磁化=Br/Js)を改善することによりHk/HcJが大幅に向上することに着目した。さらに研究を進めた結果、特許文献1に開示される一般的なCaLaCo磁石よりもFeの含有量を減少させ、なおかつ、Co含有量を原子比で0.3以下に抑えつつ、Coに対するLaの含有比率(La/Co)を高めることにより、磁気的配向度が顕著に向上し、高いBrと高いHcJを維持しながらHk/HcJが大幅に向上することを見出した。さらに、発明者は、焼成時の昇温条件と降温条件を適切に制御することにより、HcJとHk/HcJがさらに向上することを見出した。 The inventor has diligently studied how to improve Hk / HcJ and reduce the amount of Co used while maintaining the high Br and high HcJ of CaLaCo magnets. The inventors have focused on the fact that H k /H cJ is greatly improved by improving the degree of magnetic orientation (residual magnetic flux density/saturation magnetization=B r /J s ). As a result of further research, it was found that the Fe content was reduced more than the general CaLaCo magnet disclosed in Patent Document 1, and the Co content was suppressed to 0.3 or less in terms of atomic ratio, while the ratio of La to Co was It was found that by increasing the content ratio (La/Co), the degree of magnetic orientation is significantly improved, and Hk / HcJ is greatly improved while maintaining high Br and high HcJ . Furthermore, the inventors have found that H cJ and H k /H cJ can be further improved by appropriately controlling the heating conditions and cooling conditions during firing.
本開示の限定的ではない例示的なフェライト仮焼体は、Ca、R、Sr、Fe及びCoの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-x-yRx Sr yFe2n-zCozにおいて、前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co)/(Ca+R+Sr)で表される)が、0.4≦x<0.5、0<y≦0.2、0.18<z<0.3、2.0≦x/z≦2.25、及び8.5≦2n-z≦10、を満足する。 Non-limiting exemplary ferrite calcined bodies of the present disclosure include atoms of metallic elements Ca, R, Sr, Fe, and Co (where R is at least one of rare earth elements and an element essentially containing La) In the general formula showing the ratio: Ca 1-xy R x Sr y Fe 2n-z Co z , the above x, y and z, and n (where 2n is the molar ratio, 2n=(Fe+Co)/ (Ca + R + Sr)) is 0.4 ≤ x < 0.5, 0 < y ≤ 0.2, 0.18 < z < 0.3, 2.0 ≤ x/z ≤ 2.25, and 8.5≦2n−z≦10.
ある実施形態において、9<2n-z≦10である。 In some embodiments, 9<2n−z≦10.
本開示の限定的ではない例示的なフェライト焼結磁石は、Ca、R、Sr、Fe及びCoの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-x-yRx Sr yFe2n-zCozにおいて、前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co)/(Ca+R+Sr)で表される)が、0.35≦x<0.5、0<y≦0.2、0.18<z<0.3、1.8<x/z≦2.25、及び7.5≦2n-z≦10、を満足する。 A non-limiting example ferrite sintered magnet of the present disclosure contains atoms of metallic elements Ca, R, Sr, Fe, and Co (where R is at least one rare earth element and essentially contains La). In the general formula showing the ratio: Ca 1-xy R x Sr y Fe 2n-z Co z , the above x, y and z, and n (where 2n is the molar ratio, 2n=(Fe+Co)/ (Ca + R + Sr)) is 0.35≦x<0.5, 0<y≦0.2, 0.18<z<0.3, 1.8< x/z≦2.25, and 7.5≦2n−z≦10.
ある実施形態において、8<2n-z≦10である。 ある実施形態において、1.8<x/z≦2.0である。 In some embodiments, 8<2n−z≦10. In some embodiments, 1.8< x/z≦2.0.
ある実施形態において、Cr2O3換算で1.5mass%以下(0mass%は含まず)のCrをさらに含有する。 In one embodiment, it further contains 1.5 mass% or less (not including 0 mass%) of Cr in terms of Cr 2 O 3 .
ある実施形態において、SiO2換算で1.0mass%以下(0mass%は含まず)のSiをさらに含有する。 In one embodiment, Si is further contained in an amount of 1.0 mass% or less (not including 0 mass%) in terms of SiO2 .
本開示の限定的ではない例示的なフェライト焼結磁石の製造方法は、Ca、R、Sr、Fe及びCoの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-x-yRx Sr yFe2n-zCozにおいて、前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co)/(Ca+R+Sr)で表される)が、0.4≦x<0.5、0<y≦0.2、0.18<z<0.3、1.6≦x/z≦2.25、及び8.5≦2n-z≦10、を満足する原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、前記仮焼体を粉砕し、仮焼体の粉末を得る粉砕工程、前記仮焼体の粉末を成形し、成形体を得る成形工程、前記成形体を焼成し、焼結体を得る焼成工程、を含み、前記焼成工程において、室温から1100℃までの温度範囲における平均昇温速度を600℃/時以上1000℃/時以下、1100℃から焼成温度までの温度範囲における平均昇温速度を1℃/分以上10℃/分以下とし、焼成温度から800℃までの温度範囲における平均降温速度を1000℃/時以上とする。 An exemplary non-limiting method for producing a sintered ferrite magnet of the present disclosure includes the following metal elements: Ca, R, Sr, Fe and Co (where R is at least one rare earth element and contains La In the general formula showing the atomic ratio of Ca 1-x-y R x Sr y Fe 2n-z Co z , the above x, y and z, and n (where 2n is the molar ratio and 2n=( Fe+Co)/(Ca+R+Sr)) is 0.4≦x<0.5, 0<y≦0.2, 0.18<z<0.3, 1.6≦x/z≦2 .25 and 8.5≦2n−z≦10, a raw material powder mixing step of obtaining a mixed raw material powder, and a calcining step of calcining the mixed raw material powder to obtain a calcined body. , a pulverizing step of pulverizing the calcined body to obtain a powder of the calcined body, a molding step of molding the powder of the calcined body to obtain a compact, and a firing step of firing the compact to obtain a sintered body. , In the firing step, the average temperature increase rate in the temperature range from room temperature to 1100 ° C. is 600 ° C./h or more and 1000 ° C./h or less, and the average temperature increase rate in the temperature range from 1100 ° C. to the firing temperature is 1 C./min or more and 10.degree.
ある実施形態において、9<2n-z≦10である。
ある実施形態において、1.6≦x/z≦2.0である。
In some embodiments, 9<2n−z≦10.
In some embodiments, 1.6≦x/z≦2.0.
ある実施形態において、前記仮焼工程後、前記成形工程前に、前記仮焼体又は仮焼体の粉末100mass%に対して1.5mass%以下(0mass%は含まず)のCr2O3を添加する工程をさらに含む。 In one embodiment, after the calcination step and before the molding step, 1.5 mass% or less (not including 0 mass%) of Cr 2 O 3 with respect to 100 mass% of the powder of the calcined body or the calcined body. The step of adding is further included.
ある実施形態において、前記仮焼工程後、前記成形工程前に、前記仮焼体又は仮焼体の粉末100mass%に対して1.0mass%以下(0mass%は含まず)のSiO2を添加する工程をさらに含む。 In one embodiment, after the calcination step and before the molding step, 1.0 mass% or less (not including 0 mass%) of SiO 2 is added to 100 mass% of the calcined body or powder of the calcined body. Further comprising steps.
ある実施形態において、前記仮焼工程後、前記成形工程前に、前記仮焼体又は仮焼体の粉末100mass%に対してCaO換算で1.0mass%以下(0mass%は含まず)のCaCO3を添加する工程をさらに含む。 In one embodiment, after the calcination step and before the molding step, CaCO 3 of 1.0 mass% or less (excluding 0 mass%) in terms of CaO with respect to 100 mass% of the calcined body or powder of the calcined body further comprising the step of adding
本開示の実施形態によれば、高いBr、高いHcJ及び高いHk/HcJの全てを満足する磁石特性を有するとともに、従来CaLaCo磁石よりもCoの使用量を削減したフェライト焼結磁石の提供が可能となる。 According to an embodiment of the present disclosure, a ferrite sintered magnet that has magnetic properties that satisfy all of high B r , high H cJ and high H k /H cJ and that uses less Co than conventional CaLaCo magnets can be provided.
1.フェライト仮焼体 本開示の実施形態のフェライト仮焼体は、Ca、R、Sr、Fe及びCoの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-x-yRx Sr yFe2n-zCozにおいて、前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co)/(Ca+R+Sr)で表される)が、0.4≦x<0.5、0<y≦0.2、0.18<z<0.3、2.0≦x/z≦2.25、及び8.5≦2n-z≦10、を満足する。 1. Ferrite calcined body The ferrite calcined body of the embodiment of the present disclosure contains atoms of metallic elements of Ca, R, Sr, Fe and Co (where R is at least one rare earth element and an element essentially containing La) In the general formula showing the ratio: Ca 1-xy R x Sr y Fe 2n-z Co z , the above x, y and z, and n (where 2n is the molar ratio, 2n=(Fe+Co)/ (Ca + R + Sr)) is 0.4 ≤ x < 0.5, 0 < y ≤ 0.2, 0.18 < z < 0.3, 2.0 ≤ x/z ≤ 2.25, and 8.5≦2n−z≦10.
原子比x(Rの含有量)は、0.4≦x<0.5である。xが0.4未満又は0.5以上では高い磁石特性(Br、HcJ、Hk/HcJ)を得ることができない。特に、xが0.5以上になるとRがリッチな相やスピネル相などの異相が生成することとなり、磁石特性(特にHk/HcJ)が著しく低下する。Rは希土類元素の少なくとも一種であってLaを必須に含む。Laはモル比で50%以上含まれることが好ましく、R=Laのみであることがさらに好ましい。 The atomic ratio x (content of R) is 0.4≦x<0.5. If x is less than 0.4 or greater than 0.5, high magnetic properties (B r , H cJ , H k /H cJ ) cannot be obtained. In particular, when x is 0.5 or more, heterogeneous phases such as R-rich phases and spinel phases are generated, and the magnetic properties (particularly H k /H cJ ) are significantly degraded. R is at least one rare earth element and essentially contains La. It is preferable that La is contained in a molar ratio of 50% or more, and it is more preferable that only R=La.
原子比y(Srの含有量)は0<y≦0.2である。yが0(含有されない)又は0.2を超えると高い磁石特性(Br、HcJ、Hk/HcJ)を得ることができない。特に、yが0(含有されない)の場合相対的にCaの含有量が多くなり、Caがリッチな異相が生成することとなり磁石特性(特にHk/HcJ)が著しく低下する。すなわち、Srは異相生成を抑制する役割を有する。 The atomic ratio y (content of Sr) is 0<y≦0.2. If y is 0 (not contained) or exceeds 0.2, high magnetic properties (B r , H cJ , H k /H cJ ) cannot be obtained. In particular, when y is 0 (does not contain), the Ca content becomes relatively large, resulting in the generation of a Ca-rich heterophase, which significantly reduces the magnetic properties (especially H k /H cJ ). That is, Sr has a role of suppressing heterophase formation.
原子比z(Coの含有量)は、0.18<z<0.3である。先述の通り、従来のCaLaCo磁石では原子比で0.3程度のCoが含有されていたが、本開示の実施形態では、Co含有量を0.3よりも減少させることができる。これが本開示の実施形態の特徴の一つである。zが0.18以下では高い磁石特性(Br、HcJ、Hk/HcJ)を得ることができない。zが0.3以上になるとCo使用量の削減効果を得ることができない。 The atomic ratio z (content of Co) is 0.18<z<0.3. As described above, conventional CaLaCo magnets contain Co at an atomic ratio of about 0.3, but in the embodiments of the present disclosure, the Co content can be reduced below 0.3. This is one of the features of the embodiments of the present disclosure. If z is 0.18 or less, high magnetic properties (B r , H cJ , H k /H cJ ) cannot be obtained. If z is 0.3 or more, the effect of reducing the amount of Co used cannot be obtained.
原子比x(Rの含有量)と原子比z(Coの含有量)は、1.6≦x/z≦2.25を満足する。これが本開示の実施形態の二つ目の特徴である。そもそもR(以下、説明を容易にするためにRをLaという)はFe3+とCo2+の電気的中性を満たすために添加されるものあり、基本的にはx/z=1(La/Co=1)であるが、先に、本発明者らは、電気的中性にとらわれずLa/Coを1より大きくすることによってBrとHcJが向上することを知見し、特許文献1などで提案した。しかし、特許文献1に基づく従来のCaLaCo磁石は原子比で0.3程度のCoが必須と考えられていたため、La/Coを1より大きくするためには相対的にLaを多く含有せねばならないが、La含有量が多くなるとLaがリッチな相やスピネル相などの異相が生成することとなり、Hk/HcJが著しく低下する。従って、特許文献1に基づく従来のCaLaCo磁石においては、磁石特性上、La/Co=1.67(La=0.5、Co=0.3)が限界であった。本開示の実施形態においては、原子比z(Coの含有量)が0.18<z≦0.3であるため、x/zを1.6≦x/z≦2.2としてもLaの含有量が多くなり過ぎず、異相の生成が抑制され、Hk/HcJが向上する。x/zは1.6≦x/z≦2.0であることがより好ましく、1.8≦x/z≦2.0であることがさらに好ましい。 The atomic ratio x (content of R) and the atomic ratio z (content of Co) satisfy 1.6≦x/z≦2.25. This is the second feature of the embodiments of the present disclosure. In the first place, R (hereinafter, R is called La for ease of explanation) is added to satisfy the electrical neutrality of Fe 3+ and Co 2+ , and basically x/z=1 (La/ Co=1), but the present inventors previously found that Br and HcJ are improved by making La/Co greater than 1 regardless of electrical neutrality. and so on. However, since the conventional CaLaCo magnet based on Patent Document 1 was thought to require a Co atomic ratio of about 0.3, in order to make the La/Co ratio greater than 1, a relatively large amount of La must be contained. However, when the La content increases, heterogeneous phases such as La-rich phases and spinel phases are formed, and H k /H cJ is remarkably lowered. Therefore, in the conventional CaLaCo magnet based on Patent Document 1, La/Co=1.67 (La=0.5, Co=0.3) was the limit in terms of magnet properties. In the embodiment of the present disclosure, the atomic ratio z (content of Co) is 0.18<z≦0.3, so even if x/z is 1.6≦x/z≦2.2, La The content is not excessively high, suppressing the formation of heterogeneous phases and improving H k /H cJ . More preferably, x/z satisfies 1.6≦x/z≦2.0, and more preferably satisfies 1.8≦x/z≦2.0.
2n-z(Feの含有量)は、8.5≦2n-z≦10である。2nはモル比であって、2n=(Fe+Co)/(Ca+R+Sr)で表される。特許文献1に基づく従来のCaLaCo磁石においては、nが5.2≦n≦5.8(2nが10.4≦n≦11.6)であった。本開示の実施形態においては、Feの含有量を従来のCaLaCo磁石よりも減少させる。これが本開示の実施形態の三つ目の特徴である。2n-zは9<2n-z≦10であることがより好ましい。 2n−z (Fe content) is 8.5≦2n−z≦10. 2n is a molar ratio, expressed as 2n=(Fe+Co)/(Ca+R+Sr). In the conventional CaLaCo magnet based on Patent Document 1, n was 5.2≦n≦5.8 (2n is 10.4≦n≦11.6). In embodiments of the present disclosure, the Fe content is reduced over conventional CaLaCo magnets. This is the third feature of the embodiments of the present disclosure. 2n−z is more preferably 9<2n−z≦10.
上記にて説明した、0.18<z≦0.3(Co含有量が少ない)、1.6≦x/z≦2.25(R/Coが大きい)、8.5≦2n-z≦10(Fe含有量が少ない)という三つの主たる特徴の複合的な効果として、後述する実施例に示す通り、本開示の実施形態に基づくフェライト焼結磁石は、磁気的配向度(Br/Js)が極めて高い値(例えば98.4%以上、好ましい実施形態では99%以上)となる。これによって、高いBrと高いHcJを維持しながらHk/HcJを大幅に向上(好ましい実施形態では90%以上)させることが可能となる。 0.18 < z ≤ 0.3 (small Co content), 1.6 ≤ x/z ≤ 2.25 (large R/Co), 8.5 ≤ 2n-z ≤ as described above 10 (low Fe content), the sintered ferrite magnets based on the embodiments of the present disclosure have a magnetic orientation (B r /J s ) is very high (eg 98.4% or more, in a preferred embodiment 99% or more). This makes it possible to significantly improve H k /H cJ (over 90% in preferred embodiments) while maintaining high B r and high H cJ .
前記一般式は、金属元素の原子比で示したが、酸素(O)を含む組成は、一般式:Ca1-x-yRxSryFe2n-zCozOαで表される。酸素のモル数αは基本的にはα=19であるが、Fe及びCoの価数、x、y及びzやnの値などによって異なってくる。また、還元性雰囲気で焼成した場合の酸素の空孔(ベイカンシー)、フェライト相におけるFeの価数の変化、Coの価数の変化等により金属元素に対する酸素の比率が変化する。従って、実際の酸素のモル数αは19からずれる場合がある。そのため、本開示の実施形態においては、最も組成が特定し易い金属元素の原子比で組成を表記している。 Although the general formula is expressed by the atomic ratio of metal elements, the composition containing oxygen (O) is represented by the general formula: Ca 1-xy R x Sr y Fe 2n-z Co z Oα . The number of moles α of oxygen is basically α=19, but varies depending on the valences of Fe and Co, the values of x, y and z, and n. In addition, the ratio of oxygen to the metal element changes due to oxygen vacancies (vacancy) when firing in a reducing atmosphere, changes in the valence of Fe in the ferrite phase, changes in the valence of Co, and the like. Therefore, the actual number of moles α of oxygen may deviate from 19 in some cases. Therefore, in the embodiments of the present disclosure, the composition is represented by the atomic ratio of the metal elements, which makes it most easy to identify the composition.
本開示の実施形態のフェライト仮焼体を構成する主相は、六方晶のマグネトプランバイト(M型)構造を有する化合物相(フェライト相)である。一般に、磁性材料、特に焼結磁石は、複数の化合物から構成されており、その磁性材料の特性(物性、磁石特性など)を決定づけている化合物が「主相」と定義される。 The main phase constituting the ferrite calcined body of the embodiment of the present disclosure is a compound phase (ferrite phase) having a hexagonal magnetoplumbite (M-type) structure. In general, magnetic materials, particularly sintered magnets, are composed of multiple compounds, and the compound that determines the properties (physical properties, magnetic properties, etc.) of the magnetic material is defined as the "main phase."
「六方晶のマグネトプランバイト(M型)構造を有する」とは、フェライト仮焼体のX線回折を一般的な条件で測定した場合に、六方晶のマグネトプランバイト(M型)構造のX線回折パターンが主として観察されることを言う。 The phrase “having a hexagonal magnetoplumbite (M type) structure” means that X It means that a line diffraction pattern is mainly observed.
上述した本開示の実施形態のフェライト仮焼体の製造方法を含む本開示の実施形態のフェライト焼結磁石の製造方法の一例を以下に説明する。 An example of a method for manufacturing a sintered ferrite magnet according to an embodiment of the present disclosure, including the above-described method for manufacturing a calcined ferrite body according to an embodiment of the present disclosure, will be described below.
2.フェライト焼結磁石の製造方法
原料粉末としては、価数にかかわらず、それぞれの金属の酸化物、炭酸塩、水酸化物、硝酸塩、塩化物等の化合物を使用することができる。原料粉末を溶解した溶液であってもよい。Caの化合物としては、Caの炭酸塩、酸化物、塩化物等が挙げられる。Rの化合物としては、Laを例にすると、La2O3等の酸化物、La(OH)3等の水酸化物、La2(CO3)3・8H2O等の炭酸塩等が挙げられる。Srの化合物としては、Srの炭酸塩、酸化物、塩化物等が挙げられる。Feの化合物としては、酸化鉄、水酸化鉄、塩化鉄、ミルスケール等が挙げられる。Coの化合物としては、CoO、Co3O4等の酸化物、CoOOH、Co(OH)2等の水酸化物、CoCO3等の炭酸塩、及びm2CoCO3・m3Co(OH)2・m4H2O等の塩基性炭酸塩(m2、m3、m4は正の数である)が挙げられる。
2. Method for producing sintered ferrite magnet As raw material powders, compounds such as oxides, carbonates, hydroxides, nitrates, and chlorides of respective metals can be used regardless of their valences. A solution obtained by dissolving the raw material powder may be used. Examples of Ca compounds include carbonates, oxides, and chlorides of Ca. As the compound of R, taking La as an example, oxides such as La 2 O 3 , hydroxides such as La(OH) 3 , and carbonates such as La 2 (CO 3 ) 3.8H 2 O can be mentioned. be done. Sr compounds include carbonates, oxides, and chlorides of Sr. Examples of Fe compounds include iron oxide, iron hydroxide, iron chloride, mill scale, and the like. Co compounds include oxides such as CoO and Co3O4 , hydroxides such as CoOOH and Co(OH) 2 , carbonates such as CoCO3 , and m2CoCO3.m3Co (OH) 2 . - Basic carbonates such as m 4 H 2 O (m 2 , m 3 and m 4 are positive numbers).
仮焼時の反応促進のため、必要に応じてB2O3、H3BO3等のB(硼素)を含む化合物を1mass%程度まで添加してもよい。特にH3BO3の添加は、磁石特性の向上に有効である。H3BO3の添加量は0.3mass%以下であるのが好ましく、0.1mass%程度が最も好ましい。H3BO3は、焼成時に結晶粒の形状やサイズを制御する効果も有するため、仮焼後(微粉砕前や焼成前)に添加してもよく、仮焼前及び仮焼後の両方で添加してもよい。 A compound containing B (boron), such as B 2 O 3 and H 3 BO 3 , may be added up to about 1% by mass, if necessary, in order to promote the reaction during calcination. Addition of H 3 BO 3 is particularly effective in improving magnetic properties. The amount of H 3 BO 3 added is preferably 0.3 mass % or less, most preferably about 0.1 mass %. Since H 3 BO 3 also has the effect of controlling the shape and size of crystal grains during firing, it may be added after calcination (before pulverization or before calcination). may be added.
上述した本開示の実施形態のフェライト仮焼体の成分、組成を満足する原料粉末を混合し、混合原料粉末とする。原料粉末の配合、混合は、湿式及び乾式のいずれで行ってもよい。スチールボール等の媒体とともに撹拌すると原料粉末をより均一に混合することができる。湿式の場合は、分散媒に水を用いるのが好ましい。原料粉末の分散性を高める目的でポリカルボン酸アンモニウム、グルコン酸カルシウム等の公知の分散剤を用いてもよい。混合した原料スラリーはそのまま仮焼してもよいし、原料スラリーを脱水した後、仮焼してもよい。 Raw material powders satisfying the components and composition of the ferrite calcined body of the embodiment of the present disclosure described above are mixed to form a mixed raw material powder. Blending and mixing of raw material powders may be carried out by either a wet method or a dry method. Stirring with a medium such as a steel ball allows the raw material powder to be mixed more uniformly. In the wet method, it is preferable to use water as a dispersion medium. A known dispersant such as ammonium polycarboxylate and calcium gluconate may be used for the purpose of enhancing the dispersibility of the raw material powder. The mixed raw material slurry may be calcined as it is, or may be calcined after dewatering the raw material slurry.
乾式混合又は湿式混合することによって得られた混合原料粉末は、電気炉、ガス炉等を用いて加熱することで、固相反応により、六方晶のマグネトプランバイト(M型)構造のフェライト化合物を形成する。このプロセスを「仮焼」と呼び、得られた化合物を「仮焼体」と呼ぶ。従って、本開示の実施形態のフェライト仮焼体はフェライト化合物と言い換えることができる。 The mixed raw material powder obtained by dry-mixing or wet-mixing is heated using an electric furnace, a gas furnace, or the like to form a ferrite compound having a hexagonal magnetoplumbite (M-type) structure through a solid phase reaction. Form. This process is called "calcination", and the resulting compound is called "calcined body". Therefore, the ferrite calcined body of the embodiment of the present disclosure can be rephrased as a ferrite compound.
仮焼工程では、温度の上昇とともにフェライト相が形成される固相反応が進行する。仮焼温度が1100℃未満では、未反応のヘマタイト(酸化鉄)が残存するため磁石特性が低くなる。一方、仮焼温度が1450℃を超えると結晶粒が成長し過ぎるため、粉砕工程において粉砕に多大な時間を要することがある。従って、仮焼温度は1100℃~1450℃であるのが好ましい。仮焼時間は0.5時間~5時間であるのが好ましい。仮焼後の仮焼体はハンマーミルなどによって粗粉砕することが好ましい。 In the calcining step, a solid phase reaction that forms a ferrite phase progresses as the temperature rises. If the calcining temperature is less than 1100° C., unreacted hematite (iron oxide) remains, resulting in poor magnetic properties. On the other hand, if the calcining temperature exceeds 1450° C., the crystal grains grow too much, which may require a great deal of time for pulverization in the pulverization step. Therefore, the calcination temperature is preferably 1100°C to 1450°C. The calcining time is preferably 0.5 to 5 hours. It is preferable to coarsely pulverize the calcined body after calcination with a hammer mill or the like.
以上のような工程を経ることによって、本開示の実施形態のフェライト仮焼体を得ることができる。引き続き、本開示の実施形態のフェライト焼結磁石の製造方法を説明する。 Through the steps described above, the calcined ferrite body of the embodiment of the present disclosure can be obtained. A method for manufacturing a sintered ferrite magnet according to an embodiment of the present disclosure will now be described.
仮焼体を振動ミル、ジェットミル、ボールミル、アトライター等によって粉砕(微粉砕)し、仮焼体の粉末(微粉砕粉末)とする。仮焼体の粉末の平均粒径は0.4μm~0.8μm程度にするのが好ましい。なお、本開示の実施形態においては、粉体比表面積測定装置(例えば島津製作所製SS-100)などを用いて空気透過法によって測定した値を粉末の平均粒径(平均粒度)という。粉砕工程は、乾式粉砕及び湿式粉砕のいずれでもよく、双方を組み合わせてもよい。湿式粉砕の場合は、分散媒として水及び/又は非水系溶剤(アセトン、エタノール、キシレン等の有機溶剤)を用いて行う。典型的には、水(分散媒)と仮焼体とを含むスラリーを生成する。スラリーには公知の分散剤及び/又は界面活性剤を固形分比率で0.2mass%~2mass%を添加してもよい。湿式粉砕後は、スラリーを濃縮してもよい。 The calcined body is pulverized (pulverized) by a vibration mill, a jet mill, a ball mill, an attritor, or the like to obtain calcined powder (finely pulverized powder). The average particle size of the calcined powder is preferably about 0.4 μm to 0.8 μm. In the embodiments of the present disclosure, the value measured by the air permeation method using a powder specific surface area measuring device (eg SS-100 manufactured by Shimadzu Corporation) is referred to as the average particle size of the powder (average particle size). The pulverization step may be either dry pulverization or wet pulverization, or both may be combined. In the case of wet pulverization, water and/or a non-aqueous solvent (organic solvent such as acetone, ethanol, xylene, etc.) is used as a dispersion medium. Typically, a slurry containing water (dispersion medium) and a calcined body is produced. A known dispersant and/or surfactant may be added to the slurry at a solid content ratio of 0.2 mass % to 2 mass %. After wet grinding, the slurry may be concentrated.
成形工程は、粉砕工程後のスラリーを、分散媒を除去しながら磁界中又は無磁界中でプレス成形する。磁界中でプレス成形することにより、粉末粒子の結晶方位を整列(配向)させることができ、磁石特性を飛躍的に向上させることができる。さらに、配向を向上させるために、成形前のスラリーに分散剤及び潤滑剤をそれぞれ0.1mass%~1mass%添加してもよい。また成形前にスラリーを必要に応じて濃縮してもよい。濃縮は遠心分離、フィルタープレス等により行うのが好ましい。 In the molding step, the slurry after the pulverization step is press-molded in a magnetic field or in a non-magnetic field while removing the dispersion medium. By press-molding in a magnetic field, the crystal orientation of the powder particles can be aligned (orientated), and the magnetic properties can be dramatically improved. Furthermore, in order to improve the orientation, 0.1 mass % to 1 mass % of a dispersant and a lubricant may be added to the slurry before molding. Also, the slurry may be concentrated before molding, if necessary. Concentration is preferably carried out by centrifugation, filter press or the like.
前記仮焼工程後、成形工程前に、仮焼体又は仮焼体の粉末(粗粉砕粉末又は微粉砕粉末)に添加物を添加してもよい。添加物としてはCr2O3、SiO2及びCaCO3が好ましい。Cr2O3の添加量は添加する対象となる仮焼体又は仮焼体の粉末100mass%に対して1.5mass%以下が好ましい。同様にSiO2の添加量は1.0mass%以下が好ましい。また、CaCO3の添加量はCaO換算で1.0mass%以下が好ましい。 Additives may be added to the calcined body or powder of the calcined body (coarsely pulverized powder or finely pulverized powder) after the calcining step and before the molding step. Cr 2 O 3 , SiO 2 and CaCO 3 are preferred as additives. The amount of Cr 2 O 3 to be added is preferably 1.5 mass % or less with respect to 100 mass % of the powder of the calcined body or calcined body to be added. Similarly, the amount of SiO 2 added is preferably 1.0 mass % or less. Further, the amount of CaCO 3 added is preferably 1.0 mass% or less in terms of CaO.
Cr2O3、SiO2及びCaCO3はフェライト焼結磁石の添加物として知られている。これらの添加物を添加するとHcJが向上するという利点がある一方、BrとHk/HcJが低下するという欠点がある。しかしながら、本開示の実施形態においては、上述した三つの主たる特徴によって、磁気的配向度(Br/Js)が著しく向上しているため、BrとHk/HcJの低下を抑制することができ、HcJのみを向上させることができる。添加物の添加は、例えば、仮焼工程によって得られた仮焼体に添加した後、粉砕工程を実施する、粉砕工程の途中で添加する、又は粉砕工程後の仮焼体の粉末(微粉砕粉末)に添加、混合した後成形工程を実施する、などの方法を採用することができる。上記添加物ほかAl2O3等を1mass%以下添加してもよい。 Cr 2 O 3 , SiO 2 and CaCO 3 are known additives for sintered ferrite magnets. The addition of these additives has the advantage of improving H cJ , but has the disadvantage of lowering Br and H k /H cJ . However, in the embodiment of the present disclosure, the magnetic orientation degree (B r /J s ) is significantly improved by the three main features described above, so the decrease in B r and H k /H cJ is suppressed. can improve the HcJ only. Additives are added, for example, to the calcined body obtained by the calcining process and then subjected to the crushing process, added during the crushing process, or powder of the calcined body after the crushing process (pulverized It is possible to adopt a method such as adding to powder) and performing a molding step after mixing. In addition to the above additives, 1 mass % or less of Al 2 O 3 and the like may be added.
なお、本開示の実施形態のフェライト焼結磁石は、その組成から明らかなようにCa-La-Co系フェライト焼結磁石に属する。Ca-La-Co系フェライト焼結磁石においては、主相成分としてCaが含まれているため、一般的なSr-La-Co系フェライト焼結磁石などのようにSiO2やCaCO3などの添加物を添加しなくても、液相が生成し、焼結することができる。すなわち、フェライト焼結磁石において主として粒界相を形成するSiO2やCaCO3を添加しなくても本開示の実施形態のフェライト焼結磁石を製造することは可能である。 The sintered ferrite magnet of the embodiment of the present disclosure belongs to the sintered ferrite magnet of the Ca--La--Co system, as is evident from its composition. Since Ca—La—Co ferrite sintered magnets contain Ca as a main phase component, SiO 2 and CaCO 3 are not added like general Sr—La—Co ferrite sintered magnets. A liquid phase can be generated and sintered without the addition of materials. That is, it is possible to manufacture the sintered ferrite magnet of the embodiment of the present disclosure without adding SiO 2 and CaCO 3 that mainly form grain boundary phases in the sintered ferrite magnet.
なお、本開示の実施形態においては、CaCO3の添加量は全てCaO換算で表記する。CaO換算での添加量からCaCO3の添加量は、
式:(CaCO3の分子量×CaO換算での添加量)/CaOの分子量
によって求めることができる。例えば、CaO換算で0.5mass%のCaCO3を添加する場合、
{(40.08[Caの原子量]+12.01[Cの原子量]+48.00[Oの原子量×3]=100.09[CaCO3の分子量])×0.5mass%[CaO換算での添加量]}/(40.08[Caの原子量]+16.00[Oの原子量]=56.08[CaOの分子量])=0.892mass%[CaCO3の添加量]、となる。
In addition, in the embodiments of the present disclosure, the amount of CaCO 3 added is all expressed in terms of CaO. From the added amount in terms of CaO, the added amount of CaCO3 is
It can be obtained by the formula: (molecular weight of CaCO 3 ×addition amount in terms of CaO)/molecular weight of CaO. For example, when adding 0.5 mass% CaCO 3 in terms of CaO,
{(40.08 [atomic weight of Ca] + 12.01 [atomic weight of C] + 48.00 [atomic weight of O x 3] = 100.09 [molecular weight of CaCO 3 ]) x 0.5 mass% [addition in terms of CaO amount]}/(40.08 [atomic weight of Ca]+16.00 [atomic weight of O]=56.08 [molecular weight of CaO])=0.892 mass% [addition amount of CaCO3 ].
プレス成形により得られた成形体を、必要に応じて脱脂した後、焼成(焼結)する。 焼成は電気炉、ガス炉等を用いて行う。焼成は酸素濃度が10体積%以上の雰囲気中で行うことが好ましい。より好ましくは20体積%以上であり、最も好ましくは100体積%である。焼成温度は1150℃~1250℃が好ましい。焼成時間は0時間(焼成温度での保持無し)~2時間が好ましい。 A molded body obtained by press molding is degreased as necessary, and then fired (sintered). Firing is performed using an electric furnace, a gas furnace, or the like. Firing is preferably performed in an atmosphere having an oxygen concentration of 10% by volume or more. More preferably 20% by volume or more, most preferably 100% by volume. The firing temperature is preferably 1150°C to 1250°C. The firing time is preferably 0 hour (no holding at the firing temperature) to 2 hours.
本開示の実施形態においては、焼成時の昇温・降温条件を以下の通りとする。室温から1100℃までの温度範囲における平均昇温速度を600℃/時以上1000℃/時以下、1100℃から焼成温度までの温度範囲における平均昇温速度を1℃/分以上10℃/分以下とし、焼成温度から800℃までの温度範囲における平均降温速度を1000℃/時以上とする。これにより、得られるフェライト焼結磁石のBrを低下させることなく、HcJとHk/HcJをさらに向上させることができる。これも本開示の実施形態の特徴の一つである。 In the embodiment of the present disclosure, the temperature rising/lowering conditions during firing are as follows. The average temperature increase rate in the temperature range from room temperature to 1100°C is 600°C/hour or more and 1000°C/hour or less, and the average temperature increase rate in the temperature range from 1100°C to the firing temperature is 1°C/minute or more and 10°C/minute or less. and the average cooling rate in the temperature range from the firing temperature to 800° C. is 1000° C./hour or more. As a result, H cJ and H k /H cJ can be further improved without lowering the Br of the obtained sintered ferrite magnet. This is also one of the features of the embodiments of the present disclosure.
焼成工程の後は、加工工程、洗浄工程、検査工程等の公知の製造プロセスを経て、最終的にフェライト焼結磁石を製造する。 After the firing process, a sintered ferrite magnet is finally manufactured through known manufacturing processes such as a working process, a cleaning process, and an inspection process.
3.フェライト焼結磁石
前記の通り、本開示の実施形態のフェライト仮焼体は、SiO2やCaCO3などの添加物を添加しなくても、液相が生成し、焼結することができ、本開示の実施形態のフェライト焼結磁石を得ることができる。この時、フェライト仮焼体の成分、組成と、フェライト焼結磁石の成分、組成は、基本的に同じとなる(製造工程における不純物の混入などは考慮しない)。
3. Ferrite sintered magnet As described above, the ferrite calcined body of the embodiment of the present disclosure can be sintered by generating a liquid phase without adding additives such as SiO 2 and CaCO 3 . A ferrite sintered magnet of the disclosed embodiments can be obtained. At this time, the components and composition of the ferrite calcined body and the components and composition of the sintered ferrite magnet are basically the same (inclusion of impurities in the manufacturing process is not considered).
一方、添加物を添加した場合、特にフェライト仮焼体の主成分でもあるCa成分(例えばCaCO3)を添加した場合は、フェライト焼結磁石全体としてはCa成分が増加するため、相対的に他の元素が減少することとなる。例えば、本開示の実施形態のフェライト仮焼体を用いて、添加物としてCaO換算でCaCO3を1.0mass%添加すると、最も変動する場合で、0.4≦x<0.5(仮焼体)が0.35≦x<0.5(焼結磁石)に、8.5≦2n-z≦10(仮焼体)が7.5≦2n-z≦10(焼結磁石)となる。この場合、2n-zの好ましい範囲は8<2n-z≦10である。 On the other hand, when an additive is added, especially when a Ca component (for example, CaCO 3 ), which is also the main component of the ferrite calcined body, is added, the Ca component increases in the ferrite sintered magnet as a whole. element will decrease. For example, using the ferrite calcined body of the embodiment of the present disclosure, when 1.0 mass% of CaCO 3 is added as an additive in terms of CaO, the maximum variation is 0.4 ≤ x < 0.5 (calcined body) becomes 0.35 ≤ x < 0.5 (sintered magnet), 8.5 ≤ 2n-z ≤ 10 (calcined body) becomes 7.5 ≤ 2n-z ≤ 10 (sintered magnet) . In this case, the preferred range of 2n−z is 8<2n−z≦10.
従って、本開示の実施形態のフェライト焼結磁石は、Ca、R、Sr、Fe及びCoの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1-x-yRx Sr yFe2n-zCozにおいて、前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co)/(Ca+R+Sr)で表される)が、0.35≦x<0.5、0<y≦0.2、0.18<z<0.3、1.8<x/z≦2.25、及び7.5≦2n-z≦10、を満足するものとなる。 Therefore, in the ferrite sintered magnet of the embodiment of the present disclosure, the atomic ratio of the metallic elements Ca, R, Sr, Fe and Co (where R is at least one rare earth element and essentially contains La) is In the general formula shown: Ca 1-x-y R x Sr y Fe 2n-z Co z , the above x, y and z, and n (where 2n is a molar ratio, 2n=(Fe+Co)/(Ca+R+Sr ) is represented by 0.35≦x<0.5, 0<y≦0.2, 0.18<z<0.3, 1.8< x/z≦2.25, and 7 .5≦2n−z≦10.
なお、本開示の実施形態のフェライト焼結磁石の、酸素(O)を含む場合の組成、フェライト焼結磁石を構成する主相、六方晶のマグネトプランバイト(M型)構造の定義などは、本開示の実施形態のフェライト仮焼体と同様である。また、前記の通り、フェライト仮焼体から範囲が変動しているものの、原子比x、y、zの限定理由、2n-zの限定理由なども前記フェライト仮焼体と同様であるため説明を省略する。 The composition of the sintered ferrite magnet of the embodiment of the present disclosure when oxygen (O) is included, the main phase constituting the sintered ferrite magnet, the definition of the hexagonal magnetoplumbite (M type) structure, etc. It is the same as the ferrite calcined body of the embodiment of the present disclosure. In addition, as described above, although the range varies from the ferrite calcined body, the reasons for limiting the atomic ratios x, y, and z, and the reasons for limiting 2n−z are the same as those for the ferrite calcined body, so an explanation will be given. omitted.
前記の通り、本開示の実施形態のフェライト焼結磁石の製造方法において、添加物としてCr2O3を、仮焼体又は仮焼体の粉末100mass%に対して1.5mass%以下添加する場合がある。添加物として添加されたCr2O3は焼成(焼結)時に主相に固溶する。従って、添加物として前記添加量のCr2O3を添加した場合は、得られるフェライト焼結磁石はCr2O3換算で1.5mass%以下(0mass%は含まず)のCrを含有する。 As described above, in the method for producing a sintered ferrite magnet according to the embodiment of the present disclosure, when Cr 2 O 3 is added as an additive in an amount of 1.5 mass% or less with respect to 100 mass% of the calcined body or powder of the calcined body There is Cr 2 O 3 added as an additive dissolves in the main phase during firing (sintering). Therefore, when Cr 2 O 3 is added in the above amount as an additive, the resulting sintered ferrite magnet contains Cr in an amount of 1.5 mass % or less (not including 0 mass %) in terms of Cr 2 O 3 .
同様に、添加物としてSiO2を、仮焼体又は仮焼体の粉末100mass%に対して1.0mass%以下添加する場合がある。添加物として添加されたSiO2は焼成(焼結)時に液相成分となり、フェライト焼結磁石において粒界相の一成分として存在することとなる。従って、添加物として前記添加量のSiO2を添加した場合は、得られるフェライト焼結磁石はSiO2換算で1.0mass%以下(0mass%は含まず)のSiを含有する。 Similarly, SiO 2 as an additive may be added in an amount of 1.0 mass% or less with respect to 100 mass% of the powder of the calcined body or the calcined body. SiO 2 added as an additive becomes a liquid phase component during firing (sintering), and exists as one component of the grain boundary phase in the sintered ferrite magnet. Therefore, when SiO 2 is added in the above amount as an additive, the obtained sintered ferrite magnet contains 1.0 mass % or less (not including 0 mass %) of Si in terms of SiO 2 .
この時、CrやSiの含有により、前記一般式:Ca1-x-yRxSryFe2n-zCozで示される各元素の含有量が相対的に減少することになるが、前記一般式におけるx、y、z、nなどの範囲は基本的に変化しない。なお、CrやSiの含有量は、フェライト焼結磁石の成分分析結果(例えば、ICP発光分光分析装置による結果)におけるCa、La、Sr、Fe、CoとCr、Siの各組成(mass%)から、CaCO3、La(OH)3、SrCO3、Fe2O3、Co3O4及びCr2O3、SiO2の質量に換算し、それらの合計100質量に対する含有比率(mass%)である。 At this time, due to the content of Cr and Si, the content of each element represented by the general formula: Ca 1-xy R x Sr y Fe 2n-z Co z is relatively reduced. The ranges of x, y, z, n, etc. in the general formula are basically unchanged. The content of Cr and Si is each composition (mass%) of Ca, La, Sr, Fe, Co and Cr and Si in the result of component analysis of the sintered ferrite magnet (for example, the result of ICP emission spectrometry). From, CaCO 3 , La(OH) 3 , SrCO 3 , Fe 2 O 3 , Co 3 O 4 and Cr 2 O 3 , SiO 2 in terms of mass, and the content ratio (mass%) with respect to the total 100 mass be.
本開示の実施形態を実施例によりさらに詳細に説明するが、本開示の実施形態はそれらに限定されるものではない。 The embodiments of the present disclosure will be described in more detail by examples, but the embodiments of the present disclosure are not limited thereto.
実験例1
本開示の実施形態に基づく実験例として、一般式Ca1-x-yLaxSryFe2n-zCozにおいて、原子比が表1の試料No.1~15に示す1-x-y、x、y、z及び2n-zになるようにCaCO3粉末、La(OH)3粉末、SrCO3粉末、Fe2O3粉末及びCo3O4粉末を所定の組成で秤量し、秤量後の粉末の合計100mass%に対してH3BO3粉末を0.1mass%添加後、それぞれ湿式ボールミルで4時間混合した後、乾燥、整粒して6種類の混合原料粉末を得た。得られた混合原料粉末をそれぞれ大気中において1200℃で3時間仮焼し、6種類の仮焼体を得た。
Experimental example 1
As an experimental example based on the embodiment of the present disclosure, sample No. 1 in Table 1 having an atomic ratio in the general formula Ca 1-xy La x Sr y Fe 2n-z Co z was used. CaCO 3 powder, La(OH) 3 powder, SrCO 3 powder, Fe 2 O 3 powder and Co 3 O 4 powder so that 1-xy, x, y, z and 2n-z shown in 1 to 15 was weighed with a predetermined composition, and after adding 0.1 mass% of H 3 BO 3 powder to a total of 100 mass% of the powder after weighing, each was mixed in a wet ball mill for 4 hours, then dried and granulated to 6 types. was obtained. Each of the obtained mixed raw material powders was calcined in the atmosphere at 1200° C. for 3 hours to obtain 6 kinds of calcined bodies.
得られた各仮焼体を小型ミルで粗粉砕して6種類の仮焼体の粗粉砕粉末を得た。得られた各仮焼体の粗粉砕粉末100mass%に対して、表1に示すCaCO3(添加量はCaO換算)、SiO2及びCr2O3を添加し、水を分散媒とした湿式ボールミルで、平均粒度が0.6μm(粉体比表面積測定装置(島津製作所製SS-100)を用いて空気透過法により測定)になるまで微粉砕し、15種類の微粉砕スラリーを得た。 Each of the obtained calcined bodies was coarsely pulverized with a small mill to obtain coarsely pulverized powders of six types of calcined bodies. CaCO 3 (addition amount is calculated as CaO), SiO 2 and Cr 2 O 3 shown in Table 1 are added to 100 mass% of the coarsely pulverized powder of each calcined body obtained, and a wet ball mill using water as a dispersion medium is used. The powder was pulverized until the average particle size reached 0.6 μm (measured by the air permeation method using a powder specific surface area measuring device (SS-100 manufactured by Shimadzu Corporation)) to obtain 15 types of pulverized slurries.
粉砕工程により得られた各微粉砕スラリーを、分散媒を除去しながら、加圧方向と磁界方向とが平行である平行磁界成形機(縦磁界成形機)を用い、約1Tの磁界を印加しながら約2.4MPaの圧力で成形し、15種類の成形体を得た。 A magnetic field of about 1 T is applied to each finely pulverized slurry obtained by the pulverization process using a parallel magnetic field forming machine (vertical magnetic field forming machine) in which the direction of pressure and the direction of the magnetic field are parallel while removing the dispersion medium. While molding at a pressure of about 2.4 MPa, 15 kinds of moldings were obtained.
得られた各成形体を焼結炉内に挿入し、10L/分の流量のエアーを流気しながら、室温から1100℃までの温度範囲を平均1000℃/時の速度で昇温し、1100℃から焼成温度(1210℃)までの温度範囲を平均1℃/分の速度で昇温し、1210℃で1時間焼成した。焼成後は、焼成炉のヒータを切り、エアーの流量を10L/分から40L/分にして、焼成温度(1210℃)から800℃までの温度範囲を平均1140℃/時の速度で降温し、そのまま炉内で室温まで冷却することにより15種類のフェライト焼結磁石を得た。 Each molded body obtained was inserted into a sintering furnace, and the temperature range from room temperature to 1100 ° C. was raised at an average rate of 1000 ° C./hr while air flowed at a flow rate of 10 L / min. C. to the firing temperature (1210.degree. C.) at an average rate of 1.degree. C./min, and fired at 1210.degree. After firing, the heater of the firing furnace is turned off, the air flow rate is set to 10 L/min to 40 L/min, and the temperature range from the firing temperature (1210 ° C.) to 800 ° C. is lowered at an average rate of 1140 ° C./hour. Fifteen kinds of sintered ferrite magnets were obtained by cooling to room temperature in a furnace.
得られたフェライト焼結磁石のJs、Br、Br/Js、HcJ、Hk及びHk/HcJの測定結果を表1に示す。表1において試料No.の横に*印を付していない試料No.3~15が本開示の実施形態に基づく実験例であり、*印を付した試料No.1、2は本開示の実施形態を満足しない実験例(比較例)である。なお、表1におけるHkは、J(磁化の大きさ)-H(磁界の強さ)曲線の第2象限において、Jが0.95×Jr(Jrは残留磁化、Jr=Br)の値になる位置のHの値である。 Table 1 shows the measurement results of J s , B r , B r /J s , H cJ , H k and H k /H cJ of the obtained ferrite sintered magnets. In Table 1, sample no. Sample No. not marked with * next to . 3 to 15 are experimental examples based on the embodiment of the present disclosure, and sample Nos. marked with *. 1 and 2 are experimental examples (comparative examples) that do not satisfy the embodiment of the present disclosure. Note that H k in Table 1 means that J is 0.95×J r (J r is residual magnetization, J r =B r ) is the value of H at the position.
なお、表1における原子比は原料粉末の配合時の原子比(配合組成)を示す。焼成後の焼結体(フェライト焼結磁石)における原子比(焼結磁石の組成)は、配合時の原子比を元に、仮焼工程前に添加される添加物(H3BO3など)の添加量や、仮焼工程後成形工程前に添加される添加物(CaCO3、SiO2及びCr2O3)の添加量を考慮し、計算によって求めることができ、その計算値は、フェライト焼結磁石をICP発光分光分析装置(例えば、島津製作所製ICPV-1017など)で分析した結果と基本的に同様となる。 The atomic ratio in Table 1 indicates the atomic ratio (blended composition) when the raw material powders are blended. The atomic ratio (composition of the sintered magnet) in the sintered body (ferrite sintered magnet) after firing is based on the atomic ratio at the time of blending, and the additives (H 3 BO 3 , etc.) added before the calcination process and the amount of additives (CaCO 3 , SiO 2 and Cr 2 O 3 ) added after the calcination process and before the forming process. It is basically the same as the result of analyzing the sintered magnet with an ICP emission spectrometer (eg, ICPV-1017 manufactured by Shimadzu Corporation).
表1において、試料No.1と2、3と4、5と6は、それぞれSiO2添加量を変化させる以外は組成や製造条件は同じである。表1に示す各磁石特性から明らかなように、SiO2添加量を増加させるとHcJが著しく向上するが、試料No.2のようにx/z(La/Co)が1.4ではBrの低下幅が大きくHk/HcJも大きく低下する。一方、試料No.4と6のようにx/z(La/Co)が1.6以上であるとBrの低下幅が小さくHk/HcJの低下も抑制されている。 In Table 1, sample no. Samples 1 and 2, 3 and 4, and 5 and 6 have the same composition and manufacturing conditions except that the amount of SiO 2 added is changed. As is clear from the magnetic properties shown in Table 1, increasing the amount of SiO 2 added significantly improves HcJ , but sample No. When x/z (La/Co) is 1.4 as in No. 2, the range of decrease in Br is large and Hk / HcJ is also greatly decreased. On the other hand, sample no. When x/z (La/Co) is 1.6 or more as in 4 and 6, the decrease in Br is small and the decrease in Hk / HcJ is also suppressed.
また、表1において、試料No.7~9、10~12、13~15は、それぞれCr2O3添加量を変化させる以外は組成や製造条件は同じである。表1に示す各磁石特性から明らかなように、Cr2O3添加量を増加させるに伴いHcJが向上するが、Brの低下幅は小さく、Hk/HcJは低下抑制どころかむしろ向上傾向にある。 Also, in Table 1, sample No. 7 to 9, 10 to 12, and 13 to 15 have the same composition and manufacturing conditions, except that the amount of Cr 2 O 3 added is changed. As is clear from the magnetic properties shown in Table 1, H cJ increases as the amount of Cr 2 O 3 added increases, but the decrease in Br is small, and H k /H cJ is improved rather than suppressed. There is a tendency.
これら本開示の実施形態に基づく実験例のように、SiO2添加量、Cr2O3添加量を増加させても、BrとHk/HcJの低下を抑制しつつHcJを向上させることができるのは、0.18<z≦0.3(Co含有量が少ない)、1.6≦x/z≦2.25(R/Coが大きい)、8.5≦2n-z≦10(Fe含有量が少ない)という三つの主たる特徴によって、磁気的配向度(Br/Js)が向上しているためであると考えられる。 As in the experimental examples based on the embodiments of the present disclosure, even if the amount of SiO 2 and Cr 2 O 3 added is increased, H cJ is improved while suppressing the decrease in Br and H k /H cJ . can be 0.18<z≤0.3 (low Co content), 1.6≤x/z≤2.25 (high R/Co), 8.5≤2n-z≤ It is believed that the magnetic orientation degree (B r /J s ) is improved due to the three main features of 10 (low Fe content).
さらに、表1から明らかなように、x/z(La/Co)が大きくなるに伴い、磁気的配向度(Br/Js)が向上するとともにHk/HcJも向上している。これは、減磁曲線のJsとBrを結ぶ線の傾きが改善されたためである。 Furthermore, as is clear from Table 1, as x/z (La/Co) increases, the degree of magnetic orientation (B r /J s ) improves and H k /H cJ also improves. This is because the slope of the line connecting Js and Br in the demagnetization curve is improved.
また、Hk/HcJが向上するのは、本開示の実施形態においては、原子比z(Coの含有量)が0.18<z≦0.3であるため、x/zを1.6≦x/z≦2.2としてもLaの含有量が多くなり過ぎず、異相の生成が抑制されているためであると考えられる。 In addition, H k /H cJ is improved because, in the embodiment of the present disclosure, the atomic ratio z (content of Co) is 0.18<z≦0.3, so x/z is 1.5. This is probably because the content of La does not become too large even when 6≦x/z≦2.2, and the formation of heterogeneous phases is suppressed.
高いBr、高いHcJ及び高いHk/HcJの全てを満足する磁石特性を有するとともに、従来CaLaCo磁石よりもCoの使用量を削減した本開示の実施形態によるフェライト焼結磁石は、各種モータなどに好適に利用することができる。
Ferrite sintered magnets according to embodiments of the present disclosure, which have magnetic properties that satisfy all of high B r , high H cJ , and high H k /H cJ , and that use less Co than conventional CaLaCo magnets, are available in various types. It can be suitably used for motors and the like.
Claims (14)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020159217A JP7287371B2 (en) | 2020-09-24 | 2020-09-24 | Calcined ferrite body, sintered ferrite magnet and method for producing the same |
CN202110952807.5A CN114249591A (en) | 2020-09-24 | 2021-08-19 | Ferrite pre-sintered body and method for producing same |
KR1020210122946A KR20220040998A (en) | 2020-09-24 | 2021-09-15 | Ferrite calcined body, manufacturing method of ferrite sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020159217A JP7287371B2 (en) | 2020-09-24 | 2020-09-24 | Calcined ferrite body, sintered ferrite magnet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022052787A JP2022052787A (en) | 2022-04-05 |
JP7287371B2 true JP7287371B2 (en) | 2023-06-06 |
Family
ID=80791251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020159217A Active JP7287371B2 (en) | 2020-09-24 | 2020-09-24 | Calcined ferrite body, sintered ferrite magnet and method for producing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7287371B2 (en) |
KR (1) | KR20220040998A (en) |
CN (1) | CN114249591A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008137879A (en) | 2005-12-19 | 2008-06-19 | Tdk Corp | Ferrite magnetic material |
JP2017126719A (en) | 2016-01-15 | 2017-07-20 | Tdk株式会社 | Ferrite sintered magnet |
JP2017126718A (en) | 2016-01-15 | 2017-07-20 | Tdk株式会社 | Ferrite sintered magnet |
US20180277290A1 (en) | 2015-10-16 | 2018-09-27 | Union Materials Corporation | Ferrite Magnetic Material And Ferrite Sintered Magnet |
JP2019172507A (en) | 2018-03-28 | 2019-10-10 | Tdk株式会社 | Ferrite sintered magnet, and manufacturing method of ferrite sintered magnet |
JP2021052097A (en) | 2019-09-25 | 2021-04-01 | Tdk株式会社 | Ferrite sintered magnet |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1849675A (en) * | 2003-09-12 | 2006-10-18 | 株式会社新王磁材 | Ferrite sintered magnet |
BRPI0620713B1 (en) | 2005-12-28 | 2018-07-03 | Hitachi Metals, Ltd. | “Magnetic oxide material, its magnetic recording medium, its combined magnet, its rotary machine and sintered magnetic magnet” |
US9162928B2 (en) * | 2009-06-30 | 2015-10-20 | Hitachi Metals, Ltd. | Method for producing sintered ferrite magnet, and sintered ferrite magnet |
CN115732151A (en) * | 2018-03-20 | 2023-03-03 | 日立金属株式会社 | Ferrite sintered magnet |
JP7529383B2 (en) * | 2019-02-07 | 2024-08-06 | Tdk株式会社 | Sintered ferrite magnet |
-
2020
- 2020-09-24 JP JP2020159217A patent/JP7287371B2/en active Active
-
2021
- 2021-08-19 CN CN202110952807.5A patent/CN114249591A/en active Pending
- 2021-09-15 KR KR1020210122946A patent/KR20220040998A/en active Search and Examination
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008137879A (en) | 2005-12-19 | 2008-06-19 | Tdk Corp | Ferrite magnetic material |
US20180277290A1 (en) | 2015-10-16 | 2018-09-27 | Union Materials Corporation | Ferrite Magnetic Material And Ferrite Sintered Magnet |
JP2017126719A (en) | 2016-01-15 | 2017-07-20 | Tdk株式会社 | Ferrite sintered magnet |
JP2017126718A (en) | 2016-01-15 | 2017-07-20 | Tdk株式会社 | Ferrite sintered magnet |
JP2019172507A (en) | 2018-03-28 | 2019-10-10 | Tdk株式会社 | Ferrite sintered magnet, and manufacturing method of ferrite sintered magnet |
JP2021052097A (en) | 2019-09-25 | 2021-04-01 | Tdk株式会社 | Ferrite sintered magnet |
Also Published As
Publication number | Publication date |
---|---|
JP2022052787A (en) | 2022-04-05 |
KR20220040998A (en) | 2022-03-31 |
CN114249591A (en) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101649242B1 (en) | Method for producing sintered ferrite magnet, and sintered ferrite magnet | |
JP5929764B2 (en) | Ferrite sintered magnet and manufacturing method thereof | |
CN110663094A (en) | Sintered ferrite magnet | |
KR20150048780A (en) | Ferrite calcined body, method for producing ferrite sintered magnet, and ferrite sintered magnet | |
KR102434929B1 (en) | Sintered ferrite magnet and its production method | |
JP6860285B2 (en) | Manufacturing method of Ca-La-Co-based ferrite sintered magnet and Ca-La-Co-based ferrite sintered magnet | |
JP2018030751A (en) | Ferrite compound | |
JPWO2018216594A1 (en) | Ferrite sintered magnet | |
JP7111150B2 (en) | Calcined ferrite body, sintered ferrite magnet and method for producing the same | |
JP6927404B1 (en) | Ferrite calcined body, ferrite sintered magnet and its manufacturing method | |
JP7468009B2 (en) | Ferrite calcined body, sintered ferrite magnet and method for producing same | |
JP7287371B2 (en) | Calcined ferrite body, sintered ferrite magnet and method for producing the same | |
JP2020155609A (en) | Method for manufacturing ferrite sintered magnet | |
JP7238917B2 (en) | Method for producing calcined ferrite powder and sintered ferrite magnet | |
JP7508967B2 (en) | Ferrite calcined body, sintered ferrite magnet and method for producing same | |
KR102587856B1 (en) | Ferrite calcined body and method for manufacturing sintered ferrite magnet | |
JP7468045B2 (en) | Ferrite calcined powder, sintered ferrite magnet and method for producing same | |
JP7396137B2 (en) | Ferrite calcined body, sintered ferrite magnet and manufacturing method thereof | |
KR102386512B1 (en) | Calcined ferrite, and sintered ferrite magnet and its production method | |
JP2024122839A (en) | Ferrite calcined body, sintered ferrite magnet, and method for producing sintered ferrite magnet | |
JP2024126609A (en) | Ferrite calcined body, sintered ferrite magnet, and method for producing sintered ferrite magnet | |
JP2022151652A (en) | Preliminarily baked ferrite material, and method for manufacturing ferrite sintered magnet | |
JP2022151842A (en) | Method for manufacturing ferrite sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221205 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20221205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7287371 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |