JP2021141151A - Ferrite powder for bond magnet and production method thereof - Google Patents

Ferrite powder for bond magnet and production method thereof Download PDF

Info

Publication number
JP2021141151A
JP2021141151A JP2020036485A JP2020036485A JP2021141151A JP 2021141151 A JP2021141151 A JP 2021141151A JP 2020036485 A JP2020036485 A JP 2020036485A JP 2020036485 A JP2020036485 A JP 2020036485A JP 2021141151 A JP2021141151 A JP 2021141151A
Authority
JP
Japan
Prior art keywords
ferrite powder
powder
ferrite
bond magnet
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020036485A
Other languages
Japanese (ja)
Other versions
JP7405648B2 (en
Inventor
智也 山田
Tomoya Yamada
智也 山田
雄大 山田
Takehiro Yamada
雄大 山田
将貴 越湖
Masaki KOSHIKO
将貴 越湖
禅 坪井
Zen Tsuboi
禅 坪井
進一 山田
Shinichi Yamada
進一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa F Tec Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa F Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa F Tec Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2020036485A priority Critical patent/JP7405648B2/en
Publication of JP2021141151A publication Critical patent/JP2021141151A/en
Application granted granted Critical
Publication of JP7405648B2 publication Critical patent/JP7405648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide ferrite powder for a bond magnet, enabling acquisition of a bond magnet having higher remanent magnetization Br by magnetic field orientation, and a production method thereof.SOLUTION: A production method of ferrite powder for a bond magnet comprises the steps of: mixing and granulating powder of a compound oxide of iron, strontium, lanthanum and cobalt with iron oxide (preferably hematite (α-Fe2O3)), calcining the mixture (preferably at 1280-1400°C) and pulverizing the calcined mixture thereby obtaining coarse powder of ferrite (coarse powder preferably having a specific surface area of 0.5-1.0 m2/g); mixing the coarse powder of ferrite with a fine powder of ferrite having a specific surface area larger than that of the coarse powder of ferrite (fine powder preferably having the specific surface area of 5-10 m2/g or further preferably having the specific surface area of 7-9 m2/g); pulverizing the mixture of the coarse powder of ferrite and the fine powder of ferrite and then annealing them (preferably at 880-990°C).SELECTED DRAWING: None

Description

本発明は、ボンド磁石用フェライト粉末およびその製造方法に関し、特に、フェライトの粗粒と微粒を含むボンド磁石用フェライト粉末およびその製造方法に関する。 The present invention relates to a ferrite powder for a bonded magnet and a method for producing the same, and more particularly to a ferrite powder for a bonded magnet containing coarse and fine particles of ferrite and a method for producing the same.

従来、AV機器、OA機器、自動車電装部品などに使用される小型モータや、複写機のマグネットロールなどに使用される磁石のような高磁力の磁石として、フェライト系焼結磁石が使用されている。しかし、フェライト系焼結磁石は、欠け割れが発生したり、研磨が必要なために生産性に劣るという問題があることに加えて、複雑な形状への加工が困難であるという問題がある。 Conventionally, ferritic sintered magnets have been used as magnets with high magnetic force such as magnets used in small motors used in AV equipment, OA equipment, automobile electrical components, etc., and magnet rolls in copiers. .. However, the ferrite-based sintered magnet has a problem that the productivity is inferior because chipping cracks occur and polishing is required, and there is a problem that it is difficult to process into a complicated shape.

そのため、近年では、AV機器、OA機器、自動車電装部品などに使用される小型モータなどの高磁力の磁石として、希土類磁石のボンド磁石が使用されている。しかし、希土類磁石は、フェライト系焼結磁石の約20倍のコストがかかり、また、錆び易いという問題があるため、フェライト系焼結磁石の代わりにフェライト系ボンド磁石を使用することが望まれている。 Therefore, in recent years, rare earth magnet bond magnets have been used as high magnetic force magnets for small motors used in AV equipment, OA equipment, automobile electrical components, and the like. However, rare earth magnets cost about 20 times as much as ferritic sintered magnets and have a problem of being easily rusted. Therefore, it is desired to use ferritic bonded magnets instead of ferritic sintered magnets. There is.

このようなボンド磁石用フェライト粉末として、組成が(Sr1−x)O・n[(Fe1−y−zCoZn](但し、AはLa、La−Nd、La−Pr又はLa−Nd−Pr、n=5.80〜6.10、x=0.1〜0.5、y=0.0083〜0.042、0≦z<0.0168)であって、飽和磁化値σsが73Am/kg(73emu/g)以上である平均粒径が1.0〜3.0μmのマグネトプランバイト型ストロンチウムフェライト粒子粉末であり、且つマグネトプランバイト型ストロンチウムフェライト粒子粉末中に板状粒子を個数割合で60%以上含んでいる、ボンド磁石用ストロンチウムフェライト粒子粉末が提案されている(例えば、特許文献1参照)。 As the ferrite powder for this bonded magnet composition is (Sr 1-x A x) O · n [(Fe 1-y-z Co y Zn z) 2 O 3] ( where, A is La, La-Nd , La-Pr or La-Nd-Pr, n = 5.80 to 6.10, x = 0.1 to 0.5, y = 0.0083 to 0.042, 0 ≦ z <0.0168) It is a magnetoplumbite-type strontium ferrite particle powder having a saturation magnetization value σs of 73 Am 2 / kg (73 emu / g) or more and an average particle size of 1.0 to 3.0 μm, and a magnetoplumbite-type strontium ferrite. A strontium ferrite particle powder for a bonded magnet containing 60% or more of plate-like particles in the particle powder has been proposed (see, for example, Patent Document 1).

特開2002−175907号公報(段落番号0025)JP-A-2002-175907 (paragraph number 0025)

しかし、特許文献1のボンド磁石用ストロンチウムフェライト粒子粉末は、板状粒子を多く含有しているため、磁場配向により粒子粉末を磁場方向に揃えようとすると、板状粒子同士が互いに配向を阻害するため、高い配向性を有するボンド磁石を作製するのが困難であった。 However, since the strontium ferrite particle powder for bond magnets of Patent Document 1 contains a large amount of plate-like particles, when the particle powders are aligned in the magnetic field direction by magnetic field orientation, the plate-like particles hinder each other's orientation. Therefore, it has been difficult to produce a bonded magnet having high orientation.

したがって、本発明は、このような従来の問題点に鑑み、磁場配向により高い残留磁化Brを有するボンド磁石を得ることができる、ボンド磁石用フェライト粉末およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, an object of the present invention is to provide a ferrite powder for a bonded magnet and a method for producing the same, which can obtain a bonded magnet having a high residual magnetization Br by magnetic field orientation. ..

本発明者らは、上記課題を解決するために鋭意研究した結果、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末と、酸化鉄とを混合して造粒した後、焼成し、粉砕してフェライトの粗粉を得る工程と、フェライトの粗粉とこのフェライトの粗粉より比表面積が大きいフェライトの微粉とを混合する工程と、フェライトの粗粉とフェライトの微粉の混合物を粉砕した後、アニールする工程とを備えたボンド磁石用フェライト粉末の製造方法により、磁場配向により高い残留磁化Brを有するボンド磁石を得ることができる、ボンド磁石用フェライト粉末を製造することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have mixed and granulated a powder of a composite oxide of iron, strontium, lanthanum and cobalt and iron oxide, and then fired and pulverized the powder. After crushing a step of obtaining a coarse ferrite powder, a step of mixing the coarse ferrite powder with a fine ferrite powder having a larger specific surface area than the coarse ferrite powder, and a crushing of a mixture of the coarse ferrite powder and the fine ferrite powder. We have found that it is possible to produce a ferrite powder for a bonded magnet, which can obtain a bonded magnet having a high residual magnetization Br by magnetic field orientation, by a method for producing a ferrite powder for a bonded magnet, which includes a step of annealing. Has been completed.

すなわち、本発明によるボンド磁石用フェライト粉末の製造方法は、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末と、酸化鉄とを混合して造粒した後、焼成し、粉砕してフェライトの粗粉を得る工程と、フェライトの粗粉とこのフェライトの粗粉より比表面積が大きいフェライトの微粉とを混合する工程と、フェライトの粗粉とフェライトの微粉の混合物を粉砕した後、アニールする工程とを備えたことを特徴とする。 That is, in the method for producing a ferrite powder for a bonded magnet according to the present invention, a powder of a composite oxide of iron, strontium, lanthanum and cobalt and iron oxide are mixed and granulated, then fired and pulverized to form ferrite. A step of obtaining a coarse powder, a step of mixing a ferrite coarse powder and a ferrite fine powder having a larger specific surface area than the ferrite coarse powder, and a step of crushing a mixture of the ferrite coarse powder and the ferrite fine powder and then annealing. It is characterized by having and.

このボンド磁石用フェライト粉末の製造方法において、複合酸化物の粉末は、炭酸ストロンチウムと酸化ランタンと酸化鉄と酸化コバルトとを混合して造粒した後、1000〜1250℃で焼成して得られた焼成物を粉砕することにより得られるのが好ましい。また、複合酸化物の粉末と酸化鉄とを混合して造粒した後の焼成が1280〜1400℃で行われるのが好ましい。また、複合酸化物の粉末と酸化鉄を混合する際に、SrとLaの合計に対する酸化鉄中のFeのモル比Fe/(Sr+La)が4.5〜11.7になるように複合酸化物の粉末と酸化鉄を混合するのが好ましい。フェライトの粗粉の比表面積は、0.5〜1.0m/gであるのが好ましい。フェライトの微粉は、炭酸ストロンチウム中のSrに対する酸化鉄中のFeのモル比Fe/Srが10.0〜12.5になるように炭酸ストロンチウムと酸化鉄を混合して造粒した後、900〜1000℃で焼成して得られた焼成物を粉砕することにより得られるのが好ましい。また、フェライトの粗粉とフェライトの微粉を混合する際に、フェライトの粗粉の割合を60〜90質量%にするのが好ましい。 In this method for producing a ferrite powder for a bonded magnet, the composite oxide powder was obtained by mixing strontium carbonate, lanthanum oxide, iron oxide and cobalt oxide, granulating the mixture, and then firing at 1000 to 1250 ° C. It is preferably obtained by crushing the fired product. Further, it is preferable that the composite oxide powder and iron oxide are mixed and granulated, and then calcined at 1280 to 1400 ° C. Further, when the composite oxide powder and iron oxide are mixed, the composite oxide is such that the molar ratio Fe / (Sr + La) of Fe in iron oxide to the total of Sr and La is 4.5 to 11.7. It is preferable to mix the powder of iron oxide with iron oxide. The specific surface area of the coarse ferrite powder is preferably 0.5 to 1.0 m 2 / g. The fine ferrite powder is granulated by mixing strontium carbonate and iron oxide so that the molar ratio Fe / Sr of Fe in iron oxide to Sr in strontium carbonate is 10.0 to 12.5, and then 900 to 900 to It is preferably obtained by pulverizing the fired product obtained by firing at 1000 ° C. Further, when mixing the coarse ferrite powder and the fine ferrite powder, it is preferable that the ratio of the coarse ferrite powder is 60 to 90% by mass.

また、本発明によるボンド磁石用フェライト粉末は、(Sr1−xLa)・(Fe1−yCo19−z(但し、0<x≦0.5、0<y≦0.04、10.0≦n≦12.5、−1.0≦z≦3.5)の組成を有し、レーザー回折式粒度分布測定装置により測定した体積基準の粒度分布において、粒径1μm未満の粒子の割合が20〜40体積%、1〜5μmの粒子の割合が30〜60体積%、5μmより大きい粒子の割合が18〜30体積%であることことを特徴とする。 Also, the ferrite powders for bonded magnet according to the present invention, (Sr 1-x La x ) · (Fe 1-y Co y) n O 19-z ( where, 0 <x ≦ 0.5,0 <y ≦ 0 It has a composition of .04, 10.0 ≦ n ≦ 12.5, −1.0 ≦ z ≦ 3.5), and has a particle size of 1 μm in a volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device. The proportion of particles less than 5 μm is 20 to 40% by volume, the proportion of particles of 1 to 5 μm is 30 to 60% by volume, and the proportion of particles larger than 5 μm is 18 to 30% by volume.

このボンド磁石用フェライト粉末10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮したときのボンド磁石用フェライト粉末の密度をボンド磁石用フェライト粉末の圧縮密度として測定したときに、ボンド磁石用フェライト粉末の圧縮密度が3.70g/cm以上であるのが好ましい。また、上記のボンド磁石用フェライト粉末8gとポリエステル樹脂0.4ccを乳鉢中で混練し、得られた混練物7gを内径15mmφの金型に充填し、2トン/cmの圧力で60秒間圧縮して得られた成形品を金型から抜き取り、150℃で30分間乾燥させて得られた圧粉体の保磁力iHcを測定磁場10kOeで測定したときに、保磁力iHcが1500Oe以上であるのが好ましい。また、上記のボンド磁石用フェライト粉末92.0質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂6.6質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石Aを作製し、このボンド磁石Aの残留磁化Brを測定磁場10kOeで測定したときに、残留磁化Brが3270G以上であるのが好ましい。このボンド磁石Aは、最大エネルギー積BHmaxを測定磁場10kOeで測定したときに、最大エネルギー積BHmaxが2.65MGOe以上であるのが好ましい、また、上記のボンド磁石用フェライト粉末93.5質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂5.1質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石Bを作製し、このボンド磁石Bの残留磁化Brを測定磁場10kOeで測定したときに、残留磁化Brが3410G以上であるのが好ましい。このボンド磁石Bは、最大エネルギー積BHmaxを測定磁場10kOeで測定したときに、最大エネルギー積BHmaxが2.80MGOe以上であるのが好ましい。 The density of the ferrite powder for the bond magnet when 10 g of the ferrite powder for the bond magnet is filled in a cylindrical mold having an inner diameter of 2.54 cmφ and then compressed at a pressure of 1 ton / cm 2 is the compression density of the ferrite powder for the bond magnet. The compression density of the ferrite powder for a bonded magnet is preferably 3.70 g / cm 3 or more. Further, 8 g of the above-mentioned ferrite powder for a bond magnet and 0.4 cc of polyester resin are kneaded in a dairy pot, and 7 g of the obtained kneaded product is filled in a mold having an inner diameter of 15 mmφ and compressed at a pressure of 2 tons / cm 2 for 60 seconds. When the coercive force iHc of the green compact obtained by extracting the molded product obtained in the above process from the mold and drying it at 150 ° C. for 30 minutes was measured with a measuring magnetic field of 10 kOe, the coercive force iHc was 1500 Oe or more. Is preferable. Further, the mixer is filled with 92.0 parts by mass of the above-mentioned ferrite powder for a bond magnet, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and 6.6 parts by mass of a powdered polyamide resin. The resulting mixture was kneaded at 230 ° C. to prepare kneaded pellets having an average diameter of 2 mm, and the kneaded pellets were placed in a magnetic field of 9.7 kOe at a temperature of 300 ° C. and a forming pressure of 8.5 N / mm 2 A cylindrical bond magnet A having a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is along the central axis of the column) is produced, and the residual magnetization Br of this bond magnet A is measured with a magnetic field of 10 kOe. It is preferable that the residual magnetization Br is 3270 G or more when measured in. The bonded magnet A, upon measuring the maximum energy product BH max measured magnetic field 10 kOe, the maximum energy product BH max is preferably of at least 2.65MGOe, also ferrite powder 93.5 mass for the above bonded magnet A mixture obtained by filling a mixer with 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and 5.1 parts by mass of a powdered polyamide resin and mixing them was prepared at 230 ° C. Kneading is performed to prepare kneaded pellets having an average diameter of 2 mm, and the kneaded pellets are injection-formed in a magnetic field of 9.7 kOe at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 to have a diameter of 15 mm and a height of 8 mm. When a cylindrical bond magnet B (the orientation direction of the magnetic field is along the central axis of the cylinder) is produced and the residual magnetization Br of this bond magnet B is measured with a measurement magnetic field of 10 kOe, the residual magnetization Br is 3410 G or more. It is preferable to have it. The bonded magnet B, upon measuring the maximum energy product BH max measured magnetic field 10 kOe, the maximum energy product BH max is preferably at least 2.80MGOe.

また、本発明によるボンド磁石は、上記のボンド磁石用フェライト粉末と、バインダとを備えたことを特徴とする。 Further, the bonded magnet according to the present invention is characterized by including the above-mentioned ferrite powder for a bonded magnet and a binder.

本発明によれば、磁場配向により高い残留磁化Brを有するボンド磁石を得ることができる、ボンド磁石用フェライト粉末を製造することができる。 According to the present invention, it is possible to produce a ferrite powder for a bonded magnet, which can obtain a bonded magnet having a high residual magnetization Br by magnetic field orientation.

本発明によるボンド磁石用フェライト粉末の製造方法の実施の形態は、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末と、酸化鉄(好ましくはヘマタイト(α−Fe))とを混合して造粒した後、(好ましくは1280〜1400℃で)焼成し、粉砕してフェライトの粗粉(好ましくは比表面積が0.5〜1.0m/gの粗粉)を得る工程と、フェライトの粗粉とこのフェライトの粗粉より比表面積が大きいフェライトの微粉(比表面積が好ましくは5〜10m/g、さらに好ましくは7〜9m/gの微粉)とを混合する工程と、フェライトの粗粉とフェライトの微粉の混合物を粉砕した後、(好ましくは880〜990℃で)アニールする工程とを備えている。鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末を使用し、フェライトの粗粉を得る際の焼成の温度を1280℃以上にすることにより、フェライトの粗粉の粒径を大きくすることができる。 In the embodiment of the method for producing a ferrite powder for a bonded magnet according to the present invention, a powder of a composite oxide of iron, strontium, lanthanum and cobalt and iron oxide (preferably hematite (α-Fe 2 O 3 )) are mixed. After granulation, it is fired (preferably at 1280 to 1400 ° C.) and pulverized to obtain a coarse ferrite powder (preferably a coarse powder having a specific surface area of 0.5 to 1.0 m 2 / g). , A step of mixing the coarse ferrite powder and the fine ferrite powder having a larger specific surface area than the coarse ferrite powder (preferably 5 to 10 m 2 / g, more preferably 7 to 9 m 2 / g fine powder). , A step of pulverizing a mixture of coarse ferrite powder and fine ferrite powder and then annealing (preferably at 880 to 990 ° C.) is provided. The particle size of the coarse ferrite powder can be increased by using a powder of a composite oxide of iron, strontium, lanthanum, and cobalt and setting the firing temperature when obtaining the coarse ferrite powder to 1280 ° C. or higher. ..

鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末は、炭酸ストロンチウムと酸化ランタンと酸化鉄と酸化コバルトとを混合して造粒した後、1000〜1250℃(好ましくは1050〜1200℃、さらに好ましくは1050〜1150℃)で焼成して得られた焼成物を粉砕することにより得ることができる。 The powder of the composite oxide of iron, strontium, lanthanum and cobalt is granulated by mixing strontium carbonate, lanthanum oxide, iron oxide and cobalt oxide, and then granulated at 1000 to 1250 ° C. (preferably 105 to 1200 ° C., more preferably 105 to 1200 ° C.). Can be obtained by pulverizing a fired product obtained by firing at (1050 to 1150 ° C.).

この複合酸化物の粉末と酸化鉄を混合する際に、SrとLaの合計に対する酸化鉄中のFeのモル比Fe/(Sr+La)が好ましくは4.5〜11.7(さらに好ましくは9.0〜11.0)になるように複合酸化物の粉末と酸化鉄を混合する。 When the powder of this composite oxide and iron oxide are mixed, the molar ratio Fe / (Sr + La) of Fe in iron oxide to the total of Sr and La is preferably 4.5 to 11.7 (more preferably 9. The composite oxide powder and iron oxide are mixed so as to be 0 to 11.0).

フェライトの微粉は、炭酸ストロンチウム中のSrに対する酸化鉄中のFeのモル比Fe/Srが10.0〜12.5になるように炭酸ストロンチウムと酸化鉄を混合して造粒した後、粗粉を得る際の焼成の温度より低い温度(好ましくは900〜1000℃)で焼成して得られた焼成物を粉砕することにより得られるのが好ましい。 Fine ferrite powder is prepared by mixing strontium carbonate and iron oxide so that the molar ratio of Fe in iron oxide to Sr in strontium carbonate is 10.0 to 12.5, and then granulating the coarse powder. It is preferably obtained by pulverizing the fired product obtained by firing at a temperature lower than the firing temperature (preferably 900 to 1000 ° C.) at the time of obtaining.

フェライトの粗粉とフェライトの微粉を混合する際に、フェライトの粗粉の割合を60〜90質量%にするのが好ましい。60〜90質量%のフェライトの粗粉と10〜40質量%のフェライトの微粉を混合することにより、レーザー回折式粒度分布測定装置により測定した体積基準の粒度分布において、粒径1μm未満の粒子の割合が20体積%以上で5μmより大きい粒子の割合が18体積%以上のボンド磁石用フェライト粉末を得ることができる。 When mixing the coarse ferrite powder and the fine ferrite powder, it is preferable that the ratio of the coarse ferrite powder is 60 to 90% by mass. By mixing 60 to 90% by mass of coarse ferrite powder and 10 to 40% by mass of fine ferrite powder, particles having a particle size of less than 1 μm in a volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device. It is possible to obtain a ferrite powder for a bonded magnet having a ratio of 20% by volume or more and a particle ratio of particles larger than 5 μm of 18% by volume or more.

フェライトの粗粉とフェライトの微粉の混合物は、湿式のアトライターなどにより、(好ましくは10〜40分間、さらに好ましくは15〜30分間)粉砕処理(湿式粉砕処理)し、得られたスラリーをろ過して得られた固形物を(好ましくは大気中において120〜180℃で5〜20時間)乾燥させ、得られた乾燥ケーキを振動ボールミルにより媒体として比較的大きい(好ましくは直径10〜15mmの)ボールを使用して(好ましくは20〜40分間、さらに好ましくは25〜35分間)粉砕処理を行った後、振動ボールミルにより媒体として比較的小さい(好ましくは直径5〜10mmの)ボールを使用して(好ましくは20〜40分間、さらに好ましくは25〜35分間)粉砕処理を行うことにより粉砕することができる。 The mixture of the coarse ferrite powder and the fine ferrite powder is pulverized (preferably 10 to 40 minutes, more preferably 15 to 30 minutes) by a wet attritor or the like, and the obtained slurry is filtered. The solid matter thus obtained was dried (preferably in the air at 120 to 180 ° C. for 5 to 20 hours), and the obtained dried cake was used as a medium by a vibrating ball mill and was relatively large (preferably having a diameter of 10 to 15 mm). After milling using balls (preferably 20-40 minutes, more preferably 25-35 minutes), a relatively small ball (preferably 5-10 mm in diameter) is used as a medium by a vibrating ball mill. It can be pulverized by performing a pulverization treatment (preferably for 20 to 40 minutes, more preferably 25 to 35 minutes).

このようにして、(Sr1−xLa)・(Fe1−yCo19−z(但し、0<x≦0.5、0<y≦0.04、10.0≦n≦12.5、−1.0≦z≦3.5)で示される組成のボンド磁石用フェライト粉末を製造することができる。 In this way, (Sr 1-x La x ) · (Fe 1-y Co y) n O 19-z ( where, 0 <x ≦ 0.5,0 <y ≦ 0.04,10.0 ≦ A ferrite powder for a bonded magnet having a composition shown by n ≦ 12.5 and −1.0 ≦ z ≦ 3.5) can be produced.

また、本発明によるボンド磁石用フェライト粉末の実施の形態は、(Sr1−xLa)・(Fe1−yCo19−z(但し、0<x≦0.5(好ましくは0.01≦x≦0.5、さらに好ましくは0.1≦x≦0.5)、0<y≦0.04(好ましくは0.01≦y≦0.04)、10.0≦n≦12.5(好ましくは10.0≦n≦12.0)、−1.0≦z≦3.5(好ましくは−0.5≦z≦3.5))の組成を有し、レーザー回折式粒度分布測定装置により測定した体積基準の粒度分布において、粒径1μm未満の粒子の割合が20〜40体積%(好ましくは20〜30体積%)、1〜5μmの粒子の割合が30〜60体積%(好ましくは40〜60体積%)、5μmより大きい粒子の割合が18〜30体積%(好ましくは18〜27体積%)である。ボンド磁石用フェライト粉末の粒径1μm未満の粒子と5μmより大きい粒子の割合を多く(粒径1μm未満の粒子の割合が20体積%以上で5μmより大きい粒子の割合が18体積%以上に)することにより、ボンド磁石用フェライト粉末の圧縮密度(CD)を3.70g/cm以上にすることができる。 Further, embodiments of the ferrite powder for bonded magnets according to the present invention, (Sr 1-x La x ) · (Fe 1-y Co y) n O 19-z ( where, 0 <x ≦ 0.5 (preferably 0.01 ≦ x ≦ 0.5, more preferably 0.1 ≦ x ≦ 0.5), 0 <y ≦ 0.04 (preferably 0.01 ≦ y ≦ 0.04), 10.0 ≦ It has a composition of n ≦ 12.5 (preferably 10.0 ≦ n ≦ 12.0) and −1.0 ≦ z ≦ 3.5 (preferably −0.5 ≦ z ≦ 3.5). In the volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device, the proportion of particles having a particle size of less than 1 μm is 20 to 40% by volume (preferably 20 to 30% by volume), and the proportion of particles having a particle size of 1 to 5 μm is 30. The proportion of particles larger than 5 μm is 18 to 30% by volume (preferably 18 to 27% by volume). Increase the proportion of particles with a particle size of less than 1 μm and particles larger than 5 μm in ferrite powder for bond magnets (the proportion of particles with a particle size of less than 1 μm is 20% by volume or more and the proportion of particles larger than 5 μm is 18% by volume or more). Thereby, the compression density (CD) of the ferrite powder for the bonded magnet can be set to 3.70 g / cm 3 or more.

このボンド磁石用フェライト粉末は、平均粒径が、好ましくは1.0〜2.0μm、さらに好ましくは1.2〜1.8μmであり、比表面積が、好ましくは1.0〜2.5m/g、さらに好ましくは1.5〜2.3m/gである。 The ferrite powder for a bonded magnet has an average particle size of preferably 1.0 to 2.0 μm, more preferably 1.2 to 1.8 μm, and a specific surface area of preferably 1.0 to 2.5 m 2. / G, more preferably 1.5 to 2.3 m 2 / g.

また、上記のボンド磁石用フェライト粉末10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮したときのボンド磁石用フェライト粉末の密度をボンド磁石用フェライト粉末の圧縮密度(CD)として測定すると、ボンド磁石用フェライト粉末の圧縮密度(CD)は、好ましくは3.70g/cm以上であり、さらに好ましくは3.70〜4.00g/cmである。 Further, the density of the ferrite powder for the bond magnet when 10 g of the above-mentioned ferrite powder for the bond magnet is filled in a cylindrical mold having an inner diameter of 2.54 cmφ and then compressed at a pressure of 1 ton / cm 2 is adjusted to the density of the ferrite powder for the bond magnet. The compression density (CD) of the ferrite powder for a bonded magnet is preferably 3.70 g / cm 3 or more, and more preferably 3.70 to 4.00 g / cm 3 when measured as the compression density (CD) of. ..

また、上記のボンド磁石用フェライト粉末8gとポリエステル樹脂0.4ccを乳鉢中で混練し、得られた混練物7gを内径15mmφの金型に充填し、2トン/cmの圧力で60秒間圧縮して得られた成形品を金型から抜き取り、150℃で30分間乾燥させて圧粉体を作製し、この圧粉体の磁気特性として、BHトレーサーを使用して、測定磁場10kOeで圧粉体の保磁力iHcおよび残留磁化Brを測定すると、保磁力iHcは、好ましくは1500Oe以上、さらに好ましくは2000〜4000Oe、さらに好ましくは2300〜3500Oeであり、残留磁化Brは、好ましくは1700〜2200G、さらに好ましくは1800〜2050Gである。 Further, 8 g of the above ferrite powder for a bonded magnet and 0.4 cc of polyester resin are kneaded in a dairy pot, and 7 g of the obtained kneaded product is filled in a mold having an inner diameter of 15 mmφ and compressed at a pressure of 2 tons / cm 2 for 60 seconds. The molded product thus obtained was withdrawn from a mold and dried at 150 ° C. for 30 minutes to prepare a green compact. As the magnetic characteristics of this green compact, a BH tracer was used and the green compact was used at a measurement magnetic field of 10 kOe. When the coercive force iHc and the residual magnetization Br of the body are measured, the coercive force iHc is preferably 1500 Oe or more, more preferably 2000 to 4000 Oe, further preferably 2300 to 3500 Oe, and the residual magnetization Br is preferably 1700 to 2200 G. More preferably, it is 1800 to 2050G.

また、上記のボンド磁石用フェライト粉末92.0質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂6.6質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石Aを作製し、このボンド磁石Aの保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定磁場10kOeで測定すると、保磁力iHcは、2000〜2500Oe、さらに好ましくは2100〜2350Oeであり、残留磁化Brは、好ましくは3270G以上であり、最大エネルギー積BHmaxは、好ましくは2.65MGOe以上、さらに好ましくは2.65〜2.85MGOeであり、最も好ましくは2.65〜2.75MGOeである。 Further, the mixer is filled with 92.0 parts by mass of the above-mentioned ferrite powder for a bond magnet, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and 6.6 parts by mass of a powdered polyamide resin. The resulting mixture was kneaded at 230 ° C. to prepare kneaded pellets having an average diameter of 2 mm, and the kneaded pellets were placed in a magnetic field of 9.7 kOe at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 A cylindrical bond magnet A having a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is the direction along the central axis of the column) is produced, and the coercive magnetic force iHc and residual magnetism Br of this bond magnet A are produced. When the maximum energy product BH max is measured with a measurement magnetic field of 10 kOe, the coercive force iHc is 2000 to 2500 Oe, more preferably 2100 to 2350 Oe, the residual magnetization Br is preferably 3270 G or more, and the maximum energy product BH max is. It is preferably 2.65 MGOe or more, more preferably 2.65 to 2.85 MGOe, and most preferably 2.65 to 2.75 MGOe.

また、上記のボンド磁石用フェライト粉末93.5質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂5.1質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石Bを作製し、このボンド磁石Bの保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定磁場10kOeで測定すると、保磁力iHcは、1800〜2200Oe、さらに好ましくは1900〜2100Oeであり、残留磁化Brは、好ましくは3410G以上、さらに好ましくは3420G以上であり、最大エネルギー積BHmaxは、好ましくは2.80MGOe以上、さらに好ましくは2.80〜3.00MGOeであり、最も好ましくは2.80〜2.90MGOeである。 Further, the mixer is filled with 93.5 parts by mass of the above-mentioned ferrite powder for a bond magnet, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and 5.1 parts by mass of a powdered polyamide resin. The resulting mixture was kneaded at 230 ° C. to prepare kneaded pellets having an average diameter of 2 mm, and the kneaded pellets were placed in a magnetic field of 9.7 kOe at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 A cylindrical bond magnet B having a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is the direction along the central axis of the column) is produced, and the coercive magnetic force iHc and residual magnetism Br of this bond magnet B are produced. When the maximum energy product BH max is measured with a measuring magnetic field of 10 kOe, the coercive force iHc is 1800 to 2200 Oe, more preferably 1900 to 2100 Oe, and the residual magnetism Br is preferably 3410 G or more, more preferably 3420 G or more. The maximum energy product BH max is preferably 2.80 MGOe or more, more preferably 2.80 to 3.00 MGOe, and most preferably 2.80 to 2.90 MGOe.

さらに、上記のボンド磁石Aを印加磁場方向に対して平行に切断し、電子顕微鏡により粒子の形状を2000倍で観察し、得られた電子顕微鏡写真を2値化することにより、粒子の形状指数として、長軸長(1粒子を平行な2本の直線で挟み込んだときの直線間距離(平行な2本の直線に対して垂直に引いた線分の長さ)の最大値)が1.0μm以上の粒子の短軸長(1粒子を平行な2本の直線で挟み込んだときの直線間距離の最小値)に対する長軸長の比(長軸長/短軸長)(アスペクト比)を求める(各粒子を板状の粒子と仮定し、体積を長軸長×長軸長×短軸長として、体積で重みづけした体積平均アスペクト比を算出する)と、アスペクト比は、1.5以下であるのが好ましい。アスペクト比が1.5以下であれば、磁場配向によりボンド磁石用フェライト粉末の粒子を磁場方向に揃え易くなって、粒子の配向性が高く残留磁化Brや最大エネルギー積BHmaxが高いボンド磁石を作製し易くなる。 Further, the bond magnet A is cut parallel to the direction of the applied magnetic field, the shape of the particles is observed at 2000 times with an electron microscope, and the obtained electron micrograph is binarized to obtain a particle shape index. The major axis length (the maximum value of the distance between straight lines when one particle is sandwiched between two parallel straight lines (the length of a line segment drawn perpendicular to two parallel straight lines)) is 1. The ratio of the major axis length (major axis length / minor axis length) (aspect ratio) to the minor axis length of particles of 0 μm or more (minimum value of the distance between straight lines when one particle is sandwiched between two parallel straight lines). When calculated (assuming that each particle is a plate-shaped particle, and calculating the volume average aspect ratio weighted by volume with the volume as major axis length × major axis length × minor axis length), the aspect ratio is 1.5. It is preferably as follows. When the aspect ratio is 1.5 or less, the magnetic field orientation makes it easier to align the particles of the ferrite powder for the bond magnet in the magnetic field direction, so that the bond magnet with high particle orientation and high residual magnetization Br and maximum energy product BH max can be obtained. It becomes easy to manufacture.

また、本発明によるボンド磁石の実施の形態は、上記のボンド磁石用フェライト粉末と、(好ましくは、ポリアミド樹脂などの樹脂からなる)バインダとを備えている。なお、このボンド磁石を製造するためにボンド磁石用フェライト粉末を樹脂などと混合する際の流動度MFRは30g/10分以上であるのが好ましく、35g/10分以上であるのがさらに好ましい。 Further, the embodiment of the bonded magnet according to the present invention includes the above-mentioned ferrite powder for a bonded magnet and a binder (preferably made of a resin such as a polyamide resin). The fluidity MFR when the ferrite powder for a bonded magnet is mixed with a resin or the like in order to manufacture this bonded magnet is preferably 30 g / 10 minutes or more, and more preferably 35 g / 10 minutes or more.

以下、本発明によるボンド磁石用フェライト粉末およびその製造方法の実施例について詳細に説明する。 Hereinafter, examples of the ferrite powder for bonded magnets and the method for producing the same according to the present invention will be described in detail.

[実施例1]
(フェライトの粗粉の製造)
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と酸化ランタン(La、比表面積3.8m/g)と(酸化鉄としての)ヘマタイト(α−Fe、比表面積5.3m/g)と酸化コバルト(Co、比表面積3.3m/g)をモル比Sr:La:Fe:Co=0.70:0.30:0.70:0.30になるように秤量して混合し、この混合物にパンペレタイザー中で水を加えながら造粒し、得られた直径3〜10mmの球状の造粒物を内燃式のロータリーキルンに投入し、大気雰囲気中において1100℃で20分間焼成(一次焼成)して焼成物を得た。この焼成物をローラーミルで粉砕して、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末を得た。
[Example 1]
(Manufacturing of coarse ferrite powder)
Strontium carbonate (SrCO 3 , specific surface area 5.8 m 2 / g), lanthanum oxide (La 2 O 3 , specific surface area 3.8 m 2 / g) and hematite (as iron oxide) (α-Fe 2 O 3 , ratio) Surface area 5.3 m 2 / g) and cobalt oxide (Co 3 O 4 , specific surface area 3.3 m 2 / g) in molar ratio Sr: La: Fe: Co = 0.70: 0.30: 0.70: 0 Weigh and mix to a specific surface area of .30, granulate the mixture while adding water in a pan pelletizer, and put the obtained spherical granules with a diameter of 3 to 10 mm into an internal-combustion rotary kiln and put it in the atmosphere. A fired product was obtained by firing (primary firing) at 1100 ° C. for 20 minutes in an atmosphere. This fired product was pulverized with a roller mill to obtain a powder of a composite oxide of iron, strontium, lanthanum and cobalt.

この複合酸化物の粉末と(酸化鉄としての)ヘマタイト(α−Fe、比表面積5.3m/g)を、SrとLaの合計に対する酸化鉄中のFeのモル比(Fe/(Sr+La))=10.0になるように秤量して混合し、この混合物に対して(添加剤として)0.17質量%のホウ酸と2.3質量%の塩化カリウムを加えて混合した後、水を加えて造粒し、得られた直径3〜10mmの球状の造粒物を内燃式のロータリーキルンに投入し、大気中において1300℃(焼成温度)で20分間焼成(二次焼成)して得られた焼成物をローラーミルで粉砕して、粗粉を得た。この粗粉の比表面積を比表面積測定装置(カンタクローム社製のモノソーブ)によりBET一点法で測定したところ、比表面積は0.64m/gであった。 The powder of this composite oxide and hematite (α-Fe 2 O 3 , specific surface area 5.3 m 2 / g) (as iron oxide) are mixed with the molar ratio of Fe in iron oxide (Fe /) to the total of Sr and La. (Sr + La))) = 10.0, weighed and mixed, and 0.17% by mass of boric acid (as an additive) and 2.3% by mass of potassium chloride were added to the mixture and mixed. After that, water is added to granulate, and the obtained spherical granules having a diameter of 3 to 10 mm are put into an internal-combustion rotary kiln and fired in the air at 1300 ° C. (baking temperature) for 20 minutes (secondary firing). The fired product thus obtained was crushed with a roller mill to obtain a coarse powder. When the specific surface area of this coarse powder was measured by the BET one-point method using a specific surface area measuring device (Monosorb manufactured by Kantachrome Co., Ltd.), the specific surface area was 0.64 m 2 / g.

(フェライトの微粉の製造)
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と(酸化鉄としての)ヘマタイト(α−Fe、比表面積5.3m/g)をモル比Sr:Fe=1.0:11.0になるように秤量して混合し、この混合物にパンペレタイザー中で水を加えながら造粒し、得られた直径3〜10mmの球状の造粒物を内燃式のロータリーキルンに投入し、大気雰囲気中において970℃で20分間焼成して焼成物を得た。この焼成物をローラーミルで粉砕して、微粉を得た。この微粉の比表面積を比表面積測定装置(カンタクローム社製のモノソーブ)によりBET一点法で測定したところ、比表面積は7.96m/gであった。
(Manufacturing of ferrite fine powder)
Strontium carbonate (SrCO 3 , specific surface area 5.8 m 2 / g) and hematite (as iron oxide) (α-Fe 2 O 3 , specific surface area 5.3 m 2 / g) in molar ratio Sr: Fe = 1.0 Weigh and mix to a ratio of 11.0, granulate the mixture while adding water in a pan pelletizer, and put the obtained spherical granules with a diameter of 3 to 10 mm into an internal-combustion rotary kiln. , A fired product was obtained by firing at 970 ° C. for 20 minutes in an air atmosphere. This fired product was crushed with a roller mill to obtain fine powder. When the specific surface area of this fine powder was measured by the BET one-point method using a specific surface area measuring device (Monosorb manufactured by Kantachrome Co., Ltd.), the specific surface area was 7.96 m 2 / g.

(ボンド磁石用フェライト粉末の製造)
得られた粗粉75質量部と微粉25質量部と水150質量部とを湿式のアトライターに投入し、20分間粉砕処理を行ってスラリーを得た。このスラリーをろ過して得られた固形物を大気中において150℃で10時間乾燥させて、乾燥ケーキを得た。この乾燥ケーキをミキサーで解砕して得られた解砕物を、振動ボールミル(株式会社村上精機工作所製のUras Vibrator KEC−8−YH)により、媒体として直径12mmのスチール製ボールを使用して、回転数1800rpm、振幅8mmで28分間粉砕処理を行った後、上記の振動ボールミルにより、媒体として直径8mmのスチール製ボールを使用して、回転数1800rpm、振幅8mmで28分間粉砕処理を行った。このようにして得られた粉砕物を電気炉により大気中において925℃で30分間アニール(焼鈍)して、ボンド磁石用フェライト粉末を得た。
(Manufacturing of ferrite powder for bonded magnets)
75 parts by mass of the obtained crude powder, 25 parts by mass of fine powder, and 150 parts by mass of water were put into a wet attritor and pulverized for 20 minutes to obtain a slurry. The solid obtained by filtering this slurry was dried in the air at 150 ° C. for 10 hours to obtain a dried cake. The crushed product obtained by crushing this dried cake with a mixer is used as a medium by a vibrating ball mill (Uras Vibrator KEC-8-YH manufactured by Murakami Seiki Kosakusho Co., Ltd.) using a steel ball having a diameter of 12 mm. After crushing at a rotation speed of 1800 rpm and an amplitude of 8 mm for 28 minutes, a steel ball having a diameter of 8 mm was used as a medium by the above-mentioned vibration ball mill, and crushing treatment was performed at a rotation speed of 1800 rpm and an amplitude of 8 mm for 28 minutes. .. The pulverized product thus obtained was annealed (annealed) in the air at 925 ° C. for 30 minutes in an electric furnace to obtain a ferrite powder for a bonded magnet.

このボンド磁石用フェライト粉末について、蛍光X線分析装置(株式会社リガク製のZSX100e)を使用して、ファンダメンタル・パラメータ法(FP法)により、各元素の成分量を算出することにより、組成分析を行った。この組成分析では、ボンド磁石用フェライト粉末を測定用セルに詰め、10トン/cmの圧力を20秒間加えて成型し、測定モードをEZスキャンモード、測定径を30mm、試料形態を酸化物、測定時間を標準時間とし、真空雰囲気中において、定性分析を行った後に、検出された構成元素に対して定量分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、86.2質量%のFeと、1.7質量%のCoと、7.9質量%のSrOと、0.1質量%のBaOと、3.5質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.22、y=0.020、n=11.26、z=1.11であった。なお、zは、Srの価数を+2、Laの価数を+3、Feの価数を+3、Coの価数を+2、Oの価数を−2として、化学式の価数の合計が0(ゼロ)になるように算出した。 The composition of this ferrite powder for bonded magnets is analyzed by calculating the amount of each element by the fundamental parameter method (FP method) using a fluorescent X-ray analyzer (ZSX100e manufactured by Rigaku Co., Ltd.). went. In this composition analysis, ferrite powder for bond magnets is packed in a measurement cell and molded by applying a pressure of 10 tons / cm 2 for 20 seconds, the measurement mode is EZ scan mode, the measurement diameter is 30 mm, and the sample form is oxide. With the measurement time as the standard time, qualitative analysis was performed in a vacuum atmosphere, and then quantitative analysis was performed on the detected constituent elements. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.3 wt% MnO, and Fe 2 O 3 of 86.2 wt%, 1.7 wt% and of Co 2 O 3, and 7.9 wt% SrO, and 0.1 wt% BaO, are included 3.5 wt% La 2 O 3, in the main component of the ferrite powder for bonded magnets Certain Sr, La, Fe, and Co were detected. Elements such as Cr, Mn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.22, y = 0.020, n = 11. 26, z = 1.11. For z, the valence of Sr is +2, the valence of La is +3, the valence of Fe is +3, the valence of Co is +2, and the valence of O is -2, and the total valence of the chemical formula is 0. It was calculated to be (zero).

また、このボンド磁石用フェライト粉末について、乾式レーザー回折式粒度分布測定装置(株式会社日本レーザー製(HELOS&RODOS))を使用して、焦点距離20mm、分散圧5.0bar、吸引圧130mbarで体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は27.5体積%、粒径1〜5μmの粒子の頻度分布は48.1体積%、粒径5μmを超える粒子の頻度分布は24.5体積%であった。 Further, regarding this ferrite powder for a bond magnet, a dry laser diffraction type particle size distribution measuring device (manufactured by Nippon Laser Co., Ltd. (HELOS & RODOS)) is used, and the focal length is 20 mm, the dispersion pressure is 5.0 bar, and the attraction pressure is 130 mbar, based on the volume. The particle size distribution was measured. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 27.5% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 48.1% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 24.5 volumes. %Met.

また、このボンド磁石用フェライト粉末について、粉末X線回折装置(株式会社リガク製のMiniflex600)を使用して、管電圧を40kV、管電流を15mA、測定範囲を15°〜60°、スキャン速度を1°/分、スキャン幅を0.02°として、粉末X線回折法(XRD)による測定を行った。その結果、すべてのピークがSrFe1219と同じ位置に観測され、本実施例のボンド磁石用フェライト粉末がM型フェライト構造を有することが確認された。この結果は、以下に説明する実施例2〜4および比較例1〜5でも同様であった。 Further, for this ferrite powder for bond magnets, a powder X-ray diffractometer (Miniflex 600 manufactured by Rigaku Co., Ltd.) was used to set the tube voltage to 40 kV, the tube current to 15 mA, the measurement range to 15 ° to 60 °, and the scan speed. Measurement was performed by powder X-ray diffraction method (XRD) at 1 ° / min and a scan width of 0.02 °. As a result, all the peaks were observed at the same positions as SrFe 12 O 19, and it was confirmed that the ferrite powder for the bonded magnet of this example had an M-type ferrite structure. This result was the same in Examples 2 to 4 and Comparative Examples 1 to 5 described below.

また、ボンド磁石用フェライト粉末の平均粒径(APD)を比表面積測定装置(株式会社島津製作所製のSS−100)を用いて空気浸透法により測定したところ、平均粒径は1.47μmであった。また、このボンド磁石用フェライト粉末の比表面積を上記と同様の方法により測定したところ、比表面積は1.88m/gであった。 Further, when the average particle size (APD) of the ferrite powder for bond magnets was measured by the air permeation method using a specific surface area measuring device (SS-100 manufactured by Shimadzu Corporation), the average particle size was 1.47 μm. rice field. Further, when the specific surface area of the ferrite powder for a bonded magnet was measured by the same method as described above, the specific surface area was 1.88 m 2 / g.

また、ボンド磁石用フェライト粉末10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮したときのボンド磁石用フェライト粉末の密度をボンド磁石用フェライト粉末の圧縮密度(CD)として測定したところ、3.73g/cmであった。 Further, the density of the ferrite powder for the bond magnet when 10 g of the ferrite powder for the bond magnet is filled in a cylindrical mold having an inner diameter of 2.54 cmφ and then compressed at a pressure of 1 ton / cm 2 is the compression of the ferrite powder for the bond magnet. When measured as a density (CD), it was 3.73 g / cm 3.

また、ボンド磁石用フェライト粉末8gとポリエステル樹脂(日本地科学社製のP−レジン)0.4ccを乳鉢中で混練し、得られた混練物7gを内径15mmφの金型に充填し、2トン/cmの圧力で60秒間圧縮して得られた成形品を金型から抜き取り、150℃で30分間乾燥させて圧粉体を得た。この圧粉体の磁気特性として、BHトレーサー(東英工業株式会社製のTRF−5BH)を使用して、測定磁場10kOeで圧粉体の保磁力iHcおよび残留磁化Brを測定したところ、保磁力iHcは2520Oeであり、残留磁化Brは2010Gであった。 Further, 8 g of ferrite powder for bond magnets and 0.4 cc of polyester resin (P-resin manufactured by Nippon Geographical Science Co., Ltd.) were kneaded in a dairy pot, and 7 g of the obtained kneaded product was filled in a mold having an inner diameter of 15 mmφ and 2 tons. The molded product obtained by compressing at a pressure of / cm 2 for 60 seconds was withdrawn from the mold and dried at 150 ° C. for 30 minutes to obtain a green compact. As the magnetic characteristics of this green compact, when the coercive force iHc and residual magnetization Br of the green compact were measured with a measurement magnetic field of 10 kOe using a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.), the coercive force was measured. The iHc was 2520Oe and the residual magnetization Br was 2010G.

(ボンド磁石Aの製造)
得られたボンド磁石用フェライト粉末92.0質量部と、シランカップリング剤(東レダウコーニング株式会社製のZ−6094N)0.6質量部と、滑剤(ヘンケル社製のVPN−212P)0.8質量部と、バインダとして粉末状のポリアミド樹脂(宇部興産株式会社製のP−1011F)6.6質量部とを秤量し、ミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを得た。なお、メルトフローインデクサー(株式会社東洋精機製作所製のメルトフローインデクサーC−5059D2)を使用して、上記の混合物が270℃、荷重10kgで押し出された重量を測定し、この重量を10分当たりで押し出された量に換算することにより、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、145.1g/10分であった。この混練ペレットを射出成形機(住友重機械工業株式会社製)に装填して、9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石A(F.C.92.0質量%、9.7kOe)を得た。
(Manufacturing of bond magnet A)
92.0 parts by mass of the obtained ferrite powder for bond magnets, 0.6 parts by mass of a silane coupling agent (Z-6094N manufactured by Toray Dow Corning Co., Ltd.), and a lubricant (VPN-212P manufactured by Henkel Co., Ltd.) 0. 8 parts by mass and 6.6 parts by mass of powdered polyamide resin (P-1011F manufactured by Ube Kosan Co., Ltd.) as a binder were weighed, filled in a mixer and mixed, and the obtained mixture was kneaded at 230 ° C. Then, kneaded pellets having an average diameter of 2 mm were obtained. Using a melt flow indexer (melt flow indexer C-5059D2 manufactured by Toyo Seiki Seisakusho Co., Ltd.), the weight of the above mixture extruded at 270 ° C. and a load of 10 kg was measured, and this weight was measured for 10 minutes. The fluidity MFR when mixing the ferrite powder for a bonded magnet was determined by converting it into the amount extruded by hitting, and it was 145.1 g / 10 minutes. This kneaded pellet is loaded into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.) and injection-formed at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 in a magnetic field of 9.7 kOe to have a diameter of 15 mm × height. A cylindrical bond magnet A (FC 92.0 mass%, 9.7 kOe) having a diameter of 8 mm (the orientation direction of the magnetic field was along the central axis of the column) was obtained.

このボンド磁石Aの磁気特性として、BHトレーサー(東英工業株式会社製のTRF−5BH)を使用して、測定磁場10kOeでボンド磁石Aの保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定したところ、保磁力iHcは2310Oe、残留磁化Brは3281G、最大エネルギー積BHmaxは2.68MGOeであった。 As the magnetic characteristics of this bond magnet A, a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.) is used to obtain the coercive force iHc, residual magnetization Br, and maximum energy product BH max of the bond magnet A at a measurement magnetic field of 10 kOe. As a result, the coercive force iHc was 2310Oe, the residual magnetization Br was 3281G, and the maximum energy product BH max was 2.68MGOe.

また、このボンド磁石Aを印加磁場方向に対して平行に切断し、走査型電子顕微鏡(SEM)により粒子の形状を2000倍で観察し、得られたSEM写真を2値化することにより、粒子の形状指数として、SEM写真中の200個以上の粒子(SEM写真の1以上の視野内に外縁部全体が観察される長軸長(1粒子を平行な2本の直線で挟み込んだときの直線間距離の最大値)が1.0μm以上の200個以上の粒子)について、短軸長(1粒子を平行な2本の直線で挟み込んだときの直線間距離の最小値)に対する長軸長の比(長軸長/短軸長)の平均値(アスペクト比)を求めたところ、1.48であった。なお、このアスペクト比として、各粒子を板状の粒子と仮定し、体積を長軸長×長軸長×短軸長として、体積で重みづけした体積平均アスペクト比を算出した。 Further, the bond magnet A is cut parallel to the direction of the applied magnetic field, the shape of the particles is observed at 2000 times with a scanning electron microscope (SEM), and the obtained SEM photograph is binarized to obtain particles. As the shape index of, 200 or more particles in the SEM photograph (long axis length in which the entire outer edge is observed in one or more visual fields of the SEM photograph (straight line when one particle is sandwiched between two parallel straight lines) For 200 or more particles with an inter-straight distance of 1.0 μm or more), the major axis length with respect to the minor axis length (minimum value of the inter-straight line distance when one particle is sandwiched between two parallel straight lines). The average value (aspect ratio) of the ratios (major axis length / minor axis length) was 1.48. As this aspect ratio, the volume average aspect ratio weighted by volume was calculated by assuming that each particle is a plate-shaped particle and the volume is major axis length × major axis length × minor axis length.

(ボンド磁石Bの製造)
得られたボンド磁石用フェライト粉末93.5質量部と、シランカップリング剤(東レダウコーニング株式会社製のZ−6094N)0.6質量部と、滑剤(ヘンケル社製のVPN−212P)0.8質量部と、バインダとして粉末状のポリアミド樹脂(宇部興産株式会社製のP−1011F)5.1質量部とを秤量し、ミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを得た。なお、メルトフローインデクサー(株式会社東洋精機製作所製のメルトフローインデクサーC−5059D2)を使用して、上記の混合物が270℃、荷重10kgで押し出された重量を測定し、この重量を10分当たりで押し出された量に換算することにより、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、69.7g/10分であった。この混練ペレットを射出成形機(住友重機械工業株式会社製)に装填して、9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石B(F.C.93.5質量%、9.7kOe)を得た。
(Manufacturing of bond magnet B)
93.5 parts by mass of the obtained ferrite powder for bond magnets, 0.6 parts by mass of a silane coupling agent (Z-6094N manufactured by Toray Dow Corning Co., Ltd.), and a lubricant (VPN-212P manufactured by Henkel Co., Ltd.) 0. 8 parts by mass and 5.1 parts by mass of powdered polyamide resin (P-1011F manufactured by Ube Kosan Co., Ltd.) as a binder were weighed, filled in a mixer and mixed, and the obtained mixture was kneaded at 230 ° C. Then, kneaded pellets having an average diameter of 2 mm were obtained. Using a melt flow indexer (melt flow indexer C-5059D2 manufactured by Toyo Seiki Seisakusho Co., Ltd.), the weight of the above mixture extruded at 270 ° C. and a load of 10 kg was measured, and this weight was measured for 10 minutes. The fluidity MFR when mixing the ferrite powder for a bonded magnet was determined by converting it into the amount extruded by hitting, and it was 69.7 g / 10 minutes. This kneaded pellet is loaded into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.) and injection-formed at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 in a magnetic field of 9.7 kOe to have a diameter of 15 mm × height. A cylindrical bond magnet B (FC 93.5 mass%, 9.7 kOe) having a diameter of 8 mm (the orientation direction of the magnetic field was along the central axis of the column) was obtained.

このボンド磁石Bの磁気特性として、BHトレーサー(東英工業株式会社製のTRF−5BH)を使用して、測定磁場10kOeでボンド磁石Bの保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定したところ、保磁力iHcは2050Oe、残留磁化Brは3443G、最大エネルギー積BHmaxは2.88MGOeであった。 As the magnetic characteristics of this bond magnet B, a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.) is used to obtain the coercive force iHc, residual magnetization Br, and maximum energy product BH max of the bond magnet B at a measurement magnetic field of 10 kOe. As a result, the coercive force iHc was 2050Oe, the residual magnetization Br was 3443G, and the maximum energy product BH max was 2.88MGOe.

[実施例2]
ボンド磁石用フェライト粉末を製造する際のアニール(焼鈍)の温度を900℃とした以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 2]
A ferrite powder for a bonded magnet was obtained by the same method as in Example 1 except that the temperature of annealing (annealing) in producing the ferrite powder for a bonded magnet was set to 900 ° C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、85.5質量%のFeと、2.0質量%のCoと、7.7質量%のSrOと、0.1質量%のBaOと、4.0質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.25、y=0.020、n=11.08、z=1.38であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.4 wt% MnO, and Fe 2 O 3 of 85.5 wt%, 2.0 wt% and of Co 2 O 3, and 7.7 wt% SrO, and BaO of 0.1 weight%, contains 4.0 wt% La 2 O 3, in the main component of the ferrite powder for bonded magnets Certain Sr, La, Fe, and Co were detected. Elements such as Cr, Mn, Zn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.25, y = 0.020, n = 11. 08, z = 1.38.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は24.8体積%、粒径1〜5μmの粒子の頻度分布は55.9体積%、粒径5μmを超える粒子の頻度分布は19.3体積%であった。 Further, with respect to this ferrite powder for a bonded magnet, the volume-based particle size distribution was measured by the same method as in Example 1. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 24.8% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 55.9% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 19.3 volume. %Met.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.39μm、比表面積は2.18m/g、圧縮密度(CD)は3.78g/cm、圧粉体の保磁力iHcは2520Oe、残留磁化Brは2010Gであった。 Further, for this ferrite powder for a bonded magnet, the average particle size, specific surface area, compression density (CD), coercive force iHc of the green compact, and residual magnetization Br were measured by the same method as in Example 1. As a result, the average particle size was 1.39 μm, the specific surface area was 2.18 m 2 / g, the compression density (CD) was 3.78 g / cm 3 , the coercive force iHc of the green compact was 2520 Oe, and the residual magnetization Br was 2010 G. there were.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Aを得た。このボンド磁石Aについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2310Oe、残留磁化Brは3274G、最大エネルギー積BHmaxは2.67MGOeであり、アスペクト比は1.47であった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、121.2g/10分であった。 Further, using this ferrite powder for a bonded magnet, a bonded magnet A was obtained by the same method as in Example 1. For this bond magnet A, the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured by the same method as in Example 1, and the aspect ratio was calculated. The maximum energy product BH max was 2.67 MGOe, and the aspect ratio was 1.47. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 121.2 g / 10 minutes.

また、上記のボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Bを得た。このボンド磁石Bについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定したところ、保磁力iHcは2050Oe、残留磁化Brは3442G、最大エネルギー積BHmaxは2.88MGOeであった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、36.6g/10分であった。 Further, using the above-mentioned ferrite powder for a bonded magnet, a bonded magnet B was obtained by the same method as in Example 1. When the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured for this bond magnet B by the same method as in Example 1, the coercive force iHc was 2050 Oe, the residual magnetization Br was 3442 G, and the maximum energy product BH max. Was 2.88 MGOe. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 36.6 g / 10 minutes.

[実施例3]
ボンド磁石用フェライト粉末を製造する際のアニール(焼鈍)の温度を950℃とした以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 3]
A ferrite powder for a bonded magnet was obtained by the same method as in Example 1 except that the annealing (annealing) temperature when producing the ferrite powder for a bonded magnet was set to 950 ° C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、85.7質量%のFeと、1.8質量%のCoと、7.9質量%のSrOと、0.2質量%のBaOと、3.7質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.23、y=0.020、n=11.07、z=1.40であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.4 wt% MnO, and Fe 2 O 3 of 85.7 wt%, 1.8 wt% and of Co 2 O 3, and 7.9 wt% SrO, and 0.2 wt% BaO, includes a 3.7 wt% La 2 O 3, in the main component of the ferrite powder for bonded magnets Certain Sr, La, Fe, and Co were detected. Elements such as Cr, Mn, Zn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.23, y = 0.020, n = 11. 07, z = 1.40.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は26.7体積%、粒径1〜5μmの粒子の頻度分布は47.8体積%、粒径5μmを超える粒子の頻度分布は25.5体積%であった。 Further, with respect to this ferrite powder for a bonded magnet, the volume-based particle size distribution was measured by the same method as in Example 1. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 26.7% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 47.8% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 25.5 volume. %Met.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.47μm、比表面積は1.88m/g、圧縮密度(CD)は3.75g/cm、圧粉体の保磁力iHcは2590Oe、残留磁化Brは1990Gであった。 Further, for this ferrite powder for a bonded magnet, the average particle size, specific surface area, compression density (CD), coercive force iHc of the green compact, and residual magnetization Br were measured by the same method as in Example 1. As a result, the average particle size was 1.47 μm, the specific surface area was 1.88 m 2 / g, the compression density (CD) was 3.75 g / cm 3 , the coercive force iHc of the green compact was 2590 Oe, and the residual magnetization Br was 1990 G. there were.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Aを得た。このボンド磁石Aについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2284Oe、残留磁化Brは3284G、最大エネルギー積BHmaxは2.68MGOeであり、アスペクト比は1.48であった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、148.2g/10分であった。 Further, using this ferrite powder for a bonded magnet, a bonded magnet A was obtained by the same method as in Example 1. For this bond magnet A, the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured by the same method as in Example 1, and the aspect ratio was calculated. The maximum energy product BH max was 2.68 MGOe, and the aspect ratio was 1.48. The fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1 and found to be 148.2 g / 10 minutes.

また、上記のボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Bを得た。このボンド磁石Bについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定したところ、保磁力iHcは2027Oe、残留磁化Brは3426G、最大エネルギー積BHmaxは2.85MGOeであった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、77.4g/10分であった。 Further, using the above-mentioned ferrite powder for a bonded magnet, a bonded magnet B was obtained by the same method as in Example 1. When the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured for this bond magnet B by the same method as in Example 1, the coercive force iHc was 2027 Oe, the residual magnetization Br was 3426 G, and the maximum energy product BH max. Was 2.85 MGOe. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 77.4 g / 10 minutes.

[実施例4]
ボンド磁石用フェライト粉末を製造する際のアニール(焼鈍)の温度を975℃とした以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 4]
A ferrite powder for a bonded magnet was obtained by the same method as in Example 1 except that the temperature of annealing (annealing) in producing the ferrite powder for a bonded magnet was set to 975 ° C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、85.5質量%のFeと、1.9質量%のCoと、8.0質量%のSrOと、0.2質量%のBaOと、3.7質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.23、y=0.020、n=10.95、z=1.58であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.4 wt% MnO, and Fe 2 O 3 of 85.5 wt%, 1.9 wt% and of Co 2 O 3, and 8.0 wt% of SrO, and 0.2 wt% BaO, includes a 3.7 wt% La 2 O 3, in the main component of the ferrite powder for bonded magnets Certain Sr, La, Fe, and Co were detected. Elements such as Cr, Mn, Zn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.23, y = 0.020, n = 10. It was 95, z = 1.58.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は23.9体積%、粒径1〜5μmの粒子の頻度分布は50.6体積%、粒径5μmを超える粒子の頻度分布は25.6体積%であった。 Further, with respect to this ferrite powder for a bonded magnet, the volume-based particle size distribution was measured by the same method as in Example 1. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 23.9% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 50.6% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 25.6 volumes. %Met.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.58μm、比表面積は1.73m/g、圧縮密度(CD)は3.71g/cm、圧粉体の保磁力iHcは2530Oe、残留磁化Brは1970Gであった。 Further, for this ferrite powder for a bonded magnet, the average particle size, specific surface area, compression density (CD), coercive force iHc of the green compact, and residual magnetization Br were measured by the same method as in Example 1. As a result, the average particle size was 1.58 μm, the specific surface area was 1.73 m 2 / g, the compression density (CD) was 3.71 g / cm 3 , the coercive force iHc of the green compact was 2530 Oe, and the residual magnetization Br was 1970 G. there were.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Aを得た。このボンド磁石Aについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2176Oe、残留磁化Brは3291G、最大エネルギー積BHmaxは2.66MGOeであり、アスペクト比は1.45であった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、143.6g/10分であった。 Further, using this ferrite powder for a bonded magnet, a bonded magnet A was obtained by the same method as in Example 1. For this bond magnet A, the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured by the same method as in Example 1, and the aspect ratio was calculated. As a result, the coercive force iHc was 2176Oe and the residual magnetization Br was 3291G. The maximum energy product BH max was 2.66 MGOe, and the aspect ratio was 1.45. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 143.6 g / 10 minutes.

また、上記のボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Bを得た。このボンド磁石Bについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定したところ、保磁力iHcは1918Oe、残留磁化Brは3426G、最大エネルギー積BHmaxは2.81MGOeであった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、77.0g/10分であった。 Further, using the above-mentioned ferrite powder for a bonded magnet, a bonded magnet B was obtained by the same method as in Example 1. When the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured for this bond magnet B by the same method as in Example 1, the coercive force iHc was 1918 Oe, the residual magnetization Br was 3426 G, and the maximum energy product BH max. Was 2.81 MGOe. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 77.0 g / 10 minutes.

[比較例1]
実施例1と同様の方法により、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末を得た後、焼成温度を1250℃とした以外は、実施例1と同様の方法により、粗粉を得た。この粗粉の比表面積を実施例1と同様の方法により測定したところ、比表面積は0.74m/gであった。
[Comparative Example 1]
After obtaining a powder of a composite oxide of iron, strontium, lanthanum, and cobalt by the same method as in Example 1, a crude powder was obtained by the same method as in Example 1 except that the firing temperature was set to 1250 ° C. rice field. When the specific surface area of this crude powder was measured by the same method as in Example 1, the specific surface area was 0.74 m 2 / g.

得られた粗粉100質量部と水150質量部とを湿式のアトライターに投入し、20分間粉砕処理を行ってスラリーを得た。このスラリーをろ過して得られた固形物を大気中において150℃で10時間乾燥させて、乾燥ケーキを得た。この乾燥ケーキをミキサーで解砕して得られた解砕物を、振動ボールミル(株式会社村上精機工作所製のUras Vibrator KEC−8−YH)により、媒体として直径12mmのスチール製ボールを使用して、回転数1800rpm、振幅8mmで28分間粉砕処理を行った。このようにして得られた粉砕物を電気炉により大気中において975℃で30分間アニール(焼鈍)して、ボンド磁石用フェライト粉末を得た。 100 parts by mass of the obtained crude powder and 150 parts by mass of water were put into a wet attritor and pulverized for 20 minutes to obtain a slurry. The solid obtained by filtering this slurry was dried in the air at 150 ° C. for 10 hours to obtain a dried cake. The crushed product obtained by crushing this dried cake with a mixer is used as a medium by a vibrating ball mill (Uras Vibrator KEC-8-YH manufactured by Murakami Seiki Kosakusho Co., Ltd.) using a steel ball having a diameter of 12 mm. , The pulverization treatment was carried out at a rotation speed of 1800 rpm and an amplitude of 8 mm for 28 minutes. The pulverized product thus obtained was annealed (annealed) in the air at 975 ° C. for 30 minutes in an electric furnace to obtain a ferrite powder for a bonded magnet.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、85.3質量%のFeと、2.4質量%のCoと、6.8質量%のSrOと、0.1質量%のBaOと、4.9質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.31、y=0.030、n=11.47、z=0.80であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.3 wt% MnO, and Fe 2 O 3 of 85.3 wt%, 2.4 wt% and of Co 2 O 3, and 6.8 wt% SrO, and 0.1 wt% BaO, includes a 4.9 wt% La 2 O 3, in the main component of the ferrite powder for bonded magnets Certain Sr, La, Fe, and Co were detected. Elements such as Cr, Mn, Zn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.31, y = 0.030, n = 11. 47, z = 0.80.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は21.3体積%、粒径1〜5μmの粒子の頻度分布は71.9体積%、粒径5μmを超える粒子の頻度分布は6.8体積%であった。 Further, with respect to this ferrite powder for a bonded magnet, the volume-based particle size distribution was measured by the same method as in Example 1. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 21.3% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 71.9% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 6.8 volumes. %Met.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.72μm、比表面積は1.47m/g、圧縮密度(CD)は3.45g/cm、圧粉体の保磁力iHcは3060Oe、残留磁化Brは1870Gであった。 Further, for this ferrite powder for a bonded magnet, the average particle size, specific surface area, compression density (CD), coercive force iHc of the green compact, and residual magnetization Br were measured by the same method as in Example 1. As a result, the average particle size was 1.72 μm, the specific surface area was 1.47 m 2 / g, the compression density (CD) was 3.45 g / cm 3 , the coercive force iHc of the green compact was 3060 Oe, and the residual magnetization Br was 1870 G. there were.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Aを得た。このボンド磁石Aについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2415Oe、残留磁化Brは3193G、最大エネルギー積BHmaxは2.52MGOeであり、アスペクト比は1.43であった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、69.8g/10分であった。 Further, using this ferrite powder for a bonded magnet, a bonded magnet A was obtained by the same method as in Example 1. For this bond magnet A, the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured by the same method as in Example 1, and the aspect ratio was calculated. As a result, the coercive force iHc was 2415Oe and the residual magnetization Br was 3193G. The maximum energy product BH max was 2.52 MGOe, and the aspect ratio was 1.43. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 69.8 g / 10 minutes.

また、上記のボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Bの製造を試みたが、ボンド磁石用フェライト粉末を混合する際に流動しなかったため、ボンド磁石Bを製造することはできなかった。 Further, using the above-mentioned ferrite powder for bond magnets, an attempt was made to manufacture the bond magnet B by the same method as in Example 1, but the ferrite powder for bond magnets did not flow when mixed, so that the bond magnets did not flow. B could not be manufactured.

[比較例2]
焼成温度を1300℃とした以外は、比較例1と同様の方法により、粗粉を得た。この粗粉の比表面積を実施例1と同様の方法により測定したところ、比表面積は0.68m/gであった。この粗粉を使用して、比較例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Comparative Example 2]
Coarse powder was obtained by the same method as in Comparative Example 1 except that the firing temperature was set to 1300 ° C. When the specific surface area of this crude powder was measured by the same method as in Example 1, the specific surface area was 0.68 m 2 / g. Using this coarse powder, a ferrite powder for a bonded magnet was obtained by the same method as in Comparative Example 1.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、84.7質量%のFeと、2.6質量%のCoと、6.8質量%のSrOと、0.1質量%のBaOと、5.1質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.32、y=0.030、n=11.27、z=1.10であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.4 wt% MnO, and Fe 2 O 3 of 84.7 wt%, 2.6 wt% and of Co 2 O 3, and 6.8 wt% SrO, and 0.1 wt% BaO, are included 5.1 wt% La 2 O 3, in the main component of the ferrite powder for bonded magnets Certain Sr, La, Fe, and Co were detected. Elements such as Cr, Mn, Zn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.32, y = 0.030, n = 11. 27, z = 1.10.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は17.0体積%、粒径1〜5μmの粒子の頻度分布は62.4体積%、粒径5μmを超える粒子の頻度分布は20.6体積%であった。 Further, with respect to this ferrite powder for a bonded magnet, the volume-based particle size distribution was measured by the same method as in Example 1. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 17.0% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 62.4% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 20.6 volume. %Met.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.84μm、比表面積は1.38m/g、圧縮密度(CD)は3.47g/cm、圧粉体の保磁力iHcは2590Oe、残留磁化Brは1920Gであった。 Further, for this ferrite powder for a bonded magnet, the average particle size, specific surface area, compression density (CD), coercive force iHc of the green compact, and residual magnetization Br were measured by the same method as in Example 1. As a result, the average particle size was 1.84 μm, the specific surface area was 1.38 m 2 / g, the compression density (CD) was 3.47 g / cm 3 , the coercive force iHc of the green compact was 2590 Oe, and the residual magnetization Br was 1920 G. there were.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Aを得た。このボンド磁石Aについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2250Oe、残留磁化Brは3204G、最大エネルギー積BHmaxは2.56MGOeであり、アスペクト比は1.49であった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、89.5g/10分であった。 Further, using this ferrite powder for a bonded magnet, a bonded magnet A was obtained by the same method as in Example 1. For this bond magnet A, the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured by the same method as in Example 1, and the aspect ratio was calculated. The maximum energy product BH max was 2.56 MGOe, and the aspect ratio was 1.49. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 89.5 g / 10 minutes.

また、上記のボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Bの製造を試みたが、ボンド磁石用フェライト粉末を混合する際に流動しなかったため、ボンド磁石Bを製造することはできなかった。 Further, using the above-mentioned ferrite powder for bond magnets, an attempt was made to manufacture the bond magnet B by the same method as in Example 1, but the ferrite powder for bond magnets did not flow when mixed, so that the bond magnets did not flow. B could not be manufactured.

[比較例3]
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と酸化ランタン(La、比表面積3.8m/g)とヘマタイト(α−Fe、比表面積5.3m/g)と酸化コバルト(Co、比表面積3.3m/g)をモル比Sr:La:Fe:Co=0.70:0.30:11.70:0.30になるように秤量して混合し、一次焼成の温度を1100℃から1200℃に変更して、二次焼成を行わなかった以外は、実施例1と同様の方法により、粗粉を得た。この粗粉の比表面積を実施例1と同様の方法により測定したところ、比表面積は0.51m/gであった。
[Comparative Example 3]
Strontium carbonate (SrCO 3, a specific surface area of 5.8 m 2 / g) and lanthanum oxide (La 2 O 3, a specific surface area of 3.8 m 2 / g) and hematite (α-Fe 2 O 3, a specific surface area of 5.3 m 2 / g) and cobalt oxide (Co 3 O 4 , specific surface area 3.3 m 2 / g) so that the molar ratio Sr: La: Fe: Co = 0.70: 0.30: 11.70: 0.30. Coarse powder was obtained by the same method as in Example 1 except that the primary firing temperature was changed from 1100 ° C. to 1200 ° C. and the secondary firing was not performed. When the specific surface area of this crude powder was measured by the same method as in Example 1, the specific surface area was 0.51 m 2 / g.

得られた粗粉を使用して、アニール(焼鈍)を985℃とした以外は、比較例1と同様の方法により、ボンド磁石用フェライト粉末を得た。 Using the obtained crude powder, a ferrite powder for a bonded magnet was obtained by the same method as in Comparative Example 1 except that the annealing (annealing) was set to 985 ° C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、85.3質量%のFeと、2.4質量%のCoと、7.0質量%のSrOと、4.9質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.31、y=0.030、n=11.24、z=1.14であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.3 wt% MnO, and Fe 2 O 3 of 85.3 wt%, 2.4 wt% Co 2 O 3 and 7.0% by mass of SrO and 4.9% by mass of La 2 O 3 are contained, and Sr, La, Fe and Co, which are the main components of ferrite powder for bonded magnets, are contained. was detected. Elements such as Cr, Mn, Zn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.31, y = 0.030, n = 11. 24, z = 1.14.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は26.2体積%、粒径1〜5μmの粒子の頻度分布は72.6体積%、粒径5μmを超える粒子の頻度分布は1.3体積%であった。 Further, with respect to this ferrite powder for a bonded magnet, the volume-based particle size distribution was measured by the same method as in Example 1. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 26.2% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 72.6% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 1.3 volumes. %Met.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.25μm、比表面積は2.21m/g、圧縮密度(CD)は3.26g/cm、圧粉体の保磁力iHcは3950Oe、残留磁化Brは1790Gであった。 Further, for this ferrite powder for a bonded magnet, the average particle size, specific surface area, compression density (CD), coercive force iHc of the green compact, and residual magnetization Br were measured by the same method as in Example 1. As a result, the average particle size was 1.25 μm, the specific surface area was 2.21 m 2 / g, the compression density (CD) was 3.26 g / cm 3 , the coercive force iHc of the green compact was 3950 Oe, and the residual magnetization Br was 1790 G. there were.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Aを得た。このボンド磁石Aについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは3248Oe、残留磁化Brは3012G、最大エネルギー積BHmaxは2.21MGOeであり、アスペクト比は1.62であった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、42.8g/10分であった。 Further, using this ferrite powder for a bonded magnet, a bonded magnet A was obtained by the same method as in Example 1. For this bond magnet A, the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured by the same method as in Example 1, and the aspect ratio was calculated. As a result, the coercive force iHc was 3248Oe and the residual magnetization Br was 3012G. The maximum energy product BH max was 2.21 MGOe, and the aspect ratio was 1.62. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 42.8 g / 10 minutes.

また、上記のボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Bの製造を試みたが、ボンド磁石用フェライト粉末を混合する際に流動しなかったため、ボンド磁石Bを製造することはできなかった。 Further, using the above-mentioned ferrite powder for bond magnets, an attempt was made to manufacture the bond magnet B by the same method as in Example 1, but the ferrite powder for bond magnets did not flow when mixed, so that the bond magnets did not flow. B could not be manufactured.

[比較例4]
一次焼成の温度を1250℃とした以外は、比較例3と同様の方法により、粗粉を得た。この粗粉の比表面積を実施例1と同様の方法により測定したところ、比表面積は0.71m/gであった。
[Comparative Example 4]
Coarse powder was obtained by the same method as in Comparative Example 3 except that the temperature of the primary firing was set to 1250 ° C. When the specific surface area of this crude powder was measured by the same method as in Example 1, the specific surface area was 0.71 m 2 / g.

得られた粗粉を使用して、比較例3と同様の方法により、ボンド磁石用フェライト粉末を得た。 Using the obtained crude powder, a ferrite powder for a bonded magnet was obtained by the same method as in Comparative Example 3.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、85.3質量%のFeと、2.4質量%のCoと、7.1質量%のSrOと、4.7質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.30、y=0.030、n=11.27、z=1.10であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.3 wt% MnO, and Fe 2 O 3 of 85.3 wt%, 2.4 wt% Co 2 O 3 and 7.1% by mass of SrO and 4.7% by mass of La 2 O 3 are contained, and Sr, La, Fe and Co, which are the main components of the ferrite powder for bond magnets, are contained. was detected. Elements such as Cr, Mn, Zn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.30, y = 0.030, n = 11. 27, z = 1.10.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は25.2体積%、粒径1〜5μmの粒子の頻度分布は70.0体積%、粒径5μmを超える粒子の頻度分布は4.8体積%であった。 Further, with respect to this ferrite powder for a bonded magnet, the volume-based particle size distribution was measured by the same method as in Example 1. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 25.2% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 70.0% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 4.8 volumes. %Met.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.26μm、比表面積は2.19m/g、圧縮密度(CD)は3.34g/cm、圧粉体の保磁力iHcは3590Oe、残留磁化Brは1830Gであった。 Further, for this ferrite powder for a bonded magnet, the average particle size, specific surface area, compression density (CD), coercive force iHc of the green compact, and residual magnetization Br were measured by the same method as in Example 1. As a result, the average particle size was 1.26 μm, the specific surface area was 2.19 m 2 / g, the compression density (CD) was 3.34 g / cm 3 , the coercive force iHc of the green compact was 3590 Oe, and the residual magnetization Br was 1830 G. there were.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Aを得た。このボンド磁石Aについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2956Oe、残留磁化Brは3048G、最大エネルギー積BHmaxは2.33MGOeであり、アスペクト比は1.56であった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、61.2g/10分であった。 Further, using this ferrite powder for a bonded magnet, a bonded magnet A was obtained by the same method as in Example 1. For this bond magnet A, the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured by the same method as in Example 1, and the aspect ratio was calculated. The maximum energy product BH max was 2.33 MGOe, and the aspect ratio was 1.56. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 61.2 g / 10 minutes.

また、上記のボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Bの製造を試みたが、ボンド磁石用フェライト粉末を混合する際に流動しなかったため、ボンド磁石Bを製造することはできなかった。 Further, using the above-mentioned ferrite powder for bond magnets, an attempt was made to manufacture the bond magnet B by the same method as in Example 1, but the ferrite powder for bond magnets did not flow when mixed, so that the bond magnets did not flow. B could not be manufactured.

[比較例5]
一次焼成の温度を1300℃とした以外は、比較例3と同様の方法により、粗粉を得た。この粗粉の比表面積を実施例1と同様の方法により測定したところ、比表面積は0.98m/gであった。
[Comparative Example 5]
Coarse powder was obtained by the same method as in Comparative Example 3 except that the temperature of the primary firing was set to 1300 ° C. When the specific surface area of this crude powder was measured by the same method as in Example 1, the specific surface area was 0.98 m 2 / g.

得られた粗粉を使用して、比較例3と同様の方法により、ボンド磁石用フェライト粉末を得た。 Using the obtained crude powder, a ferrite powder for a bonded magnet was obtained by the same method as in Comparative Example 3.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、85.4質量%のFeと、2.4質量%のCoと、7.0質量%のSrOと、4.7質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%以下と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1−xLa)・(Fe1−yCo19−zと表記した場合のx、y、n、zを算出すると、x=0.30、y=0.030、n=11.39、z=0.91であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets, and Cr 2 O 3 0.1 wt%, and 0.3 wt% MnO, and Fe 2 O 3 of 85.4 wt%, 2.4 wt% Co 2 O 3 and 7.0% by mass of SrO and 4.7% by mass of La 2 O 3 are contained, and Sr, La, Fe and Co, which are the main components of ferrite powder for bonded magnets, are contained. was detected. Elements such as Cr, Mn, Zn, and Ba, which are considered to be derived from impurities in the raw material, were also detected, but all of them were in a trace amount of 0.4% by mass or less in terms of oxide. These trace elements (1.0% by mass or less in terms of oxide) are regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets is determined from the analytical values of the main components Sr, La, Fe, and Co (Sr 1-). x La x) · (Fe 1 -y Co y) in the case where denoted as n O 19-z x, y , n, calculating the z, x = 0.30, y = 0.030, n = 11. 39, z = 0.91.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、体積基準の粒度分布を測定した。その結果、粒径1μm未満の粒子の頻度分布は27.5体積%、粒径1〜5μmの粒子の頻度分布は64.3体積%、粒径5μmを超える粒子の頻度分布は8.2体積%であった。 Further, with respect to this ferrite powder for a bonded magnet, the volume-based particle size distribution was measured by the same method as in Example 1. As a result, the frequency distribution of particles having a particle size of less than 1 μm is 27.5% by volume, the frequency distribution of particles having a particle size of 1 to 5 μm is 64.3% by volume, and the frequency distribution of particles having a particle size of more than 5 μm is 8.2 volumes. %Met.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.22μm、比表面積は2.41m/g、圧縮密度(CD)は3.42g/cm、圧粉体の保磁力iHcは3140Oe、残留磁化Brは1800Gであった。 Further, for this ferrite powder for a bonded magnet, the average particle size, specific surface area, compression density (CD), coercive force iHc of the green compact, and residual magnetization Br were measured by the same method as in Example 1. As a result, the average particle size was 1.22 μm, the specific surface area was 2.41 m 2 / g, the compression density (CD) was 3.42 g / cm 3 , the coercive force iHc of the green compact was 3140 Oe, and the residual magnetization Br was 1800 G. there were.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Aを得た。このボンド磁石Aについて、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2315Oe、残留磁化Brは3108G、最大エネルギー積BHmaxは2.36MGOeであり、アスペクト比は1.58であった。なお、実施例1と同様の方法により、ボンド磁石用フェライト粉末を混合する際の流動度MFRを求めたところ、58.6g/10分であった。 Further, using this ferrite powder for a bonded magnet, a bonded magnet A was obtained by the same method as in Example 1. For this bond magnet A, the coercive force iHc, the residual magnetization Br and the maximum energy product BH max were measured by the same method as in Example 1, and the aspect ratio was calculated. As a result, the coercive force iHc was 2315Oe and the residual magnetization Br was 3108G. The maximum energy product BH max was 2.36 MGOe, and the aspect ratio was 1.58. When the fluidity MFR when mixing the ferrite powder for the bonded magnet was determined by the same method as in Example 1, it was 58.6 g / 10 minutes.

また、上記のボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石Bの製造を試みたが、ボンド磁石用フェライト粉末を混合する際に流動しなかったため、ボンド磁石Bを製造することはできなかった。 Further, using the above-mentioned ferrite powder for bond magnets, an attempt was made to manufacture the bond magnet B by the same method as in Example 1, but the ferrite powder for bond magnets did not flow when mixed, so that the bond magnets did not flow. B could not be manufactured.

これらの実施例および比較例の結果を表1〜表7に示す。 The results of these examples and comparative examples are shown in Tables 1 to 7.

Figure 2021141151
Figure 2021141151

Figure 2021141151
Figure 2021141151

Figure 2021141151
Figure 2021141151

Figure 2021141151
Figure 2021141151

Figure 2021141151
Figure 2021141151

Figure 2021141151
Figure 2021141151

Figure 2021141151
Figure 2021141151

実施例1〜4および比較例1〜5の結果から、実施例1〜4では、磁場配向により高い残留磁化Brを有するボンド磁石を得ることができる、ボンド磁石用フェライト粉末を製造することができることがわかる。 From the results of Examples 1 to 4 and Comparative Examples 1 to 5, in Examples 1 to 4, it is possible to produce a ferrite powder for a bond magnet capable of obtaining a bond magnet having a high residual magnetization Br by magnetic field orientation. I understand.

Claims (15)

鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末と、酸化鉄とを混合して造粒した後、焼成し、粉砕してフェライトの粗粉を得る工程と、フェライトの粗粉とこのフェライトの粗粉より比表面積が大きいフェライトの微粉とを混合する工程と、フェライトの粗粉とフェライトの微粉の混合物を粉砕した後、アニールする工程とを備えたことを特徴とする、ボンド磁石用フェライト粉末の製造方法。 A process of mixing iron, strontium, lanthanum, and cobalt composite oxide powder and iron oxide to granulate, then firing and crushing to obtain ferrite coarse powder, and ferrite coarse powder and this ferrite A ferrite powder for a bonded magnet, which comprises a step of mixing a ferrite fine powder having a larger specific surface area than the coarse powder and a step of pulverizing a mixture of the ferrite coarse powder and the ferrite fine powder and then annealing the mixture. Manufacturing method. 前記複合酸化物の粉末が、炭酸ストロンチウムと酸化ランタンと酸化鉄と酸化コバルトとを混合して造粒した後、1000〜1250℃で焼成して得られた焼成物を粉砕することにより得られることを特徴とする、請求項1に記載のボンド磁石用フェライト粉末の製造方法。 The composite oxide powder can be obtained by mixing strontium carbonate, lanthanum oxide, iron oxide and cobalt oxide, granulating the mixture, and then firing at 1000 to 1250 ° C. to pulverize the obtained calcined product. The method for producing a ferrite powder for a bonded magnet according to claim 1, wherein the ferrite powder for a bonded magnet is produced. 前記複合酸化物の粉末と前記酸化鉄とを混合して造粒した後の焼成が1280〜1400℃で行われることを特徴とする、請求項1または2に記載のボンド磁石用フェライト粉末の製造方法。 The production of a ferrite powder for a bonded magnet according to claim 1 or 2, wherein the composite oxide powder and the iron oxide are mixed and granulated, and then calcined at 1280 to 1400 ° C. Method. 前記複合酸化物の粉末と前記酸化鉄を混合する際に、SrとLaの合計に対する前記酸化鉄中のFeのモル比Fe/(Sr+La)が4.5〜11.7になるように前記複合酸化物の粉末と前記酸化鉄を混合することを特徴とする、請求項1乃至3のいずれかに記載のボンド磁石用フェライト粉末の製造方法。 When the powder of the composite oxide and the iron oxide are mixed, the composite is such that the molar ratio Fe / (Sr + La) of Fe in the iron oxide to the total of Sr and La is 4.5 to 11.7. The method for producing a ferrite powder for a bonded magnet according to any one of claims 1 to 3, wherein the oxide powder and the iron oxide are mixed. 前記フェライトの粗粉の比表面積が0.5〜1.0m/gであることを特徴とする、請求項1乃至4のいずれかに記載のボンド磁石用フェライト粉末の製造方法。 The method for producing a ferrite powder for a bonded magnet according to any one of claims 1 to 4, wherein the specific surface area of the coarse ferrite powder is 0.5 to 1.0 m 2 / g. 前記フェライトの微粉が、炭酸ストロンチウム中のSrに対する酸化鉄中のFeのモル比Fe/Srが10.0〜12.5になるように炭酸ストロンチウムと酸化鉄を混合して造粒した後、900〜1000℃で焼成して得られた焼成物を粉砕することにより得られることを特徴とする、請求項1乃至5のいずれかに記載のボンド磁石用フェライト粉末の製造方法。 The ferrite fine powder was granulated by mixing strontium carbonate and iron oxide so that the molar ratio of Fe in iron oxide to Sr in strontium carbonate Fe / Sr was 10.0 to 12.5, and then 900. The method for producing a ferrite powder for a bonded magnet according to any one of claims 1 to 5, which is obtained by pulverizing a fired product obtained by firing at ~ 1000 ° C. 前記フェライトの粗粉と前記フェライトの微粉を混合する際に、前記フェライトの粗粉の割合を60〜90質量%にすることを特徴とする、請求項1乃至6のいずれかに記載のボンド磁石用フェライト粉末の製造方法。 The bond magnet according to any one of claims 1 to 6, wherein the ratio of the crude ferrite powder is 60 to 90% by mass when the coarse ferrite powder and the fine ferrite powder are mixed. Ferrite powder manufacturing method. (Sr1−xLa)・(Fe1−yCo19−z(但し、0<x≦0.5、0<y≦0.04、10.0≦n≦12.5、−1.0≦z≦3.5)の組成を有し、レーザー回折式粒度分布測定装置により測定した体積基準の粒度分布において、粒径1μm未満の粒子の割合が20〜40体積%、1〜5μmの粒子の割合が30〜60体積%、5μmより大きい粒子の割合が18〜30体積%であることを特徴とする、ボンド磁石用フェライト粉末。 (Sr 1-x La x) · (Fe 1-y Co y) n O 19-z ( where, 0 <x ≦ 0.5,0 <y ≦ 0.04,10.0 ≦ n ≦ 12.5 , -1.0 ≦ z ≦ 3.5), and in the volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device, the proportion of particles having a particle size of less than 1 μm is 20 to 40% by volume. A ferrite powder for a bonded magnet, characterized in that the proportion of particles of 1 to 5 μm is 30 to 60% by volume and the proportion of particles larger than 5 μm is 18 to 30% by volume. 前記ボンド磁石用フェライト粉末10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮したときのボンド磁石用フェライト粉末の密度をボンド磁石用フェライト粉末の圧縮密度として測定したときに、ボンド磁石用フェライト粉末の圧縮密度が3.70g/cm以上であることを特徴とする、請求項8に記載のボンド磁石用フェライト粉末。 The density of the ferrite powder for the bond magnet when 10 g of the ferrite powder for the bond magnet is filled in a cylindrical mold having an inner diameter of 2.54 cmφ and then compressed at a pressure of 1 ton / cm 2 is the compression density of the ferrite powder for the bond magnet. The ferrite powder for a bond magnet according to claim 8, wherein the ferrite powder for a bond magnet has a compression density of 3.70 g / cm 3 or more when measured as. 前記ボンド磁石用フェライト粉末8gとポリエステル樹脂0.4ccを乳鉢中で混練し、得られた混練物7gを内径15mmφの金型に充填し、2トン/cmの圧力で60秒間圧縮して得られた成形品を金型から抜き取り、150℃で30分間乾燥させて得られた圧粉体の保磁力iHcを測定磁場10kOeで測定したときに、保磁力iHcが1500Oe以上であることを特徴とする、請求項8または9に記載のボンド磁石用フェライト粉末。 8 g of the ferrite powder for a bond magnet and 0.4 cc of polyester resin are kneaded in a dairy pot, and 7 g of the obtained kneaded product is filled in a mold having an inner diameter of 15 mmφ and compressed at a pressure of 2 tons / cm 2 for 60 seconds. When the coercive force iHc of the green compact obtained by removing the molded product from the mold and drying it at 150 ° C. for 30 minutes was measured with a measuring magnetic field of 10 kOe, the coercive force iHc was 1500 Oe or more. The ferrite powder for a bonded magnet according to claim 8 or 9. 前記ボンド磁石用フェライト粉末92.0質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂6.6質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石Aを作製し、このボンド磁石Aの残留磁化Brを測定磁場10kOeで測定したときに、残留磁化Brが3270G以上であることを特徴とする、請求項8乃至10のいずれかに記載のボンド磁石用フェライト粉末。 92.0 parts by mass of the ferrite powder for a bonded magnet, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and 6.6 parts by mass of a powdered polyamide resin are filled in a mixer and mixed. The resulting mixture was kneaded at 230 ° C. to prepare kneaded pellets having an average diameter of 2 mm, and the kneaded pellets were injected and formed at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 in a magnetic field of 9.7 kOe. Then, a cylindrical bond magnet A having a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is the direction along the central axis of the column) was produced, and the residual magnetization Br of the bond magnet A was measured with a measurement magnetic field of 10 kOe. The ferrite powder for a bonded magnet according to any one of claims 8 to 10, wherein the residual magnetization Br is sometimes 3270 G or more. 前記ボンド磁石Aの最大エネルギー積BHmaxを測定磁場10kOeで測定したときに、最大エネルギー積BHmaxが2.65MGOe以上であることを特徴とする、請求項11に記載のボンド磁石用フェライト粉末。 The ferrite powder for a bond magnet according to claim 11, wherein the maximum energy product BH max of the bond magnet A is 2.65 MGOe or more when the maximum energy product BH max is measured with a measurement magnetic field of 10 kOe. 前記ボンド磁石用フェライト粉末93.5質量部と、シランカップリング剤0.6質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂5.1質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石Bを作製し、このボンド磁石Bの残留磁化Brを測定磁場10kOeで測定したときに、残留磁化Brが3410G以上であることを特徴とする、請求項8乃至10のいずれかに記載のボンド磁石用フェライト粉末。 93.5 parts by mass of the ferrite powder for a bond magnet, 0.6 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and 5.1 parts by mass of a powdered polyamide resin are filled in a mixer and mixed. The resulting mixture was kneaded at 230 ° C. to prepare kneaded pellets having an average diameter of 2 mm, and the kneaded pellets were injected and formed at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 in a magnetic field of 9.7 kOe. Then, a cylindrical bond magnet B having a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is the direction along the central axis of the column) was produced, and the residual magnetization Br of the bond magnet B was measured with a measurement magnetic field of 10 kOe. The ferrite powder for a bonded magnet according to any one of claims 8 to 10, wherein the residual magnetization Br is sometimes 3410 G or more. 前記ボンド磁石Bの最大エネルギー積BHmaxを測定磁場10kOeで測定したときに、最大エネルギー積BHmaxが2.80MGOe以上であることを特徴とする、請求項13に記載のボンド磁石用フェライト粉末。 The ferrite powder for a bond magnet according to claim 13, wherein the maximum energy product BH max of the bond magnet B is 2.80 MGOe or more when the maximum energy product BH max is measured with a measurement magnetic field of 10 kOe. 請求項8乃至14のいずれかに記載のボンド磁石用フェライト粉末と、バインダとを備えたことを特徴とする、ボンド磁石。 A bond magnet comprising the ferrite powder for a bond magnet according to any one of claims 8 to 14 and a binder.
JP2020036485A 2020-03-04 2020-03-04 Ferrite powder for bonded magnets and its manufacturing method Active JP7405648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036485A JP7405648B2 (en) 2020-03-04 2020-03-04 Ferrite powder for bonded magnets and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036485A JP7405648B2 (en) 2020-03-04 2020-03-04 Ferrite powder for bonded magnets and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021141151A true JP2021141151A (en) 2021-09-16
JP7405648B2 JP7405648B2 (en) 2023-12-26

Family

ID=77669660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036485A Active JP7405648B2 (en) 2020-03-04 2020-03-04 Ferrite powder for bonded magnets and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7405648B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694909A (en) * 2022-03-18 2022-07-01 北矿磁材(阜阳)有限公司 Ferrite magnetic powder for injection and manufacturing method thereof
CN114956801A (en) * 2022-05-24 2022-08-30 兰州大学 High-squareness permanent magnet strontium ferrite magnetic material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118012A (en) 1997-12-25 2002-04-19 Hitachi Metals Ltd Ferrite magnet, rotary machine and magnet roll using the same
JP4697366B2 (en) 2000-12-07 2011-06-08 戸田工業株式会社 Strontium ferrite particle powder for bonded magnet and bonded magnet using the strontium ferrite particle powder
JP5578777B2 (en) 2007-09-28 2014-08-27 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnet, method for producing the same, and bonded magnet using the same
EP2418660B1 (en) 2009-04-09 2014-05-07 DOWA Electronics Materials Co., Ltd. Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
JP6482445B2 (en) 2014-09-30 2019-03-13 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnet, manufacturing method thereof, and ferrite-based bonded magnet
JP6947490B2 (en) 2015-02-23 2021-10-13 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnets, their manufacturing methods, and ferrite-based bonded magnets
JP6797735B2 (en) 2017-03-31 2020-12-09 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnets and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694909A (en) * 2022-03-18 2022-07-01 北矿磁材(阜阳)有限公司 Ferrite magnetic powder for injection and manufacturing method thereof
CN114956801A (en) * 2022-05-24 2022-08-30 兰州大学 High-squareness permanent magnet strontium ferrite magnetic material and preparation method thereof

Also Published As

Publication number Publication date
JP7405648B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
TWI434302B (en) Oxide magnetic material and preparation method thereof, and ferrite iron sintered magnet and preparation method thereof
JP4367649B2 (en) Ferrite sintered magnet
KR101515251B1 (en) Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
WO1999034376A1 (en) Ferrite magnet and process for producing the same
US20150262741A1 (en) Calcined ferrite, sintered ferrite magnet and its production method
JP7405648B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JP6797735B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JP7082033B2 (en) Ferrite powder for bonded magnets and its manufacturing method
KR102281215B1 (en) Ferrite plastic body, ferrite sintered magnet and manufacturing method thereof
WO2020045573A1 (en) Ferrite powder for bond magnet and production method therefor
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JP3835729B2 (en) Ferrite sintered magnet and manufacturing method thereof
JP7367581B2 (en) ferrite sintered magnet
KR102532582B1 (en) Ferrite powder for bonded magnets and method for producing the same
US20210296030A1 (en) Ferrite sintered magnet
JP2023014477A (en) Ferrite powder for bond magnet and method for manufacturing the same
WO2019093508A1 (en) Ferrite powder for bonded magnets and method for producing same
JP2022084472A (en) Hexagonal ferrite magnetic powder for bonded magnet and manufacturing method thereof, and bonded magnet and manufacturing method thereof
JP2023134239A (en) Hexagonal crystal ferrite magnetic powder for bonded magnet and method for manufacturing the same, and bonded magnet and method for manufacturing the same
JP3944860B2 (en) Ferrite magnet powder
JP2022156380A (en) Hexagonal ferrite magnetic powder for bond magnet and manufacturing method thereof, and bond magnet and manufacturing method thereof
JP2023041550A (en) Hexagonal crystal ferrite magnetic powder for bond magnet, manufacturing method thereof, bond magnet and manufacturing method thereof
JP2001068320A (en) Ferrite magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231214

R150 Certificate of patent or registration of utility model

Ref document number: 7405648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150