JPH10262174A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH10262174A
JPH10262174A JP9066418A JP6641897A JPH10262174A JP H10262174 A JPH10262174 A JP H10262174A JP 9066418 A JP9066418 A JP 9066418A JP 6641897 A JP6641897 A JP 6641897A JP H10262174 A JPH10262174 A JP H10262174A
Authority
JP
Japan
Prior art keywords
solid
horizontal
state imaging
vertical directions
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9066418A
Other languages
Japanese (ja)
Other versions
JP3162644B2 (en
Inventor
Hiroaki Kotaki
弘昭 小滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06641897A priority Critical patent/JP3162644B2/en
Publication of JPH10262174A publication Critical patent/JPH10262174A/en
Application granted granted Critical
Publication of JP3162644B2 publication Critical patent/JP3162644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid the improvement of the resolution from being limited in the case of increasing the number of equivalent pixels in comparison with the substantial resolution that is determined by the number of pixels of a solid-state image pickup element. SOLUTION: Solid-state image pickup elements 15, 16 are arranged respectively to light emission faces 145, 146 of an optical prism 14 such that a size of an aperture of a light receiving section of one pixel is nearly 1/n (n=2,3,...) of a pixel interval in both horizontal and vertical directions and the relative position of the elements is deviated by 1/n of the pixel interval in both the horizontal and vertical directions. Piezoelectric elements 17, 18 displace the relative position between optical information and the light receiving section of each solid-state image pickup element at an interval of 1/n of the pixel interval or at an integer multiple of it at least in one of the horizontal and vertical directions. A circuit processing an output of each solid-state image pickup element applies integral processing to the video information sets received at respective relative positions between the optical information and the light receiving section of each solid-state image pickup element to obtain a high resolution video signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体撮像素子
(例えば、CCD撮像素子等)を用い、固体撮像素子本
来の画素数で決まる解像度よりも高い解像度を得ること
のできる固体撮像装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a solid-state image pickup device using a solid-state image pickup device (for example, a CCD image pickup device) and capable of obtaining a resolution higher than the resolution determined by the original number of pixels of the solid-state image pickup device. .

【0002】[0002]

【従来の技術】CCD撮像素子等の固体撮像素子を用い
た固体撮像装置は、小型、軽量、低消費電力で扱いやす
い、解像度の画面内一様性が良い、等の理由により、今
や特殊用途のごく一部の分野を除くと、撮像装置の主流
になっている。このことはX線による画像情報をX線イ
メージインテシファイア等で可視光に変換し、その可視
化された動画映像を撮影するX線撮影装置の分野に関し
ても同じである。
2. Description of the Related Art Solid-state imaging devices using a solid-state imaging device such as a CCD imaging device are now specially used because of their small size, light weight, low power consumption, easy handling, and good uniformity of resolution within a screen. Except for a very small number of fields, imaging devices have become mainstream. The same applies to the field of an X-ray imaging apparatus that converts image information based on X-rays into visible light using an X-ray image intensifier or the like, and captures the visualized moving image.

【0003】これらの固体撮像装置の解像度は、基本的
には固体撮像素子の画素数により決まる。一方、固体撮
像素子のチップサイズは製造上の観点からある大きさに
制限されるので、画素数が増加すると1画素当たりのサ
イズは必然的に小さくなり、その分、感度性能が劣化す
る、という問題点が発生する。そこで従来は固体撮像装
置のシステム上の工夫により、固体撮像素子の画素数で
決まる本来の解像度よりも高解像度の映像信号が得られ
る固体撮像装置が実用化されている(例えば文献1:原
田、他:“スウィングCCDイメージセンサー”、テレ
ビジョン学会誌、37、10、pp.826−832、
Oct.1983, 文献2:山中、他:“3CCDカ
ラーカメラの一方式”、テレビジョン学会誌、33、
7、pp.516−522、July1979)。文献
1はバイモルフ圧電素子を用いてCCD撮像素子の位置
を周期的に変位させることにより、画素数を等価的に増
加させるという方式である。また文献2は光学色分解プ
リズムの複数の光射出面に配置するCCD撮像素子の相
対的位置をずらすことにより、同じく画素数を等価的に
増加させるという方式である。
The resolution of these solid-state imaging devices is basically determined by the number of pixels of the solid-state imaging device. On the other hand, since the chip size of the solid-state imaging device is limited to a certain size from the viewpoint of manufacturing, when the number of pixels increases, the size per pixel is inevitably reduced, and the sensitivity performance deteriorates accordingly. Problems arise. Therefore, conventionally, a solid-state imaging device that can obtain a video signal with a higher resolution than the original resolution determined by the number of pixels of the solid-state imaging device has been put into practical use by devising the system of the solid-state imaging device (for example, reference 1: Harada, Others: “Swing CCD image sensor”, Journal of the Institute of Television Engineers of Japan, 37, 10, pp. 826-832,
Oct. 1983, Reference 2: Yamanaka, et al .: "One method of 3CCD color camera", Journal of the Institute of Television Engineers of Japan, 33,
7, pp. 516-522, July 1979). Literature 1 is a method in which the number of pixels is equivalently increased by periodically displacing the position of a CCD image sensor using a bimorph piezoelectric element. Reference 2 discloses a method in which the number of pixels is equivalently increased by shifting the relative positions of CCD image sensors arranged on a plurality of light exit surfaces of an optical color separation prism.

【0004】これらの従来の技術では以下のような問題
点がある。すなわち上記両手段ともそれぞれ単独では移
動位置制御特性や空間的位置合わせ制度の限界があった
り、さらには等価的に増加させた画素の受光部が相互に
重なり合ってしまい、結果として解像度の向上が得られ
なくなるという、いわゆるアパーチャ効果ゆえに、等価
的画素数の増加は水平、垂直それぞれの方向に2倍化
(全体としては2×2=4倍化)することが限度であっ
た。またこの問題は単に上記2方式を組み合わせただけ
では改善されるものではなかった。
[0004] These conventional techniques have the following problems. That is, each of the above-mentioned means alone has a limitation on the movement position control characteristics and the spatial alignment accuracy, and furthermore, the equivalently increased light receiving portions of pixels overlap each other, resulting in an improvement in resolution. Due to the so-called aperture effect, the increase in the equivalent number of pixels was limited to a doubling in both the horizontal and vertical directions (2 × 2 = 4 as a whole). Further, this problem has not been improved merely by combining the above two methods.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来の固体撮像装置では固体撮像素子の画素数を増やさず
に解像度特性を高めるために、被写体からの光学情報と
固体撮像素子上の受光部との相対的位置関係を移動もし
くはずらして等価的な画素数を増やすという手法を採用
してきた。しかし等価的に増加させた画素の受光部が隣
接画素間で重なり合ってしまい、いわゆるアパーチャ効
果のために解像度の向上が制限されるという問題があっ
た。
As described above, in the conventional solid-state imaging device, optical information from a subject and light reception on the solid-state imaging device are required to improve resolution characteristics without increasing the number of pixels of the solid-state imaging device. A method has been adopted in which the relative number of pixels is moved or shifted to increase the equivalent number of pixels. However, there has been a problem that the light receiving portions of the pixels that have been equivalently increased overlap between adjacent pixels, and the improvement in resolution is limited due to the so-called aperture effect.

【0006】そこでこの発明は、固体撮像素子の画素数
で決まる本来の解像度に比して、システム上の工夫によ
り等価的な画素数を増加させた際に、解像度の向上が制
限されるという問題を改善する固体撮像装置を提供する
ことを目的とする。
Accordingly, the present invention has a problem that the improvement in resolution is limited when the equivalent number of pixels is increased by devising the system, compared to the original resolution determined by the number of pixels of the solid-state imaging device. It is an object of the present invention to provide a solid-state imaging device that improves the above.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係わる固体撮像装置は以下の手段で構成さ
れる。すなわち1画素中の受光部の開口の大きさが水
平、垂直方向ともに、それぞれ水平及び垂直方向の画素
間隔のほぼ1/n(n=2,3,…)である固体撮像素
子を少なくとも2個使用する。それらを、互いの相対的
位置関係が水平、垂直方向ともに、それぞれ水平及び垂
直方向の画素間隔の1/nだけずれるように光学プリズ
ム等の光学系の異なる光射出面に配置する。そして被写
体からの光学情報と上記各固体撮像素子上の受光部との
相対的位置関係を、水平、垂直方向の少なくとも1つの
方向に、その方向の画素間隔の1/nまたは1/nの整
数倍の間隔で変位させる手段と、上記被写体からの光学
情報と上記各固体撮像素子上の受光部との相対的位置関
係のそれぞれの位置において取り込んだ映像情報を統合
処理して、1つの高解像度映像信号を合成する手段とを
具備することを特徴とする。
In order to achieve the above object, a solid-state imaging device according to the present invention comprises the following means. That is, at least two solid-state imaging devices in which the size of the aperture of the light receiving section in one pixel is substantially 1 / n (n = 2, 3,...) Of the horizontal and vertical pixel intervals in both the horizontal and vertical directions. use. They are arranged on different light exit surfaces of an optical system such as an optical prism such that their relative positional relationship is shifted by 1 / n of the pixel interval in the horizontal and vertical directions in both the horizontal and vertical directions. Then, the relative positional relationship between the optical information from the subject and the light receiving unit on each of the solid-state imaging devices is determined in at least one of the horizontal and vertical directions by 1 / n or an integer of 1 / n of the pixel interval in that direction. Means for displacing at twice the distance, and integrating the optical information from the object and the image information captured at each position of the relative positional relationship between the light receiving unit on each of the solid-state imaging devices to obtain one high resolution Means for synthesizing video signals.

【0008】またこの発明に係わる固体撮像装置は、X
線からの画像情報を可視光領域の波長に変換するX線イ
メージインテンシファイア等の画像変換部を有し、その
画像変換部から出力される可視光領域の光学情報を撮像
することを特徴とする。
[0008] The solid-state imaging device according to the present invention has an X
An image conversion unit such as an X-ray image intensifier that converts image information from a line into a wavelength in the visible light region, and captures optical information in the visible light region output from the image conversion unit. I do.

【0009】このような手段によると、固体撮像素子の
画素数で決まる本来の解像度に比して、システム上の工
夫により等価的な画素数を増加させた際に、解像度の向
上が制限されるという問題を改善することができる。
According to such means, when the equivalent number of pixels is increased by a device of the system compared with the original resolution determined by the number of pixels of the solid-state imaging device, the improvement of the resolution is limited. Problem can be improved.

【0010】[0010]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図面を参照して説明する。図1に本発明の固体撮像
装置の実施の形態を示すブロック構成図を示す。11は
X線イメージングインテンシファイアであり、その入力
部にはこの図では省略してあるが、X線管からのX線情
報が入力される。このX線イメージインテンシファイア
11の出力は可視光領域の光学像となり、光学レンズ系
12を経由して光学プリズム14に入射される。光学プ
リズム14は入射光を2分割し、その一方は光射出面1
45に出力された後CCD撮像素子15に結像される。
2分割された光学プリズム14への入射光の他方は光射
出面146に出力された後CCD撮像素子16に結像さ
れる。これらのCCD撮像素子15、16は、パルス発
生回路31からのパルスがCCD駆動回路30に入力さ
れて、そこから出力されるCCD駆動用のパルスが入力
されることにより、入射された光学像を電気信号に変換
する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the solid-state imaging device according to the present invention. Reference numeral 11 denotes an X-ray imaging intensifier, to which input X-ray information from an X-ray tube is input, though not shown in the figure. The output of the X-ray image intensifier 11 becomes an optical image in the visible light region, and enters the optical prism 14 via the optical lens system 12. The optical prism 14 splits the incident light into two, one of which is the light exit surface 1
After being output to 45, an image is formed on the CCD image pickup device 15.
The other of the two light beams incident on the optical prism 14 is output to the light exit surface 146 and then imaged on the CCD imaging device 16. These CCD image pickup devices 15 and 16 apply the pulse from the pulse generation circuit 31 to the CCD driving circuit 30 and input the CCD driving pulse output from the pulse driving circuit 31 to thereby input the optical image. Convert to electrical signals.

【0011】CCD撮像素子15、16と光学プリズム
14から構成される撮像ブロック13には圧電アクチュ
エータ17、18が取り付けられている。これらの圧電
アクチュエータ17、18は、パルス発生回路31から
のパルスがアクチュエータ駆動回路29に入力されて、
そこから出力されるアクチュエータ駆動用のパルスが入
力されることにより、図示してある矢印の方向(垂直方
向、水平方向)に微小変位する。その結果、撮像ブロッ
ク13が微小変位されるという構造になっている。なお
圧電アクチュエータ17は撮像ブロック13を画像の垂
直方向に変位させ、圧電アクチュエータ18は撮像ブロ
ック13を画像の水平方向に変位させるように配置され
ている。
Piezoelectric actuators 17 and 18 are attached to an image pickup block 13 composed of CCD image pickup devices 15 and 16 and an optical prism 14. These piezoelectric actuators 17 and 18 receive pulses from the pulse generation circuit 31 and input to the actuator drive circuit 29,
When a pulse for driving the actuator output therefrom is input, the actuator is slightly displaced in the directions indicated by the arrows (vertical direction, horizontal direction). As a result, the structure is such that the imaging block 13 is slightly displaced. The piezoelectric actuator 17 is arranged to displace the imaging block 13 in the vertical direction of the image, and the piezoelectric actuator 18 is arranged to displace the imaging block 13 in the horizontal direction of the image.

【0012】CCD撮像素子15、16からの出力信号
はそれぞれプリアンプ19、20にて所定のレベルに増
幅された後、アナログ−ディジタル(以下A/Dと記
す)変換器21、22にてディジタル信号に変換され
る。それぞれの画像データはメモリ23、24に蓄えら
れた後、高解像度化処理回路25にて高解像度化され
る。その後はプロセス回路26にてガンマ補正などの非
線形処理等が施され、D/A変換器27に入力されてア
ナログ信号に変換されて出力端子28から出力される。
Output signals from the CCD image pickup devices 15 and 16 are amplified to predetermined levels by preamplifiers 19 and 20, respectively, and then converted to digital signals by analog-digital (hereinafter, referred to as A / D) converters 21 and 22. Is converted to After each image data is stored in the memories 23 and 24, the resolution is increased by the resolution increasing processing circuit 25. After that, a non-linear process such as gamma correction is performed in a process circuit 26, input to a D / A converter 27, converted into an analog signal, and output from an output terminal 28.

【0013】次にCCD撮像素子15、16の相対的位
置関係について述べる。図2は1画素中の受光部の大き
さを説明するための図であり、図3はCCD撮像素子1
5と16の相対的位置関係を説明するための図である。
図2においてPhとPvはそれぞれ1画素の水平、垂直
方向の長さであり、DhとDvは同様に受光部の水平、
垂直方向の長さである。図2では、概略 Dh=Ph/4, Dv=Pv/4 の関係がある。
Next, the relative positional relationship between the CCD image sensors 15 and 16 will be described. FIG. 2 is a diagram for explaining the size of the light receiving section in one pixel, and FIG.
It is a figure for explaining the relative positional relationship of 5 and 16.
In FIG. 2, Ph and Pv are the lengths of one pixel in the horizontal and vertical directions, respectively.
The vertical length. In FIG. 2, there is a general relationship of Dh = Ph / 4, Dv = Pv / 4.

【0014】図3において“A”はCCD撮像素子16
の受光部を示し、“B”はCCD撮像素子15の受光部
を示している。すなわち上記のような大きさの受光部を
持つ2つのCCD撮像素子15、16は、互いの相対的
位置関係が、水平方向にはPh/4だけ、垂直方向には
Pv/4だけずれて光学プリズム14の光射出面145
と146に固着されているのである。
In FIG. 3, "A" is a CCD image sensor 16
And “B” indicates a light receiving unit of the CCD image sensor 15. That is, the two CCD image pickup devices 15 and 16 having the light receiving units having the above-mentioned sizes are optically shifted relative to each other by Ph / 4 in the horizontal direction and by Pv / 4 in the vertical direction. Light exit surface 145 of prism 14
And 146.

【0015】次に2つのCCD撮像素子15、16が上
記のようにずれて配置されている撮像ブロック13を、
圧電アクチュエータ17、18によって変位させるとき
の変異量と変位方向について説明する。
Next, an image pickup block 13 in which the two CCD image pickup devices 15 and 16 are displaced as described above,
The displacement amount and displacement direction when displacing by the piezoelectric actuators 17 and 18 will be described.

【0016】図4はX線イメージインテンシファイア1
1の出力光学像と撮像ブロック13との位置関係を説明
するための図である。まず同図(a)は時刻t1におけ
る位置を示す。図示の簡略化のために受光部のみを示し
ている。この位置でまず光学情報を得る。次に同図
(b)は時刻t2における位置を示す。破線で囲まれた
部分は時刻t1における位置を示しており、右方向にP
h/2だけずれていることがわかる。時刻t1の時と同
様にこの位置で光学情報を得る。次に同図(c)は時刻
t3における位置を示す。破線で囲まれた部分は(b)
と同じく時刻t1における位置を示している。時刻t2
の位置からは下方向にPv/2だけずれていることがわ
かる。時刻t1、t2の時と同様にこの位置で光学情報
を得る。次に同図(d)は時刻t4における位置を示
す。破線で囲まれた部分は上記と同じく時刻t1におけ
る位置を示している。時刻t3の位置からは左方向にP
h/2だけずれていることがわかる。時刻t1、t2、
t3の時と同様にこの位置で光学情報を得る。そして図
示してはいないが、時刻t4から所定の時間後に上方向
にPv/2だけ変位して、元の時刻t1における位置に
戻り、以下この変位が繰り返されることになる。
FIG. 4 shows an X-ray image intensifier 1
FIG. 2 is a diagram for explaining a positional relationship between an output optical image of No. 1 and an imaging block 13. First, FIG. 7A shows the position at time t1. For simplification of illustration, only the light receiving unit is shown. First, optical information is obtained at this position. Next, FIG. 2B shows the position at time t2. A portion surrounded by a broken line indicates a position at time t1, and P
It can be seen that it is shifted by h / 2. Optical information is obtained at this position as in the case of time t1. Next, FIG. 3C shows the position at time t3. The part surrounded by the broken line is (b)
5 shows the position at time t1. Time t2
It can be seen that the position is shifted downward by Pv / 2. Optical information is obtained at this position in the same manner as at times t1 and t2. Next, FIG. 4D shows the position at time t4. The portion surrounded by the broken line indicates the position at the time t1 similarly to the above. From the position at time t3, P
It can be seen that it is shifted by h / 2. Times t1, t2,
As in the case of t3, optical information is obtained at this position. Then, although not shown, after a predetermined time from time t4, it is displaced upward by Pv / 2, returns to the original position at time t1, and the displacement is repeated thereafter.

【0017】これらの4つの位置で取り込んだ光学情報
を1つにまとめたものが同図(e)である。この図から
もわかるように、CCD撮像素子の本来の画素数に対し
て、画素密度は8倍になっていることがわかる。この統
合作業を図1のメモリ23、24と高解像度化処理回路
25にて行なうのである。
FIG. 1E shows the optical information captured at these four positions combined into one. As can be seen from this figure, the pixel density is eight times the original number of pixels of the CCD image sensor. This integration is performed by the memories 23 and 24 and the high-resolution processing circuit 25 shown in FIG.

【0018】なお図4(e)では画像情報が無い部分も
あるが、必要であれば近接画素からの補間処理を行なう
ことにより、画素密度をCCD撮像素子の本来の画素数
に対して16倍にまで高めることができる。補間処理と
しては例えば注目画素の上下2画素の加算平均を採用す
る、という方法がある。
In FIG. 4 (e), there is a portion having no image information. However, if necessary, the pixel density is increased by a factor of 16 with respect to the original number of pixels of the CCD image pickup device by performing interpolation from neighboring pixels. Up to As the interpolation processing, for example, there is a method of employing an average of two pixels above and below a target pixel.

【0019】以上に述べたように上記した実施の形態で
は、1画素中の受光部の大きさが水平、垂直方向とも
に、1画素の水平、垂直方向の長さの1/4である固体
撮像素子を2個用いて、その相対的位置関係が、水平、
垂直方向ともに1/4画素間隔だけずれるように光学プ
リズムの光射出面に配置した。さらに光学プリズムと固
体撮像素子とから構成される撮像ブロック部を、圧電ア
クチュエータを用いて水平及び垂直方向に微小変位させ
ることができるようにした。これにより撮像される光学
情報と各固体撮像素子上の受光部との相対的位置関係を
1/2画素間隔ずつ左右上下に変位させた。そしてこれ
らの位置で得られた映像データを統合することにより、
固体撮像素子の本来の画素数に対して8乃至16倍の画
素密度を持つ映像信号を得ることができたのである。
As described above, in the above-described embodiment, the solid-state imaging device in which the size of the light receiving portion in one pixel is 1/4 of the horizontal and vertical length of one pixel in both the horizontal and vertical directions. Using two elements, their relative positional relationship is horizontal,
The optical prism was arranged on the light exit surface of the optical prism so as to be shifted by a 1/4 pixel interval in the vertical direction. Further, the imaging block section including the optical prism and the solid-state imaging device can be minutely displaced in the horizontal and vertical directions using a piezoelectric actuator. Thus, the relative positional relationship between the optical information to be imaged and the light receiving unit on each solid-state image sensor was displaced up, down, left, right, and up by 1/2 pixel intervals. And by integrating the video data obtained at these positions,
A video signal having a pixel density of 8 to 16 times the original number of pixels of the solid-state imaging device could be obtained.

【0020】上記した実施の形態では、1画素中の受光
部の大きさを、水平、垂直方向ともに、1画素の長さ1
/4であるとして説明したが、これに限るものではな
い。一般的には1画素中の受光部の開口の大きさが水
平、垂直方向ともに、それぞれ水平及び垂直方向の画素
間隔のほぼ1/n(n=2,3,…)である固体撮像素
子を少なくとも2個使用する。それらを、互いの相対的
位置関係が水平、垂直方向ともに、それぞれ水平及び垂
直方向の画素間隔の1/nだけずれるように光学プリズ
ム等の光学系の異なる光射出面に配置する。そして被写
体からの光学情報と上記各固体撮像素子上の受光部との
相対的位置関係を、水平、垂直方向の少なくとも2つの
方向に、その方向の画素間隔の1/nまたは1/nの整
数倍の間隔で変位させる手段と、上記被写体からの光学
情報と上記各固体撮像素子上の受光部との相対的位置関
係のそれぞれの位置において取り込んだ映像情報を統合
処理して、1つの高解像度映像信号を合成することを具
備していればよい。
In the above-described embodiment, the size of the light receiving portion in one pixel is set to be one pixel length in both the horizontal and vertical directions.
/ 4, but is not limited to this. In general, a solid-state imaging device in which the size of the aperture of the light receiving portion in one pixel is approximately 1 / n (n = 2, 3,...) Of the horizontal and vertical pixel intervals in both the horizontal and vertical directions, respectively. Use at least two. They are arranged on different light exit surfaces of an optical system such as an optical prism such that their relative positional relationship is shifted by 1 / n of the pixel interval in the horizontal and vertical directions in both the horizontal and vertical directions. Then, the relative positional relationship between the optical information from the subject and the light receiving section on each of the solid-state imaging devices is represented by at least two directions of horizontal and vertical directions, 1 / n or an integer of 1 / n of the pixel interval in that direction. Means for displacing at twice the distance, and integrating the optical information from the object and the image information captured at each position of the relative positional relationship between the light receiving unit on each of the solid-state imaging devices to obtain one high resolution What is necessary is just to provide for synthesizing the video signal.

【0021】また被写体からの光学情報と各固体撮像素
子上の受光部との相対的位置関係を変位させる手段とし
て、圧電アクチュエータを用いて撮像ブロック全体を変
位させるとして説明したがこれに限るものではなく、例
えば光学プリズムの前に複屈折作用を持つ光学部材を配
置し、その部材の光軸に対する傾きを変えることにより
相対的位置関係を変位させることもできる。
Also, as a means for displacing the relative positional relationship between the optical information from the subject and the light receiving unit on each solid-state image sensor, the entire image pickup block is displaced using a piezoelectric actuator. However, the present invention is not limited to this. Instead, for example, an optical member having a birefringent action can be arranged in front of the optical prism, and the relative positional relationship can be changed by changing the inclination of the member with respect to the optical axis.

【0022】また光学プリズムに入射される光学像とし
て、X線イメージインテンシファイアの出力像を用いて
説明してきたが、これに限るものではない。ただしX線
イメージインテンシファイアの出力像のように、その波
長帯域が可視光領域内のある波長帯域に制限されている
(この例では緑色系統のみ)場合には、光学レンズの色
収差の影響をほぼ無視できるので、画像周辺部において
も高解像度効果を発揮できるという特徴はある。
Although the description has been made using the output image of the X-ray image intensifier as the optical image incident on the optical prism, the present invention is not limited to this. However, when the wavelength band is limited to a certain wavelength band in the visible light region (in this example, only the green system) like the output image of the X-ray image intensifier, the influence of the chromatic aberration of the optical lens is reduced. Since it can be almost neglected, there is a feature that the high resolution effect can be exerted even in the periphery of the image.

【0023】また図1ではプロセス回路の位置として、
高解像度化処理回路の後段として説明したが、この位置
に限るものではなく、例えば高解像度化処理回路の前段
階でもよい。
In FIG. 1, the positions of the process circuits are as follows.
Although described as a subsequent stage of the high resolution processing circuit, the present invention is not limited to this position, and may be, for example, a preceding stage of the high resolution processing circuit.

【0024】以下のようにこの発明は上記した実施形態
に限定されるものではなく、このほかその要旨を逸脱し
ない範囲(例えばCCD撮像素子の個数や出力端子から
のアナログまたはディジタルの出力形態等)で種々変形
して実施することができる。
As will be described below, the present invention is not limited to the above-described embodiment, and the scope of the present invention does not depart from the gist of the invention (for example, the number of CCD image pickup devices and the form of analog or digital output from the output terminal). Various modifications can be made.

【0025】以上詳述したようにこの発明によれば、1
画素中の受光部の開口の大きさが水平、垂直方向とも
に、それぞれ水平及び垂直方向の画素間隔のほぼ1/n
(n=2,3,…)である固体撮像素子を少なくとも2
個使用する。それらを、互いの相対的位置関係が水平、
垂直方向ともに、それぞれ水平及び垂直方向の画素間隔
の1/nだけずれるように光学プリズム等の光学系の異
なる光射出面に配置する。そして被写体からの光学情報
と上記各固体撮像素子上の受光部との相対的位置関係
を、水平、垂直方向の少なくとも1つの方向に、その方
向の画素間隔の1/nまたは1/nの整数倍の間隔で変
位させる手段と、上記被写体からの光学情報と上記各固
体撮像素子上の受光部との相対的位置関係のそれぞれの
位置において取り込んだ映像情報を統合処理して、1つ
の高解像度映像信号を合成する手段とを具備している。
As described in detail above, according to the present invention, 1
The size of the aperture of the light receiving portion in the pixel is approximately 1 / n of the horizontal and vertical pixel spacing in both the horizontal and vertical directions.
(N = 2, 3,...) At least 2
Use The relative position of each other is horizontal,
In the vertical direction, they are arranged on different light exit surfaces of an optical system such as an optical prism so as to be shifted by 1 / n of the pixel interval in the horizontal and vertical directions, respectively. Then, the relative positional relationship between the optical information from the subject and the light receiving unit on each of the solid-state imaging devices is determined in at least one of the horizontal and vertical directions by 1 / n or an integer of 1 / n of the pixel interval in that direction. Means for displacing at twice the distance, and integrating the optical information from the object and the image information captured at each position of the relative positional relationship between the light receiving unit on each of the solid-state imaging devices to obtain one high resolution Means for synthesizing a video signal.

【0026】[0026]

【発明の効果】以上説明したようにこの発明は、固体撮
像素子の画素数で決まる本来の解像度に比して、システ
ム上の工夫により等価的な画素数を増加させた際に、解
像度の向上が制限されるという問題を改善する固体撮像
装置を提供することができる。
As described above, the present invention improves the resolution when the equivalent number of pixels is increased by devising the system, compared to the original resolution determined by the number of pixels of the solid-state imaging device. A solid-state imaging device that can solve the problem that the image quality is limited can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の固体撮像装置の一実施の形態を示す
ブロック構成図。
FIG. 1 is a block diagram showing an embodiment of a solid-state imaging device according to the present invention.

【図2】この発明の一実施の形態における固体撮像素子
上の1画素内の受光部の大きさを説明するための図。
FIG. 2 is a view for explaining the size of a light receiving section in one pixel on the solid-state imaging device according to the embodiment of the present invention;

【図3】この発明の一実施の形態における2枚の固体撮
像素子の相対的位置関係を説明するための図。
FIG. 3 is a diagram illustrating a relative positional relationship between two solid-state imaging devices according to the embodiment of the present invention;

【図4】この発明の一実施の形態における被写体からの
光学情報とプリズムとの相対的位置関係を説明するため
の図。
FIG. 4 is a view for explaining a relative positional relationship between optical information from a subject and a prism according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…X線イメージインテンシファイア、 12…光学レンズ、 13…撮像ブロック、 14…光学プリズム、 145、146…光学プリズムの光射出面、 15、16…CCD撮像素子、 7、18…圧電アクチュエータ、 19、20…プリアンプ、 21、22…A/D変換器、 23、24…メモリ、 25…高解像度化処理回路、 26…プロセス回路、 27…D/A変換器、 28…出力端子、 29…アクチュエータ駆動回路、 30…CCD撮像素子駆動回路、 31…パルス発生回路。 11: X-ray image intensifier, 12: optical lens, 13: imaging block, 14: optical prism, 145, 146: light exit surface of optical prism, 15, 16: CCD imaging device, 7, 18: piezoelectric actuator, 19, 20: Preamplifier, 21, 22: A / D converter, 23, 24: Memory, 25: High resolution processing circuit, 26: Process circuit, 27: D / A converter, 28: Output terminal, 29 ... Actuator drive circuit, 30 ... CCD image sensor drive circuit, 31 ... Pulse generation circuit.

【手続補正書】[Procedure amendment]

【提出日】平成9年5月12日[Submission date] May 12, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1画素中の受光部の開口の大きさが水
平、垂直方向ともに、それぞれ水平及び垂直方向の画素
間隔のほぼ1/n(n=2,3,…)である固体撮像素
子を少なくとも2個使用し、それらを、互いの相対的位
置関係が水平、垂直方向ともに、それぞれ水平及び垂直
方向の画素間隔の1/nだけずれるように光学プリズム
等の光学系の異なる光射出面に配置し、 被写体からの光学情報と上記各固体撮像素子上の受光部
との相対的位置関係を、水平、垂直方向の少なくとも1
つの方向に、その方向の画素間隔の1/nまたは1/n
の整数倍の間隔で変位させる手段を設け、 上記被写体からの光学情報と上記各固体撮像素子上の受
光部との相対的位置関係のそれぞれの位置において取り
込んだ映像情報を統合処理して、1つの高解像度映像信
号を合成する手段を設けたことを特徴とする固体撮像装
置。
1. A solid-state imaging device in which the size of an aperture of a light receiving portion in one pixel is substantially 1 / n (n = 2, 3,...) Of a pixel interval in the horizontal and vertical directions in both the horizontal and vertical directions. And at least two light emitting surfaces having different optical systems such as an optical prism so that their relative positional relationship is shifted by 1 / n of the pixel interval in the horizontal and vertical directions in both the horizontal and vertical directions. The relative positional relationship between the optical information from the subject and the light receiving unit on each of the solid-state imaging devices is at least one in the horizontal and vertical directions.
In one direction, 1 / n or 1 / n of the pixel interval in that direction
Means for displacing at an interval of an integral multiple of the optical information from the subject and the video information captured at each position of the relative positional relationship between the optical information from the subject and the light receiving unit on each of the solid-state imaging devices, A solid-state imaging device comprising means for synthesizing two high-resolution video signals.
【請求項2】 X線からの画像情報を可視光領域の波長
に変換するX線イメージインテンシファイア等の画像変
換部を有し、その画像変換部から出力される可視光領域
の光学情報を前記固体撮像素子により撮像することを特
徴とする請求項1記載の固体撮像装置。
2. An image conversion unit such as an X-ray image intensifier for converting image information from X-rays into a wavelength in a visible light region, and optical information in a visible light region output from the image conversion unit. The solid-state imaging device according to claim 1, wherein an image is taken by the solid-state imaging device.
JP06641897A 1997-03-19 1997-03-19 Solid-state imaging device Expired - Lifetime JP3162644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06641897A JP3162644B2 (en) 1997-03-19 1997-03-19 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06641897A JP3162644B2 (en) 1997-03-19 1997-03-19 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH10262174A true JPH10262174A (en) 1998-09-29
JP3162644B2 JP3162644B2 (en) 2001-05-08

Family

ID=13315238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06641897A Expired - Lifetime JP3162644B2 (en) 1997-03-19 1997-03-19 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3162644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078411A1 (en) * 2000-04-07 2001-10-18 Pilz Gmbh & Co. Protective device for safeguarding a dangerous area and method for verifying the functional reliability of such a device
WO2004059267A1 (en) * 2002-12-25 2004-07-15 Japan As Represented By The President Of The University Of Tokyo Light-distribution imaging device and imaging method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078411A1 (en) * 2000-04-07 2001-10-18 Pilz Gmbh & Co. Protective device for safeguarding a dangerous area and method for verifying the functional reliability of such a device
US7310109B2 (en) 2000-04-07 2007-12-18 Pilz Gmbh & Co. Protective device for safeguarding a hazardous area and method of checking the functional reliability of such a device
WO2004059267A1 (en) * 2002-12-25 2004-07-15 Japan As Represented By The President Of The University Of Tokyo Light-distribution imaging device and imaging method

Also Published As

Publication number Publication date
JP3162644B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
US9955089B2 (en) Solid-state image pickup apparatus, its driving method, and camera system
US9420208B2 (en) Driving method for image pickup apparatus and driving method for image pickup system
US8704926B2 (en) CMOS image sensor with selectable hard-wired binning
JP4609092B2 (en) Physical information acquisition method and physical information acquisition device
KR20110023802A (en) Imaging device and camera system
CN102986228B (en) Solid-state imager, the camera head possessing this solid-state imager and camera shooting control method
US7760959B2 (en) Imaging apparatus and imaging system
JP5721518B2 (en) Imaging device and imaging apparatus
WO2004045204A1 (en) Solid state imaging apparatus
JP3162644B2 (en) Solid-state imaging device
JP2005086245A (en) Solid-state imaging apparatus
US11716554B2 (en) Solid-state imaging device and method for driving the same, and electronic apparatus
JP2006060766A (en) Imaging apparatus and solid-state imaging device
JP2010283669A (en) Solid-state image pickup device, image pickup system, and method of driving solid-state image pickup device
JP4499387B2 (en) Solid-state imaging device
JP2015139054A (en) Solid state imaging apparatus, imaging system and copy machine
JP2012019491A (en) Solid-state image pickup device and camera system
JP6967173B1 (en) Image sensor and image sensor
JP7013973B2 (en) Solid-state image sensor and image sensor
JP2018121301A (en) Solid state imaging device and imaging apparatus
EP1094522A1 (en) Imaging device and motion picture camera provided with imaging device
JP2002118247A (en) Solid-state image pick up element and its driving method
JP2006352465A (en) Image sensing element and image sensing device with it
JP2006340406A (en) Solid-state imaging apparatus and system thereof
JPH033578A (en) Image pickup device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term