WO2004059267A1 - Light-distribution imaging device and imaging method - Google Patents

Light-distribution imaging device and imaging method Download PDF

Info

Publication number
WO2004059267A1
WO2004059267A1 PCT/JP2003/000797 JP0300797W WO2004059267A1 WO 2004059267 A1 WO2004059267 A1 WO 2004059267A1 JP 0300797 W JP0300797 W JP 0300797W WO 2004059267 A1 WO2004059267 A1 WO 2004059267A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
fluorescent
light
timing
Prior art date
Application number
PCT/JP2003/000797
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Sasaki
Original Assignee
Japan As Represented By The President Of The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By The President Of The University Of Tokyo filed Critical Japan As Represented By The President Of The University Of Tokyo
Publication of WO2004059267A1 publication Critical patent/WO2004059267A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays

Definitions

  • the present invention relates to an imaging apparatus that detects an event that occurs irregularly in nature at a high speed and records the event.
  • a method using a recording device that operates by being provided with an event detection device and a trigger generated based on the detection result by the detection device has already been put into practical use.
  • a detection device (trigger) that can relatively easily capture an event to be shot on the RL sphere.
  • the output unit includes, for example, a high-speed detector that can recognize an event in a period of less than nanoseconds and a signal processing circuit.
  • the signal processing circuit includes an arbitrary logic circuit for specifying whether or not the event detected by the 1st-speed detector is an event to be imaged.
  • the imaging device is configured such that an event that should be imaged can be best imaged by using a specific result of the booklet output from the logic circuit as a trigger. That is, the special event that produced the particular logical result is selectively imaged.
  • the time required to operate the imaging device that is, the time required for the detection device to recognize the event, is reduced. Is also important.
  • the event detected by the detection device and the event captured by the imaging device often differ.
  • the event captured by the imaging device and the event detected by the detection clothing at the time (moment) when the moth is output do not always match, and the captured event is wasted.
  • the problem is nothing but the failure to capture the event that should be captured.
  • An object of the present invention is to provide a maximum image device capable of reliably imaging a maximum image sharpness event with a high signal-to-noise ratio, and the present invention has been made based on the above-described problems.
  • Image mechanism for capturing fluorescent images
  • the fluorescent image output between the imaging mechanism and the first image intensifier and output from the first image intensifier is the fluorescent image output between the imaging mechanism and the first image intensifier and output from the first image intensifier
  • Item i5 Dist. V-view tie a tie H fixing device for specifying an imaging timing for operating the imaging mechanism based on the fluorescence image power of 1 separated by the
  • the invention also provides
  • An input detection device that converts the input information into fluorescence distribution and amplifies it
  • An image pickup mechanism for picking up a distribution from the fluorescence converted by the input detection device
  • the RX between this imaging mechanism and the input detector detects the fluorescence and the distribution obtained by the input detector, which separates the fluorescence and its distribution into two fluorescences of a predetermined light intensity and their distribution. And the timing to operate the HU imaging mechanism from the light and distribution power different from the distribution of the fluorescent light that is separated by this separation apparatus and guided to the IU imaging mechanism. And a tie setting device.
  • the IJ input detection device converts the SB-magnetic wave, which is the input information, into light and light, converts the distribution of the output fluorescent light into light-to-electron, and widens the obtained electrons. Including a first image intensifier that converts and outputs the subsequent fluorescence and its distribution,
  • the U-type imaging mechanism includes a proximity electron multiplier, and the operation timing of the proximity electron multiplier and the input gate can be BX-broadcasted by an external trigger.
  • the IJ timing setting device is a multi-node format with a signal processing circuit that can specify the strength and / or the moving direction of the input information input to the U input detector.
  • a trigger as an imaging timing is given to the above-mentioned imaging device.
  • the received fluorescent image is divided into a fluorescent image of w> 1 and a second fluorescent image, and based on the first fluorescent image, the intensity and / or the moving direction of the received fluorescent image is specified.
  • an image timing is generated as an image timing
  • An imaging method characterized in that an amplification device is operated by the generated trigger to amplify the second fluorescence image, and the amplified fluorescence image is formed.
  • FIG. 1 is a schematic diagram illustrating the configuration of a recording apparatus according to the present invention.
  • FIG. 2 is an example of the recording apparatus shown in FIG. 1, in which an embodiment of the present invention is applied to a light distribution type imaging apparatus.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of the one- distribution type imaging device.
  • FIG. 4 is a schematic diagram illustrating an example of a configuration of a signal processing unit incorporated in the light distribution and imaging device described with reference to FIGS. 2 and 3.
  • FIGS. 5A and 5B are schematic diagrams illustrating the principle that the signal-to-noise ratio, ie, S, is improved by the light distribution type imaging apparatus described with reference to FIGS.
  • FIG. 1 schematically shows the configuration of an imaging device to help understand the range of a BI search.
  • a recording device ie, a light distribution type high-speed imaging device (hereinafter referred to as an imaging device) is, for example, an event that appears (occurs) at random in the natural world.
  • the event input unit 1 that converts the occurrence and disappearance or their movement, etc.
  • Distributor (light distributing unit) 2 that disperses the fluorescent image (to be referred to as a fluorescent image) to two fluorescent images (different in intensity), one of the fluorescent light distributed by the light distributing unit 2 It has a signal processing unit 3 for generating a predetermined signal based on the image and an imaging unit 4 for recording the other one of the divided fluorescent images.
  • FIG. 2 is a schematic diagram for explaining an example of a specific configuration of the imaging shown in FIG.
  • the event input unit 1 detects the arrival of a magnetic wave of a predetermined wavelength (incident electromagnetic wave to the input unit 1) and the movement (time displacement of the electromagnetic wave whose main component is defined in a different direction from the input unit 1). Includes an image intensifier 11 that can detect and output a fluorescence image corresponding to the intensity of the electromagnetic wave.
  • the light distribution unit 2 includes an optical member 21 that is given a predetermined ratio of 32 to the wavelength of the light of the fluorescent image output from the image intensifier 11.
  • the signal processing unit 3 receives one of the two fluorescent images distributed by the optical member 21 and outputs a signal of J ′ and 33% (%) based on the intensity of the fluorescent image. 3 1 and the photoelectric conversion unit 3 1 to extract the characteristics of the electrical signal output
  • the imaging unit 4 receives the other one of the two fluorescence images distributed by the optical member 21 and amplifies the intensity of the other one of the two fluorescence images.
  • an image pickup device 42 for picking up an output fluorescent image output from the image intensifier 41, ie, an aggregate of fluorescent light or fluorescent light constituting the aggregate, and a second image intensifier.
  • the time when the fluorescent image o 3 is input to the ear 41 is determined by the predetermined time from the time when the beam split mirror 21 distributes the fluorescent image O 1 to the two fluorescent images.
  • a period optimization mechanism (delay mechanism) 43 that can be set for the period (timing) is included.
  • the delay mechanism 43 is located between the beam splitter 21 and the second imaging intensifier 41.
  • FIG. 3 is a schematic diagram illustrating the operation of the imaging device (recording device) described with reference to FIGS.
  • the image intensifier 11 of the event input unit 1 is located on the input side, that is, the side on which an electromagnetic wave of a predetermined wavelength arrives, and receives the incident electromagnetic wave and performs photoelectric conversion.
  • the conversion surface is located on the output side opposite to the input side.
  • an output fluorescent screen 13 for converting the electromagnetic wave amplified by the image intensifier 11 into a fluorescent image, that is, a visible image and outputting the converted image.
  • a high voltage of, for example, 20 kV is supplied between the photoelectron conversion surface 12 and the output fluorescent surface 13 by the power supply device 14.
  • the event accepted by the input unit 1 that is, the generation or disappearance of the electromagnetic wave and light described above is converted into the electron E 1 by the photoelectric conversion surface 12.
  • the electron E 1 is accelerated by a high voltage of, for example, 20 kV applied to the acceleration electrode and the focusing electrode 15, is amplified at a preset amplification factor, and is applied to the phosphor screen 13. Focused. Therefore
  • a fluorescent image O 1 is output in which the electromagnetic wave input to the photoelectric conversion surface 12 is amplified at a predetermined amplification factor.
  • the image intensifier 11 for example, the diameter of the photoelectric conversion surface 12 is 10 cm, and the diameter of the fluorescent surface 13 is 2.5 cm. . 25 image intensifier is used.
  • the sensitivity for receiving the input electromagnetic wave can be increased.
  • the fluorescent image O 1 output from the fluorescent screen 13 of the image intensifier 11 is provided with a predetermined intensity by the optical member (distributor) 21 of the light distribution unit 2.
  • the optical member (distributor) 21 of the light distribution unit 2. are divided into two fluorescent images, that is, a first and a second fluorescent image O 2, 03.
  • the distributor 21 is a beam split mirror that reflects a part of the incident fluorescence image Ol and transmits the rest.
  • the beam split mirror 21 is a kind of half-mirror, and the intensity of the light passing through itself (the amount of light, hereinafter referred to as transmittance) and the intensity of the light reflected without being transmitted (the amount of light,
  • the reflectivity is set to, for example, 30 (transmittance) vs. 70 (reflectance) without considering the decrease in transmittance due to its own absorption.
  • the transmittance (11 reflectance) is set so that a large amount of light (a fluorescent image) can be supplied to the imaging device side of the imaging unit 4 provided at the subsequent stage.
  • the light intensity of 1 can be set to less than 12.2, and the ratio between the transmittance and the reflectance can be set to, for example, 45:55 or 35:65, or 25:75.
  • the transmittance of the beam split mirror 21 is set so that a large amount of light can be supplied to the imaging unit 4 side
  • the fluorescence image supplied to the imaging unit 4 side has been described.
  • the signal processing unit 3 receives a first fluorescent image O 2 distributed by a beam split mirror 21 and traveling along an optical path 23.
  • the second fluorescent image O 3 that travels along the optical path 25 is incident on the imaging unit 4.
  • the signal processing unit 3 includes the photoelectric conversion unit 31, the 3 ⁇ 43 processing circuit unit 32, and the gate shutter control circuit 33, as described above.
  • a two-dimensional position detector for example, a multi-node photomultiplier
  • Discrimination circuit for example, wave height discriminator
  • 3 2 1 and 3 2 2 the outputs of the discrimination circuits 3 2 1 and 3 2 2 correspond to the X-axis direction (m-line) and the Y-axis direction of the electrons E 2 output from the respective antennas of the multi-node photomultiplier 31.
  • the discrimination circuits 3 2 1 and 3 2 2 have the position on the ground (m X n By associating ('calculating)) the time at which the individual electron E 2 was output with the target), one fluorescent image O 2 (electromagnetic wave incident on the image intensity filter 12) appears. It can be used to determine the position, direction of movement, etc. ⁇
  • each of the discriminating circuits 32 1 and 32 2 is used for a predetermined logic judgment by a trigger generating circuit (for example, a P booklet judging circuit) 3 23 provided at the subsequent stage. That is, two discrimination circuits 3
  • the logic judgment circuit 3 2 3 is provided with a predetermined judgment, and a logic judgment is made based on a predetermined judgment logic. When a logical decision result is obtained
  • the booklet judging circuit 3 2 3 generates a trigger for operating the image pickup device of the image pickup section 4 o
  • the specific bookkeeping judgment result of the ma judging circuit 32 3 (the V-gauge for the gate / shutter) is obtained by using the gate Z-shutter control circuit 33 as shown in FIG.
  • the second imaging intensity of the imaging unit 4 and the imaging unit 4 are optimized.
  • the gate Z shutter control circuit 33 is not used, and the shutter of the imaging device 42 is turned on in accordance with the time of occurrence of the event or by using the second shutter described later.
  • the timing may be optimized by selecting the material and thickness of the phosphor screen 4 13 of the image intensifier.
  • the output may be directly input to the B-book reading circuit 3 2 3.
  • the fluorescence image O 3 reflected toward 43 is transmitted through the beam splitter and the laser beam 21 by the extension mechanism 43, and the fluorescence image o 2 input to the signal processing unit 3 is determined logically.
  • the circuit 3 23 is longer than the first period, which is the time from the determination of v S to the generation of a trigger, and is delayed by the second period and the second image intensifier 4 O entered in 1
  • the delay mechanism 43 is a third image intensifier, and includes a beam splitter and a mirror 2 of the optical distributor 2.
  • Photo-electron conversion surface 431, which receives the second fluorescent image O3 distributed in 1 and converts it into electrons E3, and electron E3 output from the light-electron conversion surface 431 Includes phosphor screen 4 32 that converts to O 4.
  • the fluorescent screen 432 has a fluorescent image due to its material and thickness characteristics.
  • the time required for inputting O 4 to the second image intensifier 41 at the subsequent stage, that is, the delay time can be SX Mi to a predetermined length.
  • the fluorescent image O 4 output from the phosphor screen 4 32 of the third image intensifier 43 and input to the proximity image intensifier 41 is a light-to-electron conversion surface.
  • MCP 4 1 2 is converted into a thunderbolt E 4 by 4 1 1
  • E 5 is output and converted to a fluorescent image o 5 by the fluorescent screen 4 13.
  • the voltage at the site is applied by the power supply 4 14 between the M c ⁇ 4 1 2 and the photoelectric conversion surface 4 1 1, and the power supply 4
  • a gate is attached to 14 .In the gate, a specific logic determination result was obtained as a result of the pro logic determination in the bookbinding determination circuit 3 23 of the signal processing unit 3. Only when the gain signal is input ⁇
  • the fluorescence image o 4 input to 41 is sequentially converted into electrons ⁇ 4 by the photon-to-electron conversion surface 411, and the electrons E 4 are converted to ⁇ ⁇ C P
  • the timing at which the get-on signal is input to 4 14 is obtained by the get-shutter control circuit 33 of the signal processing unit 3, and is described later with reference to FIGS. 5A and 5B. In connection with the timing at which the shutter of the device 42 is operated, the optimal timing is obtained.
  • the fluorescence image O 5 output to the image 3 is not displayed until the shutter 4 2 1-1 is opened by the shutter control circuit 33. )
  • the imaging device 42 includes, for example, a solid-state imaging device 421, which is formed by a CCD sensor C-type S-type image sensor or the like.
  • the shutter-equipped imaging device 42 can release the shutter 4 2 1-1 only for a period of time when the shutter 4 2 1-1 is instructed to be released. For example, Fig. 5 A
  • the shutter 4 2 1-1 is opened only from the time just before the electron E 5 amplified by the operation of 2 is output to the phosphor screen 4 13 until the existence time of the electron E 4 elapses. This can suppress the noise component from being imaged.
  • the signal-to-noise ratio that is, the fluorescence signal o5 captured by the image capturing device 42 is
  • FIG. 4 is a schematic diagram illustrating an example of the configuration of the signal processing unit 3.
  • the output output from an arbitrary row of the manifold and the multiplier 31 is thresholded by the discrimination circuit 3 21 1, ⁇ , 1 1 1 ⁇ ⁇ 1 1 1 ⁇ 1
  • the output from the arbitrary column of 1 is thresholded by the discriminator 3 2 2
  • the trigger is output to the gate / shutter control circuit 33, which means that a second trigger is output as shown in FIGS. 5A and 5B.
  • Source 4 ⁇ is input to the source 4 1 4 between 4 1 1 Immediately before, at a predetermined timing from the gate / shutter control circuit 33, the shutter 4 211 is released from the gate / shutter control circuit 33 so that the shutter 4 211 of the imaging device 42 is released.
  • the shutter release signal is output. Therefore, the shutter 421-1 is opened for a predetermined opening time, and the imaging device ia42 can capture the fluorescent image 5.
  • the MCP 4 1 2 is turned on for a predetermined time.o Therefore, at least the imaging device 4
  • the power supply 414 between the MCP 412 and the photoelectric conversion surface 411 is connected to the gate Z shutter control circuit 3 of the signal processing section 3.
  • the gate-on signal is supplied from 3 as shown in FIG. 5B, the gate-on signal is supplied to the power supply 414 between the MCP 412 and the photoelectric conversion surface 411.
  • the shutter control signal is supplied to the shutter 4 4 1-1 of the imaging device 4 0
  • the non-operating state of MCP 412 before the gate-on signal is applied to source 414 of MCP 412 corresponds to the voltage in FIG. 5A. A2 and if * the shutter control signal is not supplied to the shutter 4 2 1 1 of the elephant 4 2
  • the time ⁇ 1 T 2 shown in FIG. 5A which is not accelerated toward the MCP 412, is supplied from the gate / shutter control circuit 33 of the signal processing unit 3 to the power supply 414 of the MCP.
  • the gain signal When the gain signal is supplied, the signal can be amplified within a certain period of time.In other words, the maximum amplification is performed only while the ⁇ CP 4 1 2 of the proximity image intensifier 41 is operating.
  • Fluorescent image O 5 which is the object to be imaged, is captured by the solid-state coupling element 4 21 of the imaging device 42.
  • a shutter signal 42 1-1 of the imaging device 42 is supplied with a get-on signal to the MCP 4 12 of the proximity type imager 41.
  • the shutter control signal is supplied for a period slightly longer than the period T3 and the period T3 and T4, the power supply 414 between the MCP 412 and the photoelectric conversion surface 411 is turned on. While the solid-state image sensor 4 2
  • the shutter of 1 4 2 1-1 is not closed.
  • the image object that is, the fluorescent image O 5 is reliably captured by the solid-state image element 4 21.
  • the time during which the shutter 4 2 1-1 of the solid-state image sensor 4 2 1 is opened ⁇ 3 ⁇ 4 is the time when the solid-state image sensor 4 2 1
  • O5 is set to a shorter time than the maximum operation time (1 frame) required to image the MCP, so the MCP described in IJ 4 1 2 is operated along with T1 to T2
  • the get / shutter control circuit 33 controls the timing for fully opening the shutter of the imaging section 4 and is provided with a gate / shutter control circuit. Instead of using 33, the timing may be controlled by selecting the material of the phosphor screen 4 13 of the second image intensifier.
  • an image that is, an electromagnetic wave or a fluorescent image generated based on the generation and extinction of light is captured by a distribut viewer.
  • a shutter control signal for opening the shutter of the imaging device and a gate-on signal for controlling the amplification by the CP are obtained from the same fluorescent image obtained by the distribution.
  • the fluorescent image picked up by the image pickup device is an image to be picked up by the signal processing unit. Becomes one with the image (event) determined to be elephant) 0
  • the imaging device of the present invention only while the shutter of the imaging device is open, a fluorescence image in which electrons amplified by the proximity electron multiplier are converted on the output phosphor screen is displayed. You will be guided to the device. Therefore, except for a short time before and after the fluorescence image is captured by the imaging device, disturbances, that is, noise, are prevented from being input to the imaging device with unwanted information. . As a result, the fluorescence image captured by the imaging device is prevented from being buried in noise, and imaging with a high S / N ratio can be performed.
  • an imaging device capable of reliably imaging an event to be imaged with a high signal-to-noise ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Studio Devices (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

An imaging device capable of imaging an event to be imaged surely with a high signal/noise ratio. An event to be imaged is converted into a fluorescent image which is then divided into two fluorescent images at a light-distributing section (2) and one fluorescent image is used to obtain the gate-on-signals of a shutter at an imaging section (4) for imaging the remaining fluorescent image and an electron multiplier for amplifying a fluorescent image being inputted to the imaging section, thus imaging an event to be imaged with a high S/N ratio.

Description

光分配型 像装置 よぴ撮像方法  Light distribution type imaging device
技術分野 Technical field
本発明は、 自然界に 、 不規則に発生する事象を高速で検知 し、 その事象を記録でさ る撮像装置に関する 背景技術 明  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an imaging apparatus that detects an event that occurs irregularly in nature at a high speed and records the event.
自然界で不規則に発生する事象 、 例えば微弱な 磁波の到 来や移動あるいは光の発生および消失等をナノ秒 ί口度で認 B或 書  Events that occur irregularly in nature, such as the arrival and movement of weak magnetic waves or the generation and disappearance of light, are recognized in nanoseconds.
して記録するため、 事象 する検出装 と 、 検出装置に よる検出結果に基づいて生成される ト リ ガが与えられる こ と で動作される記録装置を用いる方法が既に実用化されている 例えばナノ秒程度で動作可能な撮像装置を 、 検出された事 象の存在期間内で動作させる こ とで 、 比較的容易に 、 RL球す べき事象を撮像する こ とができ る 検出装置 ( ト リ ガ出力部) は 例えば事象をナノ秒以下の 期間で認識でき る高速検出器等と信号処理回路等を含む。 For example, a method using a recording device that operates by being provided with an event detection device and a trigger generated based on the detection result by the detection device has already been put into practical use. By operating an imaging device that can operate in about a second within the existence period of the detected event, a detection device (trigger) that can relatively easily capture an event to be shot on the RL sphere. The output unit) includes, for example, a high-speed detector that can recognize an event in a period of less than nanoseconds and a signal processing circuit.
信号処理回路は、 1¾速検出器によ り検出された事象が撮像 すべき事象であるか否かを特定するための任 の論理回路 を含む。  The signal processing circuit includes an arbitrary logic circuit for specifying whether or not the event detected by the 1st-speed detector is an event to be imaged.
撮像装置は、 論理回路から出力 される特定の 0冊理結果を 卜 リ ガと して、 撮像すベき事象を 最像可能に ft作される。 すな わち、 特定の論理結果を生起させた特別な事象が 択的に 曰- 像される。  The imaging device is configured such that an event that should be imaged can be best imaged by using a specific result of the booklet output from the logic circuit as a trigger. That is, the special event that produced the particular logical result is selectively imaged.
なお、 事象が発生する空間または領域の大さ さや事象その ものの大き さ等に起因する制約と撮 ょぴまたは検出 装置の大き さや配置上の制約と によ り 、 検出装置で検出され る事象と撮像装置で撮像される事象は、 必ずしも同 ―と はな らない In addition, restrictions caused by the size of the space or area where the event occurs, the size of the event itself, etc. Due to the size and arrangement restrictions of the device, the event detected by the detection device and the event captured by the imaging device are not necessarily the same.
また 、 撮像すべき事象の多 < は 、 存在 (現出 ) 時間が非常 に短いため、 撮像装置を動作させるタイ ミ ングすなわち検出 装置で事象を認識するために要求される時間を短 < する こ と も重要である。  Also, since the number of events to be imaged is very short (existing) time, the time required to operate the imaging device, that is, the time required for the detection device to recognize the event, is reduced. Is also important.
上述した通 り 、 検出装置によ り 検出される事象と 像装置 によ り撮像される事象は 、 なる場合が多い。  As described above, the event detected by the detection device and the event captured by the imaging device often differ.
このため、 撮像装置で撮像された事象と ガが出力 され た時点 (瞬間) に検出衣置で検出されている事象とが 、 必ず 一致される と は限らず 、 撮像された事象が無駄になる問題が こ のこ と は、 本来撮像すベさ事象を撮像し損な つ こ と に他ならない。  For this reason, the event captured by the imaging device and the event detected by the detection clothing at the time (moment) when the moth is output do not always match, and the captured event is wasted. The problem is nothing but the failure to capture the event that should be captured.
発明の 1开 J不 1 开 J of the invention
本発明の目的は、 最像すベさ事象を、 高い信号対ノィ ズ比 で、 しかも確実に撮像可能な 最像装置を提供する こ とである この発明は、 上述した問題点に基づきなされたもので、 蛍光像を撮像する 像機構とヽ  SUMMARY OF THE INVENTION An object of the present invention is to provide a maximum image device capable of reliably imaging a maximum image sharpness event with a high signal-to-noise ratio, and the present invention has been made based on the above-described problems. Image mechanism for capturing fluorescent images
撮像対象と な り う る事象を蛍光像に変換する第 1 のィ メ ー ジ増倍管と、  A first image intensifier for converting an event to be imaged into a fluorescent image,
刖記撮像機構と前記第 1 のィ メ ジ増倍管と の間に け Ο れ、 前記第 1 のィ メ一ジ管から出力された上記蛍光像を、 The fluorescent image output between the imaging mechanism and the first image intensifier and output from the first image intensifier,
1 の蛍光像と第 2 の蛍光像と に分離する と と もに、 上記第 2 の蛍光像を前記撮像 構に案内するデイ ス ビュ一タ と、 刖目 i5ディ ス 卜 V ビュ ' -~タによ り 分離された上 し 1 の蛍光 像力 ら前記撮像機構を動作させるための撮像タィ ミ ングを規 定するタイ 、 ング H定装置と 、 A disc viewer that separates the first fluorescence image into a second fluorescence image and guides the second fluorescence image to the imaging mechanism; Item i5 Dist. V-view tie, a tie H fixing device for specifying an imaging timing for operating the imaging mechanism based on the fluorescence image power of 1 separated by the
を有する こ と を特徴とする光分配型撮像装置である o A light distribution type imaging device characterized by having
またこの発明は 、  The invention also provides
入力情報を蛍光 よぴその分布に変換しヽ 増幅する入力検 出装置と、  An input detection device that converts the input information into fluorescence distribution and amplifies it,
こ の入力検出装置によ り変換された蛍光 よぴ分布を撮像 する撮像機構と 、  An image pickup mechanism for picking up a distribution from the fluorescence converted by the input detection device;
こ の撮像機構と 刖記入カ検出装置との間に RXけられ 、 冃 U記 入力検出装置によ り 得られた蛍光 よびその分布を所定の光 強度の 2つの蛍光 よびその分布に分離する分離装置と、 こ の分離装置によ り 分離され 、 IU記 像機構に案内される 蛍光おょぴその分布と は異なる资光およぴ分布力 ら HU記撮像 機構を動作させるタィ ミ ングを るタィ 、 ングき 定装置 と、 を有し 、  The RX between this imaging mechanism and the input detector detects the fluorescence and the distribution obtained by the input detector, which separates the fluorescence and its distribution into two fluorescences of a predetermined light intensity and their distribution. And the timing to operate the HU imaging mechanism from the light and distribution power different from the distribution of the fluorescent light that is separated by this separation apparatus and guided to the IU imaging mechanism. And a tie setting device.
目 IJ記入力検出装置は、 入力情報である SB-磁波を一且资光 ょぴその分 に変換し、 出力 された蛍光 よぴその分布を光 一電子変換し 、 得られた電子を增幅したのちの蛍光 よびそ の分布に変換して出力する第 1 のィ メ ジィ ンテンシフアイ ァを含み、  The IJ input detection device converts the SB-magnetic wave, which is the input information, into light and light, converts the distribution of the output fluorescent light into light-to-electron, and widens the obtained electrons. Including a first image intensifier that converts and outputs the subsequent fluorescence and its distribution,
冃 U記撮像機構はヽ 近接型電子増倍器を含み 、 近接型電子増 倍器の動作タィ 、ヽ ングが外部からの ト V ガによ り任 に BX疋 可能な入力ゲ一 卜付きィ メ一ジィ ンテ ンシファィァと 、 近接  冃 The U-type imaging mechanism includes a proximity electron multiplier, and the operation timing of the proximity electron multiplier and the input gate can be BX-broadcasted by an external trigger. The image intensifier and the proximity
c¾口  c¾ mouth
型電子増倍 に指示される動作タイ ミ ングにあわせて t 作が制御される力メ フ と を含み、 T in accordance with the operation timing indicated by the pattern electron multiplication. And the force mechanism whose operation is controlled,
目 IJ記タイ ミ ング設定装置はヽ 目 U記入力検出 置に入力 され た入力情報の強度または移動方向あ し く はその両者を特定可 能な信号処理回路付さのマルチァ ノ一 ドフォ 卜マルチプラィ ャを含み、  The IJ timing setting device is a multi-node format with a signal processing circuit that can specify the strength and / or the moving direction of the input information input to the U input detector. Including
上記マノレチァノ 一 ド、フォ 卜マルチプライヤから出力 される 上記入力情報の強度または移動方向も しく はその両者が特定 された結果に基づいて、 上記 像装置に撮像タィ ミ ングと し ての ト リ ガを供給する こ とで同 ―の蛍光およびその分布から 得られた ト リ ガ信号によ り任思の入力情報のみを撮像可能な 光分配型撮像 置である o  Based on the strength and / or moving direction of the input information output from the above-mentioned manifold and the photomultiplier, or both, a trigger as an imaging timing is given to the above-mentioned imaging device. Is a light distribution type imaging device that can capture only arbitrary input information with the same fluorescence signal and a trigger signal obtained from its distribution.o
さ らにこの発明は 、  Further, the present invention
任意に発生する事象を 光し 、  Illuminate any event that occurs,
受光した蛍光像を w> 1 の蛍光像と第 2 の蛍光像と に分配し 第 1 の蛍光像に づいてヽ 受光した蛍光像の強度または移 動方向も しく はその両方を特定しヽ  The received fluorescent image is divided into a fluorescent image of w> 1 and a second fluorescent image, and based on the first fluorescent image, the intensity and / or the moving direction of the received fluorescent image is specified.
特定した結果に基づいてヽ 像タイ ミ ングと しての 卜 V ガ を生成し、  Based on the specified result, an image timing is generated as an image timing,
生成された 卜 ジ ガによ 増幅装置を動作させて第 2 の蛍光 像を増幅し、 増幅された蛍光像を 像する こ と を特徴とする 撮像方法である o  An imaging method characterized in that an amplification device is operated by the generated trigger to amplify the second fluorescence image, and the amplified fluorescence image is formed.
図面の簡単な 明 Brief description of drawings
図 1 は、 本発明の記録装置の構成を説明する概略図 ο 図 2 は、 図 1 に示した記録装置の一例と して 、 本発明の実 施の形態を光分配型撮像装 に 用 した例を示す概略図 ο 図 3 は、 図 2 ίし し 7こ;)1 分配型撮像装置の構成の—例を 明する概略図 ο FIG. 1 is a schematic diagram illustrating the configuration of a recording apparatus according to the present invention. FIG. 2 is an example of the recording apparatus shown in FIG. 1, in which an embodiment of the present invention is applied to a light distribution type imaging apparatus. Schematic showing examples ο FIG. 3 is a schematic diagram illustrating an example of the configuration of the one- distribution type imaging device.
図 4 は、 図 2および図 3 を用いて説明 した光分配 撮像 置に組み込まれる信号処理部の構成の一例を説明する概略図。  FIG. 4 is a schematic diagram illustrating an example of a configuration of a signal processing unit incorporated in the light distribution and imaging device described with reference to FIGS. 2 and 3.
図 5 Aおよび図 5 Βは、 図 2 および 3 を用いて 明 した 光分配型撮像装置によ り 、 信号対ノィ ズ比すなわち S が 改善される原理を説明する概略図。  FIGS. 5A and 5B are schematic diagrams illustrating the principle that the signal-to-noise ratio, ie, S, is improved by the light distribution type imaging apparatus described with reference to FIGS.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照してこの発明の実施の形態を説明する o 図 1 は、 BI求の範囲の理解を助けるために 、 撮像装置の構 成を概略的に示している。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 schematically shows the configuration of an imaging device to help understand the range of a BI search.
図 1 に示される通り 、 記録装置すなわち光分配型高速撮像 装置 (以下、 撮像装置と表記する) はヽ 例えば自然界でラン ダムに現出 (発生) する事象ヽ すなわち微弱な電磁波の到来 や光の発生および消失あるいは 、 それらの移動等をヽ 蛍光お よぴその集合体である蛍光像に変換する事象入力部 1 、 事象 入力部 1 によ り蛍光像に変換された蛍光像出力 (以下 、 単に 蛍光像と表記する) を (互レ、に強度が異なる ) 2つの蛍光像 に分配するデイ ス ト リ ビュ一タ (光分配部) 2 、 光分配部 2 によ り 分配された一方の蛍光像に基づいて所定の信号を生成 する信号処理部 3 およぴ分配された他の一方の蛍光像を記録 する撮像部 4 を有する。  As shown in Fig. 1, a recording device, ie, a light distribution type high-speed imaging device (hereinafter referred to as an imaging device) is, for example, an event that appears (occurs) at random in the natural world. The event input unit 1 that converts the occurrence and disappearance or their movement, etc. into fluorescence or a fluorescence image that is an aggregate thereof, and the fluorescence image output converted into a fluorescence image by the event input unit 1 (hereinafter simply referred to as Distributor (light distributing unit) 2 that disperses the fluorescent image (to be referred to as a fluorescent image) to two fluorescent images (different in intensity), one of the fluorescent light distributed by the light distributing unit 2 It has a signal processing unit 3 for generating a predetermined signal based on the image and an imaging unit 4 for recording the other one of the divided fluorescent images.
なお、 撮像部 4 は、 光分配部 2 によ り 2つに分配された蛍 光像の う ち、 強度の大きな (明るい) 蛍光像が案内される側 に配置される ο 図 2 は、 1 に示した撮像 の具体的な構成の一例を説 明するための概略図である。 The imaging unit 4 is arranged on the side where the high intensity (bright) fluorescent image is guided out of the two fluorescent images distributed by the light distribution unit 2. FIG. 2 is a schematic diagram for explaining an example of a specific configuration of the imaging shown in FIG.
事象入力部 1 は、 所定波長の 磁波の到来 (入力部 1 への 電磁波の入射) や移動 (主要な成分が入力部 1 と は異なる方 向に定義されている電磁波の時間的な変位) を検出し、 電磁 波の強度に対応する蛍光像を出力可能なィ メ一ジイ ンテンシ ファイア 1 1 を含む。  The event input unit 1 detects the arrival of a magnetic wave of a predetermined wavelength (incident electromagnetic wave to the input unit 1) and the movement (time displacement of the electromagnetic wave whose main component is defined in a different direction from the input unit 1). Includes an image intensifier 11 that can detect and output a fluorescence image corresponding to the intensity of the electromagnetic wave.
光分配部 2 は 、 イ メ ージィ ンテンシファィ ァ 1 1 カゝら出力 される蛍光像の光の波長に対して所定の 32§過率が与え られた 光学部材 2 1 を含む。  The light distribution unit 2 includes an optical member 21 that is given a predetermined ratio of 32 to the wavelength of the light of the fluorescent image output from the image intensifier 11.
信号処理部 3 は、 光学部材 2 1 によ り 2つ分配された蛍光 像の う ちの一方を受光し、 その蛍光像の強度に対 J '、 ~3 Ό % ' 信号を出力する光電変換部 3 1 と 、 光電変換部 3 1 カゝら出力 された電気信号の特徴を取り 出す ≡"  The signal processing unit 3 receives one of the two fluorescent images distributed by the optical member 21 and outputs a signal of J ′ and 33% (%) based on the intensity of the fluorescent image. 3 1 and the photoelectric conversion unit 3 1 to extract the characteristics of the electrical signal output
痛理回路部 3 2 を有する。 撮像部 4 はヽ 光学部材 2 1 によ り 2つに分配された蛍光像 の他の一方を受光してその強度を増幅すプ ·¾¾· 2 のイ メ ージィ ンテ ンシフ ァ ィ ァ 4 1 と 、 ィ メ一ジィ ンテンシフアイ ァ 4 1 から出力される出力蛍光像すなわち蛍光の集合体も しく はそ の集合体を構成する蛍光を撮像する撮像装置 4 2 と、 第 2 の イ メ ージィ ンテ ンシフ ァ イ ア 4 1 に蛍光像 o 3 が入力 される 時点を、 ビ一ム ス プ リ ッ ト ミ ラ一 2 1 によ り 蛍光像 O 1 力 S 2 つの蛍光像に分配された時点から所定の期間 (タイ ミ ング) に設定可能な期間最適化機構 (遅延機構 ) 4 3 と 、 を含む。 遅延機構 4 3 は、 ビーム スプリ V 卜 ヽラ一 2 1 と第 2 のィ メ ーシィ ンテ ンシファイア 4 1 と の間に位置されている。 図 3 は、 図 1 3 ょぴ図 2 を用いて説明した撮像装置 (記録 装置) の動作を 明する概略図である。 It has a pain circuit section 32. The imaging unit 4 receives the other one of the two fluorescence images distributed by the optical member 21 and amplifies the intensity of the other one of the two fluorescence images. And an image pickup device 42 for picking up an output fluorescent image output from the image intensifier 41, ie, an aggregate of fluorescent light or fluorescent light constituting the aggregate, and a second image intensifier. The time when the fluorescent image o 3 is input to the ear 41 is determined by the predetermined time from the time when the beam split mirror 21 distributes the fluorescent image O 1 to the two fluorescent images. A period optimization mechanism (delay mechanism) 43 that can be set for the period (timing) is included. The delay mechanism 43 is located between the beam splitter 21 and the second imaging intensifier 41. FIG. 3 is a schematic diagram illustrating the operation of the imaging device (recording device) described with reference to FIGS.
図 3 に示されるよ う に 、 事象入力部 1 のイメージインテン シフ ァ イ ア 1 1 は 、 入力側すなわち所定波長の電磁波が到来 する側に位置され 、 入射した電磁波を受け入れて光電変換す る光電子変換面 1 2 と、 入力側に対向する出力側に位置され As shown in FIG. 3, the image intensifier 11 of the event input unit 1 is located on the input side, that is, the side on which an electromagnetic wave of a predetermined wavelength arrives, and receives the incident electromagnetic wave and performs photoelectric conversion. The conversion surface is located on the output side opposite to the input side.
、 イメージィ ンテンシフアイァ 1 1 によ り増幅された電磁波 を蛍光像すなわち可視像に変換して出力する出力蛍光面 1 3 を有する。 な ヽ 光電子変換面 1 2 と出力蛍光面 1 3 との間 には、 電源装置 1 4 によ り 、 例えば 2 0 k Vの高電圧が供給 されている。 And an output fluorescent screen 13 for converting the electromagnetic wave amplified by the image intensifier 11 into a fluorescent image, that is, a visible image and outputting the converted image. A high voltage of, for example, 20 kV is supplied between the photoelectron conversion surface 12 and the output fluorescent surface 13 by the power supply device 14.
よ り詳細には 、 入力部 1 によ り 受け入れられた事象すなわ ち前に説明した電磁波ゃ光の発生おょぴ消失は、 光電子変換 面 1 2 によ り 電子 E 1 に変換される。  More specifically, the event accepted by the input unit 1, that is, the generation or disappearance of the electromagnetic wave and light described above is converted into the electron E 1 by the photoelectric conversion surface 12.
電子 E 1 は 、 加速 '¾極および集束電極 1 5 に印加されてい る例えば 2 0 k Vの高電圧によ り加速され、 予め設定されて いる増幅率で増幅されて 、 蛍光面 1 3 に集束される。 よって The electron E 1 is accelerated by a high voltage of, for example, 20 kV applied to the acceleration electrode and the focusing electrode 15, is amplified at a preset amplification factor, and is applied to the phosphor screen 13. Focused. Therefore
、 蛍光面 1 3 の出力側には、 光電子変換面 1 2 に入力された 電磁波が所定の増幅率で増幅された蛍光像 O 1 が出力されるOn the output side of the fluorescent screen 13, a fluorescent image O 1 is output in which the electromagnetic wave input to the photoelectric conversion surface 12 is amplified at a predetermined amplification factor.
。 なお、 こ の実施例では 、 イ メ ージイ ンテ ンシフ ァ イ ア 1 1 と して、 例えば光電子変換面 1 2 の直径が 1 0 c mで、 蛍光 面 1 3 の直径が 2 . 5 c mの倍率 0 . 2 5 のイ メージイ ンテ ンシフ ァ イ アを用いている。 また、 光電子変換面 1 2に、 更 に口径の大きなイ メージインテンシファイアを用いるこ とで 入力される電磁波を受け入れる感度を高めるこ とができる。 イ メ ージイ ンテ ンシフ ァ イ ア 1 1 の蛍光面 1 3 から出力 さ れた蛍光像 O 1 は、 光分配部 2 の光学部材 (ディ ス ト リ ビュ ータ) 2 1 によ り 、 所定強度の 2つの蛍光像すなわち第 1 お よび第 2 の蛍光像 O 2 , 0 3 に分配される。 なお、 ディ ス ト リ ビュータ 2 1 は、 入射蛍光像 O l の一部を反射し、 残り を 透過する ビームスプリ ッ ト ミ ラーである。 . In this embodiment, as the image intensifier 11, for example, the diameter of the photoelectric conversion surface 12 is 10 cm, and the diameter of the fluorescent surface 13 is 2.5 cm. . 25 image intensifier is used. In addition, by using an image intensifier with a larger diameter for the photoelectron conversion surface 12, the sensitivity for receiving the input electromagnetic wave can be increased. The fluorescent image O 1 output from the fluorescent screen 13 of the image intensifier 11 is provided with a predetermined intensity by the optical member (distributor) 21 of the light distribution unit 2. Are divided into two fluorescent images, that is, a first and a second fluorescent image O 2, 03. Note that the distributor 21 is a beam split mirror that reflects a part of the incident fluorescence image Ol and transmits the rest.
ビームスプ リ ッ ト ミ ラー 2 1 は、 一種のハーフ ミ ラーであ つて自身を通過する光の強度 (光量、 以下透.過率と示す) と 透過されずに反射される光の強度 (光量、 以下反射率と示 す) が、 自身の吸収によ る透過率の低下を考慮しない場合に、 例えば 3 0 (透過率) 対 7 0 (反射率) に設定されている。 なお、 図 3 に示した例では、 透過率 ( 1 一反射率) は、 後段 に設け られる撮像部 4 の撮像装置側に多 く の光量 (の蛍光 像) を供給可能に、 入射蛍光像 O 1 の光強度の 1 2 .未満、 透過率と反射率の比と して、 例えば 4 5対 5 5 あるいは 3 5 対 6 5 、 も しく は 2 5対 7 5 等に設定可能である。  The beam split mirror 21 is a kind of half-mirror, and the intensity of the light passing through itself (the amount of light, hereinafter referred to as transmittance) and the intensity of the light reflected without being transmitted (the amount of light, The reflectivity is set to, for example, 30 (transmittance) vs. 70 (reflectance) without considering the decrease in transmittance due to its own absorption. In the example shown in FIG. 3, the transmittance (11 reflectance) is set so that a large amount of light (a fluorescent image) can be supplied to the imaging device side of the imaging unit 4 provided at the subsequent stage. The light intensity of 1 can be set to less than 12.2, and the ratio between the transmittance and the reflectance can be set to, for example, 45:55 or 35:65, or 25:75.
また、 こ こ では、 撮像部 4側に多く の光量を供給可能に、 ビーム スプリ ッ ト ミ ラー 2 1 の透過率を設定した例を説明 し たが、 撮像部 4側に供給される蛍光像の光量は任意に設定で き る。 例えば、 撮像部 4側に供給される蛍光像の光量が少な い場合には (その光量を) 撮像装置の前段で、 適切に増幅す ればよい。  Also, here, an example in which the transmittance of the beam split mirror 21 is set so that a large amount of light can be supplied to the imaging unit 4 side has been described, but the fluorescence image supplied to the imaging unit 4 side has been described. Can be set arbitrarily. For example, when the light amount of the fluorescent image supplied to the imaging unit 4 is small (the light amount), it is sufficient to appropriately amplify the light amount before the imaging device.
信号処理部 3 には、 ビーム スプリ ッ ト ミ ラー 2 1 によ り 分 配され、 光路 2 3 に沿って進む第 1 の蛍光像 O 2 が入射され る。 撮像部 4 には、 光路 2 5 に沿って進む第 2 の蛍光像 O 3 が 入射される。 The signal processing unit 3 receives a first fluorescent image O 2 distributed by a beam split mirror 21 and traveling along an optical path 23. The second fluorescent image O 3 that travels along the optical path 25 is incident on the imaging unit 4.
信号処理部 3 は、 前に説明 した通 り 、 光電変換部 3 1 と ¾3 理回路部 3 2 と ゲー ト シャ ツタ制御回路 3 3 を含む o  The signal processing unit 3 includes the photoelectric conversion unit 31, the ¾3 processing circuit unit 32, and the gate shutter control circuit 33, as described above.
光電変換部 3 1 には、 2次元位置検出器 (例えばマルチァ ノ ー ドフォ トマルチプライヤ) が用い られる。  For the photoelectric conversion unit 31, a two-dimensional position detector (for example, a multi-node photomultiplier) is used.
マルチアノ一 ドフォ トマルチプライ ヤ 3 1 にはヽ m ( = ア m (=
8 ) 行 X n ( = 8 ) 列 = A ( = 6 4 ) c h (チヤネル ) に区 分されたメ ッシュダイ ノー ドを有し、 蛍光像 O 2 が入力 され たダイ ノー ドのアノ ー ドからのみ、 蛍光像 O 2 を光電変換し て得られた電子 E 2 が出力 される。 なお、 マルチアノ一 ドフ ォ トマルチプライヤ 3 1 の各アノー ドに入射された蛍光像が 光電変換され 、 電子 E 2 と して出力 されるまでに要求される 時間は、 1 0 — 9秒 ( 1 ナノ秒) 程度である。 8) Row Xn (= 8) column = A (= 64) A mesh node divided into channels (channels), from which the fluorescence image O 2 is input. Only electrons E 2 obtained by photoelectrically converting the fluorescent image O 2 are output. The time required for the fluorescence image incident on each anode of the multi-node photomultiplier 31 to be photoelectrically converted and output as electrons E 2 is 10 to 9 seconds (1 Nanoseconds).
マルチア ノ一 ドフ ォ ト マルチプライ ヤ 3 1 の任意のァ ノ一 ドから出力された電子 E 2 はヽ 図 4 を用いて以下に詳細に説 明するがヽ 冊 ¾回路部 3 2 の例 ば弁別回路 (例 ば波高弁 別器) 3 2 1 およぴ 3 2 2 によ 現出時期を設定可能に検出 される。 すなわち 、 各弁別回路 3 2 1, 3 2 2 の出力は、 マ ルチアノ ー ドフォ 卜マルチプラィャ 3 1 の各ァノ ドカゝら出 力 される電子 E 2 の X軸方向 ( m行 ) と Y軸方向 (  The electron E 2 output from any of the multi-node photomultipliers 31 will be described in detail below with reference to FIG. Discrimination circuit (for example, wave height discriminator) is detected by 3 2 1 and 3 2 2 so that the appearance time can be set. That is, the outputs of the discrimination circuits 3 2 1 and 3 2 2 correspond to the X-axis direction (m-line) and the Y-axis direction of the electrons E 2 output from the respective antennas of the multi-node photomultiplier 31. (
それぞれに関する位置情報を含む o O Include location information for each
従って 、 例えば 、 個 の弁別回路 3 2 1 , 3 2 2 に、 マノレ チアノ一 ドフォ 卜マルチプラィャ 3 1 力 ら電子 E 2 が出力さ れている全ての期間についてヽ ァノ一 ド上の位置 ( m X n座 標 ) と個々の電子 E 2が出力 された時間 と を関係づける ( '演 算する ) こ と で、 1 の蛍光像 O 2 (ィ メ 一ジィ ンテンシフ ァィァ 1 2 に入射した電磁波) が現出している時間ねよぴ位 置ならびに移動方向等を求めるために利用可能である ο Therefore, for example, the discrimination circuits 3 2 1 and 3 2 2 have the position on the ground (m X n By associating ('calculating)) the time at which the individual electron E 2 was output with the target), one fluorescent image O 2 (electromagnetic wave incident on the image intensity filter 12) appears. It can be used to determine the position, direction of movement, etc. ο
それぞれの弁別回路 3 2 1 , 3 2 2 の出力は 、 後段に 置 される ト リ ガ発生回路 (例えば P冊理判定回路) 3 2 3 によ る 所定の論理判定に利用される。 すなわち、 2 つの弁別回路 3 The output of each of the discriminating circuits 32 1 and 32 2 is used for a predetermined logic judgment by a trigger generating circuit (for example, a P booklet judging circuit) 3 23 provided at the subsequent stage. That is, two discrimination circuits 3
2 1 , 3 2 2 の出力 ^ m理判定回路 3 2 3 に 、 予め設定さ れてレ、る所定の判定 m理に基づいて 、 論理判定される σ 従つ て 判定論理に沿つた特定の論理判定結果が得られた場合に2 1, 3 2 2 output ^ m The logic judgment circuit 3 2 3 is provided with a predetermined judgment, and a logic judgment is made based on a predetermined judgment logic. When a logical decision result is obtained
B冊理判定回路 3 2 3 から撮像部 4 の撮像装置を動作させる 卜 y ガが生起される o The booklet judging circuit 3 2 3 generates a trigger for operating the image pickup device of the image pickup section 4 o
m a判定回路 3 2 3 の特定の 冊理判定結果 (ゲー 卜 /シャ クタに対する 卜 V ガ ) は、 図 4 に示される よ う にゲ一 卜 Zシ ャ クタ制御回路 3 3 を用いてタィ 、 ングが m適化され 撮像 部 4 の第 2 のィ メ 一ジイ ンテンシフアイ ァ 4 1 と撮像 置 4 As shown in FIG. 4, the specific bookkeeping judgment result of the ma judging circuit 32 3 (the V-gauge for the gate / shutter) is obtained by using the gate Z-shutter control circuit 33 as shown in FIG. The second imaging intensity of the imaging unit 4 and the imaging unit 4 are optimized.
2 に入力される。 Entered in 2.
また 、 このゲー 卜 Zシャ ッタ制御回路 3 3 を使用せず 、 事 象の発生時間にあわせて、 または 像装置 4 2 のシャ クタ を ォンでさ る ぶ う にヽ 後述する第 2 のィ メ ージィ ンテンシフ ァ ィァの蛍光面 4 1 3 の材質や厚さ を選択する こ と で タィ ミ ングを最適化しても よレヽ。  Also, the gate Z shutter control circuit 33 is not used, and the shutter of the imaging device 42 is turned on in accordance with the time of occurrence of the event or by using the second shutter described later. The timing may be optimized by selecting the material and thickness of the phosphor screen 4 13 of the image intensifier.
な 、 論理判定回路 3 2 3 に要求される処理時間とヽ 事象 の発生時間と の差がわずかであれば (あるいは 、 事象がゆつ However, if the difference between the processing time required for the logic decision circuit 3 2 3 and the occurrence time of the 事 象 event is small (or
< り と発生する系すなわち事象が現出 してレヽる時間が い場 合には) 、 マルチァノ ドフォ トマルチプフィ ャ 3 1 力 ら の き A <A system that occurs frequently, that is, when there is no time for the event to appear and be ), The multi-node photomultiplier 31 A
出力が、 直接ヽ B冊理判 回路 3 2 3 に入力 されても よい。 The output may be directly input to the B-book reading circuit 3 2 3.
ビ一ム スプ V ヽ  Beam Sp V ヽ
V ヽ ラ一 2 1 によ り 、 - 像部 4 の 延機構 According to the V-axis 2 1,-the extension mechanism of the image section 4
4 3 に向けて反射された蛍光像 O 3 は、 延機構 4 3 によ り 、 ビームスプリ ヽ、 ラ一 2 1 を透過され 、 信号処理部 3 に入 力された蛍光像 o 2 が 理判定回路 3 2 3 で v S判定されて ト リ ガが生成されるまでの時間である第 1 の期間よ り も長レ、 第 2 の期間だけ遅延されて第 2 のィ メ一ジィ ンテンシフアイ ァ 4 1 に入力される o The fluorescence image O 3 reflected toward 43 is transmitted through the beam splitter and the laser beam 21 by the extension mechanism 43, and the fluorescence image o 2 input to the signal processing unit 3 is determined logically. The circuit 3 23 is longer than the first period, which is the time from the determination of v S to the generation of a trigger, and is delayed by the second period and the second image intensifier 4 O entered in 1
よ り詳細にはヽ 遅延機構 4 3 は 、 第 3 のィ メ 一ジィ ンテ ン シフアイ ァであ り 、 光分配器 2 のビ一ムスプリ ッ 卜 、 ラー 2 More specifically, the delay mechanism 43 is a third image intensifier, and includes a beam splitter and a mirror 2 of the optical distributor 2.
1 で分配された第 2 の蛍光像 O 3 を受光して電子 E 3 に変換 する光一電子変換面 4 3 1 と、 光 ―電子変換面 4 3 1 から出 力された電子 E 3 を蛍光像 O 4 に変換する蛍光面 4 3 2 を含 む。 蛍光面 4 3 2 は 、 その材質や厚さの特徴によ り 、 蛍光像Photo-electron conversion surface 431, which receives the second fluorescent image O3 distributed in 1 and converts it into electrons E3, and electron E3 output from the light-electron conversion surface 431 Includes phosphor screen 4 32 that converts to O 4. The fluorescent screen 432 has a fluorescent image due to its material and thickness characteristics.
O 4 を後段の第 2 のィ メ 一ジイ ンテンシファィ ァ 4 1 に入力 させる時間すなわち遅延時間を所定の長さに SX Miでき る o 第 2 のィ メ 一ジィ ンテンシフ ァィ 了 4 1 は 、 近接型ィ メ ー ジィ ンテ ンシファィ ァであ り 、 周知の電子増借益 ( M C P = マイ ク ロチャネルプレ 卜 ) 4 1 2 を含む o The time required for inputting O 4 to the second image intensifier 41 at the subsequent stage, that is, the delay time can be SX Mi to a predetermined length. Type image intensifier, including well-known electronic borrowing benefits (MCP = microchannel plate) 4 12 o
第 3 のィ メ一ジィ ンテンシフ ァィ ァ 4 3 の蛍光面 4 3 2 力 ら出力され、 近接型ィ メ ジイ ンテンシフ ァィ ァ 4 1 に入力 された蛍光像 O 4 は 、 光 ―電子変換面 4 1 1 によ り 雷子 E 4 に変換され、 M C P 4 1 2 は所定の大き さ に増幅された電子 The fluorescent image O 4 output from the phosphor screen 4 32 of the third image intensifier 43 and input to the proximity image intensifier 41 is a light-to-electron conversion surface. MCP 4 1 2 is converted into a thunderbolt E 4 by 4 1 1
E 5 を出力 し 蛍光面 4 1 3 によ 蛍光像 o 5 に変換される。 な 、 M c Ρ 4 1 2 と光一電子変換面 4 1 1 と の間にはヽ 源 4 1 4 によ り 所疋の電圧が印加されてレ、る な ヽ 電源 4E 5 is output and converted to a fluorescent image o 5 by the fluorescent screen 4 13. The voltage at the site is applied by the power supply 4 14 between the M c 光 4 1 2 and the photoelectric conversion surface 4 1 1, and the power supply 4
1 4 にはゲ トが けられてお り ヽ そのゲ一卜 には 、 信号処 理部 3 の Ρ冊理判定回路 3 2 3 における pro理判定の結果 、 特定 の 理判定結果が得られた場合にのみヽ ゲ 卜ォン信号が入 力 される ο A gate is attached to 14 .In the gate, a specific logic determination result was obtained as a result of the pro logic determination in the bookbinding determination circuit 3 23 of the signal processing unit 3. Only when the gain signal is input ο
すなわち 、 近接型 (第 2 の ) ィ メ ジィ ンテンシファィ ァ That is, the proximity (second) image enhancement
4 1 に入力 された蛍光像 o 4 は、 光 ― 子変換面 4 1 1 によ り 、 逐次電子 Ε 4 に変換されるが 、 その電子 E 4 はヽ Μ C PThe fluorescence image o 4 input to 41 is sequentially converted into electrons Ε 4 by the photon-to-electron conversion surface 411, and the electrons E 4 are converted to ヽ Μ C P
4 1 2 と光ー電子変換面 4 1 1 と の間の ¾源 4 1 4 にゲ ト ォン信号が入力 される間のみ M C Ρ 4 1 2 によ ΰ増幅される ので 、 信号対ノィズ比すなわち S / Νが改 される ο Since the signal is amplified by the MC 2 4 12 only while the get-on signal is input to the source 4 14 between the 4 1 2 and the photoelectric conversion surface 4 1 1 1, the signal to noise ratio is increased. That is, S / Ν is changed ο
またヽ Μ C Ρ 4 1 2 と光 ―電子変換面 4 1 1 との間の電源 The power supply between ヽ Μ C Ρ 4 1 2 and the photo-electron conversion surface 4 1 1
4 1 4 にゲ トォン信号が入力 されるタィ ングはヽ 信号処 部 3 のゲ ト シャ ッタ制御回路 3 3 によ り 、 図 5 Aわよ び図 5 Bによ り 後段に説明する 像 置 4 2 のシャ Vタが動 作されるタィ ミ ングと 関連づけられてヽ 最適なタィ 、 ングにThe timing at which the get-on signal is input to 4 14 is obtained by the get-shutter control circuit 33 of the signal processing unit 3, and is described later with reference to FIGS. 5A and 5B. In connection with the timing at which the shutter of the device 42 is operated, the optimal timing is obtained.
Pス定される P set
第 2 のィ メ ジィ ンテンシフ ァィ ァ 4 1 の出力蛍光面 4 1 Output phosphor screen 4 1 of second image intensifier 4 1
3 に出力された蛍光像 O 5 は 、 シャ Vタ制御回路 3 3 によ り シャ クタ 4 2 1 ― 1 の開放が ί¾不されてレ、る間だけ画像 (こ こでは 、 蛍光像 Ο 5 ) を撮像可能なシャ クタ付ぎ 像 置 4The fluorescence image O 5 output to the image 3 is not displayed until the shutter 4 2 1-1 is opened by the shutter control circuit 33. )
2 によ り撮像される o なお 、 撮像装置 4 2 は 、 例 ば C C D センサ C Μ Ο S型画像センサ等でめる固体撮像 子 4 2 1 を含む。 シャ ツタ付き撮像装置 4 2 は、 シャ ッタ 4 2 1 - 1 の開放 が指示された場合にのみ予め g¾疋 < れ" レ、る期間だけシャ ッ タ 4 2 1 — 1 が開放される こ と力 ら、 例 ば図 5 Aおょぴ図The imaging device 42 includes, for example, a solid-state imaging device 421, which is formed by a CCD sensor C-type S-type image sensor or the like. The shutter-equipped imaging device 42 can release the shutter 4 2 1-1 only for a period of time when the shutter 4 2 1-1 is instructed to be released. For example, Fig. 5 A
5 Bによ り 以下に説明する よ う に、 少な < と も、 M C P 4 15 B, as explained below, with less <
2 が動作される こ とで増幅された電子 E 5 が蛍光面 4 1 3 に 出力される直前から電子 E 4 の存在時間を経過するまでの間 だけシャ ッタ 4 2 1 ― 1 が開放される こ とで、 ノ ィ ズ成分が 撮像される と を抑止でき 。 これによ り 、 撮像装置 4 2 に よ り撮像される蛍光像 o 5 に関しヽ 信号対ノィズ比すなわちThe shutter 4 2 1-1 is opened only from the time just before the electron E 5 amplified by the operation of 2 is output to the phosphor screen 4 13 until the existence time of the electron E 4 elapses. This can suppress the noise component from being imaged. Thus, the signal-to-noise ratio, that is, the fluorescence signal o5 captured by the image capturing device 42 is
S / Nが改 される S / N is revised
図 4 はヽ 信号処理部 3 の構成の 例を S兑明する概略図であ マノレチァノ ド、フ才 卜マルチプラィャ 3 1 の任意の行から 出力された出力は 弁別回路 3 2 1 でス レショ ル ト、 れ、 Β冊 理判定回路 3 2 3 に入力 される 1口」様にゝ マノレチプライヤ 3 FIG. 4 is a schematic diagram illustrating an example of the configuration of the signal processing unit 3. The output output from an arbitrary row of the manifold and the multiplier 31 is thresholded by the discrimination circuit 3 21 1, 、, 1 1 1 口 口 1 1 1 ゝ 1
1 の任思の列から出力された出力は 、 弁別回路 3 2 2 でス レ ショノレ ド、され A The output from the arbitrary column of 1 is thresholded by the discriminator 3 2 2
、 き冊理判定回路 3 2 3 に入力 される  Input to the bookkeeping judgment circuit 3 2 3
ーヽ )―  ー ヽ) ―
m理判定回路 3 2 3 からは、 m 3 によ り 目 Uに説明 したよ う に、 予め 定されてレ、る所定の判定 PFT9理に基づ < 論理判定の :、 判 ム  From the logic judgment circuit 3 2 3, as described in the item U with m 3, a predetermined judgment is performed based on a predetermined judgment PFT9 logic as described in the item U.
定 m理に faつた特定 き  Identify the theorem m
の 理判定 果が得られた場合 にのみヽ ゲ一 卜 /シャ クタ制御回路 3 3 に 卜 ジ ガが出力され こ の と さヽ 図 5 A よぴ図 5 B に示す通 り 、 第 2 のィ メ ー ジイ ンテンシファィァ 4 1 の Μ C P 4 1 2 と光 ―電子変換面 Only when the logical judgment result is obtained, the trigger is output to the gate / shutter control circuit 33, which means that a second trigger is output as shown in FIGS. 5A and 5B. Μ CP 4 1 2 of image intensifier 4 1 and photo-electron conversion surface
4 1 1 との間の 源 4 1 4 に、 ゲ トォン Ί Θ が入力 される 直前に、 撮像装置 4 2 のシャ クタ 4 2 1 一 1 が開放される よ う に、 ゲー ト /シャ ッタ制御回路 3 3 から所定のタイ ミ ング で、 シャ ツタ 4 2 1 一 1 に 、 シャ Vタ開放信号が出力される。 従って、 シャ ツタ 4 2 1 ― 1 はヽ 予め決め られている開放時 間の間、 開放され、 严像装 ia 4 2 が蛍光像〇 5 を撮像可能に なる。 Source 4 Ί is input to the source 4 1 4 between 4 1 1 Immediately before, at a predetermined timing from the gate / shutter control circuit 33, the shutter 4 211 is released from the gate / shutter control circuit 33 so that the shutter 4 211 of the imaging device 42 is released. The shutter release signal is output. Therefore, the shutter 421-1 is opened for a predetermined opening time, and the imaging device ia42 can capture the fluorescent image 5.
また、 図 5 Aおよぴ図 5 B に示す通り 、 ゲー ト シャ ッタ 制御回路 3 3 から シャ ッタ 4 2 1 一 1 にシャ ツタ開放信号が 供給されてから所定時間経過後にヽ 光' ―電子変換面 4 1 1 に よ り 変換された電子 E 4 が M C P 4 1 2 に入射可能に、 M C Also, as shown in FIGS. 5A and 5B, after a predetermined time elapses after the shutter release signal is supplied from the gate shutter control circuit 33 to the shutters 4 2 1 1 1 1, the light is transmitted. -The electron E 4 converted by the electron conversion surface 4 1 1 can enter the MCP 4 1 2
P 4 1 2 と光一電子変換面 4 1 1 と の間の電源 4 1 4 にゲー トオン信号が供給される こ と でヽ M C P 4 1 2 が所定時間だ け、 オンされる こ とになる o 従つてヽ 少な く と も撮像装置 4When the gate-on signal is supplied to the power supply 4 14 between the P 4 1 2 and the photoelectric conversion surface 4 1 1, the MCP 4 1 2 is turned on for a predetermined time.o Therefore, at least the imaging device 4
2 のシャ ツタ 4 2 1 ― 1 が開放されてレ、る間に M C P 4 1 2 によ り増幅された電子 E 5 のみが出力蛍光面 4 1 3 で変換さ れた蛍光像 O 5 が撮像 置 4 2 に案内され -3。 While the shutter 4 2 1-1 of 2 is open, only the electron E 5 amplified by the MCP 4 12 is captured while the fluorescent image O 5 converted by the output fluorescent screen 4 13 is captured. It is guided to place 4 2 -3.
詳細には、 図 5 Aに示される よ ラ に 、 M C P 4 1 2 と光一 電子変換面 4 1 1 との間の電源 4 1 4 に 、 信号処理部 3 のゲ ー ト Zシャ ツタ制御回路 3 3 からゲ一卜オン信号が供給され る際に、 図 5 Bに示される よ に 、 M C P 4 1 2 と光一電子 変換面 4 1 1 との間の電源 4 1 4 にゲ一トオン信号が供給さ れるに先だって撮像装置 4 2 のシャ Vタ 4 2 1 - 1 に、 シャ ッタ制御信号が供給される 0  In detail, as shown in FIG. 5A, the power supply 414 between the MCP 412 and the photoelectric conversion surface 411 is connected to the gate Z shutter control circuit 3 of the signal processing section 3. When the gate-on signal is supplied from 3, as shown in FIG. 5B, the gate-on signal is supplied to the power supply 414 between the MCP 412 and the photoelectric conversion surface 411. Prior to this, the shutter control signal is supplied to the shutter 4 4 1-1 of the imaging device 4 0
よ り詳細には 、 M C P 4 1 2 の 源 4 1 4 にゲ一 トオン信 号が供給される前の M C P 4 1 2 の非動作時が図 5 Aの電圧 A 2 であり if*象装 4 2 のシャ ッタ 4 2 1 1 にシャ ッタ 制御信号が供給されていなレヽ ュ More specifically, the non-operating state of MCP 412 before the gate-on signal is applied to source 414 of MCP 412 corresponds to the voltage in FIG. 5A. A2 and if * the shutter control signal is not supplied to the shutter 4 2 1 1 of the elephant 4 2
状 か?図 5 B の電圧 B 2 である。 State? This is the voltage B 2 in FIG. 5B.
M C Pの電源 4 1 4 にゲー 卜ォン信号が入力 される こ とで、 図 5 Aの sm-圧 A 2 が mi圧 A 1 に変化されてゲ 卜ォン状態と なるので 光一電子変換面 4 1 1 で変換された電子 E 4 は、When a gate-on signal is input to the power supply 4 14 of the MCP, the sm-pressure A 2 in FIG. 5A is changed to the mi-pressure A 1 to be in the gate-on state. The electron E 4 converted in 4 1 1 is
M C P 4 1 2 に向けて加速され Ό な 、 図 5 Aに示されて いる時間 τ 1 T 2 は 信号処理部 3 のゲー 卜 /シャ ッ タ制 御回路 3 3 から M C P の電源 4 1 4 にゲ トォン信号が供給 されてレ、る時間でめる すなわち、 近接型ィ メ ジイ ンテン シフ ァィァ 4 1 の Μ C P 4 1 2 が動作されている間だけ増幅 す最 The time τ 1 T 2 shown in FIG. 5A, which is not accelerated toward the MCP 412, is supplied from the gate / shutter control circuit 33 of the signal processing unit 3 to the power supply 414 of the MCP. When the gain signal is supplied, the signal can be amplified within a certain period of time.In other words, the maximum amplification is performed only while the イ CP 4 1 2 of the proximity image intensifier 41 is operating.
された 像対象である蛍光像 O 5が 像装置 4 2 の固体結 合素子 4 2 1 によ り 撮像される Fluorescent image O 5, which is the object to be imaged, is captured by the solid-state coupling element 4 21 of the imaging device 42.
なお 図 5 Bから明 らかなよ う に 像装置 4 2 のシャ ツ タ 4 2 1 ― 1 には 近接型ィ メ ジィ ンテンシファィ ァ 4 1 の M C P 4 1 2 にゲ 卜ォン信号が供給される期間 T 1 T As can be seen from FIG. 5B, a shutter signal 42 1-1 of the imaging device 42 is supplied with a get-on signal to the MCP 4 12 of the proximity type imager 41. Period T 1 T
2 よ り も僅かに長レ、期間 T 3 T 4 の間 、 シャ ッタ制御信号 が供給されるので M C P 4 1 2 と光一電子 換面 4 1 1 と の間の電源 4 1 4 がォンされている間は 、 固体撮像素子 4 2Since the shutter control signal is supplied for a period slightly longer than the period T3 and the period T3 and T4, the power supply 414 between the MCP 412 and the photoelectric conversion surface 411 is turned on. While the solid-state image sensor 4 2
1 のシャ タ 4 2 1 ― 1 が閉 じ られる こ と はない これによ 严 The shutter of 1 4 2 1-1 is not closed.
り 、 M C Ρ 4 1 2 によ り 増幅された +  + + Amplified by MC Ρ 4 1 2
像対象 すなわち蛍光 像 O 5 は 固体 像素子 4 2 1 によ り 確実に撮像 れ  The image object, that is, the fluorescent image O 5 is reliably captured by the solid-state image element 4 21.
なお 固体撮像素子 4 2 1 のシャ Vタ 4 2 1 ― 1 が開放さ れる時間 Τ 3 Τ 4 は 固体撮像素子 4 2 1 が画像 (蛍光像 The time during which the shutter 4 2 1-1 of the solid-state image sensor 4 2 1 is opened Τ 3 Τ 4 is the time when the solid-state image sensor 4 2 1
O 5 ) を 像するために要求される最 動作時間 ( 1 コマ) に比較して短い時間に 定されるので 目 IJに説明 した M C P 4 1 2 が動作される時間 T 1 〜 T 2 と合わせて、 撮像対象O5) is set to a shorter time than the maximum operation time (1 frame) required to image the MCP, so the MCP described in IJ 4 1 2 is operated along with T1 to T2
(蛍光像 Ο 5 ) が入力 されている僅かな時間のみ 、 蛍光像 o(Fluorescence image Ο 5) only for a short time while the fluorescence image o
5 を撮像可能であ これによ り 、 信号対ノィ ズ比すなわち5 can be imaged, which results in a signal-to-noise ratio or
Sノ Νが改善され o S Ν improved o
なね、 こ のゲ ト /シャ ッ タ制御回路 3 3 は 、 撮像部 4 の シャ ツタ を十分に開放するためのタイ ミ ングを制御する もの であって 、 ゲ一 卜 /シャ ッ タ制御回路 3 3 を使用せず、 第 2 のィ メージィ ンテンシフアイ ァの蛍光面 4 1 3 の材質を 択 する こ とでタィ ングを制御してもよい。  The get / shutter control circuit 33 controls the timing for fully opening the shutter of the imaging section 4 and is provided with a gate / shutter control circuit. Instead of using 33, the timing may be controlled by selecting the material of the phosphor screen 4 13 of the second image intensifier.
上述した通 り ゝ 本発明の記録装置は、 撮像すベ すな わち電磁波も し < は光の発生およぴ消失に基づいて生成され た蛍光像を、 ディ ス 卜 リ ビュ一タ によ り 分配して得られた同 一の蛍光像から 、 撮像装置のシャ ッタ を開放させるシャ タ 制御信号およぴ Μ C P による増幅を制御させるゲー トォン信 号を得ている 0 このこ とから、 撮像装置によ り 撮像される蛍 光像は、 信号処理部によ り 撮像すべき像 (
Figure imgf000018_0001
象 ) と判定され た像 (事象) と 一と なる 0
As described above, in the recording apparatus of the present invention, an image, that is, an electromagnetic wave or a fluorescent image generated based on the generation and extinction of light is captured by a distribut viewer. A shutter control signal for opening the shutter of the imaging device and a gate-on signal for controlling the amplification by the CP are obtained from the same fluorescent image obtained by the distribution. The fluorescent image picked up by the image pickup device is an image to be picked up by the signal processing unit.
Figure imgf000018_0001
Becomes one with the image (event) determined to be elephant) 0
また、 本発明の撮像装 においては、 撮像装置の シャ クタ が開放されている間のみ 、 近接型電子増倍器によ り増幅され た電子が出力蛍光面で変換された蛍光像が 曰-像装置に案内さ れる。 従つて 、 撮像装置によ り 蛍光像が撮像されて ヽる前後 の僅かな時間を除いて 、 不所望な情報あるレ、は外乱すなわち ノイ ズが撮像装置に入力 される こ とが抑止される 。 これによ り 、 撮像装置によ り 撮像される蛍光像がノィ ズに埋もれる こ と が抑止されヽ S / Nの高い撮像が可能となる o 産業上の利用可能性 Further, in the imaging device of the present invention, only while the shutter of the imaging device is open, a fluorescence image in which electrons amplified by the proximity electron multiplier are converted on the output phosphor screen is displayed. You will be guided to the device. Therefore, except for a short time before and after the fluorescence image is captured by the imaging device, disturbances, that is, noise, are prevented from being input to the imaging device with unwanted information. . As a result, the fluorescence image captured by the imaging device is prevented from being buried in noise, and imaging with a high S / N ratio can be performed.o Industrial applicability
以上説明 したよ う にこ の発明によれば、 撮像すべき事象を、 高い信号対ノ イ ズ比で、 しかも確実に撮像可能な撮像装置が 得られる。  As described above, according to the present invention, it is possible to obtain an imaging device capable of reliably imaging an event to be imaged with a high signal-to-noise ratio.

Claims

冃 求 の m 囲 M of request
1 . 蛍光像を撮像する撮像機構と 、  1. An imaging mechanism for capturing a fluorescent image,
撮像対象と な り う る事象を蛍光像に変換する 1 のィ メ ー ジ増倍管 と 、  An image intensifier that converts the event to be imaged into a fluorescent image,
前記撮像機構と前記第 1 のィ メ 一ジ増倍管 と の間に ΗΧ.け ら れ、 前記第 1 のィ メ 一ジ管から 出力 された上記蛍光像を、 第 1 の蛍光像と第 2 の蛍光像と に分離する と と も に 、 上記第 2 の蛍光像を前記撮像機構に案内するテ ィ ス 卜 V ビュ ' ~タ と 、 前記ディ ス ト リ ビュ ' ~タ に り 分離された上記第 1 の蛍光 像から刖記撮像機構を動作させるための撮 ί象タィ ミ ングを規 定する タィ ミ ング設定装置と ヽ  The fluorescent image output between the imaging mechanism and the first image intensifier and output from the first image intensifier is divided into a first fluorescent image and a first fluorescent image. In addition to being separated into the second fluorescent image and the second fluorescent image, the second fluorescent image is separated by the test V-viewer which guides the second fluorescent image to the imaging mechanism and the distribu- And a timing setting device for specifying an imaging timing for operating the imaging mechanism from the first fluorescence image.
を有する こ と を特徴とする光分配型撮像装置 Light distribution type imaging device characterized by having:
2 . 記撮像機構は、 目 U記タィ ミ ング設定衣置によ り 規定 された撮像タイ ミ ング信号が供給される こ と で 目 ΰデイ ス 卜 リ ビュ タ に よ り 分離された上 2 の蛍光像を増幅する第 2. The imaging mechanism is separated by the eye monitor by supplying an imaging timing signal specified by the eye timing setting device. Amplify the fluorescent image of
2 のィ メ 一ジ増倍管 と 、 刖 S己 像タィ ミ ング信号が前記第 2 のィ メ ジ増倍管に供給される タィ ヽへ ングを最適化する 第 3 のィ メ ジ増倍管 と 、 刖 H己 2 のィ メ 一ジ増倍管から出力 さ れた蛍光像を撮像する撮像装置と 、 を有する こ と を特徴とす る請求項 1 に記載の光分配型
Figure imgf000020_0001
像装置
A second image intensifier, and a third image intensifier for optimizing the timing at which the 刖 S image timing signal is supplied to the second image intensifier. 2. The light distribution type according to claim 1, further comprising: a tube; and an imaging device that captures a fluorescent image output from the image intensifier tube of H 2.
Figure imgf000020_0001
Imaging device
3 . 記第 2 のィ メ 一ジ増倍管は 目 U記タィ -へ ング設定装 置力 らの撮像タイ ミ ング信号に同期 して動作される ¾子增倍 器を含むこ と を特徴とする 求項 2 に言己 の光分配型撮像装 3. The second image intensifier is characterized in that it includes an electron multiplier which is operated in synchronization with an imaging timing signal from the target time setting device force. Claim 2 states that
I :。 I:
4 . 前記第 2 のイ メージ増倍管は、 所定の i子一光変換特 性が与え られた蛍光体を含むこ と を特徴とする請求項 2 に記 載の光分配型撮像装置。 4. The light distribution-type imaging device according to claim 2, wherein the second image intensifier includes a phosphor having a predetermined i-to-light conversion characteristic.
5 . 前記第 3 のイ メージ増倍管は、 所定の電子一光変換特 性が与えられた蛍光体を含むこ と を特徴とする請求項 2 に記 載の光分配型撮像装置。  5. The light distribution type imaging apparatus according to claim 2, wherein the third image intensifier includes a phosphor having a predetermined electron-light conversion characteristic.
6 . 前記タイ ミ ング設定装置は マルチァ ノ ー ドフオ トマ ルチプライヤを含むこ と を特徴とす S -目求 1 に記載の光分  6. The light source according to S-Target 1, wherein the timing setting device includes a multi-node photomultiplier.
1 1 page
配型撮像装置。 Distributed imaging device.
7 . 前記撮像装置は、 固体撮像素子を含むこ と を特徵とす る請求項 1 に記載の光分配型撮像  7. The light distribution type imaging device according to claim 1, wherein the imaging device includes a solid-state imaging device.
8 . 上記固体撮像素子は、 前記タイ ミ ング HX定装置力 ら の タイ ミ ング信号によ り 、 シャ ツタが動作される C C Dカメ ラ を含むこ と を特徴とする請求項 7 に記載の光分配型撮像装置。 8. The optical device according to claim 7, wherein the solid-state imaging device includes a CCD camera whose shutter is operated by a timing signal from the timing HX constant device. Distribution type imaging device.
9 . 上記固体撮像素子は、 前記タイ ミ ングロス定装置からの タイ ミ ング信号が供給されている間だけ動作される C M O S 型撮像素子を含むこ と を特徴とする 水項 7記載の光分配型 撮像装置。 9. The light distribution type according to item 7, wherein the solid-state imaging device includes a CMOS imaging device that is operated only while a timing signal is supplied from the timing loss determining device. Imaging device.
1 0 . 入力情報を蛍光およびその分布に久換し、 増幅する 入力検出装置と 、  10. An input detector that converts and amplifies input information into fluorescence and its distribution,
この入力検出装置によ り 変換された蛍光 よぴ分布を撮像 する撮像機構と 、  An image pickup mechanism for picking up an image from the fluorescence converted by the input detection device;
この撮像機構と前記入力検出装置との間にロスけられ 、 刖記 入力検出装置によ り 得られた蛍光およびその分布を所定の光 強度の 2つの蛍光おょぴその分布に分離する分離装置と、 こ の分離装 によ り 分離され、 目 U gd ¾像機 に 内される 蛍光おょぴその分布と は異なる蛍光お ぴ分 から刖 S己 ϋ 象 機構を動作させるタィ へ ングを設定するタィ へ A separation device that is lost between the imaging mechanism and the input detection device and separates the fluorescence and its distribution obtained by the input detection device into two fluorescences each having a predetermined light intensity and its distribution. When, The timing for setting the timing for operating the S self-measurement mechanism from the fluorescent light that is separated by this separating device and that is different from the fluorescent light in the eye U gd imager is distributed. What
ヽ ング BX定装置 と、 を有し 、  And a BX setting device.
BU記入力検出装置は 、 入力情報である電磁波を一且蛍光お ょぴその分布に変換し 、 出力 された蛍光 よぴその分布を光 一電子変換し 、 得られた電子を増幅したのちの蛍光ねょぴそ の分布に変換して出力する 1 のィ メ ーンィ ンテンシフアイ ァを含み、  The BU input detection device converts the electromagnetic wave, which is input information, into fluorescent light and its distribution, converts the output fluorescent light into a light-to-electron conversion, and amplifies the obtained electrons. Includes a 1-intensity-intensifier that converts the data into its distribution and outputs it.
m記撮像機構は、 近接型電子増 1η" ¾F ¾r含み 、 近接型電子増 倍器の動作タィ ミ /ァ ョ Hi  The imaging mechanism includes the proximity electron multiplier 1η ”¾F ¾r, and the operation timing of the proximity electron multiplier /
ングが外部からの ト リ ガによ り任思 に S 疋 可能な入力ゲ一 ト付さィ メ ジィ ンテ ンシフ ァィァ と 、 近接 型電子増倍 に 日不される動作タィ ミ ングにめわせて撮像動 作が制御される力メ ラ と を含み、  The input gate can be arbitrarily S-triggered by an external trigger, and the input timing and the operation timing that are not affected by the proximity electron multiplication. And a force camera for controlling the imaging operation, and
¾υ記タイ 、へ ング設定装置は 、 冃 U記入力検出衣置に入力 され た入力情報の強度または移動方向も しく はその両者を特定可 能な信号処理回路付さのマルチアノー ドフ ォ 卜マルチプライ ャを含み、  The tie and hanger setting device is a multi-anode photomultiplier with a signal processing circuit capable of specifying the intensity and / or the moving direction of the input information input to the U-input detection device. Including pliers,
上記マノレチァノ一 ド、フ 才 卜マルチブラィャから出力される 上記入力情報の強度または移動方向も し < はその両者が特定 された結果に基づいて 、 上記撮像装置に撮像タィ 、、 ングと し ての ト リ ガを供給する >- とで同一の蛍光 びその分布力、ら 得られた ト ジ ガ信号によ り任意の入力情報のみを撮像可能な 光分配型撮像装置。 1 1 • 任,g、に発生する を受光し、 If the intensity or the moving direction of the input information output from the above-mentioned man-or-renode or multi-touch multi-browser is <<, then the imaging device sends the image to the imaging device based on the result of specifying both. A light distribution type imaging device that can capture only arbitrary input information based on the same fluorescence and its distribution power, and the obtained trigger signal. 1 1 • Receives the light generated in g,
受光した蛍光像を第 1 の蛍光像と第 2 の蛍光像と に分配し 第 1 の蛍光像に基づいて、 受光した蛍光像の強度または移 動方向も しく はその両方を特定しヽ  The received fluorescent image is divided into a first fluorescent image and a second fluorescent image, and the intensity and / or the moving direction of the received fluorescent image are specified based on the first fluorescent image.
特定した結果に基づいて、 撮像タィ 、  Based on the identified results,
、 ングと しての 卜 リ ガ を生成し、  , Generate a trigger as a ring,
生成された 卜 y ガによ り増幅装置を動作させて第 2 の蛍光 像を増幅し、 增幅された蛍光像を 像するヽ  The amplification device is operated by the generated gas to amplify the second fluorescent image, thereby forming a widened fluorescent image.
こ と を特徴とする撮像方法。 An imaging method characterized by this.
PCT/JP2003/000797 2002-12-25 2003-01-28 Light-distribution imaging device and imaging method WO2004059267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-374243 2002-12-25
JP2002374243A JP4284671B2 (en) 2002-12-25 2002-12-25 Optical distribution type imaging device

Publications (1)

Publication Number Publication Date
WO2004059267A1 true WO2004059267A1 (en) 2004-07-15

Family

ID=32677289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000797 WO2004059267A1 (en) 2002-12-25 2003-01-28 Light-distribution imaging device and imaging method

Country Status (2)

Country Link
JP (1) JP4284671B2 (en)
WO (1) WO2004059267A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103581625A (en) * 2013-10-28 2014-02-12 华中科技大学 Time-share parallel image collecting device and calibration method thereof
CN103780844A (en) * 2013-12-30 2014-05-07 华中科技大学 Time-sharing two-path image acquiring device and calibration method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655211B2 (en) * 2010-05-20 2015-01-21 国立大学法人 東京大学 Imaging device, relay optical system, and measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579553U (en) * 1992-03-25 1993-10-29 株式会社島津製作所 Optical distributor
JPH0715652A (en) * 1993-06-18 1995-01-17 Toshiba Medical Eng Co Ltd X-ray tv device
JPH08107521A (en) * 1994-10-06 1996-04-23 Hitachi Medical Corp X-ray radiographing device
JPH10262174A (en) * 1997-03-19 1998-09-29 Toshiba Corp Solid-state image pickup device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286953A (en) * 1994-04-19 1995-10-31 Toa Medical Electronics Co Ltd Imaging flow sight meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579553U (en) * 1992-03-25 1993-10-29 株式会社島津製作所 Optical distributor
JPH0715652A (en) * 1993-06-18 1995-01-17 Toshiba Medical Eng Co Ltd X-ray tv device
JPH08107521A (en) * 1994-10-06 1996-04-23 Hitachi Medical Corp X-ray radiographing device
JPH10262174A (en) * 1997-03-19 1998-09-29 Toshiba Corp Solid-state image pickup device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103581625A (en) * 2013-10-28 2014-02-12 华中科技大学 Time-share parallel image collecting device and calibration method thereof
CN103780844A (en) * 2013-12-30 2014-05-07 华中科技大学 Time-sharing two-path image acquiring device and calibration method thereof

Also Published As

Publication number Publication date
JP2004207980A (en) 2004-07-22
JP4284671B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
TW506213B (en) Method and apparatus for optimizing exposure time in image acquisitions
US20160293647A1 (en) Digital imaging and pulse detection pixel
US11736792B2 (en) Electronic device including plurality of cameras, and operation method therefor
CN104125416B (en) The control method of camera device and camera device
US9103924B2 (en) High throughput detector array
TW200947687A (en) Backside illuminated imaging sensor with light attenuating layer
WO2006061572A1 (en) Surface profile measurement
JP5165625B2 (en) InGaAs image enhancement camera
JP2009257983A (en) Device and method for generating distance image data for vehicle
KR20110015046A (en) System and method for remote control of a computer
US5710428A (en) Infrared focal plane array detecting apparatus having light emitting devices and infrared camera adopting the same
WO2004059267A1 (en) Light-distribution imaging device and imaging method
EP1281953B1 (en) X-ray inspection system
JP2006254502A (en) Optical split type imaging device
US20070098387A1 (en) Systems and methods of generating Z-Buffers in cameras
JPH05336420A (en) Photographing device
CN209894980U (en) Area array laser radar
TWI229541B (en) Image signal processing system
Golitsyn et al. The implementation of gated-viewing system based on CCD image sensor
EP3358367B1 (en) Event-triggered imaging pixels
JPH04319880A (en) X-ray diagnostic apparatus
JP3881629B2 (en) Two-dimensional position detector for incident light
CN109932729A (en) Face battle array laser radar
US20120092390A1 (en) Low Power Image Intensifier Device Comprising Black Silicon Detector Element
JP2001169193A (en) Image pickup device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR IT NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase