JPH10258479A - Manufacture of functionally gradient material - Google Patents

Manufacture of functionally gradient material

Info

Publication number
JPH10258479A
JPH10258479A JP9068774A JP6877497A JPH10258479A JP H10258479 A JPH10258479 A JP H10258479A JP 9068774 A JP9068774 A JP 9068774A JP 6877497 A JP6877497 A JP 6877497A JP H10258479 A JPH10258479 A JP H10258479A
Authority
JP
Japan
Prior art keywords
metal
composition
ceramic
thermal expansion
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9068774A
Other languages
Japanese (ja)
Other versions
JP4014248B2 (en
Inventor
Mitsuo Kuwabara
光雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP06877497A priority Critical patent/JP4014248B2/en
Priority to CA002232517A priority patent/CA2232517C/en
Priority to US09/044,869 priority patent/US6037066A/en
Publication of JPH10258479A publication Critical patent/JPH10258479A/en
Priority to US09/449,495 priority patent/US6248290B1/en
Application granted granted Critical
Publication of JP4014248B2 publication Critical patent/JP4014248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of cracks or deformations positively at the laminated place by controlling a ratio of thermal expansion between a ceramic composition part and a metal composition part to be specific %, and effecting simultaneous calcination in a laminated state of the ceramic side material and metal side material set in this manner. SOLUTION: Each thermal expansion coefficient of a ceramics composition part and a metallic composition part is substantially the same during the calcination period, i.e., at a temperature of the manufacture, and set to be the same at a temperature of the use. In this manner, separation or the like in the lamination place can be precluded effectively. Herein, the thermal expansion coefficient uses a combination of W-Cu and MoCu as a metal side composition to be controlled by changing each composition ratio; on the other hand, as a ceramics side composition, metallic aluminum, aluminum nitride and other additives are controlled by changing each composition ratio. Thus, selection is done to be a thermal expansion coefficient of the ceramics composition part/a thermal expansion coefficient of the metallic composition part × 100=75-125%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス側組
成と金属側組成とを有する傾斜機能材料の製造方法に関
する。
The present invention relates to a method for producing a functionally gradient material having a ceramic side composition and a metal side composition.

【0002】[0002]

【従来の説明】一般的に、半導体回路では、半導体特性
の安定化のために、前記半導体回路をセラミックス基板
に搭載し、該半導体回路に発生する熱を外部に効率よく
排出する工夫が施されている。
2. Description of the Related Art Generally, in a semiconductor circuit, in order to stabilize semiconductor characteristics, the semiconductor circuit is mounted on a ceramic substrate, and a device for efficiently discharging heat generated in the semiconductor circuit to the outside is provided. ing.

【0003】その際、半導体回路から発生する熱が比較
的大きい場合には、セラミックス基板のみでは十分に対
応することができず、前記セラミックス基板に銅やアル
ミニウムのヒートシンクをろう付けや半田付けすること
が行われている。さらに、MPUや大容量電力IGBT
等では、放熱フィンを設けて熱を強制的に放出する工夫
が施されている。
At this time, when the heat generated from the semiconductor circuit is relatively large, the ceramic substrate alone cannot sufficiently cope with the heat, and a copper or aluminum heat sink is brazed or soldered to the ceramic substrate. Has been done. Furthermore, MPU and large capacity power IGBT
In such a case, a device is provided for providing heat radiation fins and forcibly releasing heat.

【0004】ここで、セラミックス基板は、半導体回路
の特性を高く維持するために、高熱伝導性が必要とされ
るとともに、絶縁性、遮光性および低誘電性等が要求さ
れている。一方、ヒートシンクにも高い熱伝導性が要求
されており、通常、セラミックス基板および前記ヒート
シンクは、ともに150W/mK以上の熱伝導性を有
し、さらに熱膨張係数も半導体チップの熱膨張係数に近
似するように設定されている。
Here, the ceramic substrate is required to have high thermal conductivity in order to maintain the characteristics of the semiconductor circuit at a high level, and is required to have insulation properties, light shielding properties, low dielectric properties, and the like. On the other hand, a heat sink is also required to have high thermal conductivity. Generally, both the ceramic substrate and the heat sink have a thermal conductivity of 150 W / mK or more, and the coefficient of thermal expansion is close to the coefficient of thermal expansion of the semiconductor chip. Is set to

【0005】[0005]

【発明が解決しようとする課題】しかしながら、セラミ
ックス基板とヒートシンクを結合するためのろう材や半
田材は、熱膨張係数がセラミックス基板やヒートシンク
の2倍以上であるとともに、熱伝導率が20W/mK〜
70W/mK以下であって、前記セラミックス基板およ
び前記ヒートシンクの1/2〜1/7という低い値とな
っている。このため、ろう材や半田材が設けられた接合
部は、熱伝導率が低く、他の部分に比べて熱膨張係数が
大きくなり、この接合部に相当に大きな応力が発生して
接合信頼性が低下するという問題が指摘されている。
However, the brazing material or solder material for connecting the ceramic substrate and the heat sink has a coefficient of thermal expansion of at least twice that of the ceramic substrate and the heat sink, and a thermal conductivity of 20 W / mK. ~
70W / mK or less, which is a low value of 1/2 to 1/7 of the ceramic substrate and the heat sink. For this reason, the joint where the brazing material or the solder material is provided has a low thermal conductivity, a larger coefficient of thermal expansion than other parts, and a considerably large stress is generated in this joint, and the joint reliability is reduced. Has been pointed out.

【0006】しかも、接合部に熱が溜まり易く、ヒート
シンクの機能を有効に発揮させることができないという
おそれもある。これにより、相当に大きなヒートシンク
や放熱フィンを設け、常に熱勾配を大きくしておく必要
があり、小型化の要請に対応することができないという
問題がある。
In addition, heat tends to accumulate in the joint, and the function of the heat sink may not be effectively exhibited. Accordingly, it is necessary to provide a considerably large heat sink and heat radiation fins to always increase the thermal gradient, and there is a problem that it is not possible to cope with a demand for miniaturization.

【0007】本発明は、この種の問題を解決するもので
あり、金属とセラミックスとを接合部を設けることなく
一体化するとともに、接合信頼性が高く、しかも高熱伝
導性を有する傾斜機能材料を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves this kind of problem, and provides a functionally graded material having a high bonding reliability and a high thermal conductivity while integrating metal and ceramics without providing a bonding portion. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明に係る傾斜機能材料の製造方法では、セラ
ミックス側組成と金属側組成とを有するとともに、セラ
ミックス組成部分の熱膨張係数と金属組成部分の熱膨張
係数とが略同一になるように調整し、次いで、このよう
に設定されたセラミックス側原料と金属側原料とを積層
した状態で、同時焼成処理が施される。このため、焼成
処理時に、熱膨張係数の相違に基因してセラミックス側
原料と金属側原料との積層部位でクラックや変形、さら
に剥離等を発生することを確実に阻止することができ
る。
In order to solve the above-mentioned problems, a method for producing a functionally graded material according to the present invention has a ceramic side composition and a metal side composition, and has a thermal expansion coefficient of a ceramic composition portion. The thermal expansion coefficient of the metal composition portion is adjusted to be substantially the same, and then the co-firing treatment is performed in a state where the ceramic-side raw material and the metal-side raw material thus set are laminated. For this reason, it is possible to reliably prevent cracks, deformation, peeling, and the like from occurring at the lamination portion of the ceramic-side raw material and the metal-side raw material due to the difference in the thermal expansion coefficient during the firing treatment.

【0009】ここで、セラミックス組成部分と金属組成
部分との熱膨張係数は、焼成処理時、すなわち、製造温
度で略同一となるとともに、使用温度においても同一に
設定される。これにより、焼成時の他、使用時における
積層部位の剥離等を有効に阻止することが可能になる。
Here, the coefficients of thermal expansion of the ceramic composition portion and the metal composition portion are substantially the same at the time of firing treatment, that is, at the manufacturing temperature, and are also set at the same operating temperature. This makes it possible to effectively prevent peeling of the laminated portion during use, in addition to firing.

【0010】ここで、金属組成部分の熱膨張係数とセラ
ミックス組成部分の熱膨張係数とは、それぞれの組成を
選択することにより変更可能である。すなわち、表1に
は、金属側組成としてタングステンと銅(W−Cu)お
よびモリブデンと銅(Mo−Cu)の組み合わせを用
い、それぞれの組成比を変化させた際における熱膨張係
数の変化が示されている。
Here, the thermal expansion coefficient of the metal composition portion and the thermal expansion coefficient of the ceramic composition portion can be changed by selecting the respective compositions. That is, Table 1 shows a change in the coefficient of thermal expansion when a combination of tungsten and copper (W-Cu) and a combination of molybdenum and copper (Mo-Cu) were used as the metal side composition and the respective composition ratios were changed. Have been.

【0011】[0011]

【表1】 [Table 1]

【0012】一方、セラミックス組成部分の熱膨張係数
は、表2に示すように、セラミックス側組成として金属
アルミニウム、窒化アルミニウムおよび他の添加剤をそ
れぞれの組成比を変化させることにより変更可能であ
る。
On the other hand, as shown in Table 2, the coefficient of thermal expansion of the ceramic composition portion can be changed by changing the composition ratio of metallic aluminum, aluminum nitride, and other additives as the ceramic composition.

【0013】[0013]

【表2】 [Table 2]

【0014】このため、セラミックス組成部分の熱膨張
係数/金属組成部分の熱膨張係数×100=75〜12
5(%)になるように金属側組成およびセラミックス側
組成を選択すれば、熱膨張係数の相違による積層部位で
の剥離を阻止することができる。
Therefore, the coefficient of thermal expansion of the ceramic composition portion / the coefficient of thermal expansion of the metal composition portion × 100 = 75 to 12
If the composition on the metal side and the composition on the ceramic side are selected so as to be 5 (%), it is possible to prevent peeling at the laminated portion due to a difference in thermal expansion coefficient.

【0015】また、金属とセラミックスとは、それぞれ
の焼結温度域が異なっており、例えば、金属である銅と
セラミックスである窒化アルミニウムとでは、その焼結
温度に750℃〜1100℃の温度差が発生している。
そこで、反応焼結によって、セラミックスの緻密化温度
を引き下げるものとする。その際、金属側組成およびセ
ラミックス側組成によるそれぞれの焼結温度域は、表3
に示されており、前記金属側組成と前記セラミックス側
組成の焼結温度域が同一になるように、それぞれの組成
が選択される。
Further, the sintering temperature ranges of metal and ceramics are different from each other. For example, the difference in sintering temperature between copper (metal) and aluminum nitride (ceramic) is 750 ° C. to 1100 ° C. Has occurred.
Therefore, the densification temperature of ceramics is reduced by reaction sintering. In this case, the respective sintering temperature ranges according to the metal side composition and the ceramic side composition are shown in Table 3.
The respective compositions are selected such that the sintering temperature ranges of the metal side composition and the ceramic side composition are the same.

【0016】[0016]

【表3】 [Table 3]

【0017】さらに、表4に示すように、反応焼結セラ
ミックスを有効に緻密化させるために、窒化温度を下げ
る組成が設定される。
Further, as shown in Table 4, in order to effectively densify the reaction sintered ceramics, a composition for lowering the nitriding temperature is set.

【0018】[0018]

【表4】 [Table 4]

【0019】次いで、上記のように設定されたセラミッ
クス側原料と金属側原料とを積層し、同時焼成処理が施
されることにより、積層部分には、金属層のセラミック
ス層への拡散とセラミックス層から金属層への拡散とが
行われ、前記セラミックスと前記金属とが相互拡散して
一体化する。
Next, the ceramic-side raw material and the metal-side raw material set as described above are laminated and subjected to a simultaneous firing treatment, whereby the diffusion of the metal layer into the ceramic layer and the ceramic layer From the metal to the metal layer, and the ceramic and the metal are mutually diffused and integrated.

【0020】さらに、反応窒化を伴うため、未反応部分
が内部に拡散し、多層化する必要がない。このため、セ
ラミックス側原料と金属側原料とを2層に積層するだけ
でよく、簡単な成形工程で安価に製造することが可能に
なる。これにより、熱伝導性、耐熱性、耐応力性に優れ
るとともに、接合信頼性が向上するという効果がある。
Further, since reaction nitridation is involved, unreacted portions are diffused inside, and there is no need to form a multilayer. For this reason, it is only necessary to laminate the ceramic side raw material and the metal side raw material in two layers, and it is possible to manufacture at low cost by a simple molding process. Thereby, there is an effect that the thermal conductivity, the heat resistance, and the stress resistance are excellent, and the joining reliability is improved.

【0021】[0021]

【発明の実施の形態】本発明の実施形態に係る傾斜機能
材料の製造方法について、以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing a functionally gradient material according to an embodiment of the present invention will be described below.

【0022】本実施形態では、放熱基板であるセラミッ
クス基板とヒートシンクベースとを一体化した傾斜機能
材料を製造する工程について説明する。通常、この種の
工程は、基板の製造工程、その加工工程、この基板の整
合面に銅を直接配置する工程、この配置部位にニッケル
めっきを施す工程、ヒートシンクベースの製造工程、そ
の加工工程、および前記ヒートシンクベースとの間に半
田を介装して半田付けする工程からなるが、本実施形態
では、これらの工程を集約して傾斜機能材料の製造工程
とその加工工程との2工程により行う。なお、加工工程
は、セラミックス基板側の面粗さを0.8S以上にする
工程であり、ショットブラスト等により1工程で遂行可
能である。
In this embodiment, a process for manufacturing a functionally graded material in which a ceramic substrate as a heat dissipation substrate and a heat sink base are integrated will be described. Usually, this type of process includes a substrate manufacturing process, a processing process thereof, a process of directly arranging copper on a matching surface of the substrate, a process of applying nickel plating to a portion where the copper is arranged, a manufacturing process of a heat sink base, a processing process thereof, And a step of soldering by interposing solder between the heat sink base and the heat sink base. In the present embodiment, these steps are collectively performed in two steps of a manufacturing step of the functionally graded material and a processing step thereof. . The processing step is a step of setting the surface roughness on the ceramic substrate side to 0.8 S or more, and can be performed in one step by shot blasting or the like.

【0023】セラミックス側組成としては、熱伝導およ
び熱膨張係数の観点から、窒化アルミニウムが選択さ
れ、一方、ヒートシンクベース側である金属側組成とし
ては、熱伝導および熱膨張係数の観点から、銅合金の
中、銅−タングステン(−Ag)が設定された。
As the ceramic side composition, aluminum nitride is selected from the viewpoint of heat conduction and thermal expansion coefficient. On the other hand, as the metal side composition on the heat sink base side, copper alloy is selected from the viewpoint of heat conduction and thermal expansion coefficient. Among them, copper-tungsten (-Ag) was set.

【0024】そこで、セラミックス側組成と金属側組成
との熱膨張係数が製造温度および使用温度で略同一にな
るとともに、セラミックス側と金属側との焼結温度域を
同一化することを考慮し、表5および表6に示す組成比
を有するセラミックス側原料および金属側原料が設定さ
れた。
Therefore, in consideration of making the thermal expansion coefficients of the ceramic side composition and the metal side composition substantially the same at the production temperature and the use temperature, and taking into account the sintering temperature range of the ceramic side and the metal side, Ceramic side raw materials and metal side raw materials having the composition ratios shown in Tables 5 and 6 were set.

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【表6】 [Table 6]

【0027】次いで、表5のNo.1〜No.4の組成
と表6のNo.a〜No.dの組成とを組み合わせ、焼
結温度域での熱膨張係数の比、すなわち、 セラミックスの熱膨張係数/金属の熱膨張係数×100
(%) を演算し、その結果を表7に示した。
Next, in Table 5, No. 1 to No. 4 and No. 4 in Table 6. a-No. The ratio of the coefficient of thermal expansion in the sintering temperature range, that is, the coefficient of thermal expansion of ceramics / the coefficient of thermal expansion of metal × 100
(%) Was calculated, and the results are shown in Table 7.

【0028】[0028]

【表7】 [Table 7]

【0029】さらに、これらのセラミックス側原料およ
び金属側原料をそれぞれ有機溶媒を用いて湿式混合した
後、その溶媒を13vol%まで調製し、金型内静水圧
加圧成形法を用いて成形し、成形体が得られた。その
際、金型の下部パンチ上に紙が載置され、その上に金属
側原料粉末が充填されて20MPa程度で圧縮され、次
いで、セラミックス側原料粉末が充填されるとともに、
その上に紙が載せられて120MPaの圧力で成形され
た。この紙は、加圧中に成形体から有機溶媒が滲み出し
て金型パンチと成形体が密着することを阻止し、成形歩
留りを維持する機能を有する。
Further, after each of the ceramic-side raw material and the metal-side raw material is wet-mixed using an organic solvent, the solvent is prepared up to 13 vol%, and molded using a hydrostatic pressure molding method in a mold. A molded article was obtained. At that time, paper is placed on the lower punch of the mold, and the metal-side raw material powder is filled thereon and compressed at about 20 MPa, and then the ceramic-side raw material powder is filled,
Paper was placed thereon and molded at a pressure of 120 MPa. This paper has a function of preventing the organic solvent from oozing out of the molded body during pressurization and keeping the mold punch and the molded body in close contact with each other, and has a function of maintaining the molding yield.

【0030】次に、各成形体は、乾燥された後に窒素ガ
スの流通下に〜0.5Torrで1350℃まで昇温さ
れ、さらに窒素ガスを1barとして1450℃で90
分間だけ窒化焼結された。ここで、上記の焼結条件下で
得られた各焼結体の欠陥の有無を検査し、その結果を表
8に示した。
Next, after being dried, each molded body is heated to 1350 ° C. at 0.5 Torr under a flow of nitrogen gas, and further heated to 90 ° C. at 1450 ° C. with 1 bar of nitrogen gas.
It was nitrided and sintered for only minutes. Here, each sintered body obtained under the above sintering conditions was inspected for defects, and the results are shown in Table 8.

【0031】[0031]

【表8】 [Table 8]

【0032】この表8において、密度および断面観察等
から十分緻密化が進行し実使用が可能なものを「◎」と
し、欠陥等の生成が見られず実験的に使用可能なものを
「○」とし、クラック等の生成は見られるが形状を保持
しているものを「△」とし、割れやクラック等の欠陥が
多くハンドリングさえも難しいものを「×」として表し
た。なお、これらは、焼結条件やパターンを変えて試験
したが、「△」および「×」から「◎」、「○」への改
善は図られなかった。また、焼結条件は、1100℃〜
1700℃まで変化させて試験を行った。
In Table 8, those which have been sufficiently densified from the density and cross-sectional observations and which can be actually used are indicated by "◎", and those which can be used experimentally without generation of defects or the like are indicated by "○". "" Indicates that the formation of cracks and the like was observed but the shape was maintained, and "x" indicates that there were many defects such as cracks and cracks and even handling was difficult. These were tested under different sintering conditions and patterns, but no improvement was achieved from “Δ” and “×” to “◎” and “「 ”. The sintering conditions are 1100 ° C ~
The test was performed by changing the temperature up to 1700 ° C.

【0033】これにより、使用温度近傍における熱膨張
係数の比が75〜125(%)のとき、傾斜機能材料に
視認可能なレベルの欠陥を生成させずに製造することが
できた。さらに、熱膨張係数の比が85〜115(%)
のとき、所望の機能を有する優れた傾斜機能材料が構成
された。
As a result, when the thermal expansion coefficient ratio in the vicinity of the use temperature was 75 to 125 (%), it was possible to manufacture the functionally graded material without generating a visible level of defect. Further, the ratio of the coefficient of thermal expansion is 85 to 115 (%).
At this time, an excellent functionally graded material having a desired function was formed.

【0034】また、No.1とNo.cとの組み合わせ
で製造された傾斜機能材料は、平均熱伝導率が180W
/mKと高い値を示した。従って、これまで半田付けに
より製造されていたヒートシンクベース一体型の半導体
基板の熱伝導率が100W/mKまでであるのに比較し
て、顕著な向上が実現された。
Further, No. 1 and No. c has a mean thermal conductivity of 180 W
/ MK and a high value. Therefore, a remarkable improvement is realized as compared with the case where the heat conductivity of the heat sink base integrated type semiconductor substrate which has been manufactured by soldering is up to 100 W / mK.

【0035】[0035]

【発明の効果】以上のように、本発明に係る傾斜機能材
料の製造方法では、セラミックス側組成と金属側組成と
を有する傾斜機能材料において、セラミックス組成部分
の熱膨張係数と金属組成部分の熱膨張係数とが製造温度
および使用温度で略同一になるように調製されるため、
積層部分にクラックや変形等が発生することがなく、双
方の成分が相互拡散した信頼性の高い高熱伝導性接合部
位を得ることができる。これにより、極めて簡単な工程
で、所望の機能を有する傾斜機能材料を確実に得ること
ができるとともに、製造コストを安価に抑えることが可
能になる。
As described above, in the method for producing a functionally graded material according to the present invention, in a functionally graded material having a ceramic side composition and a metal side composition, the thermal expansion coefficient of the ceramic composition part and the thermal expansion coefficient of the metal composition part Because the coefficient of expansion is adjusted so that it is almost the same at the production temperature and the use temperature,
Cracks, deformation, and the like do not occur in the laminated portion, and a highly reliable high thermal conductive joint portion in which both components are mutually diffused can be obtained. This makes it possible to reliably obtain a functionally graded material having a desired function with an extremely simple process, and to reduce the manufacturing cost.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】セラミックス側組成と金属側組成とを有す
る傾斜機能材料の製造方法であって、 セラミックスが100%の組成部分と金属が100%の
組成部分との熱膨張係数が、製造温度および使用温度
で、 セラミックス組成部分の熱膨張係数/金属組成部分の熱
膨張係数×100=75〜125(%)になるように調
整されたセラミックス側原料および金属側原料を選択す
る工程と、 前記セラミックス側原料および前記金属側原料を積層
し、同時焼成処理により双方の成分を相互拡散させて傾
斜機能材料を製造する工程と、 を有することを特徴とする傾斜機能材料の製造方法。
1. A method for producing a functionally graded material having a ceramic-side composition and a metal-side composition, wherein the coefficient of thermal expansion of the 100% ceramic portion and the 100% metal portion is determined by the production temperature and Selecting a ceramic-side raw material and a metal-side raw material that are adjusted so that the thermal expansion coefficient of the ceramic composition portion / the thermal expansion coefficient of the metal composition portion × 100 = 75 to 125 (%) at the operating temperature; Producing a functionally graded material by laminating a raw material and said metal-side raw material and mutually diffusing both components by simultaneous firing treatment to produce a functionally graded material.
【請求項2】請求項1記載の製造方法において、前記セ
ラミックス組成部分は、窒化アルミニウムであるととも
に、 前記金属組成部分は、銅およびタングステンであること
を特徴とする傾斜機能材料の製造方法。
2. The method according to claim 1, wherein said ceramic composition portion is aluminum nitride, and said metal composition portion is copper and tungsten.
【請求項3】請求項1または2載の製造方法において、
前記セラミックス側原料は、窒化処理により窒化アルミ
ニウムとなる金属アルミニウムを有するとともに、 前記窒化処理に際して前記金属アルミニウム中に、窒化
アルミニウムと、 他の添加剤としてジルコニウム、タングステン、炭化タ
ングステン、窒化タングステン、炭化モリブデン、クロ
ムまたはアルミナから選択される少なくとも一種と、 が添加されることを特徴とする傾斜機能材料の製造方
法。
3. The method according to claim 1, wherein
The ceramic-side raw material has metal aluminum which becomes aluminum nitride by nitriding, and at the time of the nitriding, aluminum nitride and zirconium, tungsten, tungsten carbide, tungsten nitride, molybdenum carbide as other additives. And at least one selected from chromium and alumina, and a method for producing a functionally gradient material.
【請求項4】請求項3記載の製造方法において、前記金
属アルミニウム、前記窒化アルミニウムおよび前記他の
添加剤の組成比が、 金属アルミニウム:窒化アルミニウム:他の添加剤=8
〜25:74〜87:1〜12に設定されることを特徴
とする傾斜機能材料の製造方法。
4. The manufacturing method according to claim 3, wherein the composition ratio of said metal aluminum, said aluminum nitride and said other additive is: metal aluminum: aluminum nitride: other additive = 8
~ 25: 74 ~ 87: 1 ~ 12, a method for producing a functionally gradient material.
【請求項5】請求項1乃至4のいずれか1項に記載の製
造方法において、前記セラミックス側原料と前記金属側
原料とは、同一の焼成温度になるように設定されること
を特徴とする傾斜機能材料の製造方法。
5. The method according to claim 1, wherein the ceramic-side raw material and the metal-side raw material are set to have the same firing temperature. Manufacturing method of functionally graded material.
JP06877497A 1997-03-21 1997-03-21 Method for producing functionally gradient material Expired - Fee Related JP4014248B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP06877497A JP4014248B2 (en) 1997-03-21 1997-03-21 Method for producing functionally gradient material
CA002232517A CA2232517C (en) 1997-03-21 1998-03-18 Functionally gradient material and method for producing the same
US09/044,869 US6037066A (en) 1997-03-21 1998-03-20 Functionally gradient material and method for producing the same
US09/449,495 US6248290B1 (en) 1997-03-21 1999-11-29 Functionally gradient material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06877497A JP4014248B2 (en) 1997-03-21 1997-03-21 Method for producing functionally gradient material

Publications (2)

Publication Number Publication Date
JPH10258479A true JPH10258479A (en) 1998-09-29
JP4014248B2 JP4014248B2 (en) 2007-11-28

Family

ID=13383424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06877497A Expired - Fee Related JP4014248B2 (en) 1997-03-21 1997-03-21 Method for producing functionally gradient material

Country Status (1)

Country Link
JP (1) JP4014248B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293021C (en) * 2003-12-18 2007-01-03 山东理工大学 Method for producing metal-ceramic gradient materials
CN111636023A (en) * 2020-04-23 2020-09-08 陕西斯瑞新材料股份有限公司 Preparation method of copper-tungsten gradient material electrical contact
CN113787192A (en) * 2021-10-18 2021-12-14 合肥工业大学 Preparation method of W-Cu composite plate with Cu phases distributed in finger-shaped gradient manner
CN115124362A (en) * 2022-06-20 2022-09-30 昆明冶金研究院有限公司北京分公司 Ceramic copper-clad plate and preparation method thereof
US11564307B2 (en) * 2016-12-22 2023-01-24 Rogers Germany Gmbh Carrier substrate with a thick metal interlayer and a cooling structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293021C (en) * 2003-12-18 2007-01-03 山东理工大学 Method for producing metal-ceramic gradient materials
US11564307B2 (en) * 2016-12-22 2023-01-24 Rogers Germany Gmbh Carrier substrate with a thick metal interlayer and a cooling structure
CN111636023A (en) * 2020-04-23 2020-09-08 陕西斯瑞新材料股份有限公司 Preparation method of copper-tungsten gradient material electrical contact
CN113787192A (en) * 2021-10-18 2021-12-14 合肥工业大学 Preparation method of W-Cu composite plate with Cu phases distributed in finger-shaped gradient manner
CN113787192B (en) * 2021-10-18 2022-07-12 合肥工业大学 Preparation method of W-Cu composite plate with Cu phases distributed in finger-shaped gradient manner
CN115124362A (en) * 2022-06-20 2022-09-30 昆明冶金研究院有限公司北京分公司 Ceramic copper-clad plate and preparation method thereof

Also Published As

Publication number Publication date
JP4014248B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
KR100371974B1 (en) Copper circuit junction substrate and method of producing the same
TWI357788B (en)
EP0788153B1 (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
KR20010079642A (en) Composite Material and Semiconductor Device Using the Same
US6783867B2 (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
JPH02196073A (en) Electronic package consisting of material of aluminum nitride and somosite aluminum nitrideboro silicate glass
JPWO2010109960A1 (en) Aluminum nitride substrate, aluminum nitride circuit substrate, semiconductor device, and aluminum nitride substrate manufacturing method
JPH10258479A (en) Manufacture of functionally gradient material
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JPH05286776A (en) Metal-ceramics composite structure and production therefor
Tummala et al. Ceramic packaging
JPH10259444A (en) Functionally gradient material
US5613181A (en) Co-sintered surface metallization for pin-join, wire-bond and chip attach
JP2001156413A (en) Copper circuit junction substrate and its manufacturing method
JP3121769B2 (en) Silicon nitride multilayer substrate and method of manufacturing the same
JPH07105464B2 (en) Semiconductor device for mounting semiconductor elements
JPH0624880A (en) Metal-ceramic material and production thereof
JP2000311969A (en) Copper circuit bonded board and manufacture of the same
JP4950379B2 (en) AlN metallized substrate and manufacturing method thereof
JPH0529509A (en) Board for semiconductor
JPH0748180A (en) Ceramic-metal conjugate
JP2006199584A (en) Method for producing ceramic circuit board
JPH0529507A (en) Board for semiconductor
JPH07257973A (en) Aluminum nitride sintered compact, production and use thereof
JP2023050778A (en) Joined body, production method of the same, and electrode-embedded member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees