JPH07105464B2 - Semiconductor device for mounting semiconductor elements - Google Patents

Semiconductor device for mounting semiconductor elements

Info

Publication number
JPH07105464B2
JPH07105464B2 JP4325582A JP32558292A JPH07105464B2 JP H07105464 B2 JPH07105464 B2 JP H07105464B2 JP 4325582 A JP4325582 A JP 4325582A JP 32558292 A JP32558292 A JP 32558292A JP H07105464 B2 JPH07105464 B2 JP H07105464B2
Authority
JP
Japan
Prior art keywords
semiconductor device
substrate
mounting
thermal expansion
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4325582A
Other languages
Japanese (ja)
Other versions
JPH0613494A (en
Inventor
光生 長田
良成 天野
伸夫 小笠
昭 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4325582A priority Critical patent/JPH07105464B2/en
Publication of JPH0613494A publication Critical patent/JPH0613494A/en
Publication of JPH07105464B2 publication Critical patent/JPH07105464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は集積回路装置等の半導
体素子搭載用半導体装置に関するもので、搭載した半導
体素子より発生する熱を効率よく放熱しうるとともに、
接合したAlの外囲器材と放熱基板との熱膨張係
数が近似しているという性質も具備する優れた半導体素
子搭載用半導体装置を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device for mounting a semiconductor element such as an integrated circuit device, which can efficiently dissipate heat generated by the mounted semiconductor element and
The present invention provides an excellent semiconductor device mounting semiconductor device which also has a property that the thermal expansion coefficient of the heat-radiating substrate and the enclosure material of Al 2 O 3 that are joined are similar to each other.

【0002】[0002]

【従来の技術】半導体素子搭載用の基板材料としては、
従来から半導体素子との熱膨張係数が近似していること
を重視したものとしてコバール(29%Ni−17%C
o−Fe)、42アロイ(42%Ni−Fe)などのN
i合金やアルミナ、フオルステライトなどのセラミック
材料が用いられており、特に高熱放散性を要求される場
合には、各種Cu合金が用いられてきている。
2. Description of the Related Art As a substrate material for mounting a semiconductor element,
It has been emphasized that Kovar (29% Ni-17% C
N such as o-Fe) and 42 alloy (42% Ni-Fe)
Ceramic materials such as i alloy, alumina and forsterite are used, and various Cu alloys have been used especially when high heat dissipation is required.

【0003】しかしながら、近年における半導体技術の
目覚ましい発展は、半導体素子の大型化や発熱量の増加
を推進し、熱膨張係数と熱放散性の両特性を共に満足す
る基板材料の必要性がますます増大しつつある。
However, the remarkable development of semiconductor technology in recent years has driven the increase in the size of semiconductor elements and the amount of heat generation, and there is a need for substrate materials that satisfy both the characteristics of thermal expansion coefficient and heat dissipation. It is increasing.

【0004】こうした状態の中で、上述の両特性を満足
する材料としてタングステン(W)、モリブデン(M
o)やベリリヤ(BeO)が提供されてきた。
Under these conditions, materials satisfying both of the above characteristics are tungsten (W) and molybdenum (M).
o) and beryllia (BeO) have been provided.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、後者は
公害の問題から事実上使用不可能であり、また前者は熱
膨張係数が半導体素子とはよく合致するものの、外囲器
材料としてしばしば用いられるアルミナの熱膨張係数と
の差が大きいこと、また半導体素子として最近その使用
量が増加しつつあるGaAsとは熱膨張係数の差が大き
いこと、更にはこのタングステンやモリブデンは熱放射
性の面ではベリリアより劣り、パッケージ設計上の制約
が大きい等の問題点がある。
However, the latter is practically unusable due to pollution problems, and the former has a coefficient of thermal expansion that is well matched to that of semiconductor devices, but is often used as an envelope material. Has a large difference from the thermal expansion coefficient of GaAs, and has a large difference in the coefficient of thermal expansion from GaAs, which is being used in increasing amounts as a semiconductor device recently. There are problems such as inferiority and large restrictions on package design.

【0006】さらにAlを外囲器材料として使用
した場合、ピングリッドアレイ型パッケージのように当
該外囲器材の方が半導体素子よりも大型になるのが通例
であり、基板材の熱膨張係数は半導体素子よりもむしろ
外囲器材であるAlに可能な限り近づける必要が
ある。すなわち、外囲器材のAlと基板との熱膨
張差が比較的小さい場合でも熱応力によって基板が弾性
変形してソリが生じ、一方、同差がかなり大きくなれば
接合界面又は基板にクラックが生じるという障害がある
からである。ソリが生じると半導体素子の搭載ができ
ず、クラックが生じると気密性が損なわれ、界面での接
合強度が保証されないため、歩留りが低下するという問
題があった。したがって、外囲器材のAlの形
状、大きさによってもフレキシブルに対応できる基板材
が望まれてきた。
Further, when Al 2 O 3 is used as the envelope material, the envelope material is usually larger than the semiconductor element like a pin grid array type package, and the heat of the substrate material is increased. The expansion coefficient needs to be as close as possible to Al 2 O 3 which is the envelope material rather than the semiconductor element. That is, even if the difference in thermal expansion between the Al 2 O 3 of the envelope material and the substrate is relatively small, the substrate is elastically deformed due to thermal stress and warpage occurs. On the other hand, if the difference is considerably large, the bonding interface or the substrate may be damaged. This is because there is an obstacle that cracks occur. When warping occurs, the semiconductor element cannot be mounted, and when cracking occurs, the airtightness is impaired, and the joint strength at the interface cannot be guaranteed, resulting in a problem of reduced yield. Therefore, there has been a demand for a substrate material that can flexibly respond to the shape and size of Al 2 O 3 of the envelope material.

【0007】又、気密性を維持するため基板材に望まれ
ることは、上記搭載各部材との熱膨張係数の整合も必要
であるが、さらに基板材の加工表面に空孔を存在させな
いことである。
Further, what is desired of the substrate material for maintaining the airtightness is that it is necessary to match the coefficient of thermal expansion with each of the above-mentioned mounting members. is there.

【0008】以上述べてきたように高集積化が進められ
つつあるIC用パッケージに不可欠な課題に適応できる
半導体搭載用放熱基板材料が望まれている。
As described above, there is a demand for a semiconductor heat dissipating substrate material that can meet the problems that are indispensable for IC packages that are being highly integrated.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記したよ
うな従来の半導体素子搭載用基板材料の欠点を解消して
熱膨張係数を主としてAl外囲器材並びにその形
態に適合させると共に、熱伝導性の良好でかつ空孔量を
極力抑えた基板材料を得るべく検討の結果、この発明に
至ったものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have eliminated the above-mentioned drawbacks of conventional semiconductor device mounting substrate materials and adapted the coefficient of thermal expansion mainly to the Al 2 O 3 envelope material and its form. At the same time, as a result of study to obtain a substrate material having good thermal conductivity and minimizing the amount of holes, the present invention has been achieved.

【0010】即ち、この発明の半導体素子搭載用半導体
装置は、その基板の熱膨張係数が主としてパッケージの
外囲器材のAlに近似し、かつ搭載する半導体素
子のそれにも近い値を示し、熱伝導性にすぐれたもので
あって、タングステンまたはモリブデンの多孔質焼結体
の空孔部に溶浸法により、銅を10〜20重量%含有さ
せて、その熱膨張係数をAl外囲器材のそれに合
致させた放熱基板に、該Al外囲器材を接合した
ことを特徴とするものである。
That is, in the semiconductor device mounting semiconductor device of the present invention, the coefficient of thermal expansion of the substrate is mainly close to that of Al 2 O 3 of the package envelope material, and is close to that of the mounted semiconductor device. It has excellent thermal conductivity and contains 10 to 20% by weight of copper in the pores of a porous sintered body of tungsten or molybdenum by an infiltration method, and has a thermal expansion coefficient of Al 2 O. No. 3 enclosure material, the Al 2 O 3 enclosure material is bonded to a heat dissipation substrate matched with that of the enclosure material.

【0011】[0011]

【作用】このような装置において、電気的な絶縁性が必
要な時には、セラミックまたは有機絶縁体からなる薄層
コーティングを基板の表面に施すことにより、従来セラ
ミックスが用いられていた用途にも使用することも可能
である。
In such a device, when electrical insulation is required, a thin layer coating made of ceramic or organic insulator is applied to the surface of the substrate, so that the device can be used also in the conventional use of ceramics. It is also possible.

【0012】この発明の半導体装置に用いられる放熱基
板は以下の方法で作られる。
The heat dissipation substrate used in the semiconductor device of the present invention is manufactured by the following method.

【0013】WまたはMoの金属粉末を先ずプレス成形
し、非酸化性雰囲気下で焼結して多孔質の焼結体を得、
次にこの多孔質の焼結体に溶融したCuを浸透させて焼
結体骨格の隙間に充填させることによってこの発明にお
ける半導体装置用基板材料は得られる。
First, a metal powder of W or Mo is press-molded and sintered in a non-oxidizing atmosphere to obtain a porous sintered body,
Next, the molten Cu is permeated into the porous sintered body to fill the gaps in the skeleton of the sintered body to obtain the substrate material for a semiconductor device according to the present invention.

【0014】この発明において、WまたはMoの多孔質
焼結体にCuを溶浸するのは、焼結体内に空孔があると
空孔がそのまま残留し、加工後のメッキ密着性に障害を
きたすとともに、基板に搭載される半導体素子および外
囲器材料との接合界面に欠陥が生じることによって、パ
ッケージの気密性が保たれないからである。
In the present invention, Cu is infiltrated into the porous sintered body of W or Mo because, if there are pores in the sintered body, the pores remain as they are and the plating adhesion after processing is impaired. This is because, in addition to this, defects are generated at the bonding interface between the semiconductor element mounted on the substrate and the material of the envelope, so that the hermeticity of the package cannot be maintained.

【0015】又、Cu量を10〜20wt%とするの
は、その熱膨張係数を主として外囲器材のAl
熱膨張係数に近似させるとともに、半導体素子等の他の
部材とも可能な限り近づけることによって、これら部材
との熱膨張の不整合に起因する応力の影響をできるだけ
小さくし、かつ焼結体の熱伝導性を改善するためであ
り、この範囲でパッケージの形状、大きさに応じて適宜
Cuの含有量をコントロールすればよい。
Further, the Cu content of 10 to 20 wt% makes the coefficient of thermal expansion mainly approximate to the coefficient of thermal expansion of Al 2 O 3 of the envelope material, and can be used for other members such as semiconductor elements. This is because by making them as close as possible, the effect of stress due to the mismatch of thermal expansion with these members is minimized and the thermal conductivity of the sintered body is improved. Accordingly, the Cu content may be appropriately controlled.

【0016】この点についてもう少し詳しく説明する。This point will be described in more detail.

【0017】一般に放熱基板は他部品(Fe−Ni−C
o合金等の金具、メタライズを施したアルミナ等の絶縁
基板等)とロウ付け(通常Ag−Cu共晶ロウ材等を用
い800〜900℃にて接合)又は半田付け(200〜
450℃にて接合)等の方法にて接合される場合が多
い。この場合Cu−W、Cu−Mo材は表面にW又はM
oが存在するためロウ材や半田材との濡れ性が悪く、通
常ニッケルメツキを施した後接合され、また接合後の耐
食性を確保する目的で、ニッケルを下地として金メッキ
が施される。このとき、基板材に残留空孔が存在するこ
とによって、基板表面に空孔が露呈すると、ここからメ
ッキ液が浸透し、その後の熱処理工程で発生する変色
や、メッキ層の膨れ及び剥離、しみ出し液による変色・
腐食の原因となる。また、これらの基板を半導体に収納
するパッケージの部材として使用する場合、パッケージ
の気密性維持のため基板自体に気密性が要求され、基板
に空孔が存在すると気密性の維持が困難となる。特にパ
ッケージの主要部を占めている外囲器材料であるAl
との接合界面では重要である。
Generally, the heat dissipation board is another component (Fe-Ni-C).
Metal fittings such as o alloys, insulating substrates such as metalized alumina, etc.) and brazing (usually using Ag—Cu eutectic brazing material or the like at 800 to 900 ° C.) or soldering (200 to
In many cases, it is bonded by a method such as bonding at 450 ° C.). In this case, Cu-W and Cu-Mo materials have W or M on the surface.
Because of the presence of o, the wettability with the brazing material and the solder material is poor, and it is usually joined after nickel plating is performed and gold plating is performed with nickel as a base for the purpose of ensuring corrosion resistance after joining. At this time, when the holes are exposed on the surface of the substrate due to the presence of residual holes in the substrate material, the plating solution permeates from there and discoloration occurs in the subsequent heat treatment step, and the swelling and peeling of the plating layer, and stains. Discoloration due to liquid
Causes corrosion. Further, when these substrates are used as a member of a package that is housed in a semiconductor, the substrate itself is required to have airtightness in order to maintain the airtightness of the package, and it becomes difficult to maintain the airtightness if there are holes in the substrate. In particular, Al 2 which is an envelope material occupying the main part of the package
It is important at the joint interface with O 3 .

【0018】上記のような目的にかなうこの発明におけ
る基板を得るには、緻密で強固なWまたはMoの骨格
(多孔質の焼結体)を所望する空孔率に応じて原料およ
び型押条件並びに焼結条件のコントロールを行うことに
よって形成し、この空隙に隙間なくCuを充墳する必要
があり、このような観点から粉末冶金の中でもCu溶浸
法の採用が好ましい。Cu溶湯に浸漬する溶浸法では、
Cu、W、Moの融点の違いおよび比重差により均質な
特性を有する合金の製造が困難であり、一方、Cu粉、
WまたはMo粉を混合して作る通常の粉末冶金法でも、
成分間の比重の相違による成分偏析や、粉末粒子間の隙
間(空孔)の残留は避け難く目的とする特性の確保が難
しい。又、これらの方法によるとその不均一性および空
孔の存在によって前述の気密性に大きな支障をきたすだ
けでなく、熱伝導率・熱膨張係数の単品内、基板多数品
間でのバラツキも大きくなると共に、それらの特性をC
u量によって精密にコントロールすることも困難とな
る。
In order to obtain the substrate according to the present invention which meets the above-mentioned objects, a dense and strong skeleton of W or Mo (a porous sintered body) is used as a raw material and an embossing condition according to a desired porosity. In addition, it is necessary to form Cu by controlling the sintering conditions and to fill the voids with Cu without any gaps. From this point of view, the Cu infiltration method is preferable among the powder metallurgy. In the infiltration method of immersing in Cu molten metal,
It is difficult to produce an alloy having homogeneous properties due to the difference in melting points of Cu, W and Mo and the difference in specific gravity, while Cu powder,
Even with the usual powder metallurgy method that is made by mixing W or Mo powder,
Segregation of the components due to the difference in specific gravity between the components and residual gaps (voids) between the powder particles are unavoidable, and it is difficult to secure the desired properties. In addition, according to these methods, not only the non-uniformity and the existence of pores greatly impair the above-mentioned airtightness, but also the thermal conductivity and the coefficient of thermal expansion vary greatly within a single product and between multiple products. As well as their characteristics C
It is also difficult to precisely control the amount of u.

【0019】尚、この発明において、WやMoのより強
固な骨格を作るために20重量%以下の鉄族元素の添加
によってW、Moの焼結性が促進される。
In the present invention, the sinterability of W and Mo is promoted by adding 20 % by weight or less of the iron group element in order to form a stronger skeleton of W and Mo.

【0020】以上述べたように、この発明の半導体装置
は熱膨張係数をAl外囲器材に合せた精密な制御
ができ、熱伝導性も良く、残留空孔が極めて抑えられて
いるため、かつそのバラツキが少ないため、この基板を
用いることにより今後ますます増大する高密度かつ大型
化の半導体装置用途に高い信頼性でもって対処しうるも
のであり、又、Si素子に加えて実用化が進みつつある
GaAs素子搭載用として、さらに本装置の熱膨張係数
の範囲内で近似しうるAl以外の搭載部材との組
合せも可能となるものである。
As described above, in the semiconductor device of the present invention, the coefficient of thermal expansion can be precisely controlled according to the Al 2 O 3 envelope material, the thermal conductivity is good, and the residual holes are extremely suppressed. Because of this, and because there is little variation, it is possible to deal with the ever-increasing high-density and large-scale semiconductor device applications with high reliability by using this substrate. Moreover, in addition to the Si element, it can be practically used. For mounting GaAs devices, which are becoming more and more advanced, it is possible to combine with mounting members other than Al 2 O 3 that can be approximated within the range of the thermal expansion coefficient of the present device.

【0021】[0021]

【実施例】以下、この発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0022】実施例1 タングステンおよびタングステン−0.5%ニッケルの
混合粉末を100×100×5mmの大きさに型押しし
た後、1000〜1400℃でHガス雰囲気下にて焼
結し、1〜50%の気孔率を有する中間焼結体を得た。
この中間焼結体にHガス雰囲気下にて1200℃で銅
を溶浸させて銅含有量が1〜40重量%のCu−W合金
を作製した。
Example 1 Tungsten and a mixed powder of tungsten-0.5% nickel were pressed into a size of 100 × 100 × 5 mm, and then sintered at 1000 to 1400 ° C. in a H 2 gas atmosphere, and 1 An intermediate sintered body having a porosity of ˜50% was obtained.
Copper was infiltrated into this intermediate sintered body at 1200 ° C. under a H 2 gas atmosphere to produce a Cu—W alloy having a copper content of 1 to 40 wt%.

【0023】かくして得られたCu−W合金について熱
膨張係数および熱伝導率を測定したところ表1の結果を
得た。
The thermal expansion coefficient and the thermal conductivity of the thus obtained Cu-W alloy were measured and the results shown in Table 1 were obtained.

【0024】尚、表1にはAl、Si、GaAs
などの熱膨張係数をも示した。
Table 1 shows Al 2 O 3 , Si and GaAs.
The coefficient of thermal expansion such as is also shown.

【0025】[0025]

【表1】 [Table 1]

【0026】上表のうちCuを10〜20重量%含有す
るCu−W合金焼結体をSiチップの搭載部の基板材料
として用いたICパッケージでは、IC実装工程での外
囲器材Alとの熱膨張の差が小さいために何ら熱
歪を生じず、Siチップの搭載部については、固定時の
温度が400℃前後と低く、動作時の昇温も高々250
℃前後であり、小型であることもあって熱膨張に多少差
があっても接合界面でのストレスが小さく障害が起こら
なかった。その結果、デバイスとしては熱放散性が極め
て良好であるために寿命が伸び、信頼性の高い優れたI
Cを得ることができた。
In the IC package using the Cu-W alloy sintered body containing 10 to 20% by weight of Cu as the substrate material of the mounting portion of the Si chip in the above table, the enclosure material Al 2 O in the IC mounting process is used. Since the difference in thermal expansion from that of No. 3 is small, no thermal strain occurs, and the mounting temperature of the Si chip is as low as around 400 ° C. and the temperature rise during operation is at most 250.
The temperature was around ℃, and due to its small size, even if there was some difference in thermal expansion, the stress at the joint interface was small and no trouble occurred. As a result, the device has a very good heat dissipation property, so that the device has a long life and is excellent in reliability.
C could be obtained.

【0027】さらに同じようにCu1〜5重量%のCu
量の少ないものおよびCu25重量%〜40重量%のも
のについてIC実装を試みたところ、外囲器材Al
との熱膨張係数の差が大きいため、Cu量の少ない基
板では基板のソリが生じてAl外囲器材はつけら
れず一部にワレが発生した。Cu量の多い基板の場合に
も基板にソリが生じて半導体ICチップの搭載部に隙間
が生じ信頼性が低下した。
Further, in the same manner, Cu 1-5 wt% Cu
When the IC mounting was tried for a small amount of Cu and a Cu content of 25 wt% to 40 wt%, the enclosure material Al 2 O
Since the difference in the coefficient of thermal expansion from that of No. 3 was large, the substrate with a small amount of Cu warped, and the Al 2 O 3 envelope material was not attached, and some cracks occurred. Even in the case of a substrate having a large amount of Cu, warpage occurred in the substrate and a gap was formed in the mounting portion of the semiconductor IC chip, resulting in a decrease in reliability.

【0028】実施例2 モリブデンおよびモリブデン−0.45%ニッケルの混
合粉末を100×100×5mmの大きさに型押しした
後、1000〜1400℃でHガス雰囲気下にて焼結
し、1〜50%の気孔率を有する中間焼結体を得た。
Example 2 A mixed powder of molybdenum and molybdenum-0.45% nickel was pressed into a size of 100 × 100 × 5 mm, and then sintered at 1000 to 1400 ° C. in a H 2 gas atmosphere to obtain 1 An intermediate sintered body having a porosity of ˜50% was obtained.

【0029】この中間焼結体にHガス雰囲気下にて1
200℃で銅を溶浸させて、銅含有量が1〜50重量%
のCu−Mo合金を作製した。
This intermediate sintered body was subjected to 1 in an H 2 gas atmosphere.
Copper is infiltrated at 200 ° C, and the copper content is 1 to 50% by weight.
The Cu-Mo alloy of was produced.

【0030】かくして得られたCu−Mo合金について
熱膨張係数および熱伝導率を測定したところ表2の結果
を得た。
The coefficient of thermal expansion and the thermal conductivity of the thus obtained Cu-Mo alloy were measured and the results shown in Table 2 were obtained.

【0031】[0031]

【表2】 [Table 2]

【0032】上表のうちCuを10〜20重量%含有す
るCu−Mo合金焼結体をSiチップの搭載部の基板材
料として用いたICパッケージでは、IC実装工程での
外囲器材Alとの熱膨張の歪が小さいために何ら
熱歪を生じず、又、Siチップは小型であるため当該基
板材との界面で熱歪が吸収される程度となり、デバイス
としては熱放散性が極めて良好であるために寿命が伸
び、信頼性の高い優れた半導体装置を得ることができ
た。
In the IC package using the Cu-Mo alloy sintered body containing 10 to 20% by weight of Cu as the substrate material of the mounting portion of the Si chip in the above table, the enclosure material Al 2 O in the IC mounting process is used. Since the strain of thermal expansion with 3 is small, no thermal strain is generated, and since the Si chip is small, the thermal strain is absorbed at the interface with the substrate material, and the device has a heat dissipation property. Since it was extremely good, the life was extended, and an excellent semiconductor device with high reliability could be obtained.

【0033】さらに同じようにCu1〜5重量%のCu
量の少ないもの及びCu25重量%〜50重量%のもの
についてIC実装を試みたところ、外囲器材Al
との熱膨張係数の差が大きいため、Cu量の少い基板で
は基板のソリが生じてAl外囲器材はつけられ
ず、一部にワレが発生した。Cu量の多い基板の場合に
も基板にソリが生じて半導体ICチップの搭載部に隙間
が生じ信頼性が低下した。
Similarly, Cu of 1 to 5 wt% Cu
When the IC mounting was attempted for a small amount of Cu and a Cu content of 25 wt% to 50 wt%, the enclosure material Al 2 O 3
Since the difference in the coefficient of thermal expansion from the above was large, the substrate with a small amount of Cu was warped, the Al 2 O 3 envelope material could not be attached, and some cracks occurred. Even in the case of a substrate having a large amount of Cu, warpage occurred in the substrate and a gap was formed in the mounting portion of the semiconductor IC chip, resulting in a decrease in reliability.

【0034】実施例3 2〜40重量%の範囲でCuを含有させたW−Cu合金
を本発明の方法である溶浸法と比較して混合法の2通り
の方法で作製した。
Example 3 A W-Cu alloy containing Cu in the range of 2 to 40% by weight was prepared by two methods of mixing, as compared with the infiltration method which is the method of the present invention.

【0035】この合金の各々の断面を400倍の光学顕
微鏡で確認したところ、溶浸法のものはW骨格部、Cu
部ともに空孔は確認されなかったが、混合法のものはW
骨格部、Cu溶浸部ともに数μm以下の空孔が散在して
いた。
Each cross section of this alloy was confirmed by an optical microscope of 400 times.
No holes were confirmed in both parts, but W
Voids of several μm or less were scattered in both the skeleton portion and the Cu infiltration portion.

【0036】得られたW−Cu合金について熱伝導率を
測定し表3の結果を得た。
The thermal conductivity of the obtained W--Cu alloy was measured and the results shown in Table 3 were obtained.

【0037】[0037]

【表3】 [Table 3]

【0038】表3より、溶浸法Aと混合法Bを比較した
場合、同じCu含有量でありながら特にCu含有量の多
い領域でその熱伝導率の値に大きさ差があることが判
る。つまり、溶浸法に比べ混合法は同一Cu含有量で比
較した時、熱伝導率は小さ目にでることが判る。又、各
数値のバラツキの程度も、混合法の方が溶浸法に比べ倍
以上大きいことも判った。
It can be seen from Table 3 that when the infiltration method A and the mixing method B are compared, there is a difference in the value of the thermal conductivity in the region where the Cu content is the same but the Cu content is particularly high. . That is, it can be seen that the thermal conductivity of the mixing method is smaller than that of the infiltration method when the Cu content is the same. It was also found that the degree of variation in each numerical value was more than double in the mixing method as compared with the infiltration method.

【0039】これらの結果は、混合法の場合、Cu及び
W粉末の粉末粒子間間隙及び個々の粉末粒子間間隙が成
型、焼結の過程で消滅することなく空孔として残留する
ためと思われる。本発明の溶浸法の場合、W原料の粒
度、型押体密度、焼結温度の組合せを適切にコントロー
ルすることによって残留空孔がなく、又、Wの骨格中に
溶融したCuが浸透(一種の毛細管現象)していくた
め、空隙は完全にCuにより充填され、しかもWの骨格
は維持されるため、理論値(複合則にあてはまる)に近
い熱伝導率の挙動を示すと考えられる。
These results are considered to be because in the case of the mixing method, the gaps between the powder particles of the Cu and W powders and the gaps between the individual powder particles remain as voids without disappearing during the molding and sintering process. . In the case of the infiltration method of the present invention, by appropriately controlling the combination of the grain size of the W raw material, the density of the embossed body, and the sintering temperature, there are no residual pores, and the molten Cu penetrates into the skeleton of W ( It is considered that the voids are completely filled with Cu to maintain the skeleton of W due to a kind of capillary phenomenon), and the behavior of thermal conductivity close to the theoretical value (applicable to the compound rule) is exhibited.

【0040】実施例4 (1)実施例3のA、B両方法にて製作した90%W−
10%Cuの合金について全表面を切削加工した後ニッ
ケルメッキ(電解ワット浴、膜厚1μm)を施した。し
かる後、800℃の水素中で加熱し、表面に発生した膨
れを観察した。その結果を表4に示した。尚、テストサ
ンプルはサイズ25mm×25mm×1mm5ケを使用
した。
Example 4 (1) 90% W- manufactured by both methods A and B of Example 3
The entire surface of a 10% Cu alloy was cut and then nickel-plated (electrolytic Watt bath, film thickness 1 μm). Then, it was heated in hydrogen at 800 ° C. and the swelling generated on the surface was observed. The results are shown in Table 4. The test sample used had a size of 25 mm × 25 mm × 1 mm and 5 pieces.

【0041】[0041]

【表4】 [Table 4]

【0042】(2)気密性試験としてA,B両方法にて
製作された25mm×10mm×2mmのニッケルメッ
キ後のサンプルを5気圧のヘリウムガス中に4時間保持
した後に大気中に取出し、これを真空容器に入れ真空引
きし、ヘリウムの排出量を測定した。その結果を表5に
示す。
(2) As an airtightness test, a 25 mm × 10 mm × 2 mm nickel-plated sample manufactured by both the A and B methods was held in 5 atmospheres of helium gas for 4 hours and then taken out into the atmosphere. Was placed in a vacuum container and evacuated, and the amount of helium discharged was measured. The results are shown in Table 5.

【0043】この試験は試料の表面に空孔があってメッ
キ面にくぼみがあったり、又メッキの膨れ等のヘリウム
ガスをトラップする微小な凹部があると敏感に排出量に
現われるもので、ヘリウム排出量が10−9atm.c
c/sec以下であれば半導体装置用基板としての使用
が可能である。
In this test, if the surface of the sample has voids and the plating surface has a dent, or if there is a minute recess for trapping the helium gas such as bulging of the plating, it will appear in the discharge amount sensitively. The emission amount is 10 −9 atm. c
If it is c / sec or less, it can be used as a substrate for a semiconductor device.

【0044】[0044]

【表5】 [Table 5]

【0045】本発明の溶浸法による基板はメッキでの膨
れもなく、混合法のW−Cu合金に比べ、気密性がはる
かに優れていることが確認された。これは溶浸法による
基板材料中には殆ど空孔が存在しないためと思われる。
It was confirmed that the substrate obtained by the infiltration method of the present invention did not swell due to plating and was far superior in airtightness to the W-Cu alloy obtained by the mixing method. This is probably because there are almost no holes in the substrate material produced by the infiltration method.

【0046】[0046]

【発明の効果】以上説明したように、この発明の半導体
素子搭載用半導体装置は、その熱膨張係数が基板と外囲
器材料のアルミナとで近似した数値を示し、かつ熱伝導
性、メッキ性、気密性に優れたものであるから、集積回
路装置等の半導体産業分野における半導体素子の大型化
や発熱量増加に十分対応し得るものである。
As described above, the semiconductor device mounting semiconductor device of the present invention has a coefficient of thermal expansion that is close to that of the substrate and alumina of the envelope material, and has a thermal conductivity and a plating property. Since it is excellent in airtightness, it can sufficiently cope with an increase in the size of a semiconductor element and an increase in heat generation in the semiconductor industry field such as an integrated circuit device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 昭 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社 伊丹製作所内 (56)参考文献 特開 昭50−62776(JP,A) 米国特許2971251(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Otsuka 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works (56) Reference Japanese Patent Laid-Open No. 50-62776 (JP, A) US Patent 2971251 (US, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タングステンまたはモリブデンの多孔質
焼結体の空孔部に溶浸法により、銅を10〜20重量%
含有させて、その熱膨張係数をAl外囲器材のそ
れに合致させた放熱基板に、該Al外囲器材を接
合したことを特徴とする半導体素子搭載用半導体装置。
1. 10 to 20% by weight of copper is infiltrated into pores of a porous sintered body of tungsten or molybdenum by an infiltration method.
Be contained, the thermal expansion coefficient of the heat radiation substrate is matched to that of the Al 2 O 3 envelope material, the Al 2 O 3 element mounting semiconductor device is characterized in that bonding the envelope material.
【請求項2】 20重量%以下の鉄族元素を添加した請
求項1記載の半導体素子搭載用半導体装置。
2. The semiconductor device for mounting a semiconductor element according to claim 1, wherein 20% by weight or less of an iron group element is added.
【請求項3】 半導体素子がSiまたはGaAsである
ことを特徴とする請求項1又は2記載の半導体素子搭載
用半導体装置。
3. The semiconductor device mounting semiconductor device according to claim 1, wherein the semiconductor device is Si or GaAs.
JP4325582A 1992-12-04 1992-12-04 Semiconductor device for mounting semiconductor elements Expired - Lifetime JPH07105464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4325582A JPH07105464B2 (en) 1992-12-04 1992-12-04 Semiconductor device for mounting semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4325582A JPH07105464B2 (en) 1992-12-04 1992-12-04 Semiconductor device for mounting semiconductor elements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57131026A Division JPS5921032A (en) 1982-07-26 1982-07-26 Substrate for semiconductor device

Publications (2)

Publication Number Publication Date
JPH0613494A JPH0613494A (en) 1994-01-21
JPH07105464B2 true JPH07105464B2 (en) 1995-11-13

Family

ID=18178497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4325582A Expired - Lifetime JPH07105464B2 (en) 1992-12-04 1992-12-04 Semiconductor device for mounting semiconductor elements

Country Status (1)

Country Link
JP (1) JPH07105464B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973170B2 (en) * 1994-08-05 1999-11-08 東京タングステン株式会社 Ceramic package and heat dissipation board
US5886269A (en) * 1995-02-17 1999-03-23 Nippon Tungsten Co., Ltd. Substrate and heat sink for a semiconductor and method of manufacturing the same
US6876075B2 (en) 2000-03-15 2005-04-05 Sumitomo Electric Industries, Ltd. Aluminum-silicon carbide semiconductor substrate and method for producing the same
AT5972U1 (en) * 2002-03-22 2003-02-25 Plansee Ag PACKAGE WITH SUBSTRATE HIGH HEAT-CONDUCTIVITY
WO2014106925A1 (en) * 2013-01-07 2014-07-10 株式会社アライドマテリアル Ceramic wiring substrate, semiconductor device, and method for manufacturing ceramic wiring substrate
JP5807935B1 (en) 2014-10-09 2015-11-10 株式会社半導体熱研究所 Heat dissipation board and semiconductor module using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971251A (en) 1954-07-01 1961-02-14 Philips Corp Semi-conductive device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492449U (en) * 1972-04-08 1974-01-10
JPS5062776A (en) * 1973-10-05 1975-05-28
JPS5259572A (en) * 1975-11-12 1977-05-17 Hitachi Ltd Electronic circuit device
US4025997A (en) * 1975-12-23 1977-05-31 International Telephone & Telegraph Corporation Ceramic mounting and heat sink device
JPS52117075A (en) * 1976-03-27 1977-10-01 Toshiba Corp Semiconductor device
JPH0231863A (en) * 1987-11-18 1990-02-01 Nordson Kk Method for applying and maturating coating material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971251A (en) 1954-07-01 1961-02-14 Philips Corp Semi-conductive device

Also Published As

Publication number Publication date
JPH0613494A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
US5086333A (en) Substrate for semiconductor apparatus having a composite material
EP0183016A1 (en) Material for a semiconductor device and process for its manufacture
US20050263877A1 (en) Laminated radiation member, power semiconductor apparatus, and method for producing the same
JPH0261539B2 (en)
KR910007016B1 (en) Components for semiconductor
EP0788153B1 (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
KR20010079642A (en) Composite Material and Semiconductor Device Using the Same
JP2000323618A (en) Copper circuit clad substrate and manufacture thereof
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
US5311399A (en) High power ceramic microelectronic package
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
WO1997005757A1 (en) Diamond electronic packages featuring bonded metal
JPH07105464B2 (en) Semiconductor device for mounting semiconductor elements
JP4227610B2 (en) Manufacturing method of heat dissipation base
JP3814924B2 (en) Semiconductor device substrate
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices
JP2650044B2 (en) Connection structure between components for semiconductor devices
JP2001156413A (en) Copper circuit junction substrate and its manufacturing method
JP2001217364A (en) Al-SiC COMPOSITE
JPH0794624A (en) Circuit board
JPH01151252A (en) Ceramic package and its manufacture
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JP3850312B2 (en) Semiconductor element storage package and semiconductor device
JP2525232B2 (en) Ceramic package and method of manufacturing the same
JP2024033469A (en) Semiconductor device and bonding method