JPH10256332A - Method and equipment for manufacturing semiconductor wafer for evaluation - Google Patents

Method and equipment for manufacturing semiconductor wafer for evaluation

Info

Publication number
JPH10256332A
JPH10256332A JP6092197A JP6092197A JPH10256332A JP H10256332 A JPH10256332 A JP H10256332A JP 6092197 A JP6092197 A JP 6092197A JP 6092197 A JP6092197 A JP 6092197A JP H10256332 A JPH10256332 A JP H10256332A
Authority
JP
Japan
Prior art keywords
wafer
polishing
test piece
evaluation
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6092197A
Other languages
Japanese (ja)
Inventor
Takafumi Hajime
啓文 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Super Silicon Crystal Research Institute Corp
Original Assignee
Super Silicon Crystal Research Institute Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Super Silicon Crystal Research Institute Corp filed Critical Super Silicon Crystal Research Institute Corp
Priority to JP6092197A priority Critical patent/JPH10256332A/en
Publication of JPH10256332A publication Critical patent/JPH10256332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor wafer for evaluation, which enables measurement of cracks, processing strains and the like introduced in slicing. SOLUTION: A wafer as a test piece 6 is fixed on a stage 11. A polishing tool 12 facing the surface of the wafer is lowered by the distance in proportion to the moving distance of the stage 11 moving in one direction. At the surface of the test piece 6, a polishing groove 17, which is extending into the direction of the wafer diameter and continuously becomes deep, is formed. The wafer surface at both sides of the polishing groove 17 remains as the unpolished initial surface. Since the long polishing groove 17 is formed in this way, the distribution of the defect such as the cracks, the processing strains and the like can be measured highly accurately. The depth of the defective part is also measured directly by the comparison with the initial surface at both sides of the polishing groove 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、インゴットから切り出
されたウェーハやラッピングされたウェーハの表面に導
入されているクラック,加工歪み等の欠陥部を検出する
ために使用される評価用半導体ウェーハを作製する方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor wafer for evaluation used to detect a defect such as a crack or a processing strain introduced into the surface of a wafer cut out of an ingot or a wrapped wafer. The present invention relates to a manufacturing method and an apparatus.

【0002】[0002]

【従来の技術】半導体ウェーハは、内歯リング,ワイヤ
ソー等でインゴットをスライスすることにより得られ
る。インゴットから切り出された半導体ウェーハには、
加工に起因するクラックや歪みが導入されている。たと
えば、図1に示すように、完全結晶シリコン1の上に弾
性変形層2を介してクラック層3,塑性流動層4等から
なる表面層が形成されている。クラック層3は、加工に
より発生した微小なクラックが分布しており、ウェーハ
表面から10μm程度の深さに達する。クラック層3の
深さに応じて後続するラッピング工程での加工条件を設
定するため、予めクラック層3の深さを測定することが
必要である。クラック層の深さ測定に使用されるサンプ
ルは、通常、角度研磨法で作成されている。角度研磨法
では、図2に示すように貼付けブロック5の傾斜面に試
験片6を貼り付け、ガイドリング7に装着し、傾斜状態
に保持された試験片6を研磨盤8で研磨している。
2. Description of the Related Art A semiconductor wafer is obtained by slicing an ingot with an internal ring, a wire saw or the like. For semiconductor wafers cut from ingots,
Cracks and distortions due to processing are introduced. For example, as shown in FIG. 1, a surface layer including a crack layer 3, a plastic flow layer 4, and the like is formed on a perfect crystal silicon 1 via an elastic deformation layer 2. In the crack layer 3, minute cracks generated by the processing are distributed and reach a depth of about 10 μm from the wafer surface. In order to set processing conditions in the subsequent lapping step according to the depth of the crack layer 3, it is necessary to measure the depth of the crack layer 3 in advance. A sample used for measuring the depth of the crack layer is usually prepared by an angle polishing method. In the angle polishing method, as shown in FIG. 2, a test piece 6 is attached to an inclined surface of an attaching block 5, attached to a guide ring 7, and the test piece 6 held in an inclined state is polished by a polishing plate 8. .

【0003】研磨された試験片6は、図3に示すように
貼付けブロック5の傾斜面に対応する傾斜角θをつけて
表面が斜めに研磨される。試験片6の表面にあるクラッ
ク層3は、角度研磨によって厚み方向に広がった傾斜表
面としてクラック層断面9が露呈する。クラック層3の
厚みをDとすると、角度研磨によって現れたクラック層
断面の長さをLは、L=D/ sinθで表される。通常、
傾斜角θを5.7度に設定して角度研磨することから、
L=D/ sin5.7度=D×10となる。すなわち、厚
みDのクラック層3は、10倍に拡大された幅Lのクラ
ック層断面9として観察される。
As shown in FIG. 3, the polished test piece 6 is polished obliquely at an inclination angle θ corresponding to the inclined surface of the attaching block 5. The crack layer 3 on the surface of the test piece 6 exposes the crack layer cross section 9 as an inclined surface that spreads in the thickness direction by angle polishing. Assuming that the thickness of the crack layer 3 is D, the length of the cross section of the crack layer generated by the angle polishing is represented by L = L / Sinθ. Normal,
Since the angle polishing is performed by setting the inclination angle θ to 5.7 degrees,
L = D / sin 5.7 degrees = D × 10. That is, the crack layer 3 having a thickness D is observed as a crack layer cross section 9 having a width L that is magnified ten times.

【0004】[0004]

【発明が解決しようとする課題】従来の角度研磨法で
は、クラック層断面9の顕微鏡観察によりクラックを検
出する。クラックが検出された位置のウェーハ表面から
の深さは、試験片6の縁部全域が図3に示すように傾斜
したクラック層断面9となるため、試験片表面10との
比較で測定できず、角度成分に基づいて算出されてい
る。しかし、正確に設定通りの角度で試験片6が加工さ
れているか否かを知ることができず、測定された深さの
精度や信頼性が欠ける。また、貼付けブロック5に固定
した試験片6を研磨する方式であるため、クラック断面
層9の長さLが大きくなるように角度を小さくすると、
加工初期から試験片6にかかる圧力分布が場所によって
変動し易く、深さ方向への信頼性が乏しくなる。その結
果、形成可能なクラック断面層9の長さLに制約が加わ
り、クラック層3を詳細に観察できる断面層が得られな
い。本発明は、このような問題を解消すべく案出された
ものであり、ウェーハの直径方向に延び、深さが連続的
に変化する加工溝をつけることにより、クラック層に導
入される加工歪み,クラック等の欠陥を容易に且つ高精
度に検出できる評価用半導体ウェーハを得ることを目的
とする。
In the conventional angle polishing method, cracks are detected by microscopic observation of the cross section 9 of the crack layer. The depth from the wafer surface at the position where the crack was detected cannot be measured by comparison with the test piece surface 10 because the entire area of the edge of the test piece 6 becomes a crack layer section 9 inclined as shown in FIG. , Based on the angle component. However, it is not possible to know whether or not the test piece 6 is processed at the exactly set angle, and the accuracy and reliability of the measured depth are lacking. In addition, since the test piece 6 fixed to the attachment block 5 is polished, if the angle is reduced so that the length L of the crack section layer 9 increases,
The pressure distribution applied to the test piece 6 from the initial stage of processing tends to fluctuate from place to place, and the reliability in the depth direction becomes poor. As a result, the length L of the crack section layer 9 that can be formed is restricted, and a section layer in which the crack layer 3 can be observed in detail cannot be obtained. The present invention has been devised in order to solve such a problem. By forming a processing groove extending in the diameter direction of the wafer and having a continuously changing depth, the processing distortion introduced into the crack layer is provided. It is an object of the present invention to obtain an evaluation semiconductor wafer capable of easily and accurately detecting defects such as cracks and the like.

【0005】[0005]

【課題を解決するための手段】本発明の評価用半導体ウ
ェーハの作成方法は、その目的を達成するため、試験片
としてのウェーハをステージ上に固定し、ウェーハ表面
に対向させた研磨工具を、一方向に移動するステージの
移動距離に比例した距離で降下させ、ウェーハ直径方向
に延び、連続的に深くなる研磨溝をウェーハ表面に形成
し、研磨溝の両側のウェーハ表面を未研磨のまま残すこ
とを特徴とする。また、評価用半導体ウェーハの作成装
置は、ウェーハを固定配置する移動可能なステージと、
ウェーハ表面に対向配置された昇降可能な研磨工具と、
一方向に移動するステージの移動距離に比例して研磨工
具を降下させる制御信号を研磨工具の昇降機構に出力す
る制御機構とを備え、研磨工具の外径がウェーハの表面
積よりも小さくなっている。
In order to achieve the object, a method for preparing a semiconductor wafer for evaluation according to the present invention comprises: a polishing tool having a wafer as a test piece fixed on a stage and facing a wafer surface; Lowering the wafer by a distance proportional to the moving distance of the stage moving in one direction, forming polishing grooves extending in the wafer diameter direction and continuously deepening on the wafer surface, leaving the wafer surface on both sides of the polishing grooves unpolished It is characterized by the following. In addition, the apparatus for producing a semiconductor wafer for evaluation includes a movable stage on which the wafer is fixedly arranged,
A vertically movable polishing tool arranged opposite to the wafer surface,
A control mechanism for outputting a control signal for lowering the polishing tool in proportion to the moving distance of the stage moving in one direction to the lifting mechanism of the polishing tool, wherein the outer diameter of the polishing tool is smaller than the surface area of the wafer. .

【0006】[0006]

【実施の形態】本発明に従った評価用半導体ウェーハ作
成装置は、図4に示すように移動可能なステージ11及
び昇降可能な研磨工具12を備えている。研磨工具12
は、試験片6であるウェーハの表面積に比較して十分に
小さな径をもっており、下端に研磨パッド16が取り付
けられている。ステージ11の移動方向に沿って複数の
位置センサ13が配列されており、位置センサ13で検
出された信号が制御機構14に入力される。制御機構1
4では、ステージ11の移動位置に応じて研磨工具12
の高さを演算し、制御信号sをステップモータ等を備え
た昇降装置15に出力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An evaluation semiconductor wafer preparing apparatus according to the present invention includes a movable stage 11 and a vertically movable polishing tool 12, as shown in FIG. Polishing tool 12
Has a diameter sufficiently smaller than the surface area of the wafer as the test piece 6, and has a polishing pad 16 attached to the lower end. A plurality of position sensors 13 are arranged along the moving direction of the stage 11, and a signal detected by the position sensor 13 is input to the control mechanism 14. Control mechanism 1
In step 4, the polishing tool 12
Is calculated, and a control signal s is output to the elevating device 15 provided with a step motor or the like.

【0007】研磨工具12の高さは、ステージ11の移
動量に比例して調節され、研磨パッド16により連続的
に深くなる研磨溝17が試験片6の表面に形成される。
研磨工具12に比較して試験片6の表面積が十分に大き
いため、研磨溝17は、図5に示すように直径方向に長
くなる。また、研磨溝17の両側は、研磨工具17によ
る加工を受けないため、未研磨の初期表面18のままで
ある。このようにして研磨溝17を形成するとき、従来
の角度研磨による場合と比較して十分に露出したクラッ
ク断面層9の長さを大きくすることができる。また、図
6に示すようにクラック層3と健全な結晶層1との境界
が大きな幅でクラック断面層9に露呈するため、クラッ
ク,加工歪み等の欠陥の分布及び量を正確に検出でき
る。しかも、クラック断面層9の側部に初期表面18が
存在するので、欠陥部が検出された箇所の深さを直接的
に測定することが可能となる。得られた測定結果は、ス
ライシング工程にフィードバックされ、加工条件の調整
に使用される。また、後続するラッピング工程の条件設
定にも利用される。同様にラッピング,研削等の加工が
施されたウェーハについても、クラック,加工歪み等の
欠陥部測定用のサンプルが作成される。
The height of the polishing tool 12 is adjusted in proportion to the amount of movement of the stage 11, and a polishing groove 17 that is continuously deepened by the polishing pad 16 is formed on the surface of the test piece 6.
Since the surface area of the test piece 6 is sufficiently larger than that of the polishing tool 12, the polishing groove 17 becomes longer in the diameter direction as shown in FIG. Further, since both sides of the polishing groove 17 are not processed by the polishing tool 17, the unpolished initial surface 18 remains. When the polishing grooves 17 are formed in this manner, the length of the crack section layer 9 that is sufficiently exposed can be increased as compared with the case of the conventional angle polishing. In addition, as shown in FIG. 6, since the boundary between the crack layer 3 and the healthy crystal layer 1 is exposed to the crack cross-section layer 9 with a large width, the distribution and amount of defects such as cracks and processing distortion can be accurately detected. In addition, since the initial surface 18 is present on the side of the crack section layer 9, it is possible to directly measure the depth of the portion where the defect is detected. The obtained measurement result is fed back to the slicing step and used for adjusting the processing conditions. It is also used for setting conditions for the subsequent lapping process. Similarly, a sample for measuring a defective portion such as a crack or a processing distortion is created for a wafer subjected to processing such as lapping and grinding.

【0008】[0008]

【実施例】インゴットからスライスされた直径200m
m,平均厚み1mmのウェーハを試験片6に使用した。
研磨工具12には、不織布製の研磨パッド16を装着し
た外径20mmの研磨工具を使用した。試験片6を固定
配置したステージ11を1mm/分の速度で一方向に移
動させた。ステージ11の移動中、研磨工具12を1μ
m/分の速度で降下させながら500rpmで回転さ
せ、試験片6に300N/mm2 の押圧力で押し付け
た。研磨を40分間継続した後、研磨工具12を上昇さ
せた。研磨された試験片6の表面を観察したところ、直
径方向に延びた長さ40mmの研磨溝17が形成されて
いた。研磨溝17は、幅が20mmで、始端で試験片6
の初期表面18に連なり、終端では40μmの深さであ
った。また、研磨溝17の両側は、未研磨の初期表面1
8であった。
[Example] 200m in diameter sliced from an ingot
m, a wafer having an average thickness of 1 mm was used for the test piece 6.
As the polishing tool 12, a polishing tool having an outer diameter of 20 mm to which a polishing pad 16 made of nonwoven fabric was attached was used. The stage 11 on which the test piece 6 was fixedly arranged was moved in one direction at a speed of 1 mm / min. While the stage 11 is moving, the polishing tool 12
The sample was rotated at 500 rpm while being lowered at a speed of m / min, and pressed against the test piece 6 with a pressing force of 300 N / mm 2 . After polishing was continued for 40 minutes, the polishing tool 12 was raised. Observation of the polished surface of the test piece 6 revealed that a polishing groove 17 having a length of 40 mm extending in the diameter direction was formed. The polishing groove 17 has a width of 20 mm and has a test piece 6 at the beginning.
At the end and 40 μm deep at the end. Also, both sides of the polishing groove 17 are the unpolished initial surface 1
It was 8.

【0009】研磨溝17に露呈したクラック層断面9を
観察したところ、始端から20mmの位置までは多量の
クラックが検出され、徐々にクラックが少なくなり、始
端から30mm離れるとクラックが検出されなくなっ
た。始端から20mm及び30mmの位置は、両側の初
期表面18と比較することにより、それぞれ20μm及
び30μmの深さに相当することが判った。このように
クラック発生量や欠陥部8の深さを精度良く測定できる
ため、スライシングやポリッシングの条件調整に必要な
高精度の情報が得られる。
Observation of the crack layer cross section 9 exposed in the polishing groove 17 revealed that a large number of cracks were detected up to a position 20 mm from the start end, the cracks gradually decreased, and no cracks were detected 30 mm away from the start end. . The positions 20 mm and 30 mm from the starting end were found to correspond to a depth of 20 μm and 30 μm, respectively, by comparison with the initial surfaces 18 on both sides. As described above, since the amount of crack generation and the depth of the defective portion 8 can be measured with high accuracy, highly accurate information necessary for adjusting the slicing and polishing conditions can be obtained.

【0010】[0010]

【発明の効果】以上に説明したように、本発明に従って
作成した評化用半導体ウェーハは、欠陥部検出用に形成
した研磨溝が連続して深くなる傾斜面になっている。そ
のため、角度研磨で作成した従来の評化用半導体ウェー
ハに比較して、欠陥部が格段に精度良く検出され、初期
表面と比較することにより欠陥部の深さも容易に且つ正
確に測定できる。
As described above, the evaluation semiconductor wafer prepared according to the present invention has an inclined surface in which the polishing grooves formed for detecting a defective portion are continuously deepened. For this reason, a defective portion is detected with much higher accuracy than a conventional evaluation semiconductor wafer prepared by angle polishing, and the depth of the defective portion can be easily and accurately measured by comparing with the initial surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 スライシングでクラックが導入された表面層
をもつウェーハの断面
FIG. 1 is a cross section of a wafer having a surface layer in which cracks have been introduced by slicing.

【図2】 従来の角度研磨による評価用半導体ウェーハ
の作成
FIG. 2 Preparation of a semiconductor wafer for evaluation by conventional angle polishing

【図3】 角度研磨により形成された傾斜のあるクラッ
ク層断面
FIG. 3 is a sectional view of a crack layer having an inclination formed by angle polishing.

【図4】 本発明に従った評価用半導体ウェーハの作成FIG. 4 is a view showing the preparation of an evaluation semiconductor wafer according to the present invention.

【図5】 直径方向に延びる研磨溝が形成された評価用
半導体ウェーハ
FIG. 5 is a semiconductor wafer for evaluation on which polishing grooves extending in the diameter direction are formed.

【図6】 研磨溝が形成された評価用半導体ウェーハの
断面
FIG. 6 is a cross section of a semiconductor wafer for evaluation in which a polishing groove is formed.

【符号の説明】[Explanation of symbols]

1:完全結晶シリコン 2:弾性変形層 3:クラ
ック層 4:塑性流動層 5:貼付けブロック
6:試験片(ウェーハ) 7:ガイドリング 8:研磨盤 9:露呈したクラック層断面 10:
試験片表面 11:ステージ 12:研磨工具
13:位置センサ 14:制御機構 15::昇降
機構 16:研磨パッド 17:研磨溝 18:
初期表面 θ:傾斜角 D:クラック層の厚み L:露呈した
クラック層断面の長さ
1: perfect crystalline silicon 2: elastic deformation layer 3: crack layer 4: plastic fluidized bed 5: sticking block
6: Test piece (wafer) 7: Guide ring 8: Polishing board 9: Cross section of exposed crack layer 10:
Specimen surface 11: Stage 12: Polishing tool
13: Position sensor 14: Control mechanism 15 :: Elevating mechanism 16: Polishing pad 17: Polishing groove 18:
Initial surface θ: inclination angle D: crack layer thickness L: length of exposed crack layer cross section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試験片としてのウェーハをステージ上に
固定し、ウェーハ表面に対向させた研磨工具を、一方向
に移動するステージの移動距離に比例した距離で降下さ
せ、ウェーハ直径方向に延び、連続的に深くなる研磨溝
をウェーハ表面に形成し、研磨溝の両側のウェーハ表面
を未研磨のまま残す評価用半導体ウェーハの作成方法。
1. A wafer as a test piece is fixed on a stage, a polishing tool opposed to a wafer surface is lowered by a distance proportional to a moving distance of a stage moving in one direction, and extends in a wafer diameter direction. A method for producing a semiconductor wafer for evaluation, in which a polishing groove that becomes continuously deep is formed on a wafer surface, and the wafer surface on both sides of the polishing groove is left unpolished.
【請求項2】 ウェーハを固定配置する移動可能なステ
ージと、ウェーハ表面に対向配置された昇降可能な研磨
工具と、一方向に移動するステージの移動距離に比例し
て研磨工具を降下させる制御信号を研磨工具の昇降機構
に出力する制御機構とを備え、研磨工具の外径がウェー
ハの表面積よりも小さい評価用半導体ウェーハの作成装
置。
And a control signal for lowering the polishing tool in proportion to the moving distance of the stage moving in one direction. And a control mechanism for outputting the polishing tool to a lifting / lowering mechanism of the polishing tool, wherein the polishing tool has an outer diameter smaller than the surface area of the wafer.
JP6092197A 1997-03-14 1997-03-14 Method and equipment for manufacturing semiconductor wafer for evaluation Pending JPH10256332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092197A JPH10256332A (en) 1997-03-14 1997-03-14 Method and equipment for manufacturing semiconductor wafer for evaluation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092197A JPH10256332A (en) 1997-03-14 1997-03-14 Method and equipment for manufacturing semiconductor wafer for evaluation

Publications (1)

Publication Number Publication Date
JPH10256332A true JPH10256332A (en) 1998-09-25

Family

ID=13156345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092197A Pending JPH10256332A (en) 1997-03-14 1997-03-14 Method and equipment for manufacturing semiconductor wafer for evaluation

Country Status (1)

Country Link
JP (1) JPH10256332A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247854B1 (en) * 2011-09-09 2013-03-26 주식회사 엘지실트론 Control system of wafer polishing apparatus
KR101264933B1 (en) * 2005-09-29 2013-05-15 오끼 덴끼 고오교 가부시끼가이샤 Method of manufacturing semiconductor device
JP2014530346A (en) * 2011-09-12 2014-11-17 エフ・イ−・アイ・カンパニー Viewing angle mill
JP2017034025A (en) * 2015-07-30 2017-02-09 濱田重工株式会社 Processing damage evaluation method of semiconductor wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264933B1 (en) * 2005-09-29 2013-05-15 오끼 덴끼 고오교 가부시끼가이샤 Method of manufacturing semiconductor device
KR101247854B1 (en) * 2011-09-09 2013-03-26 주식회사 엘지실트론 Control system of wafer polishing apparatus
JP2014530346A (en) * 2011-09-12 2014-11-17 エフ・イ−・アイ・カンパニー Viewing angle mill
US9941096B2 (en) 2011-09-12 2018-04-10 Fei Company Glancing angle mill
JP2017034025A (en) * 2015-07-30 2017-02-09 濱田重工株式会社 Processing damage evaluation method of semiconductor wafer

Similar Documents

Publication Publication Date Title
US6040244A (en) Polishing pad control method and apparatus
TW556282B (en) CMP process involving frequency analysis-based monitoring
JP2582030B2 (en) Method for manufacturing semiconductor wafer
US5993292A (en) Production of notchless wafer
JP5331745B2 (en) Method for manufacturing a semiconductor wafer
EP1779969B1 (en) Method of grinding the back surface of a semiconductor wafer and semiconductor wafer grinding apparatus
US5875770A (en) Method of cutting semiconductor ingots and apparatus for cutting thereof
EP1868231A1 (en) Bonded wafer manufacturing method, bonded wafer, and plane polishing apparatus
JPH10256332A (en) Method and equipment for manufacturing semiconductor wafer for evaluation
JP3884163B2 (en) Semiconductor substrate surface shape measuring apparatus and semiconductor substrate surface shape determining method
CN112289700A (en) Silicon wafer detection method
KR101247065B1 (en) Double side wafer grinder and methods for assessing workpiece nanotopology
JP5219569B2 (en) Processing quality judgment method and wafer grinding apparatus in wafer grinding apparatus
JP3780841B2 (en) Orientation flat machining method and orientation flat machining apparatus for ingot
JPH06151586A (en) Method and device for dicing
JPH10256333A (en) Manufacture of evaluating semiconductor wafer
KR102476390B1 (en) 12-inch semiconductor wafer TTV measurement vacuum stage manufacturing method
JP6373233B2 (en) Semiconductor wafer processing damage evaluation method
JP2849908B2 (en) Method for manufacturing semiconductor wafer
JP2002538447A (en) Method and system for measuring silicon wafer relief
US6379219B1 (en) Chemical mechanical polishing machine and chemical mechanical polishing method
JPH0917759A (en) Method and apparatus for chamfering semiconuctor wafer
KR20080102877A (en) Method for manufacturing a test sample for transmission electron microscope
JPH09239639A (en) Ductile mode machining device using ae
JPH09246130A (en) Semiconductor wafer, manufacture thereof, and manufacture of semiconductor device using it