JPH10255825A - Solid electrolytic thin film and its manufacture - Google Patents

Solid electrolytic thin film and its manufacture

Info

Publication number
JPH10255825A
JPH10255825A JP9052676A JP5267697A JPH10255825A JP H10255825 A JPH10255825 A JP H10255825A JP 9052676 A JP9052676 A JP 9052676A JP 5267697 A JP5267697 A JP 5267697A JP H10255825 A JPH10255825 A JP H10255825A
Authority
JP
Japan
Prior art keywords
thin film
oxide
solid electrolyte
porous electrode
electrolyte material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9052676A
Other languages
Japanese (ja)
Inventor
Kei Ogasawara
慶 小笠原
Yuichi Hishinuma
祐一 菱沼
Etsuo Ogino
悦男 荻野
Hidemi Nakai
日出海 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ITA GLASS TECHNO RES KK
Nippon Sheet Glass Co Ltd
Tokyo Gas Co Ltd
Original Assignee
NIPPON ITA GLASS TECHNO RES KK
Nippon Sheet Glass Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ITA GLASS TECHNO RES KK, Nippon Sheet Glass Co Ltd, Tokyo Gas Co Ltd filed Critical NIPPON ITA GLASS TECHNO RES KK
Priority to JP9052676A priority Critical patent/JPH10255825A/en
Publication of JPH10255825A publication Critical patent/JPH10255825A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Physical Vapour Deposition (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine solid electrolytic thin film which has high crystallization property, thermal stability and high conductivity of oxygen ion, and a manufacturing method in which it can be produced in a short time. SOLUTION: In this method, electrolyte material 8 is heated and evaporated by irradiating with high density arc discharge plasma current 13, at the same time, the evaporated particles are made plasmatic, and an electrolytic thin film is formed by supplying the evaporated particles which are made plasmatic onto a porous electrode base plate 12 for a flat and thin film fuel cell. At this time, the electrolyte material 8 contains 6-12wt.% of metal yttrium in zirconium monoxide (ZrO) with electric conductivity under the room temperature, and oxide thin film, which is composed of 5-14mol% of yttrium oxide and 86-95mol% of zirconium oxide, is formed on the porous electrode base plate 12 under an oxygen atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に組込ま
れる固体電解質薄膜とその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a solid electrolyte thin film incorporated in a fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】固体電解質薄膜を組込んだ平板型固体電
解質型燃料電池としては、図5に示すように、固体電解
質100の両側に燃料極101と空気極102が取付け
られて一つのユニットを構成し、セパレータ103を介
してユニットが複数直列接続されたものが知られてい
る。固体電解質材料、燃料極材料、空気極材料、セパレ
ータ材料には、夫々酸化イットリウムを固溶した酸化ジ
ルコニウム、ニッケルと酸化ジルコニウムのサーメッ
ト、酸化ストロンチウムを固溶したランタンマンガナイ
ト、酸化ストロンチウムや酸化マグネシウムを固溶した
ランタンクロマイトが用いられる。固体電解質100と
セパレータ103の材料には、緻密であることが要求さ
れる。
2. Description of the Related Art As shown in FIG. 5, a flat solid electrolyte fuel cell incorporating a solid electrolyte thin film has a fuel electrode 101 and an air electrode 102 attached to both sides of a solid electrolyte 100 to form one unit. A configuration in which a plurality of units are connected in series via a separator 103 is known. The solid electrolyte material, the fuel electrode material, the air electrode material, and the separator material include zirconium oxide in which yttrium oxide is dissolved, cermet of nickel and zirconium oxide, lanthanum manganite in which strontium oxide is dissolved, strontium oxide, and magnesium oxide, respectively. Lanthanum chromite in solid solution is used. The materials of the solid electrolyte 100 and the separator 103 are required to be dense.

【0003】平板型固体電解質型燃料電池の発電効率
は、構成材料の電流経路に沿った電気抵抗、即ち厚さ方
向の電気抵抗が小さいほど高くなる。構成材料のうち
で、最も電気抵抗率の高いのは、固体電解質材料である
から、固体電解質100は機械的強度、緻密性を確保し
た上で、できるだけ薄く作製されることが要求される。
[0003] The power generation efficiency of a flat solid electrolyte fuel cell increases as the electrical resistance along the current path of the constituent material, that is, the electrical resistance in the thickness direction decreases. Among the constituent materials, the one having the highest electric resistivity is a solid electrolyte material. Therefore, it is required that the solid electrolyte 100 be manufactured as thin as possible while ensuring mechanical strength and denseness.

【0004】これらの要求を満たす従来技術としては、
例えば多孔質電極基板上に固体電解質膜を作製する電気
化学蒸着法が知られている。この方法については、例え
ば高橋武彦著「燃料電池(1984)」に記載されてい
る。
Conventional technologies satisfying these requirements include:
For example, an electrochemical deposition method for producing a solid electrolyte membrane on a porous electrode substrate is known. This method is described in, for example, "Fuel Cell (1984)" by Takehiko Takahashi.

【0005】[0005]

【発明が解決しようとする課題】しかし、電気化学蒸着
法は、高価な金属塩化物を原料として用いる、複雑な温
度管理を必要とする、微妙な圧力管理を必要とする、大
面積の固体電解質膜を作製できない、など多くの問題点
を有している。
However, the electrochemical vapor deposition method uses an expensive metal chloride as a raw material, requires a complicated temperature control, requires a delicate pressure control, and has a large area solid electrolyte. There are many problems such as the inability to form a film.

【0006】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、緻密で結晶性が高く熱的に安定で酸素イオン伝
導度の高い固体電解質薄膜と、その固体電解質薄膜の作
製が短時間で可能な製造方法を提供しようとするもので
ある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a dense, highly crystalline, thermally stable, and high oxygen ion conductive material. An object of the present invention is to provide a solid electrolyte thin film and a manufacturing method capable of manufacturing the solid electrolyte thin film in a short time.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく請
求項1の固体電解質薄膜は、薄膜の組成が酸化イットリ
ウム(Y23)5〜14mol%と酸化ジルコニウム
(ZrO2)86〜95mol%の固溶体である。
In order to solve the above-mentioned problems, the solid electrolyte thin film of the first aspect has a composition of 5 to 14 mol% of yttrium oxide (Y 2 O 3 ) and 86 to 95 mol of zirconium oxide (ZrO 2 ). % Solid solution.

【0008】請求項2の固体電解質薄膜の製造方法は、
高密度アーク放電プラズマ流を照射して電解質材料を加
熱・蒸発させ、同時に蒸発粒子をプラズマ化し、このプ
ラズマ化した蒸発粒子を平板薄膜燃料電池用の多孔質状
電極基板上に供給して電解質薄膜を形成する方法におい
て、前記電解質材料が室温で電気伝導性を有する一酸化
ジルコニウム(ZrO)に6〜12wt%の金属イット
リウム(Y)を含有し、酸素雰囲気下で前記多孔質状電
極基板上に組成が酸化イットリウム(Y23)5〜14
mol%と酸化ジルコニウム(ZrO2)86〜95m
ol%である酸化物薄膜を形成するものである。
[0008] The method for producing a solid electrolyte thin film according to claim 2 comprises:
The electrolyte material is heated and evaporated by irradiating a high-density arc discharge plasma flow, and at the same time, the evaporated particles are turned into plasma. Wherein the electrolyte material contains 6 to 12 wt% of metal yttrium (Y) in zirconium monoxide (ZrO) having electrical conductivity at room temperature, and is formed on the porous electrode substrate in an oxygen atmosphere. composition of yttrium oxide (Y 2 O 3) 5~14
mol% and zirconium oxide (ZrO 2 ) 86-95m
ol% of the oxide thin film.

【0009】請求項3の固体電解質薄膜の製造方法は、
請求項2の固体電解質薄膜の製造方法において、前記ア
ーク放電プラズマ流がArガスとO2ガスの混合ガスか
ら成るプラズマであって、その酸素分圧が0.35mT
orr〜0.85mTorrとした。
[0009] The method for producing a solid electrolyte thin film according to claim 3 comprises:
3. The method for producing a solid electrolyte thin film according to claim 2, wherein the arc discharge plasma flow is a plasma composed of a mixed gas of Ar gas and O 2 gas, and has an oxygen partial pressure of 0.35 mT.
orr to 0.85 mTorr.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明の方法
を実施する成膜装置の概略構成図、図2は本発明の方法
により石英ガラス基板上に形成された固体電解質薄膜の
断面から観察した走査電子顕微鏡写真、図3は図2に示
す電解質薄膜のX線回折測定結果を示すグラフ、図4は
本発明の方法により多孔質電極基板上に形成された固体
電解質薄膜の粒子構造を示す走査電子顕微鏡写真であ
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a schematic configuration diagram of a film forming apparatus for performing the method of the present invention, FIG. 2 is a scanning electron micrograph observed from a cross section of a solid electrolyte thin film formed on a quartz glass substrate by the method of the present invention, FIG. 3 is a graph showing the results of X-ray diffraction measurement of the electrolyte thin film shown in FIG. 2, and FIG. 4 is a scanning electron micrograph showing the particle structure of the solid electrolyte thin film formed on the porous electrode substrate by the method of the present invention. .

【0011】成膜装置は、図1に示すように、真空容器
1と、真空容器1の内部に設置された坩堝2及び永久磁
石3と、真空容器1の側面に設置されたプラズマ発生陰
極4、中間電極5及び空芯コイル6などを備えている。
As shown in FIG. 1, a film forming apparatus includes a vacuum vessel 1, a crucible 2 and a permanent magnet 3 installed inside the vacuum vessel 1, and a plasma generating cathode 4 installed on the side of the vacuum vessel 1. , An intermediate electrode 5 and an air-core coil 6.

【0012】真空容器1の内部は、真空排気ポンプ(不
図示)により排気口7から真空排気される。坩堝2は放
電陽極を兼ねており、蒸発させるための材料8が装填さ
れる。坩堝2の直下には水冷機構を具備した永久磁石3
が配置され、これにより垂直方向の磁場BVが形成され
る。
The inside of the vacuum vessel 1 is evacuated from an exhaust port 7 by a vacuum exhaust pump (not shown). The crucible 2 also serves as a discharge anode, and is loaded with a material 8 for evaporation. Immediately below the crucible 2, a permanent magnet 3 equipped with a water cooling mechanism
Are arranged, whereby a vertical magnetic field B V is formed.

【0013】真空容器1の側面に設置されたプラズマ発
生陰極4はTaパイプとLaB6の複合陰極からなり、
プラズマ発生陰極4には放電ガスを導入するための放電
ガス導入口9が設けられている。また、中間電極5はプ
ラズマを真空容器1内部に引き出すためのもので、空芯
コイル6は水平方向の磁場BHを発生させるためのもの
である。
The plasma generating cathode 4 installed on the side of the vacuum vessel 1 is composed of a Ta pipe and a LaB 6 composite cathode.
The plasma generating cathode 4 is provided with a discharge gas inlet 9 for introducing a discharge gas. The intermediate electrode 5 is for drawing plasma into the vacuum vessel 1, and the air-core coil 6 is for generating a horizontal magnetic field BH .

【0014】プラズマ発生陰極4と放電陽極を兼ねた坩
堝2は、低電圧・大電流の直流電源10によって電気的
に接続されている。成膜する際に真空容器1内部に導入
する酸素ガスは、真空容器1の側面に設けられたガス導
入口11から導入される。また、薄膜を形成する多孔質
状電極基板12は、坩堝2の直上に配置される。
The plasma generating cathode 4 and the crucible 2 serving also as a discharge anode are electrically connected by a low-voltage / high-current DC power supply 10. Oxygen gas to be introduced into the inside of the vacuum vessel 1 when forming a film is introduced from a gas inlet 11 provided on a side surface of the vacuum vessel 1. Further, the porous electrode substrate 12 for forming a thin film is disposed immediately above the crucible 2.

【0015】成膜装置の作用について説明する。真空容
器1の側面に設けたプラズマ発生陰極4に放電ガス導入
口9から放電ガスを導入した後、放電陽極を兼ねた坩堝
2内の電解質材料8との間に直流電源10により直流電
力を印加する。すると、大電流直流アーク放電プラズマ
流13が電解質材料8に照射され、電解質材料8の加熱
・蒸発・プラズマ化が起こる。この時、金属イットリウ
ム(Y)を含んだ一酸化ジルコニウム(ZrO)は室温
での電気伝導性があるために、安定した放電の持続を行
うことができる。
The operation of the film forming apparatus will be described. After a discharge gas is introduced from a discharge gas inlet 9 into a plasma generating cathode 4 provided on a side surface of the vacuum vessel 1, a DC power is applied between the electrolyte material 8 in a crucible 2 serving also as a discharge anode by a DC power supply 10. I do. Then, the high-current DC arc discharge plasma flow 13 is irradiated on the electrolyte material 8, and the electrolyte material 8 is heated, evaporated, and turned into plasma. At this time, since zirconium monoxide (ZrO) containing yttrium metal (Y) has electrical conductivity at room temperature, stable discharge can be maintained.

【0016】真空容器1内部に酸素ガスをガス導入口1
1から導入し、高密度プラズマ中で活性化された酸素雰
囲気下で成膜を行うことによって多孔質状電極基板12
表面に緻密な固体電解質薄膜を形成することができる。
更に、電解質材料8に照射されるプラズマ流13が15
0A以上の大電流プラズマであるために、電解質材料8
の蒸発速度を高めることが可能となり短時間で多孔質状
電極基板12に固体電解質薄膜を形成することができ
る。
Oxygen gas is introduced into the vacuum vessel 1 through the gas inlet 1.
1 to form a porous electrode substrate 12 by performing film formation in an oxygen atmosphere activated in high-density plasma.
A dense solid electrolyte thin film can be formed on the surface.
Further, the plasma flow 13 irradiated to the electrolyte material 8 is 15
Because of the high current plasma of 0 A or more, the electrolyte material 8
Thus, the evaporation rate of the solid electrolyte thin film can be formed on the porous electrode substrate 12 in a short time.

【0017】(実施例1)真空容器1内部を真空排気ポ
ンプによって5×10-6Torr以下の圧力に排気した
後、放電ガス導入口9から放電ガスとしてArガスを3
0sccm導入し、プラズマ発生陰極4と坩堝2との間
に電流が200Aの直流電力を供給する。坩堝2内に
は、蒸発させる電解質材料8として金属イットリウム
(Y)が一酸化ジルコニウム(ZrO)に対してある割
合で含有する材料を装填している。
(Embodiment 1) After the inside of the vacuum vessel 1 is evacuated to a pressure of 5 × 10 −6 Torr or less by a vacuum exhaust pump, Ar gas as a discharge gas is discharged through a discharge gas inlet 9.
0 sccm is introduced, and a DC power of 200 A is supplied between the plasma generating cathode 4 and the crucible 2. The crucible 2 is charged with a material containing metal yttrium (Y) at a certain ratio to zirconium monoxide (ZrO) as an electrolyte material 8 to be evaporated.

【0018】プラズマ発生陰極4によって生成したプラ
ズマ流13を中間電極5と空芯コイル6によって真空容
器1内部に導いた後、永久磁石3で形成される磁場BV
によって電解質材料8の中心に照射して、電解質材料8
の加熱・蒸発を行い、ガス導入口11から導入した約2
00sccmの酸素ガスと蒸発粒子とを反応させて厚み
1mmの石英基板12上に約15分間の薄膜形成を実施
した。
After a plasma flow 13 generated by the plasma generating cathode 4 is guided into the vacuum vessel 1 by the intermediate electrode 5 and the air-core coil 6, a magnetic field B V formed by the permanent magnet 3
Irradiates the center of the electrolyte material 8 with the
Is heated and evaporated, and about 2
A thin film was formed on the quartz substrate 12 having a thickness of 1 mm for about 15 minutes by reacting the oxygen gas of 00 sccm with the evaporated particles.

【0019】酸素ガスを導入する前の真空容器1内部の
圧力は、真空排気速度とArガス流量によって決定さ
れ、この時の圧力は2.5×10-4Torrであった。
酸素ガスを導入した後の圧力、即ち成膜最中の圧力は、
7.5×10-4Torrであった。電解質材料8の組
成、即ち一酸化ジルコニウム(ZrO)に対する金属イ
ットリウム(Y)の割合のみを変え、その他の条件は一
定にして形成された薄膜の組成をICP分析(誘導結合
型プラズマ発光分光分析法)により同定した。
The pressure inside the vacuum vessel 1 before the introduction of the oxygen gas is determined by the evacuation speed and the flow rate of the Ar gas, and the pressure at this time was 2.5 × 10 −4 Torr.
The pressure after introducing oxygen gas, that is, the pressure during film formation,
It was 7.5 × 10 −4 Torr. The composition of the electrolyte material 8, that is, the ratio of the metal yttrium (Y) to the zirconium monoxide (ZrO) is changed, and the other conditions are kept constant, and the composition of the formed thin film is subjected to ICP analysis (inductively coupled plasma emission spectroscopy). ).

【0020】いずれの薄膜も透明で均一な薄膜であった
が、表1に示すように、蒸発する電解質材料8の組成
(Y/(ZrO+Y)[wt%])によって薄膜の組成
(YSZ膜中のY23濃度[mol%])は大きく異な
ることが判明した。
Each thin film was a transparent and uniform thin film. However, as shown in Table 1, the composition of the thin film (YSZ film) depends on the composition (Y / (ZrO + Y) [wt%]) of the evaporating electrolyte material 8. It has been found that the Y 2 O 3 concentration [mol%] of the above greatly differs.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果から、一酸化ジルコニウム(Z
rO)に対して金属イットリウム(Y)が6〜12wt
%の組成である電解質材料8を使用した場合に、固体電
解質材料としての使用に適当な酸化イットリウム(Y2
3)固溶濃度5〜14mol%の安定化ジルコニア
(YSZ)膜が形成できていると判断した。
From the results in Table 1, it can be seen that zirconium monoxide (Z
6 to 12 wt% of metal yttrium (Y) based on rO)
% Electrolyte material 8 is used, the yttrium oxide (Y 2) suitable for use as a solid electrolyte material is used.
It was determined that a stabilized zirconia (YSZ) film having an O 3 ) solid solution concentration of 5 to 14 mol% was formed.

【0023】(実施例2)一酸化ジルコニウム(Zr
O)に対して金属イットリウム(Y)が8wt%の組成
である電解質材料8を用い、酸素分圧を0.5mTor
rで約20分間、実施例1に記載した方法と同様の方法
で石英ガラス基板12上に固体電解質薄膜を形成した。
形成された薄膜は透明であり、膜厚計で測定した膜厚は
約6.1μmであった。
Example 2 Zirconium monoxide (Zr)
O), an electrolyte material 8 having a composition of 8 wt% of metal yttrium (Y) is used, and the oxygen partial pressure is set to 0.5 mTorr.
r, a solid electrolyte thin film was formed on the quartz glass substrate 12 by a method similar to that described in Example 1 for about 20 minutes.
The formed thin film was transparent, and the film thickness measured by a film thickness meter was about 6.1 μm.

【0024】この試料の断面を走査型電子顕微鏡で観察
し、膜の緻密性を評価した。また、X線回折装置によっ
て結晶性の評価を実施した。図2は薄膜の断面SEM像
である。得られた薄膜は、気孔の無い緻密な構造を有す
るものであった。図3は図2に示した薄膜のX線回折パ
ターンである。このX線回折パターンから、得られた薄
膜は安定化ジルコニア(YSZ)であることが明らかに
なった。
The cross section of this sample was observed with a scanning electron microscope, and the denseness of the film was evaluated. In addition, evaluation of crystallinity was performed using an X-ray diffractometer. FIG. 2 is a cross-sectional SEM image of the thin film. The obtained thin film had a dense structure without pores. FIG. 3 is an X-ray diffraction pattern of the thin film shown in FIG. The X-ray diffraction pattern revealed that the obtained thin film was stabilized zirconia (YSZ).

【0025】同様の方法で、酸素分圧が0.3mTor
rと0.9mTorrの条件で石英ガラス基板12上に
固体電解質薄膜を形成した。酸素分圧が0.3mTor
rの場合には、薄膜に強い光学吸収が観測され、更にX
線回折による結晶性を評価したところ、わずかに安定化
ジルコニア(YSZ)のX線回折パターンがみられるも
のの、結晶性の低い薄膜であることが明らかとなった。
In the same manner, when the oxygen partial pressure is 0.3 mTorr
A solid electrolyte thin film was formed on the quartz glass substrate 12 under the conditions of r and 0.9 mTorr. Oxygen partial pressure 0.3 mTorr
In the case of r, strong optical absorption is observed in the thin film.
Evaluation of the crystallinity by X-ray diffraction revealed that the X-ray diffraction pattern of stabilized zirconia (YSZ) was slightly observed, but the film was low in crystallinity.

【0026】酸素分圧が0.9mTorrの場合には、
透明な薄膜が得られるものの、成膜雰囲気に酸素が過剰
に供給されたために、蒸発した電解質材料8そのものが
酸化されてしまった結果、蒸発材料の電気伝導性の低下
が起こり放電の不安定性が発生した。この放電の不安定
性のために成膜速度は酸素分圧が0.5mTorrの場
合に比べて60%程度に低下してしまった。
When the oxygen partial pressure is 0.9 mTorr,
Although a transparent thin film is obtained, the evaporated electrolyte material 8 itself is oxidized due to excessive supply of oxygen to the film formation atmosphere. As a result, the electrical conductivity of the evaporated material is reduced and the instability of discharge is reduced. Occurred. Due to the instability of the discharge, the deposition rate was reduced to about 60% as compared with the case where the oxygen partial pressure was 0.5 mTorr.

【0027】このように一酸化ジルコニウム(ZrO)
に対して金属イットリウム(Y)が8wt%の組成であ
る電解質材料8を用いて酸素分圧を変えた場合の、薄膜
の透明性、結晶性、放電安定性及び膜厚について、まと
めたものを表2に示す。
Thus, zirconium monoxide (ZrO)
The following summarizes the transparency, crystallinity, discharge stability, and film thickness of the thin film when the oxygen partial pressure is changed using an electrolyte material 8 having a composition of 8 wt% metal yttrium (Y). It is shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】(実施例3)一酸化ジルコニウム(Zr
O)に対して金属イットリウム(Y)が8wt%の組成
である電解質材料8を用い、酸素分圧を0.5mTor
rとして、実施例1と同様の方法で、多孔質状電極基板
(Ni−YSZサーメット)12上に固体電解質薄膜を
約1時間の時間をかけて形成した。
Example 3 Zirconium monoxide (Zr)
O), an electrolyte material 8 having a composition of 8 wt% of metal yttrium (Y) is used, and the oxygen partial pressure is set to 0.5 mTorr.
As r, in the same manner as in Example 1, a solid electrolyte thin film was formed on the porous electrode substrate (Ni-YSZ cermet) 12 over a period of about 1 hour.

【0030】図4は走査型電子顕微鏡による得られた薄
膜の断面SEM写真である。この写真から、約20μm
の膜厚で緻密な固体電解質薄膜が形成されていることが
明らかとなった。更に、この薄膜は1000℃の加熱処
理を行っても多孔質状電極基板12からの剥離は見られ
ず、熱的にも安定であることが分かった。
FIG. 4 is a SEM photograph of a cross section of the thin film obtained by a scanning electron microscope. From this picture, about 20μm
It was clarified that a dense solid electrolyte thin film was formed at a film thickness of. Furthermore, even when this thin film was subjected to a heat treatment at 1000 ° C., no peeling from the porous electrode substrate 12 was observed, and it was found that the thin film was thermally stable.

【0031】[0031]

【発明の効果】以上に説明したように請求項1に係る固
体電解質薄膜によれば、薄膜の組成を酸化イットリウム
(Y23)5〜14mol%と酸化ジルコニウム(Zr
2)86〜95mol%にすることにより、多孔質状
電極基板上に緻密に形成され、結晶性が高く、熱的に安
定で、酸素イオン伝導度が高い。
As described above, according to the solid electrolyte thin film according to the first aspect, the composition of the thin film is 5 to 14 mol% of yttrium oxide (Y 2 O 3 ) and zirconium oxide (Zr
By making O 2 ) 86 to 95 mol%, it is densely formed on the porous electrode substrate, has high crystallinity, is thermally stable, and has high oxygen ion conductivity.

【0032】また、請求項2又は3に係る固体電解質薄
膜の製造方法によれば、多孔質状電極基板上に緻密で、
結晶性が高く、熱的に安定で、酸素イオン伝導度の高い
酸化イットリウム(Y23)含有の二酸化ジルコニウム
(ZrO2)薄膜の作製が可能となる。
Further, according to the method for producing a solid electrolyte thin film according to claim 2 or 3,
Yttrium oxide (Y 2 O 3 ) -containing zirconium dioxide (ZrO 2 ) thin film having high crystallinity, being thermally stable, and having high oxygen ion conductivity can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施する成膜装置の概略構成図FIG. 1 is a schematic configuration diagram of a film forming apparatus that performs a method of the present invention.

【図2】本発明の方法により石英ガラス基板上に形成さ
れた固体電解質薄膜の断面から観察した走査電子顕微鏡
写真
FIG. 2 is a scanning electron micrograph observed from a cross section of a solid electrolyte thin film formed on a quartz glass substrate by the method of the present invention.

【図3】図2に示す電解質薄膜のX線回折測定結果を示
すグラフ
3 is a graph showing the results of X-ray diffraction measurement of the electrolyte thin film shown in FIG.

【図4】本発明の方法により多孔質電極基板上に形成さ
れた固体電解質薄膜の粒子構造を示す走査電子顕微鏡写
FIG. 4 is a scanning electron micrograph showing the particle structure of a solid electrolyte thin film formed on a porous electrode substrate according to the method of the present invention.

【図5】平板型固体電解質型燃料電池のセル構造を示す
FIG. 5 is a diagram showing a cell structure of a flat solid electrolyte fuel cell;

【符号の説明】[Explanation of symbols]

1…真空容器、2…坩堝、3…永久磁石、4…プラズマ
発生陰極、5…中間電極、6…空芯コイル、8…電解質
材料、9…放電ガス導入口、10…直流電源、12…多
孔質状電極基板、13…プラズマ流。
DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2 ... Crucible, 3 ... Permanent magnet, 4 ... Plasma generating cathode, 5 ... Intermediate electrode, 6 ... Air-core coil, 8 ... Electrolyte material, 9 ... Discharge gas inlet, 10 ... DC power supply, 12 ... Porous electrode substrate, 13 ... plasma flow.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菱沼 祐一 神奈川県横浜市金沢区釜利谷東6丁目36番 1号 (72)発明者 荻野 悦男 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 中井 日出海 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Hishinuma 6-36-1, Kamariya-Higashi, Kanazawa-ku, Yokohama, Kanagawa Prefecture (72) Inventor Etsuo Ogino 3-5-1, Doshumachi, Chuo-ku, Osaka, Japan Japan Inside Sheet Glass Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 薄膜の組成が酸化イットリウム(Y
23)5〜14mol%と酸化ジルコニウム(Zr
2)86〜95mol%の固溶体であることを特徴と
する固体電解質薄膜。
The composition of a thin film is yttrium oxide (Y
2 O 3 ) 5 to 14 mol% and zirconium oxide (Zr
O 2 ) A solid electrolyte thin film characterized by being a solid solution of 86 to 95 mol%.
【請求項2】 高密度アーク放電プラズマ流を照射して
電解質材料を加熱・蒸発させ、同時に蒸発粒子をプラズ
マ化し、このプラズマ化した蒸発粒子を平板薄膜燃料電
池用の多孔質状電極基板上に供給して電解質薄膜を形成
する方法において、前記電解質材料が室温で電気伝導性
を有する一酸化ジルコニウム(ZrO)に6〜12wt
%の金属イットリウム(Y)を含有し、酸素雰囲気下で
前記多孔質状電極基板上に組成が酸化イットリウム(Y
23)5〜14mol%と酸化ジルコニウム(Zr
2)86〜95mol%である酸化物薄膜を形成する
ことを特徴とする固体電解質薄膜の製造方法。
2. A high-density arc discharge plasma stream is irradiated to heat and evaporate an electrolyte material, and at the same time, evaporating particles are turned into plasma. The evaporating particles are turned on a porous electrode substrate for a thin film fuel cell. In the method of forming an electrolyte thin film by supplying, the electrolyte material may be added to zirconium monoxide (ZrO) having electrical conductivity at room temperature in a range of 6 to 12 wt.
% Of metal yttrium (Y), and the composition of yttrium oxide (Y) is formed on the porous electrode substrate in an oxygen atmosphere.
2 O 3 ) 5 to 14 mol% and zirconium oxide (Zr
A method for producing a solid electrolyte thin film, comprising forming an oxide thin film having O 2 ) of 86 to 95 mol%.
【請求項3】 前記アーク放電プラズマ流がArガスと
2ガスの混合ガスから成るプラズマであって、その酸
素分圧が0.35mTorr〜0.85mTorrであ
る請求項2記載の固体電解質薄膜の製造方法。
3. The solid electrolyte thin film according to claim 2, wherein the arc discharge plasma flow is a plasma composed of a mixed gas of Ar gas and O 2 gas, and has an oxygen partial pressure of 0.35 mTorr to 0.85 mTorr. Production method.
JP9052676A 1997-03-07 1997-03-07 Solid electrolytic thin film and its manufacture Pending JPH10255825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9052676A JPH10255825A (en) 1997-03-07 1997-03-07 Solid electrolytic thin film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9052676A JPH10255825A (en) 1997-03-07 1997-03-07 Solid electrolytic thin film and its manufacture

Publications (1)

Publication Number Publication Date
JPH10255825A true JPH10255825A (en) 1998-09-25

Family

ID=12921494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9052676A Pending JPH10255825A (en) 1997-03-07 1997-03-07 Solid electrolytic thin film and its manufacture

Country Status (1)

Country Link
JP (1) JPH10255825A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089024A1 (en) * 2000-05-16 2001-11-22 University College London Electrochemical methods and cells
WO2002019455A3 (en) * 2000-08-30 2003-06-05 Siemens Ag Method for producing a solid ceramic fuel cell
WO2009016932A1 (en) * 2007-08-02 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Oxide coating film, material coated with oxide coating film, and method for formation of oxide coating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089024A1 (en) * 2000-05-16 2001-11-22 University College London Electrochemical methods and cells
WO2002019455A3 (en) * 2000-08-30 2003-06-05 Siemens Ag Method for producing a solid ceramic fuel cell
US7141271B2 (en) 2000-08-30 2006-11-28 Siemens Power Generation, Inc. Method for producing a solid ceramic fuel cell
WO2009016932A1 (en) * 2007-08-02 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Oxide coating film, material coated with oxide coating film, and method for formation of oxide coating film
US8465852B2 (en) 2007-08-02 2013-06-18 Kobe Steel, Ltd. Oxide film, oxide film coated material and method for forming an oxide film

Similar Documents

Publication Publication Date Title
Pederson et al. Application of vacuum deposition methods to solid oxide fuel cells
JP5421101B2 (en) Method for producing a conductive layer
Solovyev et al. Application of PVD methods to solid oxide fuel cells
JPH10212570A (en) Method for forming tough metal, metallic oxide, and metal alloy on ion conductive polymer film
US5395704A (en) Solid-oxide fuel cells
Chasta et al. A review on materials, advantages, and challenges in thin film based solid oxide fuel cells
JP6600300B2 (en) Multi-layer arrangement for solid electrolyte
Cho et al. Properties of nanostructured undoped ZrO2 thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells
JP2001357859A (en) Separator for fuel cell
JPH1021932A (en) Solid electrolyte type fuel cell and its manufacture
KR20100062456A (en) Dense complex oxides films comprising conductive oxides and non-conductive oxides, method for preparing the same, and metallic interconnector using the same
Solovyev et al. Magnetron sputtered LSC-GDC composite cathode interlayer for intermediate-temperature solid oxide fuel cells
JP2008130514A (en) Deposition method of electrolyte membrane, and manufacturing method of fuel cell
JP4783080B2 (en) Proton conductive oxide, oxide proton conductive membrane, hydrogen permeable structure, and fuel cell using the same
JPH1021931A (en) Solid electrolyte type fuel cell
JPH10255825A (en) Solid electrolytic thin film and its manufacture
US10654034B2 (en) Method of preparing platinum-based catalyst and platinum-based catalyst
JP3645088B2 (en) Hydrogen permeable membrane and method for producing the same
JPH10294115A (en) Solid electrolytic thin film and its manufacture
JPH08293310A (en) Manufacture of solid electrolytic film
KR20140067193A (en) Method of manufacturing porous composite thin film and the porous composite thin film for electrode
Solovyev et al. Magnetron deposition of yttria-stabilised zirconia electrolyte for solid oxide fuel cells
Solov’ev et al. Magnetron formation of Ni/YSZ anodes of solid oxide fuel cells
JP5194410B2 (en) Solid oxide fuel cell
JP4994661B2 (en) Proton conductive membrane, method for producing the same, hydrogen permeable structure, and fuel cell