JPH10255791A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH10255791A
JPH10255791A JP9056011A JP5601197A JPH10255791A JP H10255791 A JPH10255791 A JP H10255791A JP 9056011 A JP9056011 A JP 9056011A JP 5601197 A JP5601197 A JP 5601197A JP H10255791 A JPH10255791 A JP H10255791A
Authority
JP
Japan
Prior art keywords
pitch
secondary battery
negative electrode
coke
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9056011A
Other languages
Japanese (ja)
Inventor
Hajime Yasuda
源 安田
Hisashi Tamai
久司 玉井
Kohei Okuyama
公平 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9056011A priority Critical patent/JPH10255791A/en
Publication of JPH10255791A publication Critical patent/JPH10255791A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide negative electrode material which has a high discharge capacity and a low cost, by using coke containing Si which can be obtained by heating a mixture of polymer containing petroleum or coal pitch and Si in a specific temperature range under inert atmosphere. SOLUTION: Negative electrode material is made by coke containing Si which can be obtained by applying heat treatment to a mixture of polysilane shown in a formula at 800-1500 deg.C under inert atmosphere. For another method, the negative electrode material is made by inactive coke which can be obtained by applying heat treatment to pitch containing Si obtainable by removing organic solvent at 800-1500 deg.C under-inert atmosphere after mixing petroleum or coak pitch dissolved in advance in organic solvent and polymer in the formula containing Si dissolved in advance in organic solvent. In the equation, R, R' is substituent of alkyl group or aryl group; R, R' is methyl group or phenyl radical is preferable for R'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
関するものである。より詳しくは、特に小型、軽量の電
子機器用として好適な、リチウム二次電池を初めとする
非水系二次電池に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous secondary battery. More specifically, the present invention relates to a non-aqueous secondary battery such as a lithium secondary battery, which is particularly suitable for small and lightweight electronic devices.

【0002】[0002]

【従来の技術】近年、電子機器等の小型軽量化、省電力
化及び環境保全の立場から、鉛蓄電池やニッカド電池に
替わるクリーンな非水系電池、特にリチウム二次電池が
注目され、実用化段階にまで到達した。しかし、負極に
リチウム金属を用いると、リチウム金属が充電時にデン
ドライト状に成長し、内部短絡を引き起こすという問題
があった。その対策として、リチウム金属原子を吸収・
放出することのできる材料の開発が盛んに行われ、その
中でもコークスを用いたものは低コスト・高容量という
点で有望視されている(特開昭62−90863号、特
開平1−221859号、特開昭63−121257号
公報)。一方、ポリシロキサンを加熱処理して得られ
た、Siを含有する炭素材料も充放電容量が高いという
点で有望視されている(特開平5−144474号、E
P0692833A1号)。
2. Description of the Related Art In recent years, from the standpoint of reducing the size and weight of electronic devices and the like, saving power and protecting the environment, clean non-aqueous batteries, especially lithium secondary batteries, replacing lead-acid batteries and nickel-cadmium batteries have attracted attention and have been put into practical use. Reached. However, when lithium metal is used for the negative electrode, there is a problem that the lithium metal grows in a dendrite shape during charging and causes an internal short circuit. As a countermeasure, lithium metal atoms are absorbed and
Materials that can be released have been actively developed, and among them, those using coke have been regarded as promising in terms of low cost and high capacity (Japanese Patent Application Laid-Open Nos. 62-90863 and 1-221859). And JP-A-63-121257). On the other hand, carbon materials containing Si obtained by heat treatment of polysiloxane are also considered promising in that they have high charge / discharge capacities (JP-A-5-144474, E.
P06922833A1).

【0003】[0003]

【発明が解決しようとする課題】しかし、石炭系または
石油系のコークスは、低コストであるが、放電容量がカ
ーボンの理論容量として提唱されている値(372mA
h/g)の約半分程度であり、更なる高容量化への改質
が望まれている。一方、ポリシロキサンを原料としたS
iを含有する炭素材料は放電容量が高いが、加熱収率が
低く高コストである問題点がある。
However, coal-based or petroleum-based coke is inexpensive, but its discharge capacity is a value proposed as the theoretical capacity of carbon (372 mA).
h / g), which is about half of the above, and reforming to further increase in capacity is desired. On the other hand, S
Although the carbon material containing i has a high discharge capacity, there is a problem that the heating yield is low and the cost is high.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決すべく種々検討を行い、本発明に到達した。すなわ
ち、本発明の要旨は、正極、負極および非水溶媒中に電
解質を溶解させた溶解液を備えてなる非水系二次電池に
おいて、石油系もしくは石炭系のピッチとSiを含有す
るポリマーの混合物を、不活性雰囲気中で800〜15
00℃の温度で加熱処理して得られたSi含有コークス
を負極材として用いることを特徴とする非水系二次電池
にある。
Means for Solving the Problems The present invention has been studied variously in order to solve the above-mentioned problems, and has reached the present invention. That is, the gist of the present invention is to provide a non-aqueous secondary battery including a positive electrode, a negative electrode, and a solution in which an electrolyte is dissolved in a non-aqueous solvent, and a mixture of petroleum or coal pitch and a polymer containing Si. From 800 to 15 in an inert atmosphere
A nonaqueous secondary battery characterized in that Si-containing coke obtained by heat treatment at a temperature of 00 ° C. is used as a negative electrode material.

【0005】[0005]

【発明の実施の形態】本発明について詳細に説明する
と、本発明ではピッチとSiを含有するポリマーの混合
物を熱処理して得たSi含有コークスを負極材料として
用いる。ピッチの原料としては、FCC(流動接触分
解)残渣油、EHE油(ナフサ分解によるエチレン製造
時の副生物)、常圧残渣油、減圧残渣油などの石油系重
質油やコールタール等が用いられる。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail. In the present invention, a Si-containing coke obtained by heat-treating a mixture of a pitch and a Si-containing polymer is used as a negative electrode material. Raw materials for pitch include petroleum heavy oils such as FCC (fluid catalytic cracking) residual oil, EHE oil (by-product of ethylene production by naphtha cracking), atmospheric residual oil, and vacuum residual oil, and coal tar. Can be

【0006】上述のピッチ原料からピッチを調製するの
は、蒸留、溶剤抽出、更には両者の組み合わせなど、所
望の性状のピッチの製造に従来から用いられている任意
の方法を用いることができる。Siを含有するポリマー
としては、ポリシラン等を用いる。好ましくは、(1)
式の置換基R、R′が炭素数C1〜C4(メチル基、エ
チル基等)までのアルキル基、または炭素数C6〜C1
4(フェニル基、ナフチル基等)までのアリール基であ
る構造を含む、平均分子量が500〜数万のポリシラン
を用いる。更に好ましくは、置換基R、R′がメチル
基、または置換基Rがメチル基、R′がフェニル基であ
る構造を含む、平均分子量が800〜1万以下のポリシ
ランを用いる。
The pitch can be prepared from the above-mentioned pitch raw material by any method conventionally used for producing pitch having desired properties, such as distillation, solvent extraction, and a combination of both. As the polymer containing Si, polysilane or the like is used. Preferably, (1)
The substituents R and R 'in the formula are an alkyl group having up to C1 to C4 (methyl group, ethyl group, etc.), or C6 to C1.
Polysilane having an average molecular weight of 500 to tens of thousands including an aryl group up to 4 (phenyl group, naphthyl group, etc.) is used. More preferably, a polysilane having an average molecular weight of 800 to 10,000 or less, including a structure in which the substituents R and R 'are a methyl group, or a structure in which the substituent R is a methyl group and R' is a phenyl group, is used.

【0007】[0007]

【化2】 Embedded image

【0008】本発明では、これらのピッチとSiを含有
するポリマー原料を粉状または液状で混合し、Si含有
ピッチを得る。好ましくは、ピッチとSiを含有するポ
リマーを、あらかじめ、それぞれ有機溶媒に溶解してか
ら、混合後、有機溶媒を除去することにより、Siが均
一分散したSi含有ピッチを得る。ここで、有機溶媒と
は、ピッチとSiを含有するポリマーの両者を溶解する
溶媒のことであり、THF、ピリジン、アニリン、キノ
リン等を用いる。好ましくは、有機溶媒にTHFを用い
る。
In the present invention, these pitches and a polymer material containing Si are mixed in a powder or liquid state to obtain a Si-containing pitch. Preferably, the pitch and the polymer containing Si are dissolved in an organic solvent in advance, then mixed, and then the organic solvent is removed to obtain a Si-containing pitch in which Si is uniformly dispersed. Here, the organic solvent is a solvent in which both the pitch and the polymer containing Si are dissolved, and THF, pyridine, aniline, quinoline, or the like is used. Preferably, THF is used as the organic solvent.

【0009】本発明では、通常、ピッチとポリシラン等
のSiを含有するポリマーの混合物中にSiが5重量%
以上、30重量%以下含有しているSi含有ピッチを熱
処理して得たコークスを用いる。好ましくは、Siが1
0重量%以上、20重量%以下含有しているSi含有ピ
ッチを熱処理して得たコークスを用いる。なお、Si含
有ピッチ中のSiが5重量%未満では、放電容量の向上
する割合が小さく、好ましくはない。
In the present invention, 5% by weight of Si is usually contained in a mixture of pitch and a polymer containing Si such as polysilane.
As described above, coke obtained by heat-treating the Si-containing pitch containing 30% by weight or less is used. Preferably, Si is 1
Coke obtained by heat-treating a Si-containing pitch containing 0% by weight or more and 20% by weight or less is used. If the Si content in the Si-containing pitch is less than 5% by weight, the rate of improvement in the discharge capacity is small, which is not preferable.

【0010】ピッチの熱処理によるコークスの製造は、
最も簡単にはピッチを不活性雰囲気中で800〜150
0℃で熱処理することにより行なうことができる。80
0℃未満の温度で製造したコークスを負極材料としたの
では、初充電容量に対する2回目以降の充放電容量の比
が小さくなる。逆に1500℃を越える高温でコークス
化したものを負極材料としたのでは、充電容量が低下す
る。好ましい熱処理温度は1000〜1400℃であ
る。
The production of coke by heat treatment of pitch is as follows.
Most simply, the pitch is 800-150 in an inert atmosphere.
It can be performed by heat treatment at 0 ° C. 80
If coke produced at a temperature lower than 0 ° C. is used as the negative electrode material, the ratio of the charge / discharge capacity after the second charge to the initial charge capacity becomes small. Conversely, if a material coked at a high temperature exceeding 1500 ° C. is used as the negative electrode material, the charge capacity decreases. A preferred heat treatment temperature is 1000 to 1400 ° C.

【0011】熱処理に要する時間は熱処理温度により異
なるが、通常はピッチがコークス化してから10分以
上、好ましくは20分ないし10時間である。一般に熱
処理温度が高いほど熱処理時間は短くてよい。不活性雰
囲気を形成する不活性ガスとしては、窒素、アルゴン、
ヘリウムなどが用いられるが、通常は窒素を用いる。
The time required for the heat treatment varies depending on the heat treatment temperature, but is usually 10 minutes or more, preferably 20 minutes to 10 hours after the pitch is coked. Generally, the higher the heat treatment temperature, the shorter the heat treatment time. As the inert gas forming the inert atmosphere, nitrogen, argon,
Helium or the like is used, but usually nitrogen is used.

【0012】ピッチの熱処理によるコークスの製造は、
ピッチを650℃未満の温度、通常は400〜650℃
で予備熱処理して、ピッチを少なくとも部分的に炭化さ
せ、次いで800〜1500℃、好ましくは1000〜
1400℃で熱処理する方法によることもできる。この
方法によるときは、予備熱処理でピッチが固化するの
で、後続する高温での熱処理が容易となる。また、予備
熱処理でピッチの分解反応の一部が既に進行済なので、
高温での熱処理におけるコークスの収率が向上する。従
って高温での熱処理設備を小さくすることができる。な
お、予備熱処理で炭化させた場合には、炭化物を最大粒
径1mm以下にまで粉砕してから高温での熱処理に供す
るのが好ましい。一般に、この粉砕により、最終的に得
られる負極の性能が向上することが多い。好ましくは、
最大粒径100μm以下、特に50μm以下にまで粉砕
してから、高温での熱処理に供する。
The production of coke by heat treatment of pitch is as follows.
Pitch pitch below 650 ° C, usually 400-650 ° C
Pre-heat treatment to at least partially carbonize the pitch, then at 800-1500 ° C., preferably 1000-1000 ° C.
A method of performing heat treatment at 1400 ° C. can also be used. According to this method, since the pitch is solidified by the preliminary heat treatment, the subsequent heat treatment at a high temperature becomes easy. Also, since part of the pitch decomposition reaction has already progressed in the preliminary heat treatment,
The coke yield in the heat treatment at a high temperature is improved. Therefore, heat treatment equipment at a high temperature can be reduced. When carbonized by the preliminary heat treatment, it is preferable that the carbide is pulverized to a maximum particle size of 1 mm or less and then subjected to heat treatment at a high temperature. Generally, the performance of the negative electrode finally obtained is often improved by this pulverization. Preferably,
After pulverizing to a maximum particle size of 100 μm or less, particularly 50 μm or less, it is subjected to a heat treatment at a high temperature.

【0013】このようにして調整されたSi含有コーク
スは、低コストのピッチを原料として用いているので、
Siを含有するポリマーをそのまま加熱処理したよりも
安価に製造できるメリットがある。また、このSi含有
コークスは、ピッチを加熱処理して得られたコークスと
Si含有ポリマーを加熱処理して得られた炭素を、任意
の割合で混ぜ合わせた単なる混合物(1)とは異なる。
即ち、後述の図2に示すX線回折パターンにおいて、S
i含有コークスの炭素のd002ピークは、Si未添加
コークスに比べ非常にブロードであり、且つ、前記混合
物(1)の単なる複合ピークではない。従って、ピッチ
の加熱処理前にSi含有ポリマーを混合することは、コ
ークス中に単にSiを添加するだけでなく、コークスの
炭素構造も変えていることが推定される。一方、コーク
ス中のSiは、X線回折パターンから判るように結晶性
のSi、SiC、SiO2 ではない。
[0013] The Si-containing coke prepared in this manner uses a low-cost pitch as a raw material.
There is an advantage that the polymer containing Si can be manufactured at a lower cost than when heat-treated as it is. Further, this Si-containing coke is different from a simple mixture (1) in which coke obtained by heat-treating the pitch and carbon obtained by heat-treating the Si-containing polymer are mixed at an arbitrary ratio.
That is, in the X-ray diffraction pattern shown in FIG.
The d002 peak of carbon of i-containing coke is much broader than that of coke without Si, and is not a mere composite peak of the mixture (1). Therefore, it is presumed that mixing the Si-containing polymer before the pitch heat treatment not only adds Si to the coke, but also changes the carbon structure of the coke. On the other hand, Si in coke is not crystalline Si, SiC, or SiO 2 as can be seen from the X-ray diffraction pattern.

【0014】本発明では、このようにして調製された6
50〜1500℃での熱処理を経たコークスを負極材料
として用いる以外は、常法により非水電解液二次電池を
製作することができる。例えば正極材料としては、Li
CoO2 、MnO2 、TiS 2 、FeS2 、Nb
3 4 、Mo3 4 、CoS2 、V2 5 ,P2 5
CrO3 、V3 3 、TeO2 、GeO2 などが用いら
れる。また、電解質としては、LiClO4 、LiBF
4 、LiPF6 等のリチウム塩が用いられる。これらの
電解質を溶解する非水溶媒としては、プロピレンカーボ
ネート、テトラヒドロフラン、1,2−ジメトキシエタ
ン、ジメチルスルホキシド、ジオキソラン、ジメチルホ
ルムアミド、ジメチルアセトアミド、及びこれらの2種
以上の混合溶媒などが用いられる。例えば、本発明によ
り提供されるコークスを負極材料とし、LiCoO2
正極材料とし、プロピレンカーボネートと1,2−ジメ
トキシエタンとの混合溶媒にLiPF6 を溶解したもの
を電解液とする電池は、最も好ましいものの一つであ
る。
According to the present invention, 6
Coke that has been heat-treated at 50 to 1500 ° C. is used as a negative electrode material.
Except that the non-aqueous electrolyte secondary battery is
Can be manufactured. For example, as the positive electrode material, Li
CoOTwo, MnOTwo, TiS Two, FeSTwo, Nb
ThreeSFour, MoThreeSFour, CoSTwo, VTwoOFive, PTwoOFive,
CrOThree, VThreeOThree, TeOTwo, GeOTwoEtc. are used
It is. As the electrolyte, LiClOFour, LiBF
Four, LiPF6And the like. these
Non-aqueous solvents that dissolve the electrolyte include propylene
Nate, tetrahydrofuran, 1,2-dimethoxyethane
Dimethylsulfoxide, dioxolane, dimethylphos
Lumamide, dimethylacetamide and their two
The above mixed solvents and the like are used. For example, according to the present invention,
The coke provided is used as a negative electrode material, and LiCoOTwoTo
Propylene carbonate and 1,2-dimethyl
LiPF in mixed solvent with toxicethane6What dissolved
Batteries with an electrolyte as one of the most preferred
You.

【0015】また、正極と負極とを隔離するセパレータ
ーとしては、電池の内部抵抗を小さくするため、ポリプ
ロピレン等からなる不織布やガラスフィルターなどの耐
有機溶媒性材料からなる多孔体が用いられる。電池の構
造としては、帯状の正極及び負極を、セパレーターを介
して重ねて渦巻き状にしたスパイラル構造のもの、又は
ボタン型の電池ケースに、ペレット状の正極と円盤状の
負極とを、セパレーターを介して収容した構造のものな
ど、常用の任意の構造とすることができる。
As a separator for separating the positive electrode and the negative electrode, a non-woven fabric made of polypropylene or the like or a porous body made of an organic solvent-resistant material such as a glass filter is used to reduce the internal resistance of the battery. The battery has a spiral structure in which a belt-shaped positive electrode and a negative electrode are spirally stacked with a separator interposed therebetween, or a button-shaped battery case, a pellet-shaped positive electrode and a disk-shaped negative electrode, and a separator. Any structure that is commonly used, such as a structure that is housed via a cable, can be used.

【0016】[0016]

【実施例】【Example】

(1)Si含有コークスの調製 実施例1 メトラー軟化点98℃、トルエン不溶分40%、キノリ
ン不溶分0%のコールタールピッチ(A)をフラスコに
入れ、減圧下110℃で30分間脱気し、冷却後THF
を加え混合し、THF溶解ピッチを得た。メチルフェニ
ルジクロロシランから合成した平均分子量=3940の
ポリメチルフェニルシラン(B)をフラスコに入れ、T
HFを加え混合し、THF溶解ポリメチルフェニルシラ
ンを得た。(A)と(B)の重量比が1.34対1 (S
i重量/(A+B)=10wt%)になるように、それ
ぞれを加え2時間撹拌した後、THFを減圧蒸留しSi
含有ピッチを得た。これをアルゴン気流中で1000℃
で2時間加熱処理してSi含有コークスを得た。この時
の加熱処理前後の収率は56%であった。
(1) Preparation of Si-Containing Coke Example 1 A coal tar pitch (A) having a Mettler softening point of 98 ° C., a toluene-insoluble content of 40%, and a quinoline-insoluble content of 0% was put in a flask and degassed at 110 ° C. under reduced pressure for 30 minutes. , THF after cooling
Was added and mixed to obtain a THF-dissolved pitch. Polymethylphenylsilane (B) having an average molecular weight of 3940 synthesized from methylphenyldichlorosilane was placed in a flask, and T
HF was added and mixed to obtain THF-dissolved polymethylphenylsilane. The weight ratio of (A) and (B) is 1.34 to 1 (S
i weight / (A + B) = 10 wt%), and the mixture was stirred for 2 hours.
A contained pitch was obtained. 1000 ° C in an argon stream
For 2 hours to obtain Si-containing coke. The yield before and after the heat treatment at this time was 56%.

【0017】実施例2 実施例1の(B)の代わりに平均分子量=1300のポ
リメチルフェニルシラン(C)を用い、(A)と(C)
の重量比が2.68対1 (Si重量/(A+C)=5w
t%)になるように混合する以外は実施例1と同じよう
に調製した。この時の加熱処理前後の収率は53%であ
った。
Example 2 Instead of (B) in Example 1, polymethylphenylsilane (C) having an average molecular weight of 1300 was used, and (A) and (C) were used.
Is 2.68 to 1 (Si weight / (A + C) = 5w)
t%), except that the mixture was prepared in the same manner as in Example 1. The yield before and after the heat treatment at this time was 53%.

【0018】実施例3 実施例1の (B)の代わりにジメチルジクロロシランか
ら合成したジメチルシラン(D)を用い、(A)と
(D)の重量比が1.42対1 (Si重量/(A+D)
=20wt%)になるように混合する以外は実施例1と
同じように調製した。この時の加熱処理前後の収率は4
8%であった。
Example 3 Instead of (B) in Example 1, dimethylsilane (D) synthesized from dimethyldichlorosilane was used, and the weight ratio between (A) and (D) was 1.42 to 1 (Si weight / (A + D)
= 20 wt%), except that the mixture was prepared in the same manner as in Example 1. The yield before and after the heat treatment was 4
8%.

【0019】実施例4 ジメチルジクロロシランとメチルフェニルジクロロシラ
ンから合成した平均分子量=8800のポリ(ジメチル
/メチルフェニル〔組成比が12対88〕)シランラン
ダム共重合体(E)を用い、(A)と(E)の重量比が
1.64対1 (Si重量/(A+E)=10wt%)に
なるように混合する以外は実施例1と同じように調製し
た。この時の加熱処理前後の収率は56%であった。
Example 4 A poly (dimethyl / methylphenyl [composition ratio: 12:88]) silane random copolymer (E) having an average molecular weight of 8,800 synthesized from dimethyldichlorosilane and methylphenyldichlorosilane was used, and (A) ) And (E) were prepared in the same manner as in Example 1 except that they were mixed so that the weight ratio was 1.64 to 1 (Si weight / (A + E) = 10 wt%). The yield before and after the heat treatment at this time was 56%.

【0020】実施例5 実施例3と同じように調製したSi含有ピッチをアルゴ
ン気流下で1200℃で2時間加熱処理してSi含有コ
ークスを得た。この時の加熱処理前後の収率は32%で
あった。 実施例6 実施例3と同じように調製したSi含有ピッチをアルゴ
ン気流中で1400℃で2時間加熱処理してSi含有コ
ークスを得た。この時の加熱処理前後の収率は36%で
あった。
Example 5 An Si-containing pitch prepared in the same manner as in Example 3 was heat-treated at 1200 ° C. for 2 hours in an argon stream to obtain a Si-containing coke. At this time, the yield before and after the heat treatment was 32%. Example 6 The Si-containing pitch prepared in the same manner as in Example 3 was heated at 1400 ° C. for 2 hours in an argon stream to obtain a Si-containing coke. At this time, the yield before and after the heat treatment was 36%.

【0021】実施例7 平均分子量=1430のポリメチルフェニルシラン
(E)を用いて、実施例1と同じように調製したSi含
有ピッチをアルゴン気流中で1400℃で2時間加熱処
理してSi含有コークスを得た。この時の加熱処理前後
の収率は46%であった。
Example 7 Using a polymethylphenylsilane (E) having an average molecular weight of 1430, a Si-containing pitch prepared in the same manner as in Example 1 was heated at 1400 ° C. for 2 hours in an argon stream to obtain a Si-containing pitch. Got coke. At this time, the yield before and after the heat treatment was 46%.

【0022】(1)Si未添加コークスの調製 比較例1 実施例1と同じコールタールピッチ(A)をアルゴン気
流中で1000℃で2時間加熱処理してコークスを得
た。 比較例2 実施例1と同じコールタールピッチ(A)をアルゴン気
流中で1200℃で2時間加熱処理してコークスを得
た。 比較例3 実施例1と同じコールタールピッチ(A)をアルゴン気
流中で1400℃で2時間加熱処理してコークスを得
た。
(1) Preparation of coke with no Si added Comparative Example 1 The same coal tar pitch (A) as in Example 1 was heat-treated at 1000 ° C. for 2 hours in an argon stream to obtain coke. Comparative Example 2 The same coal tar pitch (A) as in Example 1 was heated at 1200 ° C. for 2 hours in an argon stream to obtain coke. Comparative Example 3 The same coal tar pitch (A) as in Example 1 was heat-treated at 1400 ° C. for 2 hours in an argon stream to obtain coke.

【0023】(2)負極材の電池評価 実施例1〜7で得られたSi含有コークス、および比較
例1〜3で得られたSi未添加コークスをそれぞれ45
ミクロン以下に粉砕後、バインダーとして約10wt%
のPVDF(ポリフッ化ビニリデン)を加えて、SUS
316製メッシュに圧着後、加熱真空乾燥して試験用の
電極とした。二次電池性能は、対極を金属Liとして、
非水系電解液に1mol/LのLiFP6 を含むPC
(ポリカーボネート)を用いてAr雰囲気中、室温で行
った。対極からLiを負極材へドープする過程である初
充電では、まず試験電極での電流密度を0.5mA/c
2で保持し、電極間電位が0.01Vとなった所で電
極間電位を0.01Vに保持し、流れる電流が0.04
mA/cm2 以下に減衰するまで待った。該初充電に続
く初放電では試験電極での電流密度を0.5mA/cm
2 と一定とし、電極間電圧が1.5Vに到達するまで待
ち、電極間に流れた総容量から初放電量を求めた。結果
を表−1に示す。なお、初放電容量は、コークス1g当
たりの値である。
(2) Battery Evaluation of Negative Electrode Material The Si-containing coke obtained in Examples 1 to 7 and the Si-free coke obtained in Comparative Examples 1 to 3 were each replaced by 45%.
Approximately 10 wt% as a binder after grinding to micron or less
Of PVDF (polyvinylidene fluoride)
After pressure-bonding to a 316 mesh, it was heated and dried under vacuum to form a test electrode. Secondary battery performance, the opposite electrode is metal Li,
PC containing 1 mol / L LiFP 6 in non-aqueous electrolyte
This was performed at room temperature in an Ar atmosphere using (polycarbonate). In the initial charge, which is the process of doping Li into the negative electrode material from the counter electrode, first, the current density at the test electrode is set to 0.5 mA / c.
m 2 , and when the potential between the electrodes becomes 0.01 V, the potential between the electrodes is maintained at 0.01 V.
It waited until it decreased to mA / cm 2 or less. In the initial discharge following the initial charge, the current density at the test electrode is 0.5 mA / cm.
2 and waited until the voltage between the electrodes reached 1.5 V, and the initial discharge amount was determined from the total capacity flowing between the electrodes. The results are shown in Table 1. The initial discharge capacity is a value per 1 g of coke.

【0024】(3)負極材の分析 実施例1、3で得られたSi含有コークス、および比較
例1で得られたSi未添加コークスをCuKα線を用い
て、2θ=3度〜90度の範囲について反射法でX線回
折測定をした。結果を図2に示す。全ての試料において
X線回折パターンには、Si、SiC、SiO2 のピー
クが観察されなかった。同一熱処理温度において、実施
例1、3の炭素のd002ピークは、比較例1のピーク
よりもブロードになっていた。
(3) Analysis of negative electrode material The Si-containing coke obtained in Examples 1 and 3 and the Si-free coke obtained in Comparative Example 1 were subjected to CuKα radiation at 2θ = 3 ° to 90 °. X-ray diffraction measurement was performed on the range by a reflection method. The results are shown in FIG. In all samples, peaks of Si, SiC, and SiO 2 were not observed in the X-ray diffraction patterns. At the same heat treatment temperature, the d002 peak of carbon of Examples 1 and 3 was broader than the peak of Comparative Example 1.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明によれば、放電容量が大きく、か
つ低コストのコークス負極材を備えた非水系二次電池を
提供しうる。
According to the present invention, it is possible to provide a non-aqueous secondary battery having a large discharge capacity and a low-cost coke negative electrode material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明非水二次電池の一例であるボタン型非水
電解液二次電池の断面説明図である。
FIG. 1 is a cross-sectional explanatory view of a button-type nonaqueous electrolyte secondary battery which is an example of the nonaqueous secondary battery of the present invention.

【図2】実施例1、3で得られたSi含有コークス、比
較例1で得られたSi未添加コークスのCuKの線を用
いた反射法によるX線回折測定結果。
FIG. 2 shows the results of X-ray diffraction measurement of the Si-containing coke obtained in Examples 1 and 3 and the coke without Si added obtained in Comparative Example 1 by a reflection method using CuK lines.

【符号の説明】[Explanation of symbols]

1 負極 2 負極集電体 3 負極缶 4 絶縁パッキング 5 正極缶 6 正極集電体 7 正極 Reference Signs List 1 negative electrode 2 negative electrode current collector 3 negative electrode can 4 insulating packing 5 positive electrode can 6 positive electrode current collector 7 positive electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および非水溶媒中に電解質を
溶解させた溶解液を備えてなる非水系二次電池におい
て、石油系もしくは石炭系のピッチとSiを含有するポ
リマーの混合物を、不活性雰囲気中で800〜1500
℃の温度で加熱処理して得られたSi含有コークスを負
極材として用いることを特徴とする非水系二次電池。
In a non-aqueous secondary battery comprising a positive electrode, a negative electrode and a solution in which an electrolyte is dissolved in a non-aqueous solvent, a mixture of petroleum-based or coal-based pitch and a polymer containing Si is used. 800 to 1500 in an active atmosphere
A non-aqueous secondary battery characterized by using, as a negative electrode material, Si-containing coke obtained by heat treatment at a temperature of ° C.
【請求項2】 正極、負極および非水溶媒中に電解質を
溶解させた電解液を備えてなる非水系二次電池におい
て、あらかじめ有機溶媒に溶解した石油系もしくは石炭
系のピッチと、あらかじめ有機溶媒に溶解したSiを含
有するポリマーを混合後、有機溶媒を除去することによ
り得られたSi含有ピッチを、不活性雰囲気中で800
〜1500℃の温度で加熱処理して得られたSi含有コ
ークスを負極材として用いることを特徴とする非水系二
次電池。
2. A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, comprising: a petroleum-based or coal-based pitch previously dissolved in an organic solvent; After mixing the polymer containing Si dissolved in water, the Si-containing pitch obtained by removing the organic solvent is mixed in an inert atmosphere at 800
A non-aqueous secondary battery using a Si-containing coke obtained by heat treatment at a temperature of about 1500 ° C. as a negative electrode material.
【請求項3】 Siを含有するポリマーが、次式(1)
の構造を含むポリシランであることを特徴とする請求項
1又は2に記載の非水系二次電池。 【化1】
3. A polymer containing Si is represented by the following formula (1):
3. The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is a polysilane having the following structure. 4. Embedded image
【請求項4】 ピッチとポリシランの混合物(Si含有
ピッチ)中にSi(Si重量/〔ピッチ重量+ポリシラ
ン重量〕×100)が5重量%以上、30重量%以下含
有していることを特徴とする請求項3に記載の非水系二
次電池。
4. A mixture of pitch and polysilane (Si-containing pitch) containing Si (Si weight / [pitch weight + polysilane weight] × 100) in an amount of 5% by weight or more and 30% by weight or less. The non-aqueous secondary battery according to claim 3.
【請求項5】 (1)式の置換基R、R′がメチル基で
ある構造を含むポリシランであることを特徴とする請求
項4に記載の非水系二次電池。
5. The non-aqueous secondary battery according to claim 4, wherein the non-aqueous secondary battery is a polysilane having a structure in which the substituents R and R ′ in the formula (1) are methyl groups.
【請求項6】 (1)式の置換基Rがメチル基、R′が
フェニル基である構造を含むポリシランであることを特
徴とする請求項4に記載の非水系二次電池。
6. The non-aqueous secondary battery according to claim 4, wherein the polysilane is a polysilane having a structure in which the substituent R in the formula (1) is a methyl group and R ′ is a phenyl group.
JP9056011A 1997-03-11 1997-03-11 Nonaqueous secondary battery Pending JPH10255791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9056011A JPH10255791A (en) 1997-03-11 1997-03-11 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9056011A JPH10255791A (en) 1997-03-11 1997-03-11 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH10255791A true JPH10255791A (en) 1998-09-25

Family

ID=13015125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9056011A Pending JPH10255791A (en) 1997-03-11 1997-03-11 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH10255791A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298842A (en) * 2001-03-29 2002-10-11 Sumitomo Bakelite Co Ltd Method for manufacturing electrode composition for nonaqueous electrolyte secondary battery
JP2007184263A (en) * 2006-01-04 2007-07-19 Ls Cable Ltd Carbonaceous electrode material for secondary battery, its manufacturing method and secondary battery
KR100805133B1 (en) 2004-03-26 2008-02-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2016021393A (en) * 2014-07-11 2016-02-04 オーシーアイ カンパニー リミテッドOCI Company Ltd. Negative electrode active material for secondary batteries, and method for manufacturing the same
US9543079B2 (en) 2013-08-19 2017-01-10 Jsr Corporation Production process for electrode material, electrode and electric storage device
JP2021057309A (en) * 2019-10-02 2021-04-08 トヨタ自動車株式会社 Composite active material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298842A (en) * 2001-03-29 2002-10-11 Sumitomo Bakelite Co Ltd Method for manufacturing electrode composition for nonaqueous electrolyte secondary battery
KR100805133B1 (en) 2004-03-26 2008-02-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2007184263A (en) * 2006-01-04 2007-07-19 Ls Cable Ltd Carbonaceous electrode material for secondary battery, its manufacturing method and secondary battery
US9543079B2 (en) 2013-08-19 2017-01-10 Jsr Corporation Production process for electrode material, electrode and electric storage device
JP2016021393A (en) * 2014-07-11 2016-02-04 オーシーアイ カンパニー リミテッドOCI Company Ltd. Negative electrode active material for secondary batteries, and method for manufacturing the same
JP2021057309A (en) * 2019-10-02 2021-04-08 トヨタ自動車株式会社 Composite active material

Similar Documents

Publication Publication Date Title
CN1290212C (en) Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
JP3873325B2 (en) Carbon material for lithium secondary battery negative electrode and method for producing the same
US20120121981A1 (en) Electrode Active Material, Electrode, And Electricity Storage Device
WO2006109497A1 (en) Process for production of mesocarbon microbeads
KR20090097948A (en) Porous silicon-containing carbon-based composite material, electrode composed of the same and battery
KR101993625B1 (en) Carbon material, production method thereof and use thereof
WO2009133807A1 (en) Carbon material for negative electrode of lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery and lithium secondary battery
JP3677992B2 (en) Lithium ion secondary battery
KR20120051719A (en) Electrode active material, electrode, and electricity storage device
JP2014107013A (en) Silicon-containing composite material
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
TW201929300A (en) Negative electrode active substance and production method therefor
JPH05325967A (en) Lithium secondary battery negative electrode material and manufacture thereof
CN102428595B (en) Anode active material for lithium secondary battery, negative electrode for lithium secondary battery electrode, use their vehicle-mounted lithium secondary battery and the manufacture method of anode active material for lithium secondary battery
TWI495181B (en) A battery negative electrode and a battery using the same
JP4123313B2 (en) Carbon material for negative electrode, method for producing the same, and lithium secondary battery using the same
JP3091944B2 (en) Method for producing carbon particles for negative electrode of lithium ion secondary battery
JP3091949B2 (en) Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles
KR20230030569A (en) Active materials for batteries, composite active materials for batteries, and secondary batteries
JPH10255791A (en) Nonaqueous secondary battery
TWI557971B (en) A negative electrode active material for a lithium battery, a negative electrode electrode for a lithium secondary battery, a lithium battery for a vehicle for use, and a method for producing a negative electrode active material for a lithium battery
JPH07302594A (en) Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle
WO2022172585A1 (en) Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery
JP3551490B2 (en) Non-aqueous secondary battery
WO2023017587A1 (en) Material for secondary batteries, negative electrode active material and secondary battery