JP3091949B2 - Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles - Google Patents

Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles

Info

Publication number
JP3091949B2
JP3091949B2 JP07061719A JP6171995A JP3091949B2 JP 3091949 B2 JP3091949 B2 JP 3091949B2 JP 07061719 A JP07061719 A JP 07061719A JP 6171995 A JP6171995 A JP 6171995A JP 3091949 B2 JP3091949 B2 JP 3091949B2
Authority
JP
Japan
Prior art keywords
weight
negative electrode
carbon particles
graphite
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07061719A
Other languages
Japanese (ja)
Other versions
JPH08236104A (en
Inventor
光巨 長田
勲 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP07061719A priority Critical patent/JP3091949B2/en
Publication of JPH08236104A publication Critical patent/JPH08236104A/en
Application granted granted Critical
Publication of JP3091949B2 publication Critical patent/JP3091949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ケイ素含有カーボン粒
子の製造方法及びそのカーボン粒子を含んでなる負極に
関する。更に詳しくは、高電気容量を有するケイ素含有
カーボン粒子の製造方法及びそのカーボン粒子を含んで
なるリチウムイオン二次電池用負極に関する。
The present invention relates to a method for producing silicon-containing carbon particles and a negative electrode comprising the carbon particles. More specifically, the present invention relates to a method for producing silicon-containing carbon particles having a high electric capacity and a negative electrode for a lithium ion secondary battery containing the carbon particles.

【0002】[0002]

【従来の技術】近年、リチウムイオン二次電池は、小型
・軽量化を図り得る高エネルギー蓄電池であるために、
携帯用電子機器用電源として注目されている。そして、
このリチウムイオン二次電池にあっては、正極活物質に
は、Lixyz(Mは遷移金属元素を主とする1種ま
たは2種以上の金属元素、0.5≦x≦2,1≦y≦
2,2≦z≦4)で示されるリチウム金属複合酸化物粒
子が用いられ、負極には、石油ピッチコークス、石炭ピ
ッチコークス、黒鉛の粒子等の炭素質材料が用いられ
る。
2. Description of the Related Art In recent years, a lithium ion secondary battery is a high energy storage battery which can be reduced in size and weight.
It is attracting attention as a power source for portable electronic devices. And
In the lithium ion secondary battery, the positive electrode active material, Li x M y O z ( M is one or more metal elements mainly containing a transition metal element, 0.5 ≦ x ≦ 2 , 1 ≦ y ≦
Lithium metal composite oxide particles represented by (2, 2 ≦ z ≦ 4) are used, and carbonaceous materials such as petroleum pitch coke, coal pitch coke, and graphite particles are used for the negative electrode.

【0003】その電池性能を示すエネルギー密度は、負
極の活物質である炭素質材料のリチウムイオンのドーピ
ング(吸蔵)度合に依存する。正極活物質は充電時にリ
チウムイオンを放出し、負極の炭素質材料にドーピング
(充電)され、放電時に炭素質材料からリチウムイオン
が脱ドーピング(放電)される。電池缶の限られた内容
積により多くの負極活物質を充填することから、負極活
物質あたりの放電電気容量が大きいことが電池の高容量
化につながる。そして、各種電子・電気機器の電源用と
しては、2時間以内に充電でき、かつより高容量化を図
った電池の出現が更に望まれている。
The energy density indicating the battery performance depends on the degree of lithium ion doping (occluding) of a carbonaceous material as an active material of a negative electrode. The positive electrode active material emits lithium ions during charging, is doped (charged) into the carbonaceous material of the negative electrode, and is dedoped (discharged) from the carbonaceous material during discharge. Since a larger amount of the negative electrode active material is filled into the limited internal volume of the battery can, a large discharge electric capacity per negative electrode active material leads to a higher capacity of the battery. As a power source for various electronic and electric devices, there is a further demand for a battery that can be charged within two hours and has a higher capacity.

【0004】負極活物質として用いられる石油ピッチコ
ークス、石炭ピッチコークス等を700〜800℃で熱
処理して得られた炭化物にあっては、炭化物1gあたり
の放電電気容量は高いものの、急速充電性に劣り、また
真比重が1.50〜1.75g/cm3であり、体積あ
たりの容量としては黒鉛を越えるものは得難かった。一
方、負極活物質として用いられる黒鉛としての天然黒
鉛、人工黒鉛は、電解液として非プロトン性有機溶媒を
選択することにより高容量化を図ることができる。これ
ら黒鉛は、その粒子径を小さくするほど単位重量当りの
表面積が増大して高容量化するものの、その電気容量は
372mAh/gが限界である。また、急速充電時、黒
鉛表面がより活性化しリチウムを析出させやすくなって
デンドライトショート等の電池の安全性に問題を生ずる
恐れがあり、さらに電解液を分解しやすくなることから
溶媒の選択が制約されることとなる。
A carbide obtained by heat-treating petroleum pitch coke, coal pitch coke, or the like used as a negative electrode active material at 700 to 800 ° C. has a high discharge electric capacity per gram of carbide, but has a high chargeability. It was inferior and had a true specific gravity of 1.50 to 1.75 g / cm 3 , and it was difficult to obtain a material per volume exceeding graphite. On the other hand, natural graphite and artificial graphite as graphite used as a negative electrode active material can achieve high capacity by selecting an aprotic organic solvent as an electrolytic solution. Although the surface area per unit weight of these graphites increases as the particle size decreases, the capacity increases, but the electric capacity is limited to 372 mAh / g. In addition, during rapid charging, the graphite surface becomes more active and lithium is easily precipitated, which may cause a problem in battery safety such as dendrite short-circuit, and the selection of a solvent is restricted because the electrolyte is easily decomposed. Will be done.

【0005】黒鉛を負極活物質として用いた場合、例え
ば正極にリチウムコバルト酸化物を用いたリチウムイオ
ン二次電池とすると、3.4V以下では急激な放電電圧
となり、漸次電圧降下し、残留電池容量表示が容易であ
ったコークスを負極に用いるリチウムイオン二次電池の
特長が失われる欠点がある。より高電気容量を有するカ
ーボン粒子として、化学的蒸着法(CVD)によって、
SiCl4又は(CH32Cl2Siをベンゼンと共に熱
分解する方法、ポリメチルフェニルシロキサンやポリフ
ェニルセスキシロキサン等のシロキサンポリマーを熱分
解する方法が提案されている。しかしながら、CVD法
では、高価であり、また均一組成のものを得ることが難
しい。またシロキサンポリマーでは、炭化するに至るま
でにポリマー切断による揮発もあり、歩留まりが悪い。
When graphite is used as a negative electrode active material, for example, in the case of a lithium ion secondary battery using lithium cobalt oxide for the positive electrode, the discharge voltage suddenly drops below 3.4 V, gradually drops, and the residual battery capacity decreases. There is a disadvantage that the characteristics of a lithium ion secondary battery using coke, which was easy to display, as a negative electrode are lost. As carbon particles having higher electric capacity, by chemical vapor deposition (CVD),
A method of thermally decomposing SiCl 4 or (CH 3 ) 2 Cl 2 Si with benzene and a method of thermally decomposing a siloxane polymer such as polymethylphenylsiloxane or polyphenylsesquisiloxane have been proposed. However, the CVD method is expensive and it is difficult to obtain a uniform composition. In addition, the siloxane polymer is volatilized due to polymer cutting before carbonization, and the yield is poor.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前記
の課題を克服し、工業的に有用な経済性にて製造し得る
高い電気容量を有するカーボン粒子の製造方法及びその
カーボン粒子を含んでなる高い電気容量を有し安全性に
優れたリチウムイオン二次電池用負極を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned problems and to provide a method for producing carbon particles having a high electric capacity which can be produced at industrially useful economical efficiency, and include the carbon particles. An object of the present invention is to provide a negative electrode for a lithium ion secondary battery having high electric capacity and excellent safety.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記目的
を達成するため鋭意検討した結果、特定の有機ケイ素化
合物又は/及びその重合体と黒鉛と更にはタールピッチ
とからなるものを熱処理し、炭化して得られたケイ素含
有カーボン粒子の製造方法及びそのカーボン粒子を含ん
でなる負極が、前記課題の解決に極めて有効であること
を見い出し、本発明の完成に至った。すなわち本発明
は、 一般式(HO)n−Si−(OR)4-n (式中、nは0又は1〜3の整数であり、Rは有機基で
ある。)で示される単量体又は/及びその重合体から選
ばれる有機ケイ素化合物(A)と黒鉛(B)とからなる
ものを650〜1000℃で熱処理し、得られた炭化物
中、ケイ素が2〜25重量%、黒鉛が5〜75重量%で
あることを特徴とするケイ素含有カーボン粒子の製造方
法、又は当該ケイ素含有カーボン粒子を含んでなるリチ
ウムイオン二次電池用負極、あるいは 一般式 (HO)n−Si−(OR)4-n (式中、nは0又は1〜3の整数であり、Rは有機基で
ある。)で示される単量体又は/及びその重合体から選
ばれる有機ケイ素化合物(A)と黒鉛(B)とタールピ
ッチ(C)とからなるものを650〜1000℃で熱処
理し、得られた炭化物中、ケイ素が2〜25重量%、黒
鉛が5〜75重量%であることを特徴とするケイ素含有
カーボン粒子の製造方法、又は当該ケイ素含有カーボン
粒子を含んでなるリチウムイオン二次電池用負極であ
る。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, heat-treated a specific organosilicon compound or / and its polymer, graphite and further tar pitch. Then, they have found that a method for producing silicon-containing carbon particles obtained by carbonization and a negative electrode containing the carbon particles are extremely effective in solving the above problems, and have completed the present invention. That is, the present invention provides a monomer represented by the general formula (HO) n -Si- (OR) 4-n (where n is 0 or an integer of 1 to 3, and R is an organic group). And / or a heat treatment of an organosilicon compound (A) selected from a polymer thereof and graphite (B) at 650 to 1000 ° C., and 2 to 25% by weight of silicon and 5 to 5% by weight of graphite in the obtained carbide. To 75% by weight, or a negative electrode for a lithium ion secondary battery containing the silicon-containing carbon particles, or a general formula (HO) n -Si- (OR) 4-n (where n is 0 or an integer of 1 to 3, and R is an organic group) and an organosilicon compound (A) selected from monomers and / or polymers thereof, and graphite (B) and tar pitch (C), 650 to 1000 At 25 ° C., and in the obtained carbide, silicon is 2 to 25% by weight and graphite is 5 to 75% by weight. Negative electrode for a lithium ion secondary battery.

【0008】以下、本発明について詳細に説明する。本
発明に用いられる有機ケイ素化合物(A)は、 一般式 (HO)n−Si−(OR)4-n (式中、nは0又は1〜3の整数であり、Rは有機基で
ある。)で示される単量体、又はかかる単量体の部分加
水分解により得られる重合体、又はそれらの混合物であ
る。なお、Rは有機基であり、その種類としては特に制
限されないが、例えば、メチル基、エチル基、プロピル
基、ブチル基、ペンチル基等のアルキル基、フェニル
基、フェノキシフェニル基、メチルフェニル基、ビフェ
ニル基等のアリール基、ビニル基、アリル基、イソプロ
ペニル基等のアルケニル基、ベンジル基、フルフリル
基、アシル基等が例示される。また、前記単量体又は重
合体はそれぞれ異なる種類のものを併用してもよい。
Hereinafter, the present invention will be described in detail. The organosilicon compound (A) used in the present invention has a general formula (HO) n -Si- (OR) 4-n (where n is an integer of 0 or 1 to 3, and R is an organic group) ), A polymer obtained by partial hydrolysis of such a monomer, or a mixture thereof. Note that R is an organic group, and the type thereof is not particularly limited. For example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group, a phenyl group, a phenoxyphenyl group, a methylphenyl group, Examples thereof include an aryl group such as a biphenyl group, an alkenyl group such as a vinyl group, an allyl group, and an isopropenyl group, a benzyl group, a furfuryl group, and an acyl group. Further, different types of the monomers or polymers may be used in combination.

【0009】本発明に用いられる黒鉛(B)は、天然黒
鉛、人工黒鉛又はそれらの混合物であり、一般的には平
均粒子径30μm以下の粉状ないし顆粒状で用いられる
が、特に好ましくは平均粒子径が3μm以下の微粒子で
ある。なお、場合によってはかかる黒鉛を水や有機溶剤
中に分散させて用いてもよい。
The graphite (B) used in the present invention is natural graphite, artificial graphite or a mixture thereof, and is generally used in the form of powder or granules having an average particle diameter of 30 μm or less. Fine particles having a particle diameter of 3 μm or less. In some cases, such graphite may be used by dispersing it in water or an organic solvent.

【0010】本発明で用いられるタールピッチ(C)と
しては、例としてナフサ分解、原油分解、石炭の熱分
解、アスファルト分解等による石油系タールピッチ、石
炭系タールピッチ等が挙げられる。必要に応じて、ター
ルピッチにフェノール樹脂類を添加してもよい。このフ
ェノール樹脂としては、硬化剤や硬化促進剤の存在下又
は非存在下で常温ないし加熱により架橋する性質、すな
わち硬化性を有するものであれば特に限定されず、例え
ばノボラック型、レゾール型もしくはベンジリックエー
テル型のフェノール樹脂、及びこれらをフラン樹脂、フ
ルフリルアルコール、メラミン樹脂、キシレン樹脂等で
変性した樹脂などが挙げられる。
Examples of the tar pitch (C) used in the present invention include petroleum tar pitch and coal tar pitch obtained by naphtha cracking, crude oil cracking, coal thermal cracking, asphalt cracking, and the like. If necessary, phenol resins may be added to the tar pitch. The phenolic resin is not particularly limited as long as it has a property of being crosslinkable at normal temperature or heating in the presence or absence of a curing agent or a curing accelerator, that is, a curable property. For example, novolak type, resol type or benzene Rick ether type phenol resins and resins obtained by modifying these with furan resins, furfuryl alcohol, melamine resins, xylene resins, and the like.

【0011】また、本発明で用いるタールピッチに、グ
リーンメソフェーズピッチ小球体とグリーンメソフェー
ズピッチ粉砕粒子のいずれかまたは混合物を添加しても
よい。これらは、前記タールピッチを300〜600℃
に加熱した際に生成するメソフェーズピッチ小球体を遠
心分離したもの、あるいは更に小球体が融合したものを
塊状として分離した後、粉砕したもの、更にはこれを1
600℃以下で不活性ガス雰囲気中、又は真空中で焼成
したものであってもよい。
Further, any one or a mixture of green mesophase pitch small spheres and green mesophase pitch ground particles may be added to the tar pitch used in the present invention. These are prepared by setting the tar pitch to 300 to 600 ° C.
The mesophase pitch small spheres generated when heated to a temperature of 100 ° C. are centrifuged, or those in which the small spheres are fused are separated into a lump and then pulverized.
It may be fired at 600 ° C. or lower in an inert gas atmosphere or in a vacuum.

【0012】前記有機ケイ素化合物(A)と前記黒鉛
(B)と更には前記タールピッチ(C)との混合物を撹
拌下、蓚酸、ギ酸等の酸触媒下、100〜160℃で固
化させ、不活性ガス雰囲気中で600℃まで0.01〜
2℃/分の昇温速度で昇温し、更に0.01〜0.2℃
/分の昇温速度で不活性ガス雰囲気中、あるいは真空中
で650〜1000℃、好ましくは700〜900℃、
さらに好ましくは700〜800℃まで熱処理し、炭化
物を得る。これを粉砕し、そのまま使用してもよいし、
必要に応じて、再度700〜900℃で真空熱処理して
もよい。この炭化物の平均粒子径としては、5〜15μ
mのものが好ましい。この炭化物における黒鉛含有率
は、5〜75重量%、好ましくは20〜70重量%であ
る。黒鉛含有率が5重量%未満では、この炭化物を負極
活物質とするリチウムイオン二次電池における急速充電
性に劣り、また75重量%を越えると電気容量の向上を
発現できない。また、前記炭化物におけるケイ素含有率
は、2〜25重量%、好ましくは4〜15重量%であ
る。ケイ素含有率が2重量%未満では、添加することに
よる電気容量改善効果が小さく、また25重量%を越え
ると炭化物が著しく固くなり、電気容量の更なる向上も
ほとんどなくなる。
The mixture of the organosilicon compound (A), the graphite (B) and the tar pitch (C) is solidified at 100 to 160 ° C. under stirring in the presence of an acid catalyst such as oxalic acid and formic acid. 0.01 to 600 ° C in an active gas atmosphere
The temperature is raised at a rate of 2 ° C./min, and then 0.01 to 0.2 ° C.
650-1000 ° C., preferably 700-900 ° C. in an inert gas atmosphere or in a vacuum at a rate of
More preferably, heat treatment is performed to 700 to 800 ° C. to obtain a carbide. You may crush this and use it as it is,
If necessary, vacuum heat treatment may be performed again at 700 to 900 ° C. The average particle size of the carbide is 5 to 15 μm.
m is preferred. The graphite content of the carbide is 5 to 75% by weight, preferably 20 to 70% by weight. If the graphite content is less than 5% by weight, the lithium ion secondary battery using this carbide as a negative electrode active material is inferior in quick chargeability, and if it exceeds 75% by weight, improvement in electric capacity cannot be exhibited. The silicon content of the carbide is 2 to 25% by weight, preferably 4 to 15% by weight. If the silicon content is less than 2% by weight, the effect of improving the electric capacity by addition is small, and if it exceeds 25% by weight, the carbides are extremely hardened and the electric capacity is hardly further improved.

【0013】本発明のリチウムイオン二次電池用負極
は、前記カーボン粒子単独または必要に応じて他のコー
クス、黒鉛等を混合し、これに、例えばカルボキシメチ
ルセルローズ、フッ素ゴム、ポリフッ化ビニリデン、ポ
リビニルピリジン、ポリビニルアルコール、ポリアクリ
ル酸塩、EPDMゴム、ジエン系ゴム等の何れか又は混
合物をバインダーとして混合したものからなる分散液
を、例えば1〜50μmの厚みを有する銅、ステンレ
ス、ニッケル等の金属箔、網状体、多孔体等の集電体の
上に塗布し、乾燥し、必要に応じてプレスして得られ
る。
The negative electrode for a lithium ion secondary battery of the present invention comprises the above-mentioned carbon particles alone or, if necessary, a mixture of other coke, graphite, etc., into which, for example, carboxymethyl cellulose, fluoro rubber, polyvinylidene fluoride, polyvinyl Dispersion composed of a mixture of any of pyridine, polyvinyl alcohol, polyacrylate, EPDM rubber, diene rubber, or a mixture thereof as a binder, for example, a metal such as copper, stainless steel, nickel, etc. having a thickness of 1 to 50 μm. It is obtained by applying it on a current collector such as a foil, a net, or a porous body, drying it, and pressing if necessary.

【0014】本発明でいう非水系二次電池にあっては、
正極が、リチウムコバルト酸化物としては、例えばLi
xCoyz2(但し、MはAl,In,Sn,Mn,F
e,Ti,Zr,Ceの中から選ばれた少なくとも1種
の金属を表し、x,y,zは各々0<x≦1.1、0.
5<y≦1、z≦0.15の数を表す)、LixCoO2
(0<x≦1.1)、LixCoyNiz2(0<x≦
1、y+z=1)、リチウムニッケル酸化物としては、
例えばLixNiO2(0<x≦1)、LixNiyz2
(但し、MはMn,Ti,Feの中から選ばれた少なく
とも1種の金属を表し、x,zは各々0<x≦1、0.
1<z≦0.5の数を表す)、リチウムマンガン酸化物
としては、例えばLiMnO3、LixMnO2(0<x
≦1)、LixMn24(0<x<2)、LiCoxMn
2-x4(0<x≦0.5)、LixMn2-yy4(但
し、MはNi,Co,Ti,Feの中から選ばれた少な
くとも1種の金属を表し、x,yは各々0.5≦x≦
2、0.1<y≦0.5の数を表す)、リチウム鉄酸化
物としては、例えばLiFeO2,LiFex1-x
2(但し、MはMn,Ti,Co,Niの中から選ばれ
た少なくとも1種の金属を表し、xは0<x≦0.2の
数を表す)である。また、電解液は、電解質が例えばL
iClO4,LiAsF6,LiPF6,LiBF4,CH
3SO3Li,CF3SO3Li,(CF3SO22NLi
等のリチウム塩のいずれか1種又は2種以上を混合した
もの、溶媒が例えばプロピレンカーボネート、エチレン
カーボネート、ジメチルカーボネート、ジエチルカーボ
ネート、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、1,3−ジオキソラ
ン、スルホラン、メチルスルホラン、アセトニトリル、
プロピオニトリル、ギ酸メチル、ギ酸エチル、酢酸メチ
ル、酢酸エチル、酢酸ブチル、酢酸ヘキシル、プロピオ
ン酸メチル、プロピオン酸エチル、プロピオン酸ブチ
ル、プロピオン酸ヘキシル、リン酸トリエチル、リン酸
トリエチルヘキシル、リン酸トリラウレル等のいずれか
1種又は2種以上を混合したもの、セパレーターが、ポ
リエチレン、ポリプロピレン等のポリオレフィン微多孔
膜の1種の単独膜或いはそれらの1種又は2種以上の貼
り合わせ膜、あるいは固体電解質膜、そして負極は炭素
質材料を活物質として用いるものをいう。
In the non-aqueous secondary battery according to the present invention,
The positive electrode is made of, for example, Li
x Co y M z O 2 (where, M is Al, In, Sn, Mn, F
e, at least one metal selected from Ti, Zr, and Ce, where x, y, and z are each 0 <x ≦ 1.1, 0.
5 <y ≦ 1, representing a number of z ≦ 0.15), Li x CoO 2
(0 <x ≦ 1.1), Li x Co y Ni z O 2 (0 <x ≦
1, y + z = 1), and as the lithium nickel oxide,
For example, Li x NiO 2 (0 <x ≦ 1), Li x Ni y MzO 2
(However, M represents at least one metal selected from Mn, Ti, and Fe, and x and z are each 0 <x ≦ 1, 0.
1 <z ≦ 0.5), and examples of the lithium manganese oxide include LiMnO 3 and Li x MnO 2 (0 <x
≦ 1), Li x Mn 2 O 4 (0 <x <2), LiCo x Mn
2-x O 4 (0 < x ≦ 0.5), Li x Mn 2-y M y O 4 ( where, M represents Ni, Co, Ti, at least one metal selected from among Fe , X, y are respectively 0.5 ≦ x ≦
2, 0.1 <y ≦ 0.5), and examples of the lithium iron oxide include LiFeO 2 , LiFe x M 1-x O
2 (where M represents at least one metal selected from Mn, Ti, Co, and Ni, and x represents a number satisfying 0 <x ≦ 0.2). Further, the electrolyte is, for example, L
iClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , CH
3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi
A mixture of any one or more of lithium salts such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ- Butyrolactone, tetrahydrofuran,
2-methyltetrahydrofuran, 1,3-dioxolan, sulfolane, methylsulfolane, acetonitrile,
Propionitrile, methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, hexyl acetate, methyl propionate, ethyl propionate, butyl propionate, hexyl propionate, triethyl phosphate, triethylhexyl phosphate, trilaurel phosphate Or a mixture of two or more of these, and the separator is a single membrane of a polyolefin microporous membrane such as polyethylene or polypropylene, or a laminated membrane of one or more thereof, or a solid electrolyte. The film and the negative electrode are those using a carbonaceous material as an active material.

【0015】本発明のリチウムイオン二次電池用負極
は、そのまま上述の正極、電解液、セパレーターあるい
は固体電解質膜と用いて、初充電時に正極からのリチウ
ムイオンをドーピングしてもよいし、予めリチウムイオ
ンをリチウム金属、リチウム合金、リチウムアルコキシ
ド、アルキルリチウム、ヨウ化リチウムと接触させてド
ーピングしておいてもよい。
The negative electrode for a lithium ion secondary battery of the present invention may be used as it is with the above-described positive electrode, electrolytic solution, separator or solid electrolyte membrane, and may be doped with lithium ions from the positive electrode during the first charge, or The ions may be contacted with lithium metal, lithium alloy, lithium alkoxide, alkyllithium, or lithium iodide for doping.

【0016】[0016]

【実施例】以下実施例、比較例により本発明を更に詳し
く説明するが、本発明はこれらに限定されるものではな
い。 (測定法) 電流効率(%)は、放電電気量/充電電気量×100
で表す。 負極活物質の放電容量(mAh/g)は、活物質であ
る当該炭化物重量当りの放電電気量としてもとめる。 リチウムイオン二次電池用負極の作成 実施例及び比較例で得られたカーボン粒子100重量部
に対して、バインダーとしてカルボキシメチルセルロー
ズ0.8重量部と、スチレン−ブタジエンの架橋ゴムラ
テックス粒子2.0重量部とを含む水性液を100重量
部加えて分散液とし、これを厚さ18μmの電解銅箔の
片面に塗工し、乾燥し、圧縮プレスする。これを作用極
とし、ポリエチレン微多孔膜を介してステンレスネット
に押しつけたリチウムシートを対極とし、1.0モルの
LiBF4のプロピレンカーボネート25%、エチレン
カーボネート25%、γ−ブチロラクトン50%の容積
分率の混合溶媒中で、最大1.0mA/cm2の電流密
度で充電を開始し8時間充電する。対Li/Li+電位
10mVまでドーピング(充電)する。放電は、対Li
/Li+電位1.5Vまで行い放電容量をもとめ、活物
質重量当りの放電電気量としてmAh/gで表示する。 急速充電性 3.0mA/cm2の電流密度の定電流で充電を開始
し、2時間充電した場合と、8時間充電した場合との放
電電気容量の比を百分率としてもとめ、80%以上を良
好と判定する。 ケイ素含有率は、炭化物を秤量後(Wg)、815℃
の空気中で燃焼し、灰化させたのち、これをNa22
Na2CO3に溶融した後、塩酸で抽出し、過塩素酸を加
えて白煙をあげるまで加熱する。これをろ過洗浄後、ろ
過物を1100℃まで加熱し、冷却後秤量(W1g)す
る。秤量後、フッ酸処理し、強熱灰化し、冷却後秤量
(W2g)する。灰化試料中のSiO2の含有量を SiO2%=(W1−W2)/W×100 の式からもとめ、更に炭化物のケイ素(Si)含有率に
換算する。 残留容量表示性 負極としての放電電圧が、0.5〜1.5Vまでの放電
電気量の比率(百分率)が、放電電気量の10%以上あ
るものを残留電池容量表示性が良好と判断する。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited thereto. (Measurement method) The current efficiency (%) is the amount of discharged electricity / the amount of charged electricity × 100.
Expressed by The discharge capacity (mAh / g) of the negative electrode active material is determined as the amount of discharge electricity per weight of the carbide as the active material. Preparation of negative electrode for lithium ion secondary battery 0.8 parts by weight of carboxymethyl cellulose as a binder and 100 parts by weight of carbon particles obtained in Examples and Comparative Examples, and crosslinked rubber latex particles of styrene-butadiene 2.0 And 100 parts by weight of an aqueous liquid containing 1 part by weight of the aqueous liquid, to obtain a dispersion, which is applied to one surface of an electrolytic copper foil having a thickness of 18 μm, dried, and compression-pressed. Using this as a working electrode, a lithium sheet pressed against a stainless steel net through a polyethylene microporous membrane was used as a counter electrode, and a volume fraction of 1.0 mol of LiBF 4 propylene carbonate 25%, ethylene carbonate 25%, and γ-butyrolactone 50% was used. In the mixed solvent at a rate of 1.0 mA / cm 2 at a maximum current density, charging is started for 8 hours. Doping (charging) is performed up to a Li / Li + potential of 10 mV. Discharge is to Li
/ Li + potential up to 1.5 V to determine the discharge capacity, which is expressed in mAh / g as the amount of discharge electricity per weight of active material. Quick chargeability Charge is started at a constant current of a current density of 3.0 mA / cm 2 , and the ratio of the discharge electric capacity between the case of charging for 2 hours and the case of charging for 8 hours is determined as a percentage, and 80% or more is good. Is determined. The silicon content was measured at 815 ° C. after weighing the carbide (Wg).
After being burned in the air and incinerated, it was converted to Na 2 O 2 +
After melting in Na 2 CO 3 , the mixture is extracted with hydrochloric acid, perchloric acid is added, and the mixture is heated until white smoke is obtained. After washing by filtration, the filtrate is heated to 1100 ° C., cooled and weighed (W 1 g). After weighing, it is treated with hydrofluoric acid, incinerated with high heat, weighed (W 2 g) after cooling. The content of SiO 2 in the incinerated sample is determined from the formula: SiO 2 % = (W 1 −W 2 ) / W × 100, and is further converted to the silicon (Si) content of carbide. Residual capacity display performance When the discharge voltage as the negative electrode is 0.5 to 1.5 V and the ratio (percentage) of the discharge power is 10% or more of the discharge power, it is determined that the residual battery capacity display performance is good. .

【0017】(実施例1)有機ケイ素化合物(A)とし
て平均重合度4のテトラメチルシリケートオリゴマーを
34重量部と、黒鉛(B)として人工黒鉛のジェットミ
ル粉砕品(平均粒子径3μm)を70重量部と、タール
ピッチ(C)として石炭系タールピッチ(軟化点80
℃)を30重量部と、レゾール型フェノール樹脂水溶液
17重量部(固形分として10重量部)とを加熱式ニー
ダーに入れて、撹拌下、常温から150℃まで2時間か
けて漸次上昇させ、重合、脱水、固化する。これを冷却
し、取り出して電気炉へ移す。そして、窒素雰囲気中
で、5℃/分の昇温速度で常温から200℃まで上昇さ
せ、以降0.2℃/分の昇温速度で600℃まで熱処理
し炭化させる。更に、2.0℃/分の昇温速度で昇温
し、700℃に到達した時点で窒素気流中で放冷する。
そして、炭化物を電気炉から取り出して粉砕し、200
メッシュのふるいにかける。200メッシュパス品によ
る負極評価結果を含めて、測定結果を表1に示す。
(Example 1) As an organosilicon compound (A), 34 parts by weight of a tetramethylsilicate oligomer having an average degree of polymerization of 4 and 70% of graphite (B) obtained by jet milling an artificial graphite (average particle size: 3 μm) were used. Parts by weight and a coal-based tar pitch (softening point 80
C.) and 30 parts by weight of a resole-type phenol resin aqueous solution (17 parts by weight as a solid content) in a heating kneader, and the temperature is gradually increased from room temperature to 150 ° C. over 2 hours with stirring. Dehydrates, solidifies. It is cooled, taken out and transferred to an electric furnace. Then, in a nitrogen atmosphere, the temperature is raised from room temperature to 200 ° C. at a rate of 5 ° C./min, and thereafter, heat treatment is performed to 600 ° C. at a rate of 0.2 ° C./min to carbonize. Further, the temperature is raised at a rate of 2.0 ° C./min, and when the temperature reaches 700 ° C., it is allowed to cool in a nitrogen stream.
Then, the carbide is taken out of the electric furnace and pulverized.
Sift through the mesh. Table 1 shows the measurement results including the evaluation results of the negative electrode using a 200 mesh pass product.

【0018】(実施例2)有機ケイ素化合物(A)とし
て平均重合度4のテトラメチルシリケートオリゴマーを
42重量部と、黒鉛(B)として天然黒鉛のジェットミ
ル粉砕品(平均粒子径2μm)を50重量部と、タール
ピッチ(C)として石炭系タールピッチ(軟化点89
℃)を73重量部と、10重量%の蓚酸水溶液を33重
量部とを加熱式ニーダーに入れて、撹拌下、常温から1
50℃まで4時間かけて漸次昇温し、脱水、固化する。
これを冷却し、取り出して電気炉へ移す。そして窒素雰
囲気中で、2℃/分の昇温速度で常温から200℃まで
上昇させ、以降0.2℃/分の昇温速度で750℃まで
熱処理し炭化させる。この炭化物を粉砕し、平均粒子径
6μmとしたものを、真空中、電気炉で750℃にて1
時間加熱処理した後、冷却し、電気炉から取り出す。2
00メッシュパス品による負極評価結果を含めて、測定
結果を表1に示す。
Example 2 42 parts by weight of a tetramethylsilicate oligomer having an average degree of polymerization of 4 as the organosilicon compound (A) and 50 parts of graphite (B) obtained by pulverizing a natural graphite by a jet mill (average particle size: 2 μm) were used. Parts by weight and coal-based tar pitch (softening point 89
° C) and 33 parts by weight of a 10% by weight aqueous oxalic acid solution in a heating kneader.
The temperature is gradually raised to 50 ° C. over 4 hours, dehydrated and solidified.
It is cooled, taken out and transferred to an electric furnace. Then, in a nitrogen atmosphere, the temperature is raised from room temperature to 200 ° C. at a rate of 2 ° C./min, and thereafter, heat treatment is performed to 750 ° C. at a rate of 0.2 ° C./min to carbonize. This carbide was pulverized to an average particle diameter of 6 μm, and the obtained powder was crushed at 750 ° C. in an electric furnace in vacuum.
After the heat treatment for an hour, the mixture is cooled and taken out of the electric furnace. 2
Table 1 shows the measurement results including the evaluation results of the negative electrode using the 00 mesh pass product.

【0019】(実施例3)有機ケイ素化合物(A)とし
てジメチルジフェニルシリケート(ジメトキシジフェノ
キシシラン)を67重量部と、黒鉛(B)として天然黒
鉛のジェットミル粉砕品(平均粒子径3μm)を20重
量部と、タールピッチ(C)として石炭系タールピッチ
(軟化点80℃)を73重量部と、10重量%の蓚酸水
溶液を33重量部とを加熱式ニーダーに入れて、撹拌
下、常温から160℃まで4時間かけて漸次昇温し、脱
水、固化する。これを冷却し、取り出し、粉砕後電気炉
へ移す。そして窒素雰囲気中で、5℃/分の昇温速度で
常温から200℃まで上昇させ、以降0.2℃/分の昇
温速度で750℃まで熱処理し炭化させる。この炭化物
を窒素気流中で冷却し、電気炉から取り出す。これを粉
砕し、200メッシュのふるいにかける。200メッシ
ュパス品による負極評価結果を含めて、測定結果を表1
に示す。
EXAMPLE 3 67 parts by weight of dimethyldiphenylsilicate (dimethoxydiphenoxysilane) as an organosilicon compound (A) and 20 parts of graphite (B) obtained by milling a natural graphite by a jet mill (average particle diameter: 3 μm) were used. Parts by weight, 73 parts by weight of a coal-based tar pitch (softening point: 80 ° C.) as a tar pitch (C), and 33 parts by weight of a 10% by weight aqueous oxalic acid solution are placed in a heating kneader, and the mixture is stirred and stirred at room temperature. The temperature is gradually raised to 160 ° C. over 4 hours to dehydrate and solidify. This is cooled, taken out, crushed and transferred to an electric furnace. Then, in a nitrogen atmosphere, the temperature is raised from room temperature to 200 ° C. at a rate of 5 ° C./min, and thereafter, heat treatment is performed to 750 ° C. at a rate of 0.2 ° C./min to carbonize. The carbide is cooled in a stream of nitrogen and removed from the electric furnace. This is ground and sieved through a 200 mesh sieve. Table 1 shows the measurement results, including the negative electrode evaluation results using a 200 mesh pass product.
Shown in

【0020】(実施例4)有機ケイ素化合物(A)とし
て平均重合度4のフルフリルシリケートオリゴマーを6
5重量部と、黒鉛(B)として天然黒鉛のジェットミル
粉砕品(実施例3と同一)を20重量部と、タールピッ
チ(C)として石炭系タールピッチ(実施例2と同一)
を73重量部と、10重量%の蓚酸水溶液を33重量部
とをヘンシェルミキサーで予備混合する。これを加熱式
ニーダーに入れて、撹拌下、常温から160℃まで4時
間かけて漸次昇温し、脱水、固化する。これを冷却し、
取り出して粉砕した後、電気炉へ移す。そして窒素雰囲
気中で、5℃/分の昇温速度で常温から200℃まで上
昇させ、以降600℃までは0.2℃/分の昇温速度
で、600℃以降は2℃/分の昇温速度で700℃まで
熱処理し、炭化させる。700℃に到達した時点で窒素
気流中で冷却し、電気炉から取り出す。この炭化物を粉
砕し、200メッシュのふるいにかける。200メッシ
ュパス品による負極評価結果を含めて、測定結果を表1
に示す。
Example 4 As an organosilicon compound (A), furfuryl silicate oligomer having an average degree of polymerization of 4 was used.
5 parts by weight, 20 parts by weight of a natural graphite jet mill ground product as graphite (B) (same as in Example 3), and coal-based tar pitch as tar pitch (C) (same as in Example 2)
Are premixed with 73 parts by weight of a oxalic acid aqueous solution and 33 parts by weight of a 10% by weight aqueous oxalic acid solution using a Henschel mixer. This is placed in a heating kneader, and while stirring, the temperature is gradually raised from room temperature to 160 ° C. over 4 hours to dehydrate and solidify. Cool this,
After being taken out and crushed, it is transferred to an electric furnace. Then, in a nitrogen atmosphere, the temperature is increased from room temperature to 200 ° C. at a rate of 5 ° C./min, and thereafter, at a rate of 0.2 ° C./min up to 600 ° C., and 2 ° C./min after 600 ° C. Heat treatment at a heating rate up to 700 ° C. to carbonize. When it reaches 700 ° C., it is cooled in a nitrogen stream and taken out of the electric furnace. The carbide is ground and sieved through a 200 mesh screen. Table 1 shows the measurement results, including the negative electrode evaluation results using a 200 mesh pass product.
Shown in

【0021】(実施例5)有機ケイ素化合物(A)とし
て実施例4と同一のフルフリルシリケートオリゴマーを
65重量部とテトラフェニルシリケート(テトラフェノ
キシシラン)33重量部と、黒鉛(B)として実施例3
と同一の黒鉛を40重量部と、10重量%の蓚酸水溶液
を33重量部とをヘンシェルミキサーで予備混合する。
これを加熱式ニーダーに入れて実施例4と同様に700
℃まで熱処理し、炭化させる。700℃に到達した時点
で窒素気流中で冷却し、電気炉から取り出す。この炭化
物を粉砕し、200メッシュのふるいにかける。200
メッシュパス品による負極評価結果を含めて、測定結果
を表1に示す。
(Example 5) As the organosilicon compound (A), 65 parts by weight of the same furfuryl silicate oligomer as in Example 4, 33 parts by weight of tetraphenylsilicate (tetraphenoxysilane), and graphite (B) were used. 3
40 parts by weight of the same graphite and 33 parts by weight of a 10% by weight aqueous oxalic acid solution are premixed with a Henschel mixer.
This was put in a heating kneader, and 700
Heat treated to ℃ and carbonized. When it reaches 700 ° C., it is cooled in a nitrogen stream and taken out of the electric furnace. The carbide is ground and sieved through a 200 mesh screen. 200
Table 1 shows the measurement results including the evaluation results of the negative electrode using the mesh pass product.

【0022】(比較例1)実施例4と同一の予備混合物
を加熱式ニーダーに入れて、実施例4と同様に昇温し、
1400℃まで昇温し、炭化させる。この炭化物を窒素
雰囲気中で冷却し、電気炉から取り出し、粉砕する。こ
れを200メッシュのふるいにかけ、200メッシュパ
ス品による負極評価結果を含めて、測定結果を表1に示
す。
Comparative Example 1 The same premix as in Example 4 was placed in a heating kneader and heated in the same manner as in Example 4,
The temperature is raised to 1400 ° C. and carbonized. The carbide is cooled in a nitrogen atmosphere, removed from the electric furnace, and pulverized. This was sieved through a 200-mesh sieve, and the measurement results are shown in Table 1, including the results of negative electrode evaluation using a 200-mesh pass product.

【0023】(比較例2)実施例4と同じフルフリルシ
リケートオリゴマーを100重量部と、蓚酸水溶液を3
3重量部(蓚酸3.3重量部相当)を実施例3と同様に
750℃で炭化し、評価する。その結果を表1に示す。
Comparative Example 2 100 parts by weight of the same furfuryl silicate oligomer as in Example 4 and 3 parts of an aqueous oxalic acid solution
3 parts by weight (corresponding to 3.3 parts by weight of oxalic acid) were carbonized at 750 ° C. in the same manner as in Example 3 and evaluated. Table 1 shows the results.

【0024】(比較例3)実施例2と同一のタールピッ
チを実施例3と同様に電気炉にて熱処理して炭化させ、
これを取り出し、粉砕する。200メッシュパス品によ
る負極評価結果を含めて評価結果を表1に示す。
(Comparative Example 3) The same tar pitch as in Example 2 was heat-treated in an electric furnace in the same manner as in Example 3 and carbonized.
Take it out and grind it. Table 1 shows the evaluation results including the negative electrode evaluation results of the 200 mesh pass product.

【0025】(比較例4)平均粒子径6μmの天然黒鉛
を負極評価し、その結果を含めて測定結果を表1に示
す。
Comparative Example 4 Natural graphite having an average particle diameter of 6 μm was evaluated for a negative electrode, and the measurement results including the results are shown in Table 1.

【0026】(比較例5)実施例2と同一の黒鉛を10
重量部と、実施例2と同一のタールピッチを164重量
部とを加熱式ニーダーに入れて、実施例4と同様に熱処
理し、炭化させる。この炭化物を窒素雰囲気中で冷却
し、電気炉から取り出して粉砕する。これを200メッ
シュのふるいにかけ、200メッシュパス品による負極
評価結果を含めて、測定結果を表1に示す。
Comparative Example 5 The same graphite as in Example 2
Parts by weight and 164 parts by weight of the same tar pitch as in Example 2 are put into a heating kneader, and heat-treated and carbonized as in Example 4. The carbide is cooled in a nitrogen atmosphere, taken out of the electric furnace and pulverized. This was sieved through a 200-mesh sieve, and the measurement results are shown in Table 1, including the results of negative electrode evaluation using a 200-mesh pass product.

【0027】[0027]

【表1】 [Table 1]

【0028】比較例1,2,5では、放電容量の点で劣
る。また、比較例2、比較例3では、真比重が低い。比
較例4は(黒鉛)は、急速充電性、残量容量表示性が劣
っている。
Comparative Examples 1, 2, and 5 are inferior in discharge capacity. In Comparative Examples 2 and 3, the true specific gravity is low. Comparative Example 4 (graphite) is inferior in quick chargeability and remaining capacity display.

【0029】[0029]

【発明の効果】本発明によれば、実施例1〜実施例5に
示す如く、真比重が1.8以上で天然黒鉛以上のきわめ
て高い放電容量を発現するとともに、急速充電性、残留
容量表示性にも優れたケイ素含有カーボン粒子が得ら
れ、またこのカーボン粒子を含んでなる高い電気容量を
有し安全性に優れたリチウムイオン二次電池用負極を提
供することが可能となる。
According to the present invention, as shown in Examples 1 to 5, an extremely high discharge capacity with a true specific gravity of 1.8 or more and natural graphite or more is exhibited, as well as rapid chargeability and residual capacity display. Silicon-containing carbon particles excellent in stability can be obtained, and it is possible to provide a negative electrode for a lithium ion secondary battery having high electric capacity including the carbon particles and excellent in safety.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−231273(JP,A) 特開 平8−40716(JP,A) 特開 平5−270938(JP,A) 特開 平7−315822(JP,A) 特開 平6−96759(JP,A) 特開 平6−279112(JP,A) 特開 平5−144474(JP,A) 特開 平7−307165(JP,A) 特開 平8−213012(JP,A) 特開 平8−111243(JP,A) 特表 平9−502566(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 C04B 35/52 H01M 4/58 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-231273 (JP, A) JP-A-8-40716 (JP, A) JP-A-5-270938 (JP, A) JP-A-7- 315822 (JP, A) JP-A-6-96759 (JP, A) JP-A-6-279112 (JP, A) JP-A-5-144474 (JP, A) JP-A-7-307165 (JP, A) JP-A-8-213012 (JP, A) JP-A-8-111243 (JP, A) Table 9-502566 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02 C04B 35/52 H01M 4/58

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式 (HO)n−Si−(OR)4-n (式中、nは0又は1〜3の整数であり、Rは有機基で
ある。)で示される単量体又は/及びその重合体から選
ばれる有機ケイ素化合物(A)と黒鉛(B)とからなる
ものを650〜1000℃で熱処理し、得られた炭化物
中、ケイ素が2〜25重量%、黒鉛が5〜75重量%で
あることを特徴とするケイ素含有カーボン粒子の製造方
法。
1. A monomer represented by the general formula (HO) n —Si— (OR) 4-n , wherein n is 0 or an integer of 1 to 3, and R is an organic group. And / or a heat treatment of an organosilicon compound (A) selected from a polymer thereof and graphite (B) at 650 to 1000 ° C., and 2 to 25% by weight of silicon and 5 to 5% by weight of graphite in the obtained carbide. To 75% by weight.
【請求項2】 一般式 (HO)n−Si−(OR)4-n (式中、nは0又は1〜3の整数であり、Rは有機基で
ある。)で示される単量体又は/及びその重合体から選
ばれる有機ケイ素化合物(A)と黒鉛(B)とタールピ
ッチ(C)とからなるものを650〜1000℃で熱処
理し、得られた炭化物中、ケイ素が2〜25重量%、黒
鉛が5〜75重量%であることを特徴とするケイ素含有
カーボン粒子の製造方法。
2. A monomer represented by the general formula (HO) n —Si— (OR) 4-n , wherein n is 0 or an integer of 1 to 3, and R is an organic group. And / or heat treatment of an organosilicon compound (A) selected from a polymer thereof, graphite (B), and tar pitch (C) at 650 to 1000 ° C., and silicon in the obtained carbide is 2 to 25. A method for producing silicon-containing carbon particles, wherein the content of graphite is 5 to 75% by weight.
【請求項3】 請求項1のカーボン粒子を含んでなるこ
とを特徴とするリチウムイオン二次電池用負極。
3. A negative electrode for a lithium ion secondary battery, comprising the carbon particles according to claim 1.
【請求項4】 請求項2のカーボン粒子を含んでなるこ
とを特徴とするリチウムイオン二次電池用負極。
4. A negative electrode for a lithium ion secondary battery, comprising the carbon particles according to claim 2.
JP07061719A 1995-02-24 1995-02-24 Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles Expired - Fee Related JP3091949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07061719A JP3091949B2 (en) 1995-02-24 1995-02-24 Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07061719A JP3091949B2 (en) 1995-02-24 1995-02-24 Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles

Publications (2)

Publication Number Publication Date
JPH08236104A JPH08236104A (en) 1996-09-13
JP3091949B2 true JP3091949B2 (en) 2000-09-25

Family

ID=13179320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07061719A Expired - Fee Related JP3091949B2 (en) 1995-02-24 1995-02-24 Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles

Country Status (1)

Country Link
JP (1) JP3091949B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903797B1 (en) * 1996-11-26 2010-06-23 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
WO1998053511A1 (en) * 1997-05-19 1998-11-26 Toyo Tanso Co., Ltd. Carbonaceous material for the anode of lithium ion secondary cell and lithium ion secondary cell made by using the carbonaceous material
JP2948205B1 (en) 1998-05-25 1999-09-13 花王株式会社 Method for producing negative electrode for secondary battery
JP4747392B2 (en) * 2000-01-12 2011-08-17 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP4792618B2 (en) * 2000-05-31 2011-10-12 日立化成工業株式会社 Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP4945862B2 (en) * 2001-08-02 2012-06-06 住友ベークライト株式会社 Carbon material and carbon material using the same
JP4770094B2 (en) * 2001-09-12 2011-09-07 住友ベークライト株式会社 Carbon material manufacturing method
US7790316B2 (en) * 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4998662B2 (en) * 2004-07-30 2012-08-15 信越化学工業株式会社 Si-C-O-based composite, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery
JP5169248B2 (en) * 2008-01-25 2013-03-27 東海カーボン株式会社 Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same
JP6274032B2 (en) 2013-08-19 2018-02-07 Jsr株式会社 Method for manufacturing electrode material, electrode and power storage device

Also Published As

Publication number Publication date
JPH08236104A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP5589154B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material and method for producing the same
JP2674793B2 (en) Non-aqueous electrolyte battery
TW587350B (en) Composite graphite material and production method thereof, negative electrode material using the material, negative electrode and lithium ion rechargeable battery
JP4046601B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery using the same
JP6939979B2 (en) Silicon nanoparticles and non-aqueous secondary batteries using them Active materials for negative electrodes and secondary batteries
WO2009133807A1 (en) Carbon material for negative electrode of lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery and lithium secondary battery
JP2019012646A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004519408A (en) Spherical carbon and method for producing the same (SPHERICALCARBONSANDMETHODFORPARPARINGTHESAME)
JPH03252053A (en) Nonaqueous electrolyte secondary battery
JP2003223892A (en) Lithium secondary battery and method for manufacturing negative electrode material therefor
JP3091949B2 (en) Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles
TW201929300A (en) Negative electrode active substance and production method therefor
CN102428595B (en) Anode active material for lithium secondary battery, negative electrode for lithium secondary battery electrode, use their vehicle-mounted lithium secondary battery and the manufacture method of anode active material for lithium secondary battery
JP3289231B2 (en) Negative electrode for lithium ion secondary battery
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP3091944B2 (en) Method for producing carbon particles for negative electrode of lithium ion secondary battery
JP4123313B2 (en) Carbon material for negative electrode, method for producing the same, and lithium secondary battery using the same
JP3875048B2 (en) Method for producing negative electrode active material
JP6195660B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
JP2003187798A (en) Lithium secondary battery
JPH07302594A (en) Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle
JP2005135659A (en) Method of manufacturing negative electrode of lithium ion secondary battery
JP3091943B2 (en) Method for producing carbon particles for negative electrode of non-aqueous secondary battery and carbon particles obtained by the method
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees