WO2022172585A1 - Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery - Google Patents

Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2022172585A1
WO2022172585A1 PCT/JP2021/046423 JP2021046423W WO2022172585A1 WO 2022172585 A1 WO2022172585 A1 WO 2022172585A1 JP 2021046423 W JP2021046423 W JP 2021046423W WO 2022172585 A1 WO2022172585 A1 WO 2022172585A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
group
silicon
Prior art date
Application number
PCT/JP2021/046423
Other languages
French (fr)
Japanese (ja)
Inventor
培新 諸
聡 片野
賢一 川瀬
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022514554A priority Critical patent/JP7088438B1/en
Publication of WO2022172585A1 publication Critical patent/WO2022172585A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the negative electrode active material.
  • lithium ion secondary batteries (sometimes abbreviated as LIB) are rapidly being developed for electric vehicles (EV), and their industrial application range continues to expand.
  • Carbon-based graphite active materials (natural and artificial) are widely used as negative electrode materials for lithium ion secondary batteries. Due to evolution, the improvement of battery capacity is approaching the limit.
  • silicon (Si) can form an alloy (intermetallic compound) with metallic lithium, it can electrochemically store and release lithium ions.
  • the lithium ion storage/discharge capacity has a theoretical capacity of 4200 mAh/g when Li 22 Si 5 is formed, which can be much higher than that of a graphite negative electrode.
  • Patent Documents 1 to 3 below describe silicon-based compounds used as negative electrode active materials in non-aqueous electrolyte secondary batteries such as LIB.
  • the problem to be solved by the present invention is a negative electrode active material having excellent charge-discharge characteristics (charge-discharge capacity, initial coulombic efficiency and cycle characteristics), a non-aqueous electrolyte secondary battery using the same, and
  • An object of the present invention is to provide a method for producing a negative electrode active material.
  • Formula 1 0.7 ⁇ A/B ⁇ 3.0
  • A Area intensity of the peak within the range of -70 ppm to -90 ppm attributed to Si (zero valence)
  • B Area intensity of the peak within the range of -90 ppm to -130 ppm derived from the bond of SiO 4 [2]
  • the Raman spectrum of the composite particles has scattering peaks near 1590 cm ⁇ 1 and 1330 cm ⁇ 1 attributed to the G band and D band of the carbon structure, and their scattering peak intensity ratio I (G band/D band) is The negative electrode active material according to [1], which is in the range of 0.7 to 2.0.
  • BET specific surface area
  • a nonaqueous electrolyte secondary battery comprising the negative electrode active material according to any one of [1] to [4].
  • Step 1 A silicon (zero-valent) slurry pulverized by a wet method is mixed with an aggregate containing a polysiloxane compound and a carbon source resin, stirred and dried to obtain a precursor
  • Step 2 Obtained in Step 1 above Step 3 of obtaining a fired product by firing the precursor in an inert atmosphere within a temperature range of a maximum temperature of 1000° C. to 1180° C.: Pulverizing the fired product obtained in Step 2 to obtain a negative electrode active material.
  • the negative electrode active material of the present invention is obtained by skillfully controlling the combination of Si (zero valence), silicon oxycarbide (SiOC), and a matrix phase containing a carbonaceous phase, and by skillfully controlling the structure of the carbon phase.
  • Si zero valence
  • SiOC silicon oxycarbide
  • the inherent silicon nanoparticles are likely to exhibit performance, and the charge and discharge performance, especially the cycle characteristics, when used as a secondary battery are excellent.
  • the negative electrode active material of the present invention in a non-aqueous electrolyte secondary battery, the charge/discharge capacity, the initial coulombic efficiency, and the cycle characteristics can be exhibited at a high level at the same time.
  • the negative electrode active material of the present invention is a negative electrode active material containing composite particles in which silicon nanoparticles are dispersed in a matrix containing silicon oxycarbide and a carbonaceous phase, and the composite particles are obtained from a 29 Si-NMR spectrum.
  • the chemical shift value satisfies the following formula 1.
  • Formula 1 0.7 ⁇ A/B ⁇ 3.0
  • A Area intensity of the peak within the range of ⁇ 70 ppm to ⁇ 90 ppm attributed to Si (0 valence)
  • B Area intensity of the peak within the range of ⁇ 90 ppm to ⁇ 130 ppm derived from the bond of SiO 4
  • the composite particles have a structure in which silicon nanoparticles are uniformly dispersed in a three-dimensional network structure of SiOC composed of elements Si, O, and C and a matrix composed of carbon.
  • the type of atom (O or C) that bonds to Si and the number of bonds with each atom can be mainly divided into three types, each of which is SiO 2 C 2 , SiO 3 C, and SiO 4 domains. Silicon oxycarbide (SiOC) described above is obtained by further randomly combining these domains.
  • the chemical shift (solid-state NMR) of the SiO 3 C domain is in the range of ⁇ 60 ppm to ⁇ 80 ppm (central position ⁇ 70 ppm), and overlaps somewhat with the peak derived from Si (zero valence).
  • the fact that the chemical shift value obtained from the 29 Si-NMR spectrum satisfies the above formula 1 means that the silicon nanoparticles (Si: 0 valence) and silicon oxycarbide (SiOC) in the composite particles It means that the ratio with the existing SiO 4 is optimal, which makes it easy for the silicon nanoparticles to exhibit performance, and when used as a secondary battery, the charge-discharge performance, especially the cycle characteristics, is excellent.
  • the above A/B is more preferably in the range of 0.8 ⁇ A/B ⁇ 2.9, still more preferably in the range of 0.9 ⁇ A/B ⁇ 2.8.
  • the negative electrode active material of the present invention has an active material structure in which single silicon particles (zero valence) are present in a matrix of SiOC skeleton and carbon.
  • the SiOC skeleton is characterized by high chemical stability, and the composite structure with the carbon phase facilitates the diffusion of lithium ions as the electronic transition resistance is reduced.
  • the single silicon particles zero valence
  • the function of preventing direct contact between the silicon particles and the electrolytic solution may be exhibited. Therefore, while the single silicon particles in the negative electrode active material of the present invention play a role as a main component for the expression of charge/discharge performance, the chemical reaction between the silicon and the electrolyte solution is avoided during charge/discharge, thereby maximizing the performance deterioration of the silicon particles. can be prevented.
  • SiOC causes changes in the electron distribution inside SiOC due to the approach of lithium ions, and electrostatic bonds and coordinate bonds are formed between SiOC and lithium ions. Lithium ions are stored in the framework of SiOC. Since the energy of these coordination bonds is relatively low, the desorption reaction of lithium ions is easily carried out. That is, SiOC can reversibly cause lithium ion insertion/extraction reactions during charging and discharging. Therefore, by capturing this mechanism, we have found that the ratio of silicon nanoparticles ( Si:0 valence) to SiO4 strongly contributes to the improvement of the reversible capacity and can improve the first coulombic efficiency.
  • the 29 Si-NMR spectrum can be easily obtained using a solid-state NMR apparatus, and the solid-state NMR measurements herein are performed using, for example, an apparatus manufactured by JEOL Co., Ltd. (JNM-ECA600). is.
  • the area intensity ratio (A/B) of the above peaks was obtained by single-pulse measurement with an 8 mm probe after 10 minutes of tuning with a solid-state NMR spectrometer. Then, waveform separation is performed using the Gauss+Lorentz function.
  • the ratio of the area intensity (A) of the peak in the range of -70 ppm to -90 ppm to the area intensity (B) of the peak in the range of -90 ppm to -130 ppm Obtained by asking.
  • the negative electrode active material of the present invention has a carbon structure G band (graphite long period carbon lattice structure) and D band (graphite short period carbon lattice structure with disorder and defects) in the Raman spectrum of the composite particles containing the carbonaceous phase.
  • the scattering peak intensity ratio I (G band/D band) is preferably in the range of 0.7 to 2.0.
  • the scattering peak intensity ratio I is preferably 0.7 to 1.8.
  • the fact that the scattering peak intensity ratio I is within the above range means the following for the carbonaceous phase in the matrix.
  • the negative electrode active material of the present invention has a carbonaceous phase composed only of carbon together with the SiOC skeleton structure and the like in the matrix. Some carbon atoms in this carbonaceous phase are bonded to some Si atoms in the SiOC skeleton. This carbonaceous phase is an important component that affects charge-discharge characteristics.
  • the carbon phase is formed in SiOC composed of SiO 2 C 2 , SiO 3 C, and SiO 4 , and is bonded to some Si atoms of the SiOC, so the inside of SiOC and the surface electron transfer between Si atoms and free carbon becomes easier. Therefore, it can be considered that the intercalation/deintercalation reaction of lithium ions proceeds rapidly during charge/discharge, and the charge/discharge characteristics are improved.
  • the negative electrode active material may slightly expand or contract due to the insertion/extraction reaction of lithium ions, the presence of free carbon in the vicinity of the expansion/contraction of the active material as a whole mitigates the expansion/contraction. This is considered to have the effect of greatly improving the cycle characteristics.
  • Some carbonaceous phases are formed due to thermal decomposition of precursor silane compounds in an inert gas atmosphere. Specifically, carbonizable sites and substituents in the molecular structure of the silane compound become carbon components by high-temperature pyrolysis in an inert atmosphere, and some of these carbons become part of the SiOC skeleton. There are features that connect The carbonizable component is not particularly limited, but hydrocarbons are preferred, alkyls, alkylenes, alkenes, alkynes and aromatics are more preferred, and aromatics are more preferred.
  • the carbonaceous phase of the present invention some are obtained by thermal decomposition of the carbon source resin. These carbons also lead to the effect of reducing the resistance of the active material, and are considered to be able to flexibly follow the volume change of the silicon particles during charging and discharging when used in the negative electrode of the secondary battery.
  • the type of carbon source resin is not particularly limited, but a carbon compound containing a six-membered carbon ring is preferred.
  • the amount of the carbonaceous phase can affect the charge/discharge characteristics of the negative electrode active material. If the amount of carbon is insufficient, the electrical conductivity may be poor and the charge/discharge characteristics may be deteriorated. On the other hand, if the amount of carbon is too large, the charge/discharge capacity of the entire negative electrode active material may decrease because the theoretical capacity of carbon itself is low.
  • the existing state of the carbonaceous phase can be identified by thermal analysis (TG-DTA) as well as Raman spectrum. Unlike the C atoms in the SiOC skeleton, the carbonaceous phase is easily thermally decomposed in the atmosphere, and the amount of carbon present can be determined from the amount of thermogravimetric loss measured in the presence of air. That is, the carbon content can be quantified by using a Thermogravimeter-Differential Thermal Analyzer (TG-DTA). In addition, thermal decomposition temperature behavior (decomposition reaction start temperature, decomposition reaction end temperature, number of thermal decomposition reaction species, temperature of maximum weight loss in each thermal decomposition reaction species, etc.) obtained from the thermal weight loss behavior from the measurement.
  • TG-DTA Thermogravimeter-Differential Thermal Analyzer
  • the C atoms in the SiOC skeleton that is, the carbon atoms bonded to the Si atoms constituting the SiO 2 C 2 , SiO 3 C, and SiO 4 have very strong chemical bonds and are therefore thermally stable. It is considered that it will not be thermally decomposed in the air in the temperature range measured by the thermal analyzer.
  • the carbon in the active material of the present invention since the carbon in the active material of the present invention has properties similar to those of hard carbon, it is thermally decomposed in the air in the temperature range of about 550° C. to 900° C., resulting in rapid weight loss. Occur.
  • the maximum temperature of the TG-DTA measurement conditions is not particularly limited, but in order to completely complete the thermal decomposition reaction of carbon, the TG-DTA measurement is performed under conditions from room temperature (about 25°C) to 1000°C or higher in the air. It is preferable to
  • the ratio of the carbonaceous phase present is important, and the content is preferably 30% to 85% by weight of the total weight of the matrix. Also, the content of the carbonaceous phase is more preferably 40% to 70% by weight, more preferably 45% to 60% by weight. When the content of the carbonaceous phase is within the above range, a sufficient effect of reducing the resistance of the active material can be obtained, and the permeation of the electrolyte into the active material is suppressed. Generation of interfacial electrolyte decomposition products (SEI) may be suppressed.
  • SEI interfacial electrolyte decomposition products
  • the silicon nanoparticles are obtained by pulverizing silicon (zero-valent) particles into nano particles.
  • the presence of the silicon (0-valent) particles can improve charge/discharge capacity and initial coulombic efficiency when used as a secondary battery.
  • the ratio of silicon nanoparticles (Si: 0 valence) to SiO 4 is important, and it is important to satisfy formula 1 above.
  • the silicon nanoparticles can be pulverized using a pulverizer such as a ball mill, bead mill, or jet mill.
  • a pulverizer such as a ball mill, bead mill, or jet mill.
  • the pulverization may be wet pulverization, and there is no particular limitation on the solvent composition as long as the pulverization process can be performed well as an organic solvent, but alcohols, ketones, etc. can be preferably used, but toluene, xylene, naphthalene. , methylnaphthalene, and other aromatic hydrocarbon solvents can also be used.
  • the content of silicon nanoparticles in the composite particles is not particularly limited, but the battery capacity can be controlled by adjusting the content of silicon nanoparticles.
  • the content ratio of silicon particles in the composite particles is preferably 1% by mass to 80% by mass, more preferably 10% by mass to 70% by mass, and more preferably 20% by mass to 60% by mass. % by mass is more preferred.
  • the charge-discharge capacity when used as a negative electrode material for a battery can be increased, and the capacity is superior to graphite as a negative electrode material, and the initial coulomb efficiency is also high. level can be maintained.
  • the silicon particles are sufficiently coated with the matrix containing the silicon oxycarbide and the carbonaceous phase, and the volume expansion and contraction changes of the active material during charging and discharging may be effectively suppressed. Improves properties.
  • the average particle diameter (D50) of the silicon nanoparticles is preferably 10 nm to 300 nm, more preferably 20 nm to 250 nm, still more preferably 30 nm to 200 nm.
  • the average particle size (D50) can be measured by a dynamic light scattering method using a laser particle size analyzer or the like. Silicon particles having a large size exceeding 300 nm become large lumps, and are likely to be pulverized during charge/discharge, so it is assumed that the charge/discharge performance of the active material tends to decrease. On the other hand, since silicon particles having a small size of less than 10 nm are too fine, the silicon particles tend to agglomerate.
  • the average particle diameter (D50) is the particle diameter at which the volume cumulative distribution curve is drawn from the small diameter side in the particle diameter distribution of the silicon nanoparticles in the negative electrode active material, and the cumulative distribution is 50%.
  • the average particle size (D50) can be measured with a laser diffraction particle size distribution analyzer or the like.
  • the negative electrode active material of the present invention contains composite particles in which silicon nanoparticles are dispersed inside a matrix containing silicon oxycarbide (SiOC) and a carbonaceous phase.
  • Silicon oxycarbide (SiOC) is a structure having a Si--O--C skeleton structure composed of silicon (excluding zero valence), oxygen and carbon. SiOC can be formed by baking a polysiloxane compound as described in the production method below. The details of the Si--O--C skeleton structure will be described later in the manufacturing method of the polysiloxane structure.
  • the average particle size (D50) of the composite particles is preferably 1 ⁇ m to 20 ⁇ m, more preferably 2 ⁇ m to 18 ⁇ m. If the average particle diameter (D50) is too small, the amount of SEI generated during charging and discharging increases as the specific surface area increases significantly, which may reduce the reversible charge-discharge capacity per unit volume. Electrode film preparation becomes difficult, and there is a possibility that it may peel off from the current collector.
  • the specific surface area (BET) of the composite particles is preferably in the range of 1 m 2 /g to 20 m 2 /g, more preferably in the range of 3 m 2 /g to 18 m 2 /g.
  • the specific surface area (BET: Brunauer-Emmett-Teller) can be determined by nitrogen gas adsorption measurement, and can be easily measured using a general-purpose specific surface area measuring device.
  • the composite particles may have a coating layer mainly composed of low-crystalline carbon with an average thickness of 10 nm or more and 300 nm or less on the surface.
  • the average thickness is preferably 20 nm or more and 200 nm or less. Since the composite particles have a coating layer with the above average thickness, it is possible to protect the silicon nanoparticles exposed on the particle surface, thereby improving the chemical stability and thermal stability of the composite particles. Performance degradation can be further suppressed.
  • the negative electrode active material of the present invention preferably includes the following steps 1 to 3 as the manufacturing steps of the composite particles.
  • Step 1 A silicon (zero-valent) slurry pulverized by a wet method is mixed with an aggregate containing a polysiloxane compound and a carbon source resin, stirred and dried to obtain a precursor
  • Step 2 Obtained in Step 1 above Step 3 of obtaining a fired product by firing the precursor in an inert atmosphere within a temperature range of a maximum temperature of 1000° C. to 1180° C.: Pulverizing the fired product obtained in Step 2 to obtain a negative electrode active material. obtain
  • Step 1> Silicon (zero valent) slurry
  • the wet-milled silicon (zero-valent) slurry (slurry of silicon nanoparticles described above) used in step 1 can be prepared using an organic solvent and a wet powder mill.
  • a dispersant may be used to facilitate the grinding of the silicon particles in the organic solvent.
  • the wet pulverizer is not particularly limited, and includes roller mills, jet mills, high-speed rotary pulverizers, container-driven mills, bead mills, and the like.
  • the organic solvent is not particularly limited as long as it does not chemically react with silicon.
  • Examples thereof include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; alcohols such as ethanol, methanol, normal propyl alcohol and isopropyl alcohol; aromatic benzene, toluene and xylene.
  • the type of the dispersant is not particularly limited, and aqueous or non-aqueous known and commonly used commercial products can be used. preferable.
  • Types of non-aqueous dispersants include polymer type (polyether type, polyalkylene polyamine type, polycarboxylic acid partial alkyl ester type, etc.), low molecular type (polyhydric alcohol ester type, alkyl polyamine type, etc.), and inorganic type.
  • a polyphosphate system etc. are illustrated.
  • the concentration of silicon in the (0-valent) silicon slurry is not particularly limited, but is preferably in the range of 5% by mass to 40% by mass, more preferably 10% by mass to 30% by mass.
  • the polysiloxane compound used in step 1 is not particularly limited as long as it is a resin containing at least one of polycarbosilane, polysilazane, polysilane and polysiloxane structures. These single resins may be used, or composite resins having these as segments and chemically bonding with other polymer segments may be used. There are copolymers of graft, block, random, alternating, etc. complexing forms.
  • composite resins that have a graft structure in which polysiloxane segments and side chains of polymer segments are chemically bonded
  • composite resins that have a block structure in which polysiloxane segments are chemically bonded to the ends of polymer segments. mentioned.
  • the polysiloxane segment preferably has a structural unit represented by the following general formula (S-1) and/or the following general formula (S-2).
  • the polysiloxane compound more preferably has a carboxy group, an epoxy group, an amino group, or a polyether group at the side chain or end of the siloxane bond (Si--O--Si) backbone.
  • R 1 represents an aromatic hydrocarbon substituent or an alkyl group, an epoxy group, a carboxy group, etc.
  • R 2 and R 3 each represent an alkyl group, Cycloalkyl group, aryl group, aralkyl group, epoxy group, carboxy group, etc.
  • Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1 -dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl- 2-methylpropyl group, 1-ethyl-1-methylpropyl group
  • aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
  • the aralkyl group includes, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
  • polymer segments other than the polysiloxane segment possessed by the polysiloxane compound include vinyl polymer segments such as acrylic polymers, fluoroolefin polymers, vinyl ester polymers, aromatic vinyl polymers, and polyolefin polymers, Examples include polymer segments such as polyurethane polymer segments, polyester polymer segments, and polyether polymer segments. Among them, a vinyl polymer segment is preferred.
  • the polysiloxane compound may be a composite resin in which polysiloxane segments and polymer segments are bonded in a structure represented by the following structural formula (S-3), or may have a three-dimensional network-like polysiloxane structure.
  • the carbon atom is the carbon atom that constitutes the polymer segment, and the two silicon atoms are the silicon atoms that constitute the polysiloxane segment.
  • the polysiloxane segment of the polysiloxane compound may have a functional group capable of reacting by heating, such as a polymerizable double bond, in the polysiloxane segment.
  • a functional group capable of reacting by heating such as a polymerizable double bond
  • the cross-linking reaction proceeds and the polysiloxane compound is solidified, thereby facilitating the thermal decomposition treatment.
  • polymerizable double bonds examples include vinyl groups and (meth)acryloyl groups. Two or more polymerizable double bonds are preferably present in the polysiloxane segment, more preferably 3 to 200, and even more preferably 3 to 50. In addition, by using a composite resin having two or more polymerizable double bonds as the polysiloxane compound, the cross-linking reaction can be facilitated.
  • the polysiloxane segment may have silanol groups and/or hydrolyzable silyl groups.
  • Hydrolyzable groups in hydrolyzable silyl groups include, for example, halogen atoms, alkoxy groups, substituted alkoxy groups, acyloxy groups, phenoxy groups, mercapto groups, amino groups, amido groups, aminooxy groups, iminooxy groups, alkenyloxy and the like, and the hydrolyzable silyl group becomes a silanol group by hydrolysis of these groups.
  • a hydrolytic condensation reaction proceeds between the hydroxyl group in the silanol group and the hydrolyzable group in the hydrolyzable silyl group, thereby obtaining a solid polysiloxane compound. can.
  • the silanol group referred to in the present invention is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom.
  • the hydrolyzable silyl group referred to in the present invention is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom. Specifically, for example, a group represented by the following general formula (S-4) is mentioned.
  • R4 represents a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group
  • R5 represents a halogen atom, an alkoxy group, an acyloxy group, an allyloxy group, a mercapto group, an amino group, an amido group, an aminooxy group, iminooxy group or alkenyloxy group
  • b is an integer of 0 to 2.
  • Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1 -dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl- 2-methylpropyl group, 1-ethyl-1-methylpropyl group
  • aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
  • the aralkyl group includes, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
  • the halogen atom includes, for example, fluorine atom, chlorine atom, bromine atom, iodine atom and the like.
  • alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, and tert-butoxy groups.
  • acyloxy groups include formyloxy, acetoxy, propanoyloxy, butanoyloxy, pivaloyloxy, pentanoyloxy, phenylacetoxy, acetoacetoxy, benzoyloxy, naphthoyloxy and the like.
  • the allyloxy group includes, for example, phenyloxy, naphthyloxy and the like.
  • alkenyloxy groups include vinyloxy, allyloxy, 1-propenyloxy, isopropenyloxy, 2-butenyloxy, 3-butenyloxy, 2-petenyloxy, 3-methyl-3-butenyloxy, 2 -hexenyloxy group and the like.
  • Examples of the polysiloxane segment having the structural unit represented by the above general formula (S-1) and/or the above general formula (S-2) include those having the following structures.
  • the polymer segment may have various functional groups as necessary to the extent that the effects of the present invention are not impaired.
  • Such functional groups include, for example, carboxyl group, blocked carboxyl group, carboxylic anhydride group, tertiary amino group, hydroxyl group, blocked hydroxyl group, cyclocarbonate group, epoxy group, carbonyl group, primary amide group, secondary Amide, carbamate groups, functional groups represented by the following structural formula (S-5), and the like can be used.
  • polymer segment may have polymerizable double bonds such as vinyl groups and (meth)acryloyl groups.
  • the above polysiloxane compound can be produced by known methods, but is preferably produced by the methods shown in (1) to (3) below. However, it is not limited to these.
  • a polymer segment containing a silanol group and/or a hydrolyzable silyl group is prepared in advance, and the polymer segment and the silanol group and/or the hydrolyzable silyl group are and a method of mixing with a silane compound containing a silane compound having a polymerizable double bond and performing a hydrolytic condensation reaction.
  • a polymer segment containing a silanol group and/or a hydrolyzable silyl group is prepared in advance.
  • Polysiloxane is also prepared in advance by subjecting a silane compound containing a silane compound having both a silanol group and/or a hydrolyzable silyl group and a polymerizable double bond to a hydrolytic condensation reaction. Then, a method of mixing the polymer segment and polysiloxane and performing a hydrolytic condensation reaction.
  • the carbon source resin used in step 1 is not particularly limited as long as it has good miscibility with the polysiloxane compound at the time of precursor preparation, and may be carbonized by baking at high temperature in an inert atmosphere. It is preferable to use synthetic resins or natural chemical raw materials possessed by the resin, and it is more preferable to use phenolic resin from the viewpoint of inexpensive availability and elimination of impurities.
  • Synthetic resins include thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, and thermosetting resins such as phenol resin and furan resin.
  • Natural chemical raw materials include heavy oils, especially tar pitches such as coal tar, light tar oil, medium tar oil, heavy tar oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, and oxygen-crosslinked petroleum pitch. , heavy oil, etc.
  • the carbon source resin is preferably a resin containing an aromatic hydrocarbon moiety
  • the resin containing an aromatic hydrocarbon moiety is a phenol resin, an epoxy resin, or a thermosetting resin. It is preferably a flexible resin.
  • the aggregate containing the silicon (zero-valent) slurry, the polysiloxane compound and the carbon source resin is uniformly mixed and stirred, and then the solvent is removed and dried to obtain a precursor.
  • Mixing of raw materials is not particularly limited, but a general-purpose apparatus having a dispersing/mixing function can be used. Among them, stirrers, ultrasonic mixers, premix dispersers and the like are mentioned.
  • a dryer, a reduced-pressure dryer, a spray dryer, or the like can be used for solvent removal and drying for the purpose of distilling off the organic solvent.
  • This negative electrode active material precursor contains 3% to 50% by mass of silicon nanoparticles, which are silicon (zero valent), and 15% to 85% by mass of the solid content of a polysiloxane compound, and the carbon source resin It is preferable to set the solid content of 3% to 70% by mass, the solid content of the silicon nanoparticles is 8% to 40% by mass, and the solid content of the polysiloxane compound is 20% to 70% by mass. Furthermore, it is more preferable to set the solid content of the carbon source resin to 3% by mass to 60% by mass.
  • Step 2 the precursor obtained in step 1 is fired in an inert atmosphere at a maximum temperature of 1000° C. to 1180° C. to completely decompose the thermally decomposable organic components and other components.
  • the main component is made into a sintered material suitable for the negative electrode active material of the present invention by precisely controlling the sintering conditions.
  • Si—O—C Si—O—C skeleton structure
  • SiOC uniformly dispersed carbon source resin
  • step 2 the precursor obtained in step 1 above is fired in an inert atmosphere according to a firing program determined by the rate of temperature increase, holding time at a constant temperature, and the like.
  • the maximum attainable temperature is the maximum temperature to be set, and strongly affects the structure and performance of the negative electrode active material, which is the baked product.
  • the maximum temperature is 1000° C. to 1180° C., the fine structure of the negative electrode active material having the above-described chemical bonding state of silicon and carbon can be precisely controlled, and the oxidation of silicon particles by excessive high temperature firing. can also be avoided, resulting in better charge/discharge characteristics.
  • the calcination method is not particularly limited, but a reaction apparatus having a heating function may be used in an inert atmosphere, and continuous or batchwise processing is possible.
  • a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln, or the like can be appropriately selected as the firing apparatus according to the purpose.
  • Step 3 is a step for obtaining the negative electrode active material of the present invention by pulverizing the baked product obtained in Step 2 and classifying if necessary.
  • the pulverization may be carried out in one step until the target particle size is obtained, or may be carried out in several steps.
  • the fired product is lumps or agglomerated particles of 10 mm or more and to produce an active material of 10 ⁇ m
  • it is coarsely pulverized with a jaw crusher, roll crusher, etc. to make particles of about 1 mm, and then 100 ⁇ m with a glow mill, ball mill, etc. and pulverized to 10 ⁇ m with a bead mill, jet mill, or the like.
  • Particles produced by pulverization may contain coarse particles, and in order to remove them, or to adjust the particle size distribution by removing fine powder, classification is performed.
  • the classifier to be used may be a wind classifier, a wet classifier, or the like depending on the purpose, but when removing coarse particles, the classification method through a sieve is preferable because the purpose can be reliably achieved.
  • the precursor mixture is controlled to have a shape close to the target particle size by spray drying or the like before the main firing and the main firing is performed in that shape, the pulverization step can of course be omitted.
  • the negative electrode active material of the present invention exhibits excellent charge/discharge characteristics as described above, it exhibits good charge/discharge characteristics when used as a battery negative electrode.
  • a slurry composed of the negative electrode active material of the present invention and an organic binder as essential components and, if necessary, other components such as a conductive aid is applied to a current collector copper foil as a thin film. It can be used as a negative electrode in the following manner.
  • a negative electrode can also be produced by adding a known and commonly used carbon material such as graphite to the above slurry.
  • Carbon materials such as graphite include natural graphite, artificial graphite, hard carbon, and soft carbon. Since the negative electrode obtained in this way contains the negative electrode active material of the present invention as an active material, it has a high capacity and excellent cycle characteristics, and furthermore, it becomes a negative electrode for a secondary battery that also has excellent initial coulombic efficiency. .
  • the negative electrode is prepared, for example, by kneading the negative electrode active material for a secondary battery and a binder, which is an organic binder, together with a solvent using a dispersing device such as a stirrer, a ball mill, a super sand mill, and a pressure kneader.
  • It can be obtained by preparing a material slurry and coating it on a current collector to form a negative electrode layer. It can also be obtained by forming a paste-like negative electrode material slurry into a sheet-like or pellet-like shape and integrating this with a current collector.
  • organic binder examples include, but are not limited to, styrene-butadiene rubber copolymer (SBR); ethylenically unsaturated carboxylic acid esters (e.g., methyl (meth) acrylate, ethyl (meth) acrylate, butyl ( (meth)acrylates, (meth)acrylonitrile, and hydroxyethyl (meth)acrylate, etc.), and ethylenically unsaturated carboxylic acids (e.g., acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.).
  • SBR styrene-butadiene rubber copolymer
  • carboxylic acid esters e.g., methyl (meth) acrylate, ethyl (meth) acrylate, butyl ( (meth)acrylates, (meth)acrylonitrile, and hydroxyethyl (meth)acrylate, etc
  • acrylic copolymers polymeric compounds such as polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polyimide, polyamideimide, and carboxymethyl cellulose (CMC);
  • these organic binders can be dispersed or dissolved in water, or dissolved in an organic solvent such as N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the content ratio of the organic binder in the negative electrode layer of the lithium ion secondary battery negative electrode is preferably 1% by mass to 30% by mass, more preferably 2% by mass to 20% by mass, and 3% by mass. More preferably, it is up to 15% by mass.
  • the content of the organic binder is 1% by mass or more, the adhesion is better, and the destruction of the negative electrode structure due to expansion and contraction during charging and discharging is further suppressed.
  • the content is 30% by mass or less, an increase in electrode resistance can be further suppressed.
  • the negative electrode active material of the present invention has high chemical stability and can be used with an aqueous binder, and is easy to handle in terms of practical use.
  • the negative electrode material slurry may be mixed with a conductive aid, if necessary.
  • conductive aids include carbon black, graphite, acetylene black, oxides and nitrides exhibiting conductivity, and the like.
  • the amount of the conductive aid used may be about 1% by mass to 15% by mass with respect to the negative electrode active material of the present invention.
  • the material and shape of the current collector are not particularly limited.
  • copper, nickel, titanium, stainless steel, etc. may be used in the form of a foil, a perforated foil, a mesh, or the like in the form of a strip.
  • Porous materials such as porous metal (foamed metal) and carbon paper can also be used.
  • the method for applying the negative electrode material slurry to the current collector is not particularly limited, but examples include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, and a gravure coating. well-known methods such as a method, a screen printing method, and the like. After coating, it is preferable to carry out a rolling treatment using a flat plate press, calendar rolls, or the like, if necessary.
  • the integration of the negative electrode material slurry molded into a sheet-like or pellet-like shape and the current collector can be performed by a known method such as roll, press, or a combination thereof.
  • the negative electrode layer formed on the current collector and the negative electrode layer integrated with the current collector are preferably heat-treated according to the organic binder used.
  • the organic binder used For example, when a commonly used water-based styrene-butadiene rubber copolymer (SBR) or the like is used, it may be heat-treated at 100 to 130°C. When used, heat treatment at 150 to 450° C. is preferred.
  • This heat treatment removes the solvent and hardens the binder to increase the strength, improving the adhesion between particles and between the particles and the current collector.
  • These heat treatments are preferably performed in an inert atmosphere such as helium, argon, or nitrogen, or in a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • the negative electrode using the negative electrode active material of the present invention preferably has an electrode density of 1.0 g/cm 3 to 1.8 g/cm 3 , more preferably 1.1 g/cm 3 to 1.7 g/cm 3 . is more preferable, and 1.2 g/cm 3 to 1.6 g/cm 3 is even more preferable.
  • the electrode density there is a tendency that the higher the density, the better the adhesion and the volume capacity density of the electrode. Select the optimum range because the characteristics will be degraded.
  • the negative electrode using the negative electrode active material of the present invention has excellent charge-discharge characteristics, and is not particularly limited as long as it is a secondary battery.
  • the negative electrode of a non-aqueous electrolyte secondary battery it exhibits excellent performance.
  • the non-aqueous electrolyte secondary battery of the present invention for example, when used in a wet electrolyte secondary battery, is configured by arranging a positive electrode and a negative electrode of the present invention facing each other with a separator interposed therebetween, and injecting an electrolytic solution. can do.
  • the positive electrode can be obtained by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode.
  • the current collector may be a strip-shaped one made of a metal or alloy such as aluminum, titanium, or stainless steel in the form of foil, foil with holes, mesh, or the like.
  • the positive electrode material used for the positive electrode layer is not particularly limited.
  • a metal compound, a metal oxide, a metal sulfide, or a conductive polymer material capable of doping or intercalating lithium ions is not particularly limited.
  • lithium cobaltate LiCoO 2
  • lithium nickelate LiNiO 2
  • lithium manganate LiMnO 2
  • lithium manganese spinel LiMn 2 O 4
  • lithium vanadium compounds V2O5 , V6O13 , VO2 , MnO2
  • TiO2 , MoV2O8 TiS2 , V2S5 , VS2
  • olivine-type LiMPO 4 M: Co, Ni, Mn, Fe
  • conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc., porous carbon, etc. are used singly or in combination. be able to.
  • the separator for example, a non-woven fabric, cloth, microporous film, or a combination of them can be used, the main component of which is polyolefin such as polyethylene or polypropylene.
  • the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery to be manufactured are structured such that they do not come into direct contact with each other, there is no need to use a separator.
  • electrolytes examples include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 and LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, and sulfolane.
  • the structure of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but usually, a positive electrode, a negative electrode, and an optional separator are wound in a flat spiral shape to form a wound electrode plate group. Generally, these plates are laminated to form a laminated electrode plate group, and the electrode plate group is enclosed in an outer package.
  • the half-cell used in the examples of the present invention has a negative electrode composed mainly of the silicon-containing active material of the present invention, and a simple evaluation using metallic lithium as the counter electrode. This is to clearly compare the cycle characteristics.
  • the negative electrode capacity is suppressed to about 400 to 700 mAh/g, which greatly exceeds the existing negative electrode capacity, and the cycle characteristics are improved. It is possible.
  • Non-aqueous electrolyte secondary batteries using the negative electrode active material of the present invention are not particularly limited, but are used as paper-type batteries, button-type batteries, coin-type batteries, laminate-type batteries, cylindrical batteries, prismatic batteries, and the like.
  • the negative electrode active material of the present invention described above can also be applied to general electrochemical devices having a charging/discharging mechanism of intercalating and deintercalating lithium ions, such as hybrid capacitors and solid lithium secondary batteries.
  • the condensate obtained by the above hydrolytic condensation reaction is subjected to a temperature of 40 to 60 ° C. and a reduced pressure of 40 to 1.3 kPa (the reduced pressure condition at the start of distillation of methanol is 40 kPa, and finally becomes 1.3 kPa.
  • the same applies hereinafter to remove the methanol and water produced in the above reaction process, thereby containing the condensate (m-1) of MTMS with a number average molecular weight of 1,000 1,000 parts by mass of a liquid (70% by mass of active ingredient) was obtained.
  • the effective ingredient is the value obtained by dividing the theoretical yield (parts by mass) when all the methoxy groups of the silane monomer such as MTMS are condensed by the actual yield (parts by mass) after the condensation reaction [methoxy of the silane monomer] Theoretical yield (parts by mass) when all groups are subjected to condensation reaction/Actual yield after condensation reaction (parts by mass)].
  • the evaluation method of the negative electrode active material in this example is as follows. Average particle size (D50): Measured using a laser diffraction particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation). Specific surface area (BET): Measured by nitrogen adsorption measurement using a specific surface area measuring device (BELSORP-mini manufactured by BEL JAPAN). 29 Si-NMR: JNM-ECA600 manufactured by JEOL RESONANCE was used. Raman scattering analysis measurement: NRS-5500 manufactured by JASCO Corporation was used.
  • a negative electrode active material of the present invention was produced as follows. Zirconia beads (particle size range: 0.1 mm to 0.2 mm) and 100 ml of methyl ethyl ketone solvent (MEK) were added to a container (150 ml) of a small bead mill device, and silicon powder (manufactured by Wako Pharmaceutical Co., Ltd., average particle size of 3 to 5 ⁇ m) and a cationic dispersant liquid (BYK145, BYK-Chemie Japan Co., Ltd.) were added and wet pulverized by a bead mill to obtain a dark brown liquid silicon slurry.
  • MK methyl ethyl ketone solvent
  • the average particle diameter (D50) of the silicon pulverized particles was 60 nm by light scattering measurement and TEM observation.
  • the polysiloxane resin (PSi resin: average molecular weight 3500) and the phenol resin (Ph-R resin; average molecular weight 3000) prepared in the above synthesis example were mixed at a resin solid weight composition ratio of 20:80, and the Si particle amount was adjusted.
  • the above-mentioned brown liquid silicon slurry (average particle size: 60 nm) was added so as to be 50% by weight, and the mixture was sufficiently mixed in a stirrer.
  • the precursor was sintered at a high temperature of 1100° C./4 hours in a nitrogen atmosphere, and then pulverized with a planetary ball mill to obtain a black solid, which is a negative electrode active material powder.
  • the obtained negative electrode active material powder had an average particle size (D50) of about 6.3 ⁇ m and a specific surface area (BET) of 16.5 m 2 /g.
  • D50 average particle size
  • BET specific surface area
  • peak A within the range of -70 ppm to -90 ppm and peak B within the range of -90 ppm to -130 ppm were detected, and the area ratio A/B was 1.83.
  • the results of Raman scattering analysis showed a peak near 1590 cm ⁇ 1 belonging to the G band of carbon and a peak near 1330 cm ⁇ 1 belonging to the D band, and the intensity ratio G/D was 0.79.
  • a half cell and a full cell were produced by the following method, and a secondary battery charge/discharge test was performed.
  • a mixed slurry of an active material powder (80 parts), a conductive aid (acetylene black, 10 parts) and a binder (CMC+SBR, 10 parts) was prepared and formed into a film on a copper foil. After that, it was dried under reduced pressure at 110° C., and a Li metal foil was used as a counter electrode to prepare a half cell.
  • This half cell was evaluated for charge/discharge characteristics (cutoff voltage range: 0.005 to 1.5 V) using a secondary battery charge/discharge test device (manufactured by Hokuto Co., Ltd.).
  • a positive electrode film was prepared using a single-layer sheet using LiCoO 2 as a positive electrode active material and aluminum foil as a current collector. Further, a negative electrode film was produced by mixing graphite powder, active material powder, and a binder at a discharge capacity design value of 450 mAh/g.
  • a non-aqueous electrolyte solution prepared by dissolving lithium hexafluorophosphate in a 1/1 (volume ratio) mixed solution of ethylene carbonate and diethyl carbonate at a concentration of 1 mol/L was used as the non-aqueous electrolyte, and polyethylene having a thickness of 30 ⁇ m was used as the separator.
  • a full-cell coin-type lithium-ion secondary battery was fabricated using the microporous film. This lithium ion secondary battery was charged at a constant current of 1.2 mA (0.25c based on the positive electrode) at room temperature until the voltage of the test cell reached 4.2 V. After reaching 4.2 V, Charging was performed by decreasing the current so as to keep the cell voltage at 4.2 V, and the discharge capacity was determined. The capacity retention rate after 200 cycles at room temperature was 84.5%. Table 1 summarizes the above evaluation results.
  • each negative electrode active material was prepared in the same manner as in Example 1 except that the resin composition ratio (PSi/Ph-R), Si content %, and firing temperature in the negative electrode active material precursor were changed. were produced, and the properties and charge/discharge characteristics of each material were evaluated. These results are shown in Table 1.
  • the powder was pulverized to 1.2 ⁇ m and 13.5 ⁇ m, respectively after firing (in Examples 15 and 16, the pulverization conditions in the planetary ball mill were changed). Table 1 summarizes the evaluation results of Examples 2 to 18 above.
  • Example 1 After drying the precursor under the same conditions as in Example 1 (resin composition 4/6, Si particle size and addition amount), the precursor was fired at 1200° C. in a nitrogen atmosphere for 4 hours to obtain a negative electrode active material.
  • the negative electrode active material powder had an average particle size (D50) of about 5.8 ⁇ m and a specific surface area (BET) of 29 m 2 /g.
  • D50 average particle size
  • BET specific surface area
  • the results of Raman scattering analysis showed a peak near 1590 cm ⁇ 1 belonging to the G band of carbon and a peak near 1330 cm ⁇ 1 belonging to the D band, and the intensity ratio G/D was 2.1.
  • the charge/discharge measurement results of the full cell showed a capacity retention rate of 91% after 200 cycles at room temperature, while the charge/discharge measurement results of the half cell showed an initial discharge capacity of 344 mAh/g and an initial coulombic efficiency of 54.6%. decreased significantly.
  • Example 2 By the same operation as in Example 1, the resin component ratio was changed to 1/9 to prepare a precursor, which was then fired at 1100° C. for 4 hours in a nitrogen atmosphere and pulverized to obtain a negative electrode active material.
  • the negative electrode active material powder had an average particle size (D50) of about 5.7 ⁇ m and a specific surface area (BET) of 25.3 m 2 /g.
  • the area ratio A/B between the 29Si-NMR peak A and the peak was 3.9.
  • the intensity ratio G/D between the carbon G band and the carbon D band was 0.9.
  • Half-cell charging/discharging measurement results showed an initial discharge capacity of 1320 mAh/g; an initial coulombic efficiency of 85.5%, but according to the full-cell charging/discharging measurement results, the capacity retention rate after 200 cycles at room temperature was 76%. decreased to
  • Example 3 By the same operation as in Example 1, after preparing a precursor with the resin composition ratio set to 1/9 and the amount of Si added to 70%, the precursor was fired at 1100 ° C. for 4 hours in a nitrogen atmosphere and pulverized. got the substance.
  • the negative electrode active material powder had an average particle size (D50) of about 5.6 ⁇ m and a specific surface area (BET) of 19.7 m 2 /g.
  • the area ratio A/B between the 29Si-NMR peak A and the peak was 5.1.
  • the intensity ratio G/D between the carbon G band and the carbon D band was 0.96.
  • Half-cell charging/discharging measurement results showed an initial discharge capacity of 1920 mAh/g; an initial coulombic efficiency of 87.9%, but according to the full-cell charging/discharging measurement results, the capacity retention rate after 200 cycles at room temperature was 43%. decreased to

Abstract

The purpose of the present invention is to provide: a negative electrode active material having excellent charge and discharge characteristics (charge and discharge capacity, initial Coulombic efficiency, and cycle characteristics); and a non-aqueous electrolyte secondary battery using the same. A negative electrode active material according to the present invention comprises: silicon oxycarbide; and composite particles in which silicon nanoparticles are dispersed in a matrix including a carbonaceous phase, wherein the composite particles satisfy expression 1 in a chemical shift value obtained from a 29Si-NMR spectrum. Expression 1: 0.7≤A/B≤3.0 A: The area intensity of a peak within the range of -70 ppm to -90 ppm belonging to Si (zero-valent) B: The area intensity of a peak within the range of -90 ppm to -130 ppm derived from a SiO4 bond

Description

負極活物質、負極活物質の製造方法及び非水電解質二次電池Negative electrode active material, method for producing negative electrode active material, and non-aqueous electrolyte secondary battery
 本発明は、負極活物質及びその製造方法、当該負極活物質を用いた非水電解質二次電池に関する。 The present invention relates to a negative electrode active material, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the negative electrode active material.
 近年、スマートフォンなどの携帯電子機器の普及に伴い、小型・高容量二次電池の需要が高まっている。その中でもリチウムイオン二次電池(LIBと表記する場合がある)は、電気自動車(EV)への急速展開が進められており、産業上の利用範囲が広がり続いている。リチウムイオン二次電池の負極材として、炭素類の黒鉛活物質(天然、人工)が広く用いられているが、黒鉛の理論容量密度が低く(372mAh/g)、リチウムイオン二次電池構成技術の進化により、電池容量向上は限界に近づいている。 In recent years, with the spread of mobile electronic devices such as smartphones, the demand for small, high-capacity secondary batteries has increased. Among them, lithium ion secondary batteries (sometimes abbreviated as LIB) are rapidly being developed for electric vehicles (EV), and their industrial application range continues to expand. Carbon-based graphite active materials (natural and artificial) are widely used as negative electrode materials for lithium ion secondary batteries. Due to evolution, the improvement of battery capacity is approaching the limit.
 シリコン(Si)は、金属リチウムと合金(金属間化合物)を形成できるため、電気化学的にリチウムイオンを吸蔵放出することが可能である。リチウムイオンの吸蔵放出容量は、Li22Siを形成した場合の理論容量が4200mAh/gであり、黒鉛の負極より遥かに高容量化することが可能である。 Since silicon (Si) can form an alloy (intermetallic compound) with metallic lithium, it can electrochemically store and release lithium ions. The lithium ion storage/discharge capacity has a theoretical capacity of 4200 mAh/g when Li 22 Si 5 is formed, which can be much higher than that of a graphite negative electrode.
 しかし、シリコンはリチウムイオンの吸蔵放出に伴い3倍~4倍の大きな体積変化を生じる。このため、充放電サイクルを行った場合、膨張収縮が繰り返されることによりシリコンが崩壊して微粉化してしまい、電極材の剥離・崩壊や電子伝導性の悪化などが生じるので、充放電サイクル特性が悪くなり、良好なサイクル寿命が得られないという課題があった。 However, silicon undergoes a large volume change of 3 to 4 times as it absorbs and releases lithium ions. For this reason, when a charge-discharge cycle is performed, repeated expansion and contraction causes the silicon to collapse and become finely divided, which causes peeling and collapse of the electrode material and deterioration of electronic conductivity, resulting in poor charge-discharge cycle characteristics. There was a problem that it deteriorated and a good cycle life could not be obtained.
 以下、特許文献1~3には、LIBなどの非水電解質二次電池における負極活物質として用いるシリコン系化合物が記載されている。 Patent Documents 1 to 3 below describe silicon-based compounds used as negative electrode active materials in non-aqueous electrolyte secondary batteries such as LIB.
特表2015-156355号公報Japanese translation of PCT publication No. 2015-156355 国際公開第2014-002602号パンフレットInternational Publication No. 2014-002602 pamphlet 特許第5892264号公報Japanese Patent No. 5892264
 例えば特許文献1~3に記載の従来のSi系化合物では、負極活物質マトリクス構造とシリコン粒子状態の制御において、Si(0価)が内在するマトリクスの組成やシリコンオキシカーバイドと炭素を含むマトリクスの炭素相構造について十分な検討がされておらず、二次電池としたときの充放電性能、特にサイクル特性に改善の余地がある。 For example, in the conventional Si-based compounds described in Patent Documents 1 to 3, in controlling the negative electrode active material matrix structure and the silicon particle state, the composition of the matrix containing Si (zero valence) or the matrix containing silicon oxycarbide and carbon The carbon phase structure has not been sufficiently studied, and there is room for improvement in charge/discharge performance, particularly cycle characteristics, when used as a secondary battery.
 上記実情を鑑み、本発明が解決しようとする課題は、優れた充放電特性(充放電容量、初回クーロン効率及びサイクル特性)を有する負極活物質、それを用いた非水電解質二次電池、及び負極活物質の製造方法を提供することにある。 In view of the above circumstances, the problem to be solved by the present invention is a negative electrode active material having excellent charge-discharge characteristics (charge-discharge capacity, initial coulombic efficiency and cycle characteristics), a non-aqueous electrolyte secondary battery using the same, and An object of the present invention is to provide a method for producing a negative electrode active material.
 本発明者らは上記課題を解決するために鋭意検討を重ねた結果、シリコンオキシカーバイドと炭素質相を含むマトリクス内部にシリコンナノ粒子が分散した複合粒子において、シリコンナノ粒子である0価のSiとSiOCを含むマトリクスとの構造マッチングに着目した。その結果、Si(0価)とSiO結合に帰属するSiの29Si-NMRピーク面積強度比を特定範囲とすることで、二次電池における充放電性能、特にサイクル特性が一層向上することを見出し、本発明に至った。 As a result of intensive studies by the present inventors to solve the above problems, in composite particles in which silicon nanoparticles are dispersed inside a matrix containing silicon oxycarbide and a carbonaceous phase, zerovalent Si which is silicon nanoparticles and a matrix containing SiOC. As a result, by setting the 29 Si-NMR peak area intensity ratio of Si attributed to Si (zero valence) and SiO 4 bonds to a specific range, the charge / discharge performance, especially the cycle characteristics, in the secondary battery is further improved. The discovery led to the present invention.
 すなわち本発明は、以下に関する。
[1] シリコンオキシカーバイドと炭素質相を含むマトリクス内部にシリコンナノ粒子が分散した複合粒子を含む負極活物質であって、前記複合粒子は、29Si-NMRスペクトルから得られるケミカルシフト値において、下記式1を満たすものである負極活物質。
式1: 0.7≦A/B≦3.0
A: Si(0価)に帰属する-70ppm~-90ppmの範囲内ピークの面積強度
B: SiOの結合に由来する-90ppm~-130ppm範囲内ピークの面積強度
[2] 炭素質相を含む前記複合粒子のラマンスペクトルにおいて、炭素構造のGバンドとDバンドに帰属する1590cm-1と1330cm-1付近の散乱ピークを有し、それらの散乱ピーク強度比I(Gバンド/Dバンド)が、0.7~2.0の範囲にある[1]に記載の負極活物質。
[3] 前記複合粒子における平均粒径(D50)が、1μm~20μmである[1]又は[2]に記載の負極活物質。
[4] 前記複合粒子における比表面積(BET)が、1m/g~20m/gの範囲にある[1]~[3]のいずれか1項に記載の負極活物質。
[5] [1]~[4]のいずれか1項に記載の負極活物質を含む非水電解質二次電池。
[6] 前記複合粒子の製造工程として、下記工程1~3を含む[1]~[4]のいずれか1項に記載の負極活物質の製造方法。
工程1: 湿式法粉砕した珪素(0価)スラリーを、ポリシロキサン化合物と炭素源樹脂を含む集合体と混合させ、撹拌・乾燥することで前駆体を得る
工程2: 前記工程1で得られた前駆体を不活性雰囲気中、最高到達温度1000℃~1180℃の温度範囲内で焼成することにより焼成物を得る
工程3: 前記工程2で得られた焼成物を粉砕することで負極活物質を得る
[7] 前記ポリシロキサン化合物が、シロキサン結合(Si-O-Si)主骨格の側鎖又は末端に、カルボキシ基、エポキシ基、アミノ基、又はポリエーテル基を有する[6]に記載の負極活物質の製造方法。
[8] 前記炭素源樹脂が、芳香族炭化水素部位を含む樹脂である[6]又は[7]に記載の負極活物質の製造方法。
[9] 前記芳香族炭化水素部位を含む樹脂が、フェノール樹脂、エポキシ樹脂、又は熱硬化性樹脂である[8]に記載の負極活物質の製造方法。
That is, the present invention relates to the following.
[1] A negative electrode active material containing composite particles in which silicon nanoparticles are dispersed in a matrix containing silicon oxycarbide and a carbonaceous phase, wherein the composite particles have a chemical shift value obtained from a 29 Si-NMR spectrum, A negative electrode active material that satisfies the following formula 1.
Formula 1: 0.7≤A/B≤3.0
A: Area intensity of the peak within the range of -70 ppm to -90 ppm attributed to Si (zero valence) B: Area intensity of the peak within the range of -90 ppm to -130 ppm derived from the bond of SiO 4 [2] Includes carbonaceous phase The Raman spectrum of the composite particles has scattering peaks near 1590 cm −1 and 1330 cm −1 attributed to the G band and D band of the carbon structure, and their scattering peak intensity ratio I (G band/D band) is The negative electrode active material according to [1], which is in the range of 0.7 to 2.0.
[3] The negative electrode active material according to [1] or [2], wherein the composite particles have an average particle diameter (D50) of 1 μm to 20 μm.
[4] The negative electrode active material according to any one of [1] to [3], wherein the composite particles have a specific surface area (BET) in the range of 1 m 2 /g to 20 m 2 /g.
[5] A nonaqueous electrolyte secondary battery comprising the negative electrode active material according to any one of [1] to [4].
[6] The method for producing a negative electrode active material according to any one of [1] to [4], including the following steps 1 to 3 as the steps for producing the composite particles.
Step 1: A silicon (zero-valent) slurry pulverized by a wet method is mixed with an aggregate containing a polysiloxane compound and a carbon source resin, stirred and dried to obtain a precursor Step 2: Obtained in Step 1 above Step 3 of obtaining a fired product by firing the precursor in an inert atmosphere within a temperature range of a maximum temperature of 1000° C. to 1180° C.: Pulverizing the fired product obtained in Step 2 to obtain a negative electrode active material. [7] The negative electrode according to [6], wherein the polysiloxane compound has a carboxy group, an epoxy group, an amino group, or a polyether group at the side chain or end of the siloxane bond (Si—O—Si) main skeleton. A method for producing an active material.
[8] The method for producing a negative electrode active material according to [6] or [7], wherein the carbon source resin is a resin containing an aromatic hydrocarbon moiety.
[9] The method for producing a negative electrode active material according to [8], wherein the resin containing an aromatic hydrocarbon moiety is a phenol resin, an epoxy resin, or a thermosetting resin.
 本発明の負極活物質は、Si(0価)と、シリコンオキシカーバイド(SiOC)と炭素質相を含むマトリクス相との組み合わせや炭素相の構造などを巧みに制御することで、活物質中に内在するシリコンナノ粒子が性能発現しやすくなり、二次電池としたときの充放電性能、特にサイクル特性に優れる。本発明の負極活物質を非水電解質二次電池に用いることで充放電容量と初回クーロン効率及びサイクル特性を同時に高いレベルで発現させることができる。 The negative electrode active material of the present invention is obtained by skillfully controlling the combination of Si (zero valence), silicon oxycarbide (SiOC), and a matrix phase containing a carbonaceous phase, and by skillfully controlling the structure of the carbon phase. The inherent silicon nanoparticles are likely to exhibit performance, and the charge and discharge performance, especially the cycle characteristics, when used as a secondary battery are excellent. By using the negative electrode active material of the present invention in a non-aqueous electrolyte secondary battery, the charge/discharge capacity, the initial coulombic efficiency, and the cycle characteristics can be exhibited at a high level at the same time.
実施例1の29Si-NMRスペクトルである。 29 Si-NMR spectrum of Example 1. FIG. 比較例1の29Si-NMRスペクトルである。 29 Si-NMR spectrum of Comparative Example 1. FIG.
<負極活物質>
 本発明の負極活物質は、シリコンオキシカーバイドと炭素質相を含むマトリクス内部にシリコンナノ粒子が分散した複合粒子を含む負極活物質であって、上記複合粒子は、29Si-NMRスペクトルから得られるケミカルシフト値において、下記式1を満たすものである。
式1: 0.7≦A/B≦3.0
A: Si(0価)に帰属する-70ppm~-90ppmの範囲内ピークの面積強度
B: SiOの結合に由来する-90ppm~-130ppm範囲内ピークの面積強度
<Negative electrode active material>
The negative electrode active material of the present invention is a negative electrode active material containing composite particles in which silicon nanoparticles are dispersed in a matrix containing silicon oxycarbide and a carbonaceous phase, and the composite particles are obtained from a 29 Si-NMR spectrum. The chemical shift value satisfies the following formula 1.
Formula 1: 0.7≤A/B≤3.0
A: Area intensity of the peak within the range of −70 ppm to −90 ppm attributed to Si (0 valence) B: Area intensity of the peak within the range of −90 ppm to −130 ppm derived from the bond of SiO 4
 上記複合粒子は、Si、O、及びCの各元素によるSiOCの三次元ネットワーク構造と炭素からなるマトリクスがあり、そこにシリコンナノ粒子が均一に分散している構造を有している。上記SiOCの三次元ネットワーク構造では、Siと結合する原子の種類(O、又はC)、及びそれぞれの原子との結合の数から結合は、主に3種類に分けることができ、それぞれSiO、SiOC、及びSiOのドメインが挙げられる。これらのドメインがさらにランダムに結合したものが上記のシリコンオキシカーバイド(SiOC)となる。SiOCドメインのケミカルシフト(固体NMR)は-60ppm~-80ppmの範囲内(中心位置-70ppm)にあり、Si(0価)由来のピークと多少重なっている。
 本発明の負極活物質において、29Si-NMRスペクトルから得られるケミカルシフト値が上記式1を満たすということは、複合粒子におけるシリコンナノ粒子(Si:0価)と、シリコンオキシカーバイド(SiOC)に存在するSiOとの比率が、最適であるということであり、これによりシリコンナノ粒子が性能発現しやすくなり、二次電池としたときの充放電性能、特にサイクル特性に優れる。上記A/Bは、より好ましくは0.8≦A/B≦2.9の範囲、更に好ましくは0.9≦A/B≦2.8の範囲である。
The composite particles have a structure in which silicon nanoparticles are uniformly dispersed in a three-dimensional network structure of SiOC composed of elements Si, O, and C and a matrix composed of carbon. In the three-dimensional network structure of SiOC, the type of atom (O or C) that bonds to Si and the number of bonds with each atom can be mainly divided into three types, each of which is SiO 2 C 2 , SiO 3 C, and SiO 4 domains. Silicon oxycarbide (SiOC) described above is obtained by further randomly combining these domains. The chemical shift (solid-state NMR) of the SiO 3 C domain is in the range of −60 ppm to −80 ppm (central position −70 ppm), and overlaps somewhat with the peak derived from Si (zero valence).
In the negative electrode active material of the present invention, the fact that the chemical shift value obtained from the 29 Si-NMR spectrum satisfies the above formula 1 means that the silicon nanoparticles (Si: 0 valence) and silicon oxycarbide (SiOC) in the composite particles It means that the ratio with the existing SiO 4 is optimal, which makes it easy for the silicon nanoparticles to exhibit performance, and when used as a secondary battery, the charge-discharge performance, especially the cycle characteristics, is excellent. The above A/B is more preferably in the range of 0.8≦A/B≦2.9, still more preferably in the range of 0.9≦A/B≦2.8.
 リチウムイオン二次電池の充放電過程において、炭素を活物質とする負極を例にした場合、充電時には、炭素とリチウムイオンとが挿入反応により化学結合が生じ、炭素がリチウムを捕捉する。放電時には、炭素に捕捉されたリチウムが、電子の放出によってリチウムイオンとなり、炭素から離れる脱離反応が行われる。この炭素とリチウムイオンとの挿入、脱離反応の繰り返し、つまり可逆的に反応が進行することによって充放電が行われる。本発明の負極活物質は、SiOC骨格と炭素とのマトリクス中において単体シリコン粒子(0価)が内在する活物質の構造を有する。SiOC骨格は、化学安定性が高い特徴を有し、炭素相との複合構造によると、電子遷移抵抗の低減に伴いリチウムイオンの拡散も容易になる。単体シリコン粒子(0価)がSiOCと炭素との複合構造体にて密に包まれることで、シリコン粒子と電解液との直接な接触を阻止する機能が発揮できることがある。従って、本発明負極活物質中にある単体シリコン粒子が充放電性能発現の主要成分とする役割を果たしながら、充放電時にシリコンと電解液との化学反応回避によってシリコン粒子の性能劣化も最大限に防ぐことができる。 In the charging and discharging process of a lithium-ion secondary battery, taking the example of a negative electrode that uses carbon as an active material, during charging, a chemical bond occurs due to an insertion reaction between carbon and lithium ions, and the carbon captures lithium. At the time of discharge, the lithium captured by the carbon becomes lithium ions by releasing electrons, and a desorption reaction occurs in which the lithium is separated from the carbon. Charging and discharging are performed by repeating the intercalation and deintercalation reactions between carbon and lithium ions, that is, the reaction progresses reversibly. The negative electrode active material of the present invention has an active material structure in which single silicon particles (zero valence) are present in a matrix of SiOC skeleton and carbon. The SiOC skeleton is characterized by high chemical stability, and the composite structure with the carbon phase facilitates the diffusion of lithium ions as the electronic transition resistance is reduced. When the single silicon particles (zero valence) are densely wrapped in the composite structure of SiOC and carbon, the function of preventing direct contact between the silicon particles and the electrolytic solution may be exhibited. Therefore, while the single silicon particles in the negative electrode active material of the present invention play a role as a main component for the expression of charge/discharge performance, the chemical reaction between the silicon and the electrolyte solution is avoided during charge/discharge, thereby maximizing the performance deterioration of the silicon particles. can be prevented.
 さらに具体的に説明を加えると、SiOCは、リチウムイオンの接近によりSiOC内部の電子分布の変動が生じ、SiOCとリチウムイオンの間に静電的な結合や配位結合などが形成されるため、リチウムイオンがSiOCの骨格中に貯蔵される。そしてこれらの配位結合エネルギーは比較的低いため、リチウムイオンの脱離反応が容易に行われる。つまりSiOCが充放電の際にリチウムイオンの挿入・脱離反応を可逆的に起こすことができる。従って、我々はこのメカニズムを捉えることによって、SiOに対するシリコンナノ粒子(Si:0価)の割合が可逆容量の改善に強く寄与し、初回クーロン効率が改善できることを見出すに至った。 More specifically, SiOC causes changes in the electron distribution inside SiOC due to the approach of lithium ions, and electrostatic bonds and coordinate bonds are formed between SiOC and lithium ions. Lithium ions are stored in the framework of SiOC. Since the energy of these coordination bonds is relatively low, the desorption reaction of lithium ions is easily carried out. That is, SiOC can reversibly cause lithium ion insertion/extraction reactions during charging and discharging. Therefore, by capturing this mechanism, we have found that the ratio of silicon nanoparticles ( Si:0 valence) to SiO4 strongly contributes to the improvement of the reversible capacity and can improve the first coulombic efficiency.
 29Si-NMRスペクトルは、固体NMR装置を用いて容易に得られるものであり、本明細書の固体NMR測定は、例えば日本電子株式会社JEOL製装置(JNM-ECA600)を用いて実施されるものである。上記のピークの面積強度の比(A/B)は、固体NMR分析装置にてチューニング10分後に、8mmプロープにてシングルパルス測定をし、得られた固体NMRスペクトルデータ(積算64回)をフーリエ変換し、これをGauss+Lorentz関数を用いて波形分離を行う。次に、波形分離にて得られたピーク面積を元に、-90ppm~-130ppm範囲内ピークの面積強度(B)に対する-70ppm~-90ppmの範囲にあるピークの面積強度(A)の比を求めることで得られる。 The 29 Si-NMR spectrum can be easily obtained using a solid-state NMR apparatus, and the solid-state NMR measurements herein are performed using, for example, an apparatus manufactured by JEOL Co., Ltd. (JNM-ECA600). is. The area intensity ratio (A/B) of the above peaks was obtained by single-pulse measurement with an 8 mm probe after 10 minutes of tuning with a solid-state NMR spectrometer. Then, waveform separation is performed using the Gauss+Lorentz function. Next, based on the peak area obtained by waveform separation, the ratio of the area intensity (A) of the peak in the range of -70 ppm to -90 ppm to the area intensity (B) of the peak in the range of -90 ppm to -130 ppm Obtained by asking.
 本発明の負極活物質は、炭素質相を含む前記複合粒子のラマンスペクトルにおいて、炭素構造のGバンド(グラファイト長周期炭素格子構造)とDバンド(乱れや欠陥のあるグラファイト短周期炭素格子構造)に帰属する1590cm-1と1330cm-1付近の散乱ピークを有し、それらの散乱ピーク強度比I(Gバンド/Dバンド)が、0.7~2.0の範囲にあることが好ましい。上記散乱ピーク強度比Iは、好ましくは0.7~1.8である。上記散乱ピーク強度比Iが上記の範囲であるということは、マトリクス中の炭素質相において以下のことが言える。 The negative electrode active material of the present invention has a carbon structure G band (graphite long period carbon lattice structure) and D band (graphite short period carbon lattice structure with disorder and defects) in the Raman spectrum of the composite particles containing the carbonaceous phase. , and the scattering peak intensity ratio I (G band/D band) is preferably in the range of 0.7 to 2.0. The scattering peak intensity ratio I is preferably 0.7 to 1.8. The fact that the scattering peak intensity ratio I is within the above range means the following for the carbonaceous phase in the matrix.
 本発明の負極活物質において、マトリクス中ではSiOC骨格構造等とともに炭素のみで構成される炭素質相を有している。この炭素質相の一部の炭素原子は、SiOC骨格中の一部のSi原子と結合している。この炭素質相は、充放電特性に影響を与える重要な成分である。炭素相は、SiO,SiOC、及びSiOで構成されるSiOC中に形成しているものであり、該SiOCの一部のSi原子と結合しているためSiOC内部、及び表面のSi原子とフリー炭素間の電子伝達がより容易となる。このため充放電時のリチウムイオンの挿入・離脱反応が速やかに進行し、充放電特性が向上すると考えることができる。また、リチウムイオンの挿入・脱離反応によって、負極活物質は僅かではあるが膨張・収縮することがあるが、フリー炭素がその近傍に存在することで活物質全体の膨張・収縮が緩和され、サイクル特性を大きく向上させる効果があると考えられる。 The negative electrode active material of the present invention has a carbonaceous phase composed only of carbon together with the SiOC skeleton structure and the like in the matrix. Some carbon atoms in this carbonaceous phase are bonded to some Si atoms in the SiOC skeleton. This carbonaceous phase is an important component that affects charge-discharge characteristics. The carbon phase is formed in SiOC composed of SiO 2 C 2 , SiO 3 C, and SiO 4 , and is bonded to some Si atoms of the SiOC, so the inside of SiOC and the surface electron transfer between Si atoms and free carbon becomes easier. Therefore, it can be considered that the intercalation/deintercalation reaction of lithium ions proceeds rapidly during charge/discharge, and the charge/discharge characteristics are improved. In addition, although the negative electrode active material may slightly expand or contract due to the insertion/extraction reaction of lithium ions, the presence of free carbon in the vicinity of the expansion/contraction of the active material as a whole mitigates the expansion/contraction. This is considered to have the effect of greatly improving the cycle characteristics.
 炭素質相は、前駆体シラン化合物の不活性ガス雰囲気中の熱分解に伴い形成したものがある。具体的にはシラン化合物の分子構造中にある炭化可能な部位、及び置換基等が不活性化する雰囲気中で高温熱分解によって炭素成分となり、これらの一部の炭素がSiOC骨格の一部と結合している特徴がある。炭化可能な成分は、特に限定されないが、炭化水素が好ましく、アルキル類、アルキレン類、アルケン類、アルキン類、芳香族類がより好ましく、さらに芳香族類であることが好ましい。 Some carbonaceous phases are formed due to thermal decomposition of precursor silane compounds in an inert gas atmosphere. Specifically, carbonizable sites and substituents in the molecular structure of the silane compound become carbon components by high-temperature pyrolysis in an inert atmosphere, and some of these carbons become part of the SiOC skeleton. There are features that connect The carbonizable component is not particularly limited, but hydrocarbons are preferred, alkyls, alkylenes, alkenes, alkynes and aromatics are more preferred, and aromatics are more preferred.
 また、本発明の炭素質相において、炭素源樹脂の熱分解によって得られるものもある。これらの炭素も、活物質抵抗低減効果に繋がり、二次電池負極で使用される際、充放電時に珪素粒子の体積変化に柔軟に追従できると考えられる。炭素源樹脂の種類は、特に限定されてないが、炭素の六員環を含む炭素化合物が好ましい。 In addition, in the carbonaceous phase of the present invention, some are obtained by thermal decomposition of the carbon source resin. These carbons also lead to the effect of reducing the resistance of the active material, and are considered to be able to flexibly follow the volume change of the silicon particles during charging and discharging when used in the negative electrode of the secondary battery. The type of carbon source resin is not particularly limited, but a carbon compound containing a six-membered carbon ring is preferred.
 炭素質相の量は、負極活物質の充放電特性に対して影響を与えうるものである。その炭素量が不足であれば、導電性に劣り、充放電特性が悪化することがある。一方、炭素量が多すぎると、炭素自体の理論容量が低いため、負極活物質全体の充放電容量が低下することがある。 The amount of the carbonaceous phase can affect the charge/discharge characteristics of the negative electrode active material. If the amount of carbon is insufficient, the electrical conductivity may be poor and the charge/discharge characteristics may be deteriorated. On the other hand, if the amount of carbon is too large, the charge/discharge capacity of the entire negative electrode active material may decrease because the theoretical capacity of carbon itself is low.
 上記炭素質相の存在状態は、ラマンスペクトル以外に熱分析(TG-DTA)でも同定することが可能である。SiOC骨格中のC原子と異なり、炭素質相は、大気中で熱分解されやすく、空気存在下で測定した熱重量減少量により炭素の存在量を求めることができる。つまり炭素量は、熱重量示差熱分析装置Thermogravimeter-Differential Thermal Analyzer(TG-DTA)を用いることで定量できる。また、該測定からの熱重量減少挙動より得られる熱分解温度挙動(分解反応開始温度、分解反応終了温度、熱分解反応種の数、各熱分解反応種における最大重量減少量の温度など)の変化も容易に把握でき、これらの温度値を用いて炭素の状態を判断することができる。一方、SiOC骨格中のC原子、つまり前記SiO、SiOC、及びSiOを構成するSi原子と結合している炭素原子は、非常に強い化学結合を有するために熱安定性が高く、熱分析装置測定温度範囲において大気中で熱分解されることがないと考えられる。また、本発明活物質中の炭素は、ハードカーボンと類似する特性を有しているため、大気中において約550℃~900℃の温度範囲に熱分解されることに伴い、急激な重量減少が発生する。TG-DTAの測定条件の最高温度は特に限定されないが、炭素の熱分解反応を完全に終了させるために、大気中、室温(約25℃)から1000℃以上までの条件下でTG-DTA測定を行うのが好ましい。 The existing state of the carbonaceous phase can be identified by thermal analysis (TG-DTA) as well as Raman spectrum. Unlike the C atoms in the SiOC skeleton, the carbonaceous phase is easily thermally decomposed in the atmosphere, and the amount of carbon present can be determined from the amount of thermogravimetric loss measured in the presence of air. That is, the carbon content can be quantified by using a Thermogravimeter-Differential Thermal Analyzer (TG-DTA). In addition, thermal decomposition temperature behavior (decomposition reaction start temperature, decomposition reaction end temperature, number of thermal decomposition reaction species, temperature of maximum weight loss in each thermal decomposition reaction species, etc.) obtained from the thermal weight loss behavior from the measurement. Changes can also be easily comprehended and these temperature values can be used to determine the state of the carbon. On the other hand, the C atoms in the SiOC skeleton, that is, the carbon atoms bonded to the Si atoms constituting the SiO 2 C 2 , SiO 3 C, and SiO 4 have very strong chemical bonds and are therefore thermally stable. It is considered that it will not be thermally decomposed in the air in the temperature range measured by the thermal analyzer. In addition, since the carbon in the active material of the present invention has properties similar to those of hard carbon, it is thermally decomposed in the air in the temperature range of about 550° C. to 900° C., resulting in rapid weight loss. Occur. The maximum temperature of the TG-DTA measurement conditions is not particularly limited, but in order to completely complete the thermal decomposition reaction of carbon, the TG-DTA measurement is performed under conditions from room temperature (about 25°C) to 1000°C or higher in the air. It is preferable to
 複合粒子中のマトリクスでは、存在する炭素質相の割合が重要であり、その含有量がマトリクス総重量の30重量%~85重量%であることが好ましい。また、炭素質相の含有量が40重量%~70重量%であることがより好ましいく、さらに好ましくは45重量%~60重量%である。炭素質相の含有量が上記範囲であると、活物質抵抗低減効果が十分に得られる上、活物質内部へ電解液の浸透が抑制されるため電解液の分解や活物質表面上に固相界面電解質分解物(SEI)の発生が抑えられることがある。 In the matrix in the composite particles, the ratio of the carbonaceous phase present is important, and the content is preferably 30% to 85% by weight of the total weight of the matrix. Also, the content of the carbonaceous phase is more preferably 40% to 70% by weight, more preferably 45% to 60% by weight. When the content of the carbonaceous phase is within the above range, a sufficient effect of reducing the resistance of the active material can be obtained, and the permeation of the electrolyte into the active material is suppressed. Generation of interfacial electrolyte decomposition products (SEI) may be suppressed.
 上記シリコンナノ粒子は、珪素(0価)粒子を粉砕などでナノ化したものである。この珪素(0価)粒子の存在によって、二次電池としたときの充放電容量と初回クーロン効率を向上させることができる。本発明の負極活物質では、上述のとおりSiOに対するシリコンナノ粒子(Si:0価)の割合が重要であり、上記式1を満たすことが重要である。 The silicon nanoparticles are obtained by pulverizing silicon (zero-valent) particles into nano particles. The presence of the silicon (0-valent) particles can improve charge/discharge capacity and initial coulombic efficiency when used as a secondary battery. In the negative electrode active material of the present invention, as described above, the ratio of silicon nanoparticles (Si: 0 valence) to SiO 4 is important, and it is important to satisfy formula 1 above.
 シリコンナノ粒子の粉砕は、粉砕機としては、ボールミル、ビーズミル、ジェットミルなどの粉砕機を用いて行うことができる。また、粉砕は湿式粉砕であってもよく、有機溶剤として粉砕工程がうまくできるなら溶剤組成上に特に制限ないが、アルコール類、ケトン類などを好適に用いることができるが、トルエン、キシレン、ナフタレン、メチルナフタレンなどの芳香族炭化水素系溶剤も用いることができる。 The silicon nanoparticles can be pulverized using a pulverizer such as a ball mill, bead mill, or jet mill. In addition, the pulverization may be wet pulverization, and there is no particular limitation on the solvent composition as long as the pulverization process can be performed well as an organic solvent, but alcohols, ketones, etc. can be preferably used, but toluene, xylene, naphthalene. , methylnaphthalene, and other aromatic hydrocarbon solvents can also be used.
 複合粒子中におけるシリコンナノ粒子の含有率は特に制限ないが、シリコンナノ粒子の含有率を調整することによって電池容量を制御することができる。本発明の負極活物質においては複合粒子中のシリコン粒子の含有比率が1質量%~80質量%であることが好ましく、10質量%~70質量%であることがより好ましく、20質量%~60質量%であることがさらに好ましい。シリコン粒子の含有比率が20質量%以上であることで、電池の負極材としたときの充放電容量を大きくすることができ、負極材として黒鉛に対する容量の優位性が大きく、初回クーロン効率も高いレベルに維持できる。一方、60質量%以下とすることで、シリコン粒子がシリコンオキシカーバイドと炭素質相を含むマトリクスに十分に被覆され、充放電時の活物質体積膨張収縮変化も有効に抑えられることがあり、サイクル特性が改善する。 The content of silicon nanoparticles in the composite particles is not particularly limited, but the battery capacity can be controlled by adjusting the content of silicon nanoparticles. In the negative electrode active material of the present invention, the content ratio of silicon particles in the composite particles is preferably 1% by mass to 80% by mass, more preferably 10% by mass to 70% by mass, and more preferably 20% by mass to 60% by mass. % by mass is more preferred. When the content ratio of the silicon particles is 20% by mass or more, the charge-discharge capacity when used as a negative electrode material for a battery can be increased, and the capacity is superior to graphite as a negative electrode material, and the initial coulomb efficiency is also high. level can be maintained. On the other hand, by making it 60% by mass or less, the silicon particles are sufficiently coated with the matrix containing the silicon oxycarbide and the carbonaceous phase, and the volume expansion and contraction changes of the active material during charging and discharging may be effectively suppressed. Improves properties.
 シリコンナノ粒子の平均粒子径(D50)は、10nm~300nmであることが好ましく、より好ましくは20nm~250nm、さらに好ましくは30nm~200nmである。平均粒子径(D50)は、レーザー粒度分析計などを用い動的光散乱法により測定することができる。300nmを超える大サイズの珪素粒子は、大きな塊となり、充放電時に微粉化現象が起やすいため、活物質の充放電性能が低下する傾向が想定される。一方、10nm未満の小サイズの珪素粒子は細かすぎるため、シリコン粒子同士が凝集しやすくなる。そのため、活物質中へ小粒子シリコンを均一に分散させるのが困難となり、また、微小粒子の表面活性エネルギーが高く、活物質の高温焼成で小粒子シリコンの表面上に副生成物などが多くなる傾向もあり、これが充放電性能の大幅な低下に繋がる。 The average particle diameter (D50) of the silicon nanoparticles is preferably 10 nm to 300 nm, more preferably 20 nm to 250 nm, still more preferably 30 nm to 200 nm. The average particle size (D50) can be measured by a dynamic light scattering method using a laser particle size analyzer or the like. Silicon particles having a large size exceeding 300 nm become large lumps, and are likely to be pulverized during charge/discharge, so it is assumed that the charge/discharge performance of the active material tends to decrease. On the other hand, since silicon particles having a small size of less than 10 nm are too fine, the silicon particles tend to agglomerate. Therefore, it becomes difficult to uniformly disperse the small silicon particles in the active material, and the surface activation energy of the fine particles is high, and by-products on the surface of the small silicon particles increase when the active material is fired at a high temperature. There is also a tendency, which leads to a significant decrease in charge/discharge performance.
 上記平均粒子径(D50)は、負極活物質におけるシリコンナノ粒子の粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積50%となるときの粒子径である。平均粒子径(D50)は、レーザー回折式粒度分布測定装置などで測定することができる。 The average particle diameter (D50) is the particle diameter at which the volume cumulative distribution curve is drawn from the small diameter side in the particle diameter distribution of the silicon nanoparticles in the negative electrode active material, and the cumulative distribution is 50%. The average particle size (D50) can be measured with a laser diffraction particle size distribution analyzer or the like.
 本発明の負極活物質は、上述のとおりシリコンオキシカーバイド(SiOC)と炭素質相を含むマトリクス内部に、シリコンナノ粒子が分散した複合粒子を含む。シリコンオキシカーバイド(SiOC)は、珪素(0価を除く)と酸素と炭素からなるSi-O-C骨格構造を有する構造体である。SiOCは、後述の製造方法で述べるようにポリシロキサン化合物を焼成することにより形成することができる。Si-O-C骨格構造の詳細については、ポリシロキサン構造として後述の製造方法で述べる。 As described above, the negative electrode active material of the present invention contains composite particles in which silicon nanoparticles are dispersed inside a matrix containing silicon oxycarbide (SiOC) and a carbonaceous phase. Silicon oxycarbide (SiOC) is a structure having a Si--O--C skeleton structure composed of silicon (excluding zero valence), oxygen and carbon. SiOC can be formed by baking a polysiloxane compound as described in the production method below. The details of the Si--O--C skeleton structure will be described later in the manufacturing method of the polysiloxane structure.
 上記複合粒子における平均粒径(D50)は、1μm~20μmが好ましく、2μm~18μmがより好ましい。平均粒径(D50)が小さすぎると、比表面積の大幅な上昇につれ充放電時にSEIの生成量が増えることで単位体積当たりの可逆充放電容量が低下することがあり、逆に大きすぎると、電極膜作製が困難になり、集電体から剥離するおそれがある。 The average particle size (D50) of the composite particles is preferably 1 μm to 20 μm, more preferably 2 μm to 18 μm. If the average particle diameter (D50) is too small, the amount of SEI generated during charging and discharging increases as the specific surface area increases significantly, which may reduce the reversible charge-discharge capacity per unit volume. Electrode film preparation becomes difficult, and there is a possibility that it may peel off from the current collector.
 複合粒子における比表面積(BET)が、1m/g~20m/gの範囲にあることが好ましく、3m/g~18m/gの範囲にあることがより好ましい。比表面積(BET)が上記範囲であると、電極作製時における溶媒の吸収量を適切に保つことができ、結着性を維持するための結着剤を使用量も適切に保つことができる。比表面積(BET:Brunauer-Emmett-Teller)は、窒素ガス吸着測定より求めることができ、汎用の比表面積測定装置を用いることで容易に測定することができる。 The specific surface area (BET) of the composite particles is preferably in the range of 1 m 2 /g to 20 m 2 /g, more preferably in the range of 3 m 2 /g to 18 m 2 /g. When the specific surface area (BET) is within the above range, the amount of solvent absorbed during electrode production can be appropriately maintained, and the amount of binder used for maintaining binding properties can also be properly maintained. The specific surface area (BET: Brunauer-Emmett-Teller) can be determined by nitrogen gas adsorption measurement, and can be easily measured using a general-purpose specific surface area measuring device.
 複合粒子は、表面に平均厚み10nm以上300nm以下の低結晶炭素を主体とした被覆層が存在していてもよい。上記平均厚みは、好ましくは20nm以上200nm以下である。複合粒子が上記平均厚みの被覆層を有することで、粒子表面上に露出したシリコンナノ粒子を保護することができ、これにより複合粒子の化学安定性や熱安定性改善のため、結果として充放電性能の低下をさらに抑制することができる。 The composite particles may have a coating layer mainly composed of low-crystalline carbon with an average thickness of 10 nm or more and 300 nm or less on the surface. The average thickness is preferably 20 nm or more and 200 nm or less. Since the composite particles have a coating layer with the above average thickness, it is possible to protect the silicon nanoparticles exposed on the particle surface, thereby improving the chemical stability and thermal stability of the composite particles. Performance degradation can be further suppressed.
<製法の説明>
 本発明の負極活物質を製造する方法の一例を以下説明する。
 本発明の負極活物質は、複合粒子の製造工程として、下記工程1~3を含むことが好ましい。
工程1: 湿式法粉砕した珪素(0価)スラリーを、ポリシロキサン化合物と炭素源樹脂を含む集合体と混合させ、撹拌・乾燥することで前駆体を得る
工程2: 前記工程1で得られた前駆体を不活性雰囲気中、最高到達温度1000℃~1180℃の温度範囲内で焼成することにより焼成物を得る
工程3: 前記工程2で得られた焼成物を粉砕することで負極活物質を得る
<Description of manufacturing method>
An example of the method for producing the negative electrode active material of the present invention will be described below.
The negative electrode active material of the present invention preferably includes the following steps 1 to 3 as the manufacturing steps of the composite particles.
Step 1: A silicon (zero-valent) slurry pulverized by a wet method is mixed with an aggregate containing a polysiloxane compound and a carbon source resin, stirred and dried to obtain a precursor Step 2: Obtained in Step 1 above Step 3 of obtaining a fired product by firing the precursor in an inert atmosphere within a temperature range of a maximum temperature of 1000° C. to 1180° C.: Pulverizing the fired product obtained in Step 2 to obtain a negative electrode active material. obtain
<工程1>
(珪素(0価)スラリー)
 工程1で用いる湿式法粉砕した珪素(0価)スラリー(上記シリコンナノ粒子のスラリー)の調製は、有機溶媒を用い湿式粉末粉砕装置にて行うことができる。有機溶媒においてシリコン粒子の粉砕を促進させるために分散剤を使っても良い。湿式粉砕装置としては、特に限定されるものでなく、ローラーミル、ジェットミル、高速回転粉砕機、容器駆動型ミル、ビーズミルなどが挙げられる。
<Step 1>
(Silicon (zero valent) slurry)
The wet-milled silicon (zero-valent) slurry (slurry of silicon nanoparticles described above) used in step 1 can be prepared using an organic solvent and a wet powder mill. A dispersant may be used to facilitate the grinding of the silicon particles in the organic solvent. The wet pulverizer is not particularly limited, and includes roller mills, jet mills, high-speed rotary pulverizers, container-driven mills, bead mills, and the like.
 湿式法では任意の溶媒を用いることができる。有機溶媒としては、特に限定されないが、シリコンと化学反応しなければ良い。例えば、ケトン類のアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン;アルコール類のエタノール、メタノール、ノルマルプロピルアルコール、イソプロピルアルコール;芳香族のベンゼン、トルエン、キシレンなどが挙げられる。 Any solvent can be used in the wet method. The organic solvent is not particularly limited as long as it does not chemically react with silicon. Examples thereof include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; alcohols such as ethanol, methanol, normal propyl alcohol and isopropyl alcohol; aromatic benzene, toluene and xylene.
 上記分散剤の種類は、特に限定されるものでなく、水系や非水系の公知慣用の市販製品を使うことができるが、シリコン粒子の表面過剰酸化を回避するため、非水系分散剤の使用が好ましい。非水系分散剤の種類は、高分子型(ポリエーテル系、ポリアルキレンポリアミン系、ポリカルボン酸部分アルキルエステル系など)、低分子型(多価アルコールエステル系、アルキルポリアミン系など)、無機型のポリリン酸塩系などが例示される。珪素(0価)スラリーにおける珪素の濃度は特に限定されないが、5質量%~40質量%の範囲が好ましく、10質量%~30質量%がより好ましい。 The type of the dispersant is not particularly limited, and aqueous or non-aqueous known and commonly used commercial products can be used. preferable. Types of non-aqueous dispersants include polymer type (polyether type, polyalkylene polyamine type, polycarboxylic acid partial alkyl ester type, etc.), low molecular type (polyhydric alcohol ester type, alkyl polyamine type, etc.), and inorganic type. A polyphosphate system etc. are illustrated. The concentration of silicon in the (0-valent) silicon slurry is not particularly limited, but is preferably in the range of 5% by mass to 40% by mass, more preferably 10% by mass to 30% by mass.
(ポリシロキサン化合物)
 工程1で用いる上記ポリシロキサン化合物としては、ポリカルボシラン、ポリシラザン、ポリシラン及びポリシロキサン構造を少なくとも1つ含む樹脂であれば特に限定はない。これら単独の樹脂であっても良く、これをセグメントとして有し、他の重合体セグメントと化学的に結合した複合型樹脂でも良い。複合化の形態がグラフト、ブロック、ランダム、交互などの共重合体がある。例えば、ポリシロキサンセグメントと重合体セグメントの側鎖に化学的に結合したグラフト構造を有する複合樹脂があり、重合体セグメントの末端にポリシロキサンセグメントが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。
(Polysiloxane compound)
The polysiloxane compound used in step 1 is not particularly limited as long as it is a resin containing at least one of polycarbosilane, polysilazane, polysilane and polysiloxane structures. These single resins may be used, or composite resins having these as segments and chemically bonding with other polymer segments may be used. There are copolymers of graft, block, random, alternating, etc. complexing forms. For example, there are composite resins that have a graft structure in which polysiloxane segments and side chains of polymer segments are chemically bonded, and there are composite resins that have a block structure in which polysiloxane segments are chemically bonded to the ends of polymer segments. mentioned.
 ポリシロキサンセグメントが、下記一般式(S-1)および/または下記一般式(S-2)で表される構造単位を有するものが好ましい。なかでもポリシロキサン化合物が、シロキサン結合(Si-O-Si)主骨格の側鎖又は末端に、カルボキシ基、エポキシ基、アミノ基、又はポリエーテル基を有することがより好ましい。 The polysiloxane segment preferably has a structural unit represented by the following general formula (S-1) and/or the following general formula (S-2). Among them, the polysiloxane compound more preferably has a carboxy group, an epoxy group, an amino group, or a polyether group at the side chain or end of the siloxane bond (Si--O--Si) backbone.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(前記一般式(S-1)及び(S-2)中、Rは芳香族炭化水素置換基又はアルキル基、エポキシ基、カルボキシ基などを表す。R及びRは、それぞれアルキル基、シクロアルキル基、アリール基またはアラルキル基、エポキシ基、カルボキシ基などを示す。)
Figure JPOXMLDOC01-appb-C000002
(In general formulas (S-1) and (S-2) above, R 1 represents an aromatic hydrocarbon substituent or an alkyl group, an epoxy group, a carboxy group, etc. R 2 and R 3 each represent an alkyl group, Cycloalkyl group, aryl group, aralkyl group, epoxy group, carboxy group, etc.)
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。前記のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1 -dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl- 2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like. Examples of the cycloalkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
 アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。 Examples of aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
 アラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。 The aralkyl group includes, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
 ポリシロキサン化合物が有するポリシロキサンセグメント以外の重合体セグメントとしては、例えば、アクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族系ビニル重合体、ポリオレフィン重合体等のビニル重合体セグメントや、ポリウレタン重合体セグメント、ポリエステル重合体セグメント、ポリエーテル重合体セグメント等の重合体セグメント等が挙げられる。中でも、ビニル重合体セグメントが好ましい。 Examples of polymer segments other than the polysiloxane segment possessed by the polysiloxane compound include vinyl polymer segments such as acrylic polymers, fluoroolefin polymers, vinyl ester polymers, aromatic vinyl polymers, and polyolefin polymers, Examples include polymer segments such as polyurethane polymer segments, polyester polymer segments, and polyether polymer segments. Among them, a vinyl polymer segment is preferred.
 ポリシロキサン化合物が、ポリシロキサンセグメントと重合体セグメントとが下記の構造式(S-3)で示される構造で結合した複合樹脂でもよく、三次元網目状のポリシロキサン構造を有してもよい。 The polysiloxane compound may be a composite resin in which polysiloxane segments and polymer segments are bonded in a structure represented by the following structural formula (S-3), or may have a three-dimensional network-like polysiloxane structure.
Figure JPOXMLDOC01-appb-C000003
(式中、炭素原子は重合体セグメントを構成する炭素原子であり、2個の珪素原子はポリシロキサンセグメントを構成する珪素原子である)
Figure JPOXMLDOC01-appb-C000003
(In the formula, the carbon atom is the carbon atom that constitutes the polymer segment, and the two silicon atoms are the silicon atoms that constitute the polysiloxane segment.)
 ポリシロキサン化合物が有するポリシロキサンセグメントは、該ポリシロキサンセグメント中に重合性二重結合など加熱により反応が可能な官能基を有していてもよい。熱分解前にポリシロキサン化合物を加熱処理することにより、架橋反応が進行し、固体状とすることにより、熱分解処理を容易に行うことができる。 The polysiloxane segment of the polysiloxane compound may have a functional group capable of reacting by heating, such as a polymerizable double bond, in the polysiloxane segment. By heat-treating the polysiloxane compound before thermal decomposition, the cross-linking reaction proceeds and the polysiloxane compound is solidified, thereby facilitating the thermal decomposition treatment.
 重合性二重結合としては、例えば、ビニル基や(メタ)アクリロイル基等が挙げられる。重合性二重結合は、ポリシロキサンセグメント中に2つ以上存在することが好ましく3~200個存在することがより好ましく、3~50個存在することが更に好ましい。また、ポリシロキサン化合物として重合性二重結合が2個以上存在する複合樹脂を使用することによって、架橋反応が容易に進行させることができる。 Examples of polymerizable double bonds include vinyl groups and (meth)acryloyl groups. Two or more polymerizable double bonds are preferably present in the polysiloxane segment, more preferably 3 to 200, and even more preferably 3 to 50. In addition, by using a composite resin having two or more polymerizable double bonds as the polysiloxane compound, the cross-linking reaction can be facilitated.
 ポリシロキサンセグメントは、シラノール基および/または加水分解性シリル基を有してもよい。加水分解性シリル基中の加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、置換アルコキシ基、アシロキシ基、フェノキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基、アルケニルオキシ基等が挙げられ、これらの基が加水分解されることにより加水分解性シリル基はシラノール基となる。前記熱硬化反応と並行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行することで、固体状のポリシロキサン化合物を得ることができる。 The polysiloxane segment may have silanol groups and/or hydrolyzable silyl groups. Hydrolyzable groups in hydrolyzable silyl groups include, for example, halogen atoms, alkoxy groups, substituted alkoxy groups, acyloxy groups, phenoxy groups, mercapto groups, amino groups, amido groups, aminooxy groups, iminooxy groups, alkenyloxy and the like, and the hydrolyzable silyl group becomes a silanol group by hydrolysis of these groups. In parallel with the thermosetting reaction, a hydrolytic condensation reaction proceeds between the hydroxyl group in the silanol group and the hydrolyzable group in the hydrolyzable silyl group, thereby obtaining a solid polysiloxane compound. can.
 本発明で言うシラノール基とは珪素原子に直接結合した水酸基を有する珪素含有基である。本発明で言う加水分解性シリル基とは珪素原子に直接結合した加水分解性基を有する珪素含有基であり、具体的には、例えば、下記の一般式(S-4)で表される基が挙げられる。 The silanol group referred to in the present invention is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom. The hydrolyzable silyl group referred to in the present invention is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom. Specifically, for example, a group represented by the following general formula (S-4) is mentioned.
Figure JPOXMLDOC01-appb-C000004
(式中、Rはアルキル基、アリール基又はアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、アリルオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基又はアルケニルオキシ基である。またbは0~2の整数である。)
Figure JPOXMLDOC01-appb-C000004
( wherein R4 represents a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group; R5 represents a halogen atom, an alkoxy group, an acyloxy group, an allyloxy group, a mercapto group, an amino group, an amido group, an aminooxy group, iminooxy group or alkenyloxy group, and b is an integer of 0 to 2.)
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。 Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1 -dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl- 2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like.
 アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。 Examples of aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
 アラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。 The aralkyl group includes, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 The halogen atom includes, for example, fluorine atom, chlorine atom, bromine atom, iodine atom and the like.
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基等が挙げられる。 Examples of alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, and tert-butoxy groups.
 アシロキシ基としては、例えば、ホルミルオキシ、アセトキシ、プロパノイルオキシ、ブタノイルオキシ、ピバロイルオキシ、ペンタノイルオキシ、フェニルアセトキシ、アセトアセトキシ、ベンゾイルオキシ、ナフトイルオキシ等が挙げられる。 Examples of acyloxy groups include formyloxy, acetoxy, propanoyloxy, butanoyloxy, pivaloyloxy, pentanoyloxy, phenylacetoxy, acetoacetoxy, benzoyloxy, naphthoyloxy and the like.
 アリルオキシ基としては、例えば、フェニルオキシ、ナフチルオキシ等が挙げられる。 The allyloxy group includes, for example, phenyloxy, naphthyloxy and the like.
 アルケニルオキシ基としては、例えば、ビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、2-ペテニルオキシ基、3-メチル-3-ブテニルオキシ基、2-ヘキセニルオキシ基等が挙げられる。 Examples of alkenyloxy groups include vinyloxy, allyloxy, 1-propenyloxy, isopropenyloxy, 2-butenyloxy, 3-butenyloxy, 2-petenyloxy, 3-methyl-3-butenyloxy, 2 -hexenyloxy group and the like.
 上記一般式(S-1)および/または上記一般式(S-2)で示される構造単位を有するポリシロキサンセグメントとしては、例えば以下の構造を有するもの等が挙げられる。 Examples of the polysiloxane segment having the structural unit represented by the above general formula (S-1) and/or the above general formula (S-2) include those having the following structures.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 重合体セグメントは、本発明の効果を阻害しない範囲で、必要に応じて各種官能基を有していても良い。かかる官能基としては、例えばカルボキシル基、ブロックされたカルボキシル基、カルボン酸無水基、3級アミノ基、水酸基、ブロックされた水酸基、シクロカーボネート基、エポキシ基、カルボニル基、1級アミド基、2級アミド、カーバメート基、下記の構造式(S-5)で表される官能基等を使用することができる。 The polymer segment may have various functional groups as necessary to the extent that the effects of the present invention are not impaired. Such functional groups include, for example, carboxyl group, blocked carboxyl group, carboxylic anhydride group, tertiary amino group, hydroxyl group, blocked hydroxyl group, cyclocarbonate group, epoxy group, carbonyl group, primary amide group, secondary Amide, carbamate groups, functional groups represented by the following structural formula (S-5), and the like can be used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 また、前記重合体セグメントは、ビニル基、(メタ)アクリロイル基等の重合性二重結合を有していてもよい。 In addition, the polymer segment may have polymerizable double bonds such as vinyl groups and (meth)acryloyl groups.
 上記ポリシロキサン化合物は、公知の方法で製造できるが、なかでも下記(1)~(3)に示す方法で製造することが好ましい。但し、これらに限定されるものではない。 The above polysiloxane compound can be produced by known methods, but is preferably produced by the methods shown in (1) to (3) below. However, it is not limited to these.
 (1)前記重合体セグメントの原料として、シラノール基および/または加水分解性シリル基を含有する重合体セグメントを予め調製しておき、この重合体セグメントと、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物を含有するシラン化合物とを混合し、加水分解縮合反応を行う方法。 (1) As a raw material for the polymer segment, a polymer segment containing a silanol group and/or a hydrolyzable silyl group is prepared in advance, and the polymer segment and the silanol group and/or the hydrolyzable silyl group are and a method of mixing with a silane compound containing a silane compound having a polymerizable double bond and performing a hydrolytic condensation reaction.
 (2)前記重合体セグメントの原料として、シラノール基および/または加水分解性シリル基を含有する重合体セグメントを予め調製する。また、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物を含有するシラン化合物を加水分解縮合反応してポリシロキサンも予め調製しておく。そして、重合体セグメントとポリシロキサンとを混合し、加水分解縮合反応を行う方法。 (2) As a raw material for the polymer segment, a polymer segment containing a silanol group and/or a hydrolyzable silyl group is prepared in advance. Polysiloxane is also prepared in advance by subjecting a silane compound containing a silane compound having both a silanol group and/or a hydrolyzable silyl group and a polymerizable double bond to a hydrolytic condensation reaction. Then, a method of mixing the polymer segment and polysiloxane and performing a hydrolytic condensation reaction.
 (3)前記重合体セグメントと、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物を含有するシラン化合物と、ポリシロキサンとを混合し、加水分解縮合反応を行う方法。 (3) mixing the polymer segment, a silane compound containing a silane compound having both a silanol group and/or a hydrolyzable silyl group, and a polymerizable double bond, and a polysiloxane to perform a hydrolytic condensation reaction; How to do it.
(炭素源樹脂)
 工程1で用いる炭素源樹脂は、前駆体作製時にポリシロキサン化合物との混和性が良く、また、不活性雰囲気中・高温焼成により炭化されることがあれば特に限定されないが、芳香族官能基を有する合成樹脂類や天然化学原料を用いることが好ましい、安価入手や不純物排除の観点からフェノール樹脂の使用がより好ましい。
(Carbon source resin)
The carbon source resin used in step 1 is not particularly limited as long as it has good miscibility with the polysiloxane compound at the time of precursor preparation, and may be carbonized by baking at high temperature in an inert atmosphere. It is preferable to use synthetic resins or natural chemical raw materials possessed by the resin, and it is more preferable to use phenolic resin from the viewpoint of inexpensive availability and elimination of impurities.
 合成樹脂類としては、ポリビニルアルコール、ポリアクリル酸などの熱可塑性樹脂、フェノール樹脂、フラン樹脂などの熱硬化性樹脂が挙げられる。天然化学原料としては、重質油、特にはタールピッチ類としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。 Synthetic resins include thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, and thermosetting resins such as phenol resin and furan resin. Natural chemical raw materials include heavy oils, especially tar pitches such as coal tar, light tar oil, medium tar oil, heavy tar oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, and oxygen-crosslinked petroleum pitch. , heavy oil, etc.
 特に、本発明の工程1においては、炭素源樹脂が、芳香族炭化水素部位を含む樹脂であることが好ましく、上記の芳香族炭化水素部位を含む樹脂が、フェノール樹脂、エポキシ樹脂、又は熱硬化性樹脂であることが好ましい。 In particular, in step 1 of the present invention, the carbon source resin is preferably a resin containing an aromatic hydrocarbon moiety, and the resin containing an aromatic hydrocarbon moiety is a phenol resin, an epoxy resin, or a thermosetting resin. It is preferably a flexible resin.
(前駆体)
 そして、上記の珪素(0価)スラリーとポリシロキサン化合物と炭素源樹脂を含む集合体を均一に混合させ、攪拌した後、脱溶媒と乾燥を経て前駆体が得られる。原料の混合では、特に限定されないが、汎用な分散・混合の機能を有する装置を用いることができる。その中、攪拌機、超音波ミキサー、プリミックス分散機などが挙げられる。有機溶媒を溜去することを目的とする脱溶剤と乾燥の作業では、乾燥機、減圧乾燥機、噴霧乾燥機などを用いることができる。
(precursor)
Then, the aggregate containing the silicon (zero-valent) slurry, the polysiloxane compound and the carbon source resin is uniformly mixed and stirred, and then the solvent is removed and dried to obtain a precursor. Mixing of raw materials is not particularly limited, but a general-purpose apparatus having a dispersing/mixing function can be used. Among them, stirrers, ultrasonic mixers, premix dispersers and the like are mentioned. A dryer, a reduced-pressure dryer, a spray dryer, or the like can be used for solvent removal and drying for the purpose of distilling off the organic solvent.
 この負極活物質前駆体は、珪素(0価)であるシリコンナノ粒子の含有量を3質量%~50質量%、ポリシロキサン化合物の固形分を15質量%~85質量%含有し、炭素源樹脂の固形分を3質量%~70質量%含有する様に設定することが好ましく、シリコンナノ粒子の固形分含有量を8質量%~40質量%、ポリシロキサン化合物の固形分を20~70質量%に、炭素源樹脂の固形分を3質量%~60質量%に設定することがより好ましい。 This negative electrode active material precursor contains 3% to 50% by mass of silicon nanoparticles, which are silicon (zero valent), and 15% to 85% by mass of the solid content of a polysiloxane compound, and the carbon source resin It is preferable to set the solid content of 3% to 70% by mass, the solid content of the silicon nanoparticles is 8% to 40% by mass, and the solid content of the polysiloxane compound is 20% to 70% by mass. Furthermore, it is more preferable to set the solid content of the carbon source resin to 3% by mass to 60% by mass.
<工程2>
 工程2は、上記工程1で得られた前駆体を不活性雰囲気中、最高到達温度1000℃~1180℃の温度範囲内で焼成することで、熱分解可能な有機成分を完全分解させ、その他の主成分を焼成条件の精密制御により本発明の負極活物質に適した焼成物とする工程である。具体的にいうと、原料のポリシロキサン化合物に存在する「Si-O」結合は、高温処理のエネルギーによって脱水縮合反応が進むことで「Si-O-C」の骨格構造(本明細書以下の記載中にSiOCと称す)を形成すると共に、均一化分散されていた炭素源樹脂も炭化されることで、「Si-O-C」骨格を有する三次元構造体中にフリー炭素として転化される。
<Step 2>
In step 2, the precursor obtained in step 1 is fired in an inert atmosphere at a maximum temperature of 1000° C. to 1180° C. to completely decompose the thermally decomposable organic components and other components. In this step, the main component is made into a sintered material suitable for the negative electrode active material of the present invention by precisely controlling the sintering conditions. Specifically, the “Si—O” bond present in the raw material polysiloxane compound is converted into a “Si—O—C” skeleton structure (hereinafter referred to as SiOC in the description) is formed, and the uniformly dispersed carbon source resin is also carbonized, so that it is converted as free carbon into a three-dimensional structure having a “Si—O—C” skeleton. .
 工程2では、上記工程1で得られた前駆体を不活性雰囲気下、昇温速度、一定温度での保持時間等により既定される焼成のプログラムに沿って焼成する。最高到達温度は、設定する最高温度であり、焼成物である負極活物質の構造や性能に強く影響を与えるものである。本発明では最高到達温度が1000℃~1180℃であることにより、前述の珪素と炭素の化学結合状態を保有する負極活物質の微細構造が精密に制御でき、過高温焼成でのシリコン粒子の酸化も回避できることでより優れた充放電特性が得られる。 In step 2, the precursor obtained in step 1 above is fired in an inert atmosphere according to a firing program determined by the rate of temperature increase, holding time at a constant temperature, and the like. The maximum attainable temperature is the maximum temperature to be set, and strongly affects the structure and performance of the negative electrode active material, which is the baked product. In the present invention, since the maximum temperature is 1000° C. to 1180° C., the fine structure of the negative electrode active material having the above-described chemical bonding state of silicon and carbon can be precisely controlled, and the oxidation of silicon particles by excessive high temperature firing. can also be avoided, resulting in better charge/discharge characteristics.
 焼成方法は、特に限定されないが、不活性雰囲気中にて加熱機能を有する反応装置を用いればよく、連続法、回分法での処理が可能である。焼成用装置については、流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。 The calcination method is not particularly limited, but a reaction apparatus having a heating function may be used in an inert atmosphere, and continuous or batchwise processing is possible. A fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln, or the like can be appropriately selected as the firing apparatus according to the purpose.
<工程3>
 工程3は、上記工程2で得られた焼成物を粉砕し、必要に応じて分級することで本発明の負極活物質を得る工程である。粉砕は、目的とする粒径まで一段で行っても良いし、数段に分けて行っても良い。例えば焼成物が10mm以上の塊または凝集粒子となっていて、10μmの活物質を作製する場合はジョークラッシャー、ロールクラッシャー等で粗粉砕を行い1mm程度の粒子にした後、グローミル、ボールミル等で100μmとし、ビーズミル、ジェットミル等で10μmまで粉砕する。粉砕で作製した粒子には粗大粒子が含まれる場合がありそれを取り除くため、また、微粉を取り除いて粒度分布を調整する場合は分級を行う。使用する分級機は風力分級機、湿式分級機等目的に応じて使い分けるが、粗大粒子を取り除く場合、篩を通す分級方式が確実に目的を達成できるために好ましい。尚、本焼成前に前駆体混合物を噴霧乾燥等により目標粒子径付近の形状に制御し、その形状で本焼成を行った場合は、もちろん粉砕工程を省くことも可能である。
<Step 3>
Step 3 is a step for obtaining the negative electrode active material of the present invention by pulverizing the baked product obtained in Step 2 and classifying if necessary. The pulverization may be carried out in one step until the target particle size is obtained, or may be carried out in several steps. For example, when the fired product is lumps or agglomerated particles of 10 mm or more and to produce an active material of 10 μm, it is coarsely pulverized with a jaw crusher, roll crusher, etc. to make particles of about 1 mm, and then 100 μm with a glow mill, ball mill, etc. and pulverized to 10 μm with a bead mill, jet mill, or the like. Particles produced by pulverization may contain coarse particles, and in order to remove them, or to adjust the particle size distribution by removing fine powder, classification is performed. The classifier to be used may be a wind classifier, a wet classifier, or the like depending on the purpose, but when removing coarse particles, the classification method through a sieve is preferable because the purpose can be reliably achieved. Incidentally, when the precursor mixture is controlled to have a shape close to the target particle size by spray drying or the like before the main firing and the main firing is performed in that shape, the pulverization step can of course be omitted.
<負極の作製>
 本発明の負極活物質は、上述の通りに優れた充放電特性を示すことから、これを電池負極として用いた時に、良好な充放電特性を発揮するものである。
 具体的には、本発明の負極活物質と有機結着剤とを必須成分として、必要に応じてその他の導電助剤などの成分を含んで構成されるスラリーを集電体銅箔上へ薄膜のようにして負極として用いることができる。また、上記のスラリーに公知慣用されている黒鉛など炭素材料を加えて負極を作製することもできる。
<Production of negative electrode>
Since the negative electrode active material of the present invention exhibits excellent charge/discharge characteristics as described above, it exhibits good charge/discharge characteristics when used as a battery negative electrode.
Specifically, a slurry composed of the negative electrode active material of the present invention and an organic binder as essential components and, if necessary, other components such as a conductive aid is applied to a current collector copper foil as a thin film. It can be used as a negative electrode in the following manner. A negative electrode can also be produced by adding a known and commonly used carbon material such as graphite to the above slurry.
 この黒鉛など炭素材料としては、天然黒鉛、人工黒鉛、ハードカーボン、ソフトカーボンなどが挙げられる。こうして得られる負極は、活物質として、本発明の負極活物質を含むことから、高容量かつ優れたサイクル特性を有し、さらに、優れた初回クーロン効率をも兼備する二次電池用負極となる。該負極は、例えば、前述の二次電池用負極活物質と、有機結着材であるバインダーとを、溶媒とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダ等の分散装置により混練して、負極材スラリーを調製し、これを集電体に塗布して負極層を形成することで得ることができる。また、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することでも得ることができる。 Carbon materials such as graphite include natural graphite, artificial graphite, hard carbon, and soft carbon. Since the negative electrode obtained in this way contains the negative electrode active material of the present invention as an active material, it has a high capacity and excellent cycle characteristics, and furthermore, it becomes a negative electrode for a secondary battery that also has excellent initial coulombic efficiency. . The negative electrode is prepared, for example, by kneading the negative electrode active material for a secondary battery and a binder, which is an organic binder, together with a solvent using a dispersing device such as a stirrer, a ball mill, a super sand mill, and a pressure kneader. It can be obtained by preparing a material slurry and coating it on a current collector to form a negative electrode layer. It can also be obtained by forming a paste-like negative electrode material slurry into a sheet-like or pellet-like shape and integrating this with a current collector.
 上記有機結着剤としては、特に限定されないが、例えば、スチレン-ブタジエンゴム共重合体(SBR);エチレン性不飽和カルボン酸エステル(例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、およびヒドロキシエチル(メタ)アクリレート等)、およびエチレン性不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)からなる(メタ)アクリル共重合体;ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド、カルボキシメチルセルロース(CMC)などの高分子化合物が挙げられる。 Examples of the organic binder include, but are not limited to, styrene-butadiene rubber copolymer (SBR); ethylenically unsaturated carboxylic acid esters (e.g., methyl (meth) acrylate, ethyl (meth) acrylate, butyl ( (meth)acrylates, (meth)acrylonitrile, and hydroxyethyl (meth)acrylate, etc.), and ethylenically unsaturated carboxylic acids (e.g., acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.). acrylic copolymers; polymeric compounds such as polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polyimide, polyamideimide, and carboxymethyl cellulose (CMC);
 これらの有機結着剤は、それぞれの物性によって、水に分散、あるいは溶解したもの、また、N-メチル-2-ピロリドン(NMP)などの有機溶剤に溶解したものがある。リチウムイオン二次電池負極の負極層中の有機結着剤の含有比率は、1質量%~30質量%であることが好ましく、2質量%~20質量%であることがより好ましく、3質量%~15質量%であることがさらに好ましい。 Depending on their physical properties, these organic binders can be dispersed or dissolved in water, or dissolved in an organic solvent such as N-methyl-2-pyrrolidone (NMP). The content ratio of the organic binder in the negative electrode layer of the lithium ion secondary battery negative electrode is preferably 1% by mass to 30% by mass, more preferably 2% by mass to 20% by mass, and 3% by mass. More preferably, it is up to 15% by mass.
 有機結着剤の含有比率が1質量%以上であることで密着性がより良好で、充放電時の膨張・収縮によって負極構造の破壊がより抑制される。一方、30質量%以下であることで、電極抵抗の上昇がより抑えられる。 When the content of the organic binder is 1% by mass or more, the adhesion is better, and the destruction of the negative electrode structure due to expansion and contraction during charging and discharging is further suppressed. On the other hand, when the content is 30% by mass or less, an increase in electrode resistance can be further suppressed.
 この際、本発明の負極活物質においては、化学安定性が高く、水性バインダーも採用することができる点で、実用化面においても取り扱い容易なものである。 At this time, the negative electrode active material of the present invention has high chemical stability and can be used with an aqueous binder, and is easy to handle in terms of practical use.
 また、上記負極材スラリーには、必要に応じて、導電助材を混合してもよい。導電助材としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電助剤の使用量は、本発明の負極活物質に対して1質量%~15質量%程度とすればよい。 In addition, the negative electrode material slurry may be mixed with a conductive aid, if necessary. Examples of conductive aids include carbon black, graphite, acetylene black, oxides and nitrides exhibiting conductivity, and the like. The amount of the conductive aid used may be about 1% by mass to 15% by mass with respect to the negative electrode active material of the present invention.
 また上記集電体の材質および形状については、特に限定されず、例えば、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。 The material and shape of the current collector are not particularly limited. For example, copper, nickel, titanium, stainless steel, etc. may be used in the form of a foil, a perforated foil, a mesh, or the like in the form of a strip. . Porous materials such as porous metal (foamed metal) and carbon paper can also be used.
 上記負極材スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うことが好ましい。 The method for applying the negative electrode material slurry to the current collector is not particularly limited, but examples include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, and a gravure coating. well-known methods such as a method, a screen printing method, and the like. After coating, it is preferable to carry out a rolling treatment using a flat plate press, calendar rolls, or the like, if necessary.
 また、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。 Also, the integration of the negative electrode material slurry molded into a sheet-like or pellet-like shape and the current collector can be performed by a known method such as roll, press, or a combination thereof.
 上記集電体上に形成された負極層および集電体と一体化した負極層は、用いた有機結着剤に応じて熱処理することが好ましい。例えば、公知慣用されている水系のスチレン-ブタジエンゴム共重合体(SBR)などを用いた場合には100~130℃で熱処理すればよく、ポリイミド、ポリアミドイミドを主骨格とした有機結着剤を用いた場合には150~450℃で熱処理することが好ましい。 The negative electrode layer formed on the current collector and the negative electrode layer integrated with the current collector are preferably heat-treated according to the organic binder used. For example, when a commonly used water-based styrene-butadiene rubber copolymer (SBR) or the like is used, it may be heat-treated at 100 to 130°C. When used, heat treatment at 150 to 450° C. is preferred.
 この熱処理により溶媒の除去、バインダーの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性が向上できる。尚、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気、真空雰囲気で行うことが好ましい。 This heat treatment removes the solvent and hardens the binder to increase the strength, improving the adhesion between particles and between the particles and the current collector. These heat treatments are preferably performed in an inert atmosphere such as helium, argon, or nitrogen, or in a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
 また、熱処理する後に、負極はプレス(加圧処理)しておくことが好ましい。本発明の負極活物質を用いた負極では、電極密度が1.0g/cm~1.8g/cmであることが好ましく、1.1g/cm~1.7g/cmであることがより好ましく、1.2g/cm~1.6g/cmであることがさらに好ましい。電極密度については、高いほど密着性及び電極の体積容量密度が向上する傾向があるが、密度が高すぎると、電極中の空隙が減少することで珪素など体積膨張の抑制効果が弱くなり、サイクル特性が低下するため、最適な範囲を選択する。 Moreover, it is preferable to press (pressurize) the negative electrode after the heat treatment. The negative electrode using the negative electrode active material of the present invention preferably has an electrode density of 1.0 g/cm 3 to 1.8 g/cm 3 , more preferably 1.1 g/cm 3 to 1.7 g/cm 3 . is more preferable, and 1.2 g/cm 3 to 1.6 g/cm 3 is even more preferable. Regarding the electrode density, there is a tendency that the higher the density, the better the adhesion and the volume capacity density of the electrode. Select the optimum range because the characteristics will be degraded.
<フル電池の構成>
 上述のように、本発明の負極活物質を用いた負極は、充放電特性に優れるため、二次電池であれば特に限定されないが、非水電解質二次電池と固体型電解質二次電池に用いることが好ましく、特に非水電解質二次電池の負極として用いた際に優れた性能を発揮するものである。
<Full battery configuration>
As described above, the negative electrode using the negative electrode active material of the present invention has excellent charge-discharge characteristics, and is not particularly limited as long as it is a secondary battery. In particular, when used as the negative electrode of a non-aqueous electrolyte secondary battery, it exhibits excellent performance.
 本発明の非水電解質二次電池は、例えば、湿式電解質二次電池に用いる場合、正極と、本発明の負極とを、セパレータを介して対向して配置し、電解液を注入することにより構成することができる。 The non-aqueous electrolyte secondary battery of the present invention, for example, when used in a wet electrolyte secondary battery, is configured by arranging a positive electrode and a negative electrode of the present invention facing each other with a separator interposed therebetween, and injecting an electrolytic solution. can do.
 正極は、負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。 The positive electrode can be obtained by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode. In this case, the current collector may be a strip-shaped one made of a metal or alloy such as aluminum, titanium, or stainless steel in the form of foil, foil with holes, mesh, or the like.
 正極層に用いる正極材料としては、特に制限されない。非水電解質二次電池の中でも、リチウムイオン二次電池を作製する場合には、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用いればよく、特に限定されない。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、およびこれらの複合酸化物(LiCoxNiyMnzO、x+y+z=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。 The positive electrode material used for the positive electrode layer is not particularly limited. Among non-aqueous electrolyte secondary batteries, when producing a lithium ion secondary battery, for example, a metal compound, a metal oxide, a metal sulfide, or a conductive polymer material capable of doping or intercalating lithium ions is not particularly limited. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), composite oxides thereof (LiCoxNiyMnzO 2 , x+y+z=1), lithium manganese spinel (LiMn 2 O 4 ) , lithium vanadium compounds , V2O5 , V6O13 , VO2 , MnO2 , TiO2 , MoV2O8 , TiS2 , V2S5 , VS2 , MoS2 , MoS3 , Cr3O8 , Cr 2 O 5 , olivine-type LiMPO 4 (M: Co, Ni, Mn, Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc., porous carbon, etc. are used singly or in combination. be able to.
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製する非水電解質二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。 As the separator, for example, a non-woven fabric, cloth, microporous film, or a combination of them can be used, the main component of which is polyolefin such as polyethylene or polypropylene. In addition, when the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery to be manufactured are structured such that they do not come into direct contact with each other, there is no need to use a separator.
 電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。 Examples of electrolytes include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 and LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, and sulfolane. , 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl Non-aqueous solvents such as propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate and ethyl acetate, or a mixture of two or more components. A dissolved, so-called organic electrolyte can be used.
 本発明の非水電解質二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。尚、本発明の実施例で用いるハーフセルは、負極に本発明の珪素含有活物質を主体とする構成とし、対極に金属リチウムを用いた簡易評価を行っているが、これはより活物質自体のサイクル特性を明確に比較するためである。前述したとおり、黒鉛系活物質(容量約340mAh/g前後)を主体とした合剤に少量添加し、既存負極容量を大きく上回る400~700mAh/g程度の負極容量に抑え、サイクル特性を向上させることが可能である。 The structure of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but usually, a positive electrode, a negative electrode, and an optional separator are wound in a flat spiral shape to form a wound electrode plate group. Generally, these plates are laminated to form a laminated electrode plate group, and the electrode plate group is enclosed in an outer package. The half-cell used in the examples of the present invention has a negative electrode composed mainly of the silicon-containing active material of the present invention, and a simple evaluation using metallic lithium as the counter electrode. This is to clearly compare the cycle characteristics. As mentioned above, by adding a small amount to a mixture mainly composed of graphite-based active material (capacity of about 340 mAh/g), the negative electrode capacity is suppressed to about 400 to 700 mAh/g, which greatly exceeds the existing negative electrode capacity, and the cycle characteristics are improved. It is possible.
 本発明の負極活物質を用いた非水電解質二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。上述した本発明の負極活物質は、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタ、固体リチウム二次電池などにも適用することが可能である。 Non-aqueous electrolyte secondary batteries using the negative electrode active material of the present invention are not particularly limited, but are used as paper-type batteries, button-type batteries, coin-type batteries, laminate-type batteries, cylindrical batteries, prismatic batteries, and the like. . The negative electrode active material of the present invention described above can also be applied to general electrochemical devices having a charging/discharging mechanism of intercalating and deintercalating lithium ions, such as hybrid capacitors and solid lithium secondary batteries.
 以下、本発明を実施例により詳細に説明する。部及び%は、特に断りがない限り、質量基準であるものとする。 The present invention will be described in detail below with reference to examples. Parts and percentages are based on mass unless otherwise specified.
「ポリシロキサン化合物の作製」
(合成例1:メチルトリメトキシシランの縮合物(m-1)の合成)
 攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、メチルトリメトキシシラン(以下、「MTMS」と略記する。)1,421質量部を仕込んで、60℃まで昇温した。次いで、上記反応容器中にiso-プロピルアシッドホスフェート(SC有機化学株式会社製「Phoslex A-3」)0.17質量部と脱イオン水207質量部との混合物を5分間で滴下した後、80℃の温度で4時間撹拌して加水分解縮合反応させた。
"Preparation of polysiloxane compound"
(Synthesis Example 1: Synthesis of condensate (m-1) of methyltrimethoxysilane)
A reactor equipped with a stirrer, a thermometer, a dropping funnel, a condenser and a nitrogen gas inlet was charged with 1,421 parts by mass of methyltrimethoxysilane (hereinafter abbreviated as "MTMS") and heated to 60°C. I warmed up. Then, a mixture of 0.17 parts by mass of iso-propyl acid phosphate ("Phoslex A-3" manufactured by SC Organic Chemical Co., Ltd.) and 207 parts by mass of deionized water was added dropwise to the reaction vessel over 5 minutes. C. for 4 hours to carry out a hydrolytic condensation reaction.
 上記の加水分解縮合反応によって得られた縮合物を、温度40~60℃及び40~1.3kPaの減圧下(メタノールの留去開始時の減圧条件が40kPaで、最終的に1.3kPaとなるまで減圧する条件をいう。以下、同様。)で蒸留し、上記反応過程で生成したメタノール及び水を除去することによって、数平均分子量1,000のMTMSの縮合物(m-1)を含有する液(有効成分70質量%)1,000質量部を得た。なお、前記有効成分とは、MTMS等のシランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)を、縮合反応後の実収量(質量部)で除した値〔シランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)/縮合反応後の実収量(質量部)〕により算出したものである。 The condensate obtained by the above hydrolytic condensation reaction is subjected to a temperature of 40 to 60 ° C. and a reduced pressure of 40 to 1.3 kPa (the reduced pressure condition at the start of distillation of methanol is 40 kPa, and finally becomes 1.3 kPa. The same applies hereinafter) to remove the methanol and water produced in the above reaction process, thereby containing the condensate (m-1) of MTMS with a number average molecular weight of 1,000 1,000 parts by mass of a liquid (70% by mass of active ingredient) was obtained. The effective ingredient is the value obtained by dividing the theoretical yield (parts by mass) when all the methoxy groups of the silane monomer such as MTMS are condensed by the actual yield (parts by mass) after the condensation reaction [methoxy of the silane monomer] Theoretical yield (parts by mass) when all groups are subjected to condensation reaction/Actual yield after condensation reaction (parts by mass)].
[評価方法]
 本実施例における負極活物質の評価方法は以下のとおりである。
平均粒径(D50):レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD-3000J)を用いて測定した。
比表面積(BET):比表面積測定装置(BELJAPAN社製、BELSORP-mini)を用いて窒素吸着測定より測定した。
29Si-NMR:JEOL RESONANCE社製、JNM-ECA600を用いた。
ラマン散乱分析測定:日本分光社製、NRS-5500を用いた。
[Evaluation method]
The evaluation method of the negative electrode active material in this example is as follows.
Average particle size (D50): Measured using a laser diffraction particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation).
Specific surface area (BET): Measured by nitrogen adsorption measurement using a specific surface area measuring device (BELSORP-mini manufactured by BEL JAPAN).
29 Si-NMR: JNM-ECA600 manufactured by JEOL RESONANCE was used.
Raman scattering analysis measurement: NRS-5500 manufactured by JASCO Corporation was used.
[実施例1]
 本発明の負極活物質を以下の様にして製造した。
 小型ビーズミル装置の容器中(150ml)にジルコニアビーズ(粒径範囲:0.1mm~0.2mm)及び100mlのメチルエチルケトン溶媒(MEK)を加え、シリコン粉体(和光製薬社製、平均粒径3~5μm)とカチオン性分散剤液(ビックケミー・ジャパン株式会社:BYK145)を入れ、ビーズミル湿式粉砕を行った後、色濃い褐色液体状であるシリコンスラリーを得た。光散乱測定法及びTEM観察でシリコン粉砕粒子の平均粒径(D50)が60nmであった。
 上記合成例で作製したポリシロキサン樹脂(PSi樹脂:平均分子量3500)、及びフェノール樹脂(Ph-R樹脂;平均分子量3000)を樹脂固形物重量構成比の20:80で混合させ、Si粒子量を50重量%となるように上記褐色液体状シリコンスラリー(平均粒径60nm)を添加して撹拌機中にて十分に混合させた後、脱溶媒及び減圧乾燥を行い、前駆体を得た。その後、前駆体を窒素雰囲気中で1100℃/4時間にて高温焼成し、その後、遊星型ボールミルで粉砕して、負極活物質粉末である黒色固形物を得た。
 得られた負極活物質粉末の平均粒径(D50)は約6.3μmであり、比表面積(BET)は16.5m/gを示した。また、29Si-NMRスペクトルによると、-70ppm~-90ppm範囲内ピークAと-90ppm~-130ppm範囲内ピークBが検出され、面積比A/Bが1.83であった。また、ラマン散乱分析測定結果は、炭素のGバンドに帰属する1590cm-1付近のピークとDバンドの1330cm-1付近のピークを示し、強度比G/Dが0.79となった。
[Example 1]
A negative electrode active material of the present invention was produced as follows.
Zirconia beads (particle size range: 0.1 mm to 0.2 mm) and 100 ml of methyl ethyl ketone solvent (MEK) were added to a container (150 ml) of a small bead mill device, and silicon powder (manufactured by Wako Pharmaceutical Co., Ltd., average particle size of 3 to 5 μm) and a cationic dispersant liquid (BYK145, BYK-Chemie Japan Co., Ltd.) were added and wet pulverized by a bead mill to obtain a dark brown liquid silicon slurry. The average particle diameter (D50) of the silicon pulverized particles was 60 nm by light scattering measurement and TEM observation.
The polysiloxane resin (PSi resin: average molecular weight 3500) and the phenol resin (Ph-R resin; average molecular weight 3000) prepared in the above synthesis example were mixed at a resin solid weight composition ratio of 20:80, and the Si particle amount was adjusted. The above-mentioned brown liquid silicon slurry (average particle size: 60 nm) was added so as to be 50% by weight, and the mixture was sufficiently mixed in a stirrer. After that, the precursor was sintered at a high temperature of 1100° C./4 hours in a nitrogen atmosphere, and then pulverized with a planetary ball mill to obtain a black solid, which is a negative electrode active material powder.
The obtained negative electrode active material powder had an average particle size (D50) of about 6.3 μm and a specific surface area (BET) of 16.5 m 2 /g. Further, according to the 29 Si-NMR spectrum, peak A within the range of -70 ppm to -90 ppm and peak B within the range of -90 ppm to -130 ppm were detected, and the area ratio A/B was 1.83. Further, the results of Raman scattering analysis showed a peak near 1590 cm −1 belonging to the G band of carbon and a peak near 1330 cm −1 belonging to the D band, and the intensity ratio G/D was 0.79.
 次に、上記で得られた負極活物質を使用し、以下の方法でハーフセル及びフルセルを作製し、二次電池充放電試験を行った。
 活物質粉末(80部)と導電助剤(アセチレンブラック、10部)及びバインダー(CMC+SBR、10部)との混合スラリーを調製して銅箔上に製膜した。その後、110℃で減圧乾燥し、Li金属箔を対極してハーフセルを作製した。このハーフセルについて、二次電池充放電試験装置(北斗(株)社製)を用い、充放電特性の評価を行った(カットオフ電圧範囲:0.005~1.5v)。充放電の測定結果は、初回放電容量が1450mAh/g;初回クーロン効率が85.1%であった。
 また、正極材料としてLiCoOを正極活物質、集電体としてアルミ箔を用いた単層シートを用いて、正極膜を作製した。さらに、450mAh/g放電容量設計値にて黒鉛粉体や活物質粉末とバインダーを混合して負極膜を作製した。非水電解質には六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1mol/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いたフルセルのコイン型リチウムイオン二次電池を作製した。このリチウムイオン二次電池を室温下、テストセルの電圧が4.2 V に達するまで1.2mA(正極基準で0.25c)の定電流で充電を行い、4.2Vに達した後は、セル電圧を4.2Vに保つように電流を減少させて充電を行い、放電容量を求めた。室温下200サイクルの容量維持率が84.5%であった。
 上記の評価結果をまとめて表1に示す。
Next, using the negative electrode active material obtained above, a half cell and a full cell were produced by the following method, and a secondary battery charge/discharge test was performed.
A mixed slurry of an active material powder (80 parts), a conductive aid (acetylene black, 10 parts) and a binder (CMC+SBR, 10 parts) was prepared and formed into a film on a copper foil. After that, it was dried under reduced pressure at 110° C., and a Li metal foil was used as a counter electrode to prepare a half cell. This half cell was evaluated for charge/discharge characteristics (cutoff voltage range: 0.005 to 1.5 V) using a secondary battery charge/discharge test device (manufactured by Hokuto Co., Ltd.). The measurement results of charge and discharge were an initial discharge capacity of 1450 mAh/g and an initial coulombic efficiency of 85.1%.
A positive electrode film was prepared using a single-layer sheet using LiCoO 2 as a positive electrode active material and aluminum foil as a current collector. Further, a negative electrode film was produced by mixing graphite powder, active material powder, and a binder at a discharge capacity design value of 450 mAh/g. A non-aqueous electrolyte solution prepared by dissolving lithium hexafluorophosphate in a 1/1 (volume ratio) mixed solution of ethylene carbonate and diethyl carbonate at a concentration of 1 mol/L was used as the non-aqueous electrolyte, and polyethylene having a thickness of 30 μm was used as the separator. A full-cell coin-type lithium-ion secondary battery was fabricated using the microporous film. This lithium ion secondary battery was charged at a constant current of 1.2 mA (0.25c based on the positive electrode) at room temperature until the voltage of the test cell reached 4.2 V. After reaching 4.2 V, Charging was performed by decreasing the current so as to keep the cell voltage at 4.2 V, and the discharge capacity was determined. The capacity retention rate after 200 cycles at room temperature was 84.5%.
Table 1 summarizes the above evaluation results.
[実施例2~18]
 表1に示すとおり、負極活物質前駆体における樹脂構成比(PSi/Ph-R)やSi含有量%、焼成温度を変えたこと以外は上記実施例1と同様にして、それぞれの負極活物質を作製し、各材料の性状と充放電特性などを評価した。これらの結果は表1に示すとおりである。実施例15及び16では、焼成後にそれぞれ1.2μm、13.5μmとなるように粉砕した(実施例15及び16では、遊星型ボールミルでの粉砕条件を変更した)。上記実施例2~18の評価結果をまとめて表1に示す。
[Examples 2 to 18]
As shown in Table 1, each negative electrode active material was prepared in the same manner as in Example 1 except that the resin composition ratio (PSi/Ph-R), Si content %, and firing temperature in the negative electrode active material precursor were changed. were produced, and the properties and charge/discharge characteristics of each material were evaluated. These results are shown in Table 1. In Examples 15 and 16, the powder was pulverized to 1.2 μm and 13.5 μm, respectively after firing (in Examples 15 and 16, the pulverization conditions in the planetary ball mill were changed). Table 1 summarizes the evaluation results of Examples 2 to 18 above.
[比較例1]
 実施例1と同様な条件(樹脂構成4/6、Si粒径と添加量)にて前駆体を乾燥後、窒素雰囲気・1200℃にて4時間焼成して負極活物質を得た。負極活物質粉末の平均粒径(D50)が約5.8μmであり、比表面積(BET)は29m/gを示した。29Si-NMRスペクトルでは、-70ppm~-90ppm範囲内ピークAと-90ppm~-130ppm範囲内ピークBが検出され、面積比A/Bが0.61であった。また、ラマン散乱分析測定結果は、炭素のGバンドに帰属する1590cm-1付近のピークとDバンドの1330cm-1付近のピークを示し、強度比G/Dが2.1となった。フルセルの充放電測定結果は、室温下200サイクル後の容量維持率が91%であったが、ハーフセルの充放電測定結果は、初回放電容量が344mAh/g;初回クーロン効率が54.6%に大幅低下した。
[Comparative Example 1]
After drying the precursor under the same conditions as in Example 1 (resin composition 4/6, Si particle size and addition amount), the precursor was fired at 1200° C. in a nitrogen atmosphere for 4 hours to obtain a negative electrode active material. The negative electrode active material powder had an average particle size (D50) of about 5.8 μm and a specific surface area (BET) of 29 m 2 /g. In the 29 Si-NMR spectrum, peak A within the range of -70 ppm to -90 ppm and peak B within the range of -90 ppm to -130 ppm were detected, and the area ratio A/B was 0.61. Further, the results of Raman scattering analysis showed a peak near 1590 cm −1 belonging to the G band of carbon and a peak near 1330 cm −1 belonging to the D band, and the intensity ratio G/D was 2.1. The charge/discharge measurement results of the full cell showed a capacity retention rate of 91% after 200 cycles at room temperature, while the charge/discharge measurement results of the half cell showed an initial discharge capacity of 344 mAh/g and an initial coulombic efficiency of 54.6%. decreased significantly.
[比較例2]
 実施例1との同様操作によって、樹脂構成比を1/9にして前駆体を作製後、窒素雰囲気・1100℃にて4時間焼成及び粉砕を経て負極活物質を得た。負極活物質粉末の平均粒径(D50)が約5.7μmであり、比表面積(BET)は25.3m/gを示した。29Si-NMRピークAとピークの面積比A/Bが3.9であった。また、炭素GバンドとDバンドの強度比G/Dが0.9となった。ハーフセルの充放電測定結果は、初回放電容量が1320mAh/g;初回クーロン効率が85.5%であったが、フルセルの充放電測定結果によると、室温下200サイクル後の容量維持率が76%に低下した。
[Comparative Example 2]
By the same operation as in Example 1, the resin component ratio was changed to 1/9 to prepare a precursor, which was then fired at 1100° C. for 4 hours in a nitrogen atmosphere and pulverized to obtain a negative electrode active material. The negative electrode active material powder had an average particle size (D50) of about 5.7 μm and a specific surface area (BET) of 25.3 m 2 /g. The area ratio A/B between the 29Si-NMR peak A and the peak was 3.9. Also, the intensity ratio G/D between the carbon G band and the carbon D band was 0.9. Half-cell charging/discharging measurement results showed an initial discharge capacity of 1320 mAh/g; an initial coulombic efficiency of 85.5%, but according to the full-cell charging/discharging measurement results, the capacity retention rate after 200 cycles at room temperature was 76%. decreased to
[比較例3]
 実施例1との同様操作によって、樹脂構成比を1/9に、Siの添加量を70%にして前駆体を作製後、窒素雰囲気・1100℃にて4時間焼成及び粉砕を経て、負極活物質を得た。負極活物質粉末の平均粒径(D50)が約5.6μmであり、比表面積(BET)は19.7m/gを示した。29Si-NMRピークAとピークの面積比A/Bが5.1であった。また、炭素GバンドとDバンドの強度比G/Dが0.96となった。ハーフセルの充放電測定結果は、初回放電容量が1920mAh/g;初回クーロン効率が87.9%であったが、フルセルの充放電測定結果によると、室温下200サイクル後の容量維持率が43%に低下した。
[Comparative Example 3]
By the same operation as in Example 1, after preparing a precursor with the resin composition ratio set to 1/9 and the amount of Si added to 70%, the precursor was fired at 1100 ° C. for 4 hours in a nitrogen atmosphere and pulverized. got the substance. The negative electrode active material powder had an average particle size (D50) of about 5.6 μm and a specific surface area (BET) of 19.7 m 2 /g. The area ratio A/B between the 29Si-NMR peak A and the peak was 5.1. Also, the intensity ratio G/D between the carbon G band and the carbon D band was 0.96. Half-cell charging/discharging measurement results showed an initial discharge capacity of 1920 mAh/g; an initial coulombic efficiency of 87.9%, but according to the full-cell charging/discharging measurement results, the capacity retention rate after 200 cycles at room temperature was 43%. decreased to
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記表1より、A/Bが式1(0.7≦A/B≦3.0)を満たすものである場合、初回放電容量及び容量維持率がともに良好であることが分かる。 From Table 1 above, it can be seen that when A/B satisfies Formula 1 (0.7≤A/B≤3.0), both the initial discharge capacity and the capacity retention rate are good.

Claims (9)

  1.  シリコンオキシカーバイドと炭素質相を含むマトリクス内部にシリコンナノ粒子が分散した複合粒子を含む負極活物質であって、前記複合粒子は、29Si-NMRスペクトルから得られるケミカルシフト値において、下記式1を満たすものである負極活物質。
    式1: 0.7≦A/B≦3.0
    A: Si(0価)に帰属する-70ppm~-90ppmの範囲内ピークの面積強度
    B: SiOの結合に由来する-90ppm~-130ppm範囲内ピークの面積強度
    A negative electrode active material containing composite particles in which silicon nanoparticles are dispersed in a matrix containing silicon oxycarbide and a carbonaceous phase, wherein the composite particles have a chemical shift value obtained from a 29 Si-NMR spectrum, represented by the following formula 1 A negative electrode active material that satisfies
    Formula 1: 0.7≤A/B≤3.0
    A: Area intensity of the peak within the range of −70 ppm to −90 ppm attributed to Si (0 valence) B: Area intensity of the peak within the range of −90 ppm to −130 ppm derived from the bond of SiO 4
  2.  炭素質相を含む前記複合粒子のラマンスペクトルにおいて、炭素構造のGバンドとDバンドに帰属する1590cm-1と1330cm-1付近の散乱ピークを有し、それらの散乱ピーク強度比I(Gバンド/Dバンド)が、0.7~2.0の範囲にある請求項1に記載の負極活物質。 The Raman spectrum of the composite particles containing a carbonaceous phase has scattering peaks near 1590 cm −1 and 1330 cm −1 attributed to the G band and D band of the carbon structure, and their scattering peak intensity ratio I (G band/ 2. The negative electrode active material according to claim 1, wherein the D band) is in the range of 0.7 to 2.0.
  3.  前記複合粒子における平均粒径(D50)が、1μm~20μmである請求項1又は2に記載の負極活物質。 The negative electrode active material according to claim 1 or 2, wherein the composite particles have an average particle size (D50) of 1 µm to 20 µm.
  4.  前記複合粒子における比表面積(BET)が、1m/g~20m/gの範囲にある請求項1~3のいずれか1項に記載の負極活物質。 4. The negative electrode active material according to claim 1, wherein the composite particles have a specific surface area (BET) in the range of 1 m 2 /g to 20 m 2 /g.
  5.  請求項1~4のいずれか1項に記載の負極活物質を含む非水電解質二次電池。 A nonaqueous electrolyte secondary battery containing the negative electrode active material according to any one of claims 1 to 4.
  6.  前記複合粒子の製造工程として、下記工程1~3を含む請求項1~4のいずれか1項に記載の負極活物質の製造方法。
    工程1: 湿式法粉砕した珪素(0価)スラリーを、ポリシロキサン化合物と炭素源樹脂を含む集合体と混合させ、撹拌・乾燥することで前駆体を得る
    工程2: 前記工程1で得られた前駆体を不活性雰囲気中、最高到達温度1000℃~1180℃の温度範囲内で焼成することにより焼成物を得る
    工程3: 前記工程2で得られた焼成物を粉砕することで負極活物質を得る
    The method for producing a negative electrode active material according to any one of claims 1 to 4, wherein the steps 1 to 3 below are included as the steps for producing the composite particles.
    Step 1: A silicon (zero-valent) slurry pulverized by a wet method is mixed with an aggregate containing a polysiloxane compound and a carbon source resin, stirred and dried to obtain a precursor Step 2: Obtained in Step 1 above Step 3 of obtaining a fired product by firing the precursor in an inert atmosphere within a temperature range of a maximum temperature of 1000° C. to 1180° C.: Pulverizing the fired product obtained in Step 2 to obtain a negative electrode active material. obtain
  7.  前記ポリシロキサン化合物が、シロキサン結合(Si-O-Si)主骨格の側鎖又は末端に、カルボキシ基、エポキシ基、アミノ基、又はポリエーテル基を有する請求項6に記載の負極活物質の製造方法。 The production of the negative electrode active material according to claim 6, wherein the polysiloxane compound has a carboxy group, an epoxy group, an amino group, or a polyether group at the side chain or end of the siloxane bond (Si-O-Si) main skeleton. Method.
  8.  前記炭素源樹脂が、芳香族炭化水素部位を含む樹脂である請求項6又は7に記載の負極活物質の製造方法。 The method for producing a negative electrode active material according to claim 6 or 7, wherein the carbon source resin is a resin containing an aromatic hydrocarbon moiety.
  9.  前記芳香族炭化水素部位を含む樹脂が、フェノール樹脂、エポキシ樹脂、又は熱硬化性樹脂である請求項8に記載の負極活物質の製造方法。 The method for producing a negative electrode active material according to claim 8, wherein the resin containing an aromatic hydrocarbon moiety is a phenolic resin, an epoxy resin, or a thermosetting resin.
PCT/JP2021/046423 2021-02-09 2021-12-16 Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery WO2022172585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022514554A JP7088438B1 (en) 2021-02-09 2021-12-16 Negative electrode active material, manufacturing method of negative electrode active material and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-018891 2021-02-09
JP2021018891 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172585A1 true WO2022172585A1 (en) 2022-08-18

Family

ID=82838665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046423 WO2022172585A1 (en) 2021-02-09 2021-12-16 Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
WO (1) WO2022172585A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107336A1 (en) * 2017-12-01 2019-06-06 Dic株式会社 Negative electrode active substance and production method therefor
WO2020129467A1 (en) * 2018-12-19 2020-06-25 Dic株式会社 Silicon nanoparticles, non-aqueous secondary battery negative electrode active material using said silicon nanoparticles, and secondary battery
WO2020262647A1 (en) * 2019-06-26 2020-12-30 株式会社村田製作所 Negative electrode active material, negative electrode and secondary battery
WO2021225092A1 (en) * 2020-05-07 2021-11-11 Dic株式会社 Porous silicon oxycarbide composite material and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107336A1 (en) * 2017-12-01 2019-06-06 Dic株式会社 Negative electrode active substance and production method therefor
WO2020129467A1 (en) * 2018-12-19 2020-06-25 Dic株式会社 Silicon nanoparticles, non-aqueous secondary battery negative electrode active material using said silicon nanoparticles, and secondary battery
WO2020262647A1 (en) * 2019-06-26 2020-12-30 株式会社村田製作所 Negative electrode active material, negative electrode and secondary battery
WO2021225092A1 (en) * 2020-05-07 2021-11-11 Dic株式会社 Porous silicon oxycarbide composite material and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material
JP7473098B1 (en) 2022-09-01 2024-04-23 Dic株式会社 Anode active material precursor, anode active material, secondary battery, and method for producing anode active material

Similar Documents

Publication Publication Date Title
JP6939979B2 (en) Silicon nanoparticles and non-aqueous secondary batteries using them Active materials for negative electrodes and secondary batteries
JP7288198B2 (en) Negative electrode active material and manufacturing method thereof
WO2021157459A1 (en) Secondary-battery negative-electrode active material, negative electrode, and secondary battery
WO2022172585A1 (en) Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery
US20220384807A1 (en) Low oxygen-type silicon nanoparticle-containing slurry, negative electrode active material, negative electrode and lithium-ion secondary battery
WO2022009572A1 (en) Active material for battery, composite active material for battery, and secondary battery
JP7088438B1 (en) Negative electrode active material, manufacturing method of negative electrode active material and non-aqueous electrolyte secondary battery
WO2023017587A1 (en) Material for secondary batteries, negative electrode active material and secondary battery
JP7453631B2 (en) Silicon-based materials, composite materials containing silicon-based materials, negative electrode materials for secondary batteries, and secondary batteries
JP7074273B1 (en) Negative electrode active material and non-aqueous electrolyte secondary battery
JP7323089B1 (en) Negative electrode active material, secondary battery, and method for producing negative electrode active material
WO2022124172A1 (en) Negative electrode active material and nonaqueous electrolyte secondary battery
JP7435916B1 (en) Manufacturing method of negative electrode active material, negative electrode active material and secondary battery
WO2023157643A1 (en) Secondary battery active material, method for producing secondary battery active material, and secondary battery
WO2023162692A1 (en) Nano silicon, nano silicon slurry, method for producing nano silicon, active material for secondary batteries, and secondary battery
WO2023157642A1 (en) Active material for secondary batteries, and secondary battery
WO2023074099A1 (en) Composite active material for secondary battery, and secondary battery
WO2024048288A1 (en) Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022514554

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925828

Country of ref document: EP

Kind code of ref document: A1