WO2023157642A1 - Active material for secondary batteries, and secondary battery - Google Patents

Active material for secondary batteries, and secondary battery Download PDF

Info

Publication number
WO2023157642A1
WO2023157642A1 PCT/JP2023/003304 JP2023003304W WO2023157642A1 WO 2023157642 A1 WO2023157642 A1 WO 2023157642A1 JP 2023003304 W JP2023003304 W JP 2023003304W WO 2023157642 A1 WO2023157642 A1 WO 2023157642A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
group
silicon oxide
silicon
Prior art date
Application number
PCT/JP2023/003304
Other languages
French (fr)
Japanese (ja)
Inventor
培新 諸
賢一 川瀬
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023540943A priority Critical patent/JP7491478B2/en
Publication of WO2023157642A1 publication Critical patent/WO2023157642A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery active material and a secondary battery. More specifically, the present invention relates to a secondary battery active material and a secondary battery containing the secondary battery active material in a negative electrode.
  • Non-aqueous electrolyte secondary batteries are used in mobile devices, hybrid vehicles, electric vehicles, household storage batteries, etc., and are required to have well-balanced characteristics such as electrical capacity, safety, and operational stability. ing. Furthermore, in recent years, with the downsizing of various electronic devices and communication devices and the rapid spread of hybrid vehicles, etc., batteries with higher capacity and various battery characteristics such as cycle characteristics and discharge rate characteristics are required as power sources for driving these devices. There is a strong demand for the development of lithium-ion secondary batteries with further improved performance.
  • Patent Document 1 proposes a silicon composite in which silicon microcrystals are dispersed in silicon oxide as a negative electrode active material for secondary batteries.
  • silicon oxide contains many oxygen atoms that generate irreversible lithium silicate during charging, and has the problem of low initial efficiency. Therefore, when a battery was actually produced, an excessive battery capacity of the positive electrode was required, and an increase in battery capacity corresponding to the increase in capacity of the active material was not observed.
  • Patent Document 2 describes a silicon crystal for non-aqueous electrolyte secondary battery negative electrode material having a structure in which silicon crystallites are dispersed through siloxane bonds and have fine spaces between silicon crystallites. Oxides have been proposed. However, when silicon oxide is used as the negative electrode active material for lithium-ion secondary batteries, the rapid decrease in charge-discharge capacity after many charge-discharge cycles is due to the large volume change caused by the absorption and release of large amounts of lithium. It is believed that this is due to the occurrence of particle destruction.
  • Patent Document 3 attempts to suppress the large volume change by using silicon flakes having a hyperporous structure as an active material. However, it is considered that the provision of such pores increases the specific surface area of the active material and deteriorates the cycle characteristics.
  • the present inventors have investigated a secondary battery active material using silicon oxide, which suppresses the destruction of particles due to volume change of silicon oxide, improves the cycle performance of lithium secondary batteries, and has a high electric capacity. As a result, the present inventors have found a composite active material for secondary batteries that improves the cyclability, initial coulombic efficiency and capacity retention rate of lithium secondary batteries. That is, the present invention relates to a secondary battery active material used in a lithium-ion secondary battery and a secondary battery containing the above-mentioned secondary battery active material as a negative electrode active material. An object of the present invention is to provide an active material for a secondary battery that provides an excellent secondary battery.
  • An active material for a secondary battery which is a composite particle having a silicon oxycarbide phase and at least two silicon oxide particles in the silicon oxycarbide phase.
  • the active material for a secondary battery according to [1] wherein the content of the silicon oxide particles is 1% by mass or more and 60% by mass or less.
  • a secondary battery comprising the secondary battery active material according to any one of [1] to [10] in a negative electrode.
  • the present invention relates to a secondary battery active material used in a lithium ion secondary battery and a secondary battery containing the secondary battery active material as a negative electrode active material.
  • a secondary battery active material that provides an excellent secondary battery is provided.
  • the secondary battery active material of the present invention (hereinafter also referred to as “the present active material”) comprises a silicon oxycarbide phase and at least two or more silicon oxide particles in the silicon oxycarbide phase (hereinafter referred to as “the present silicon oxide Also referred to as “particles").
  • silicon oxide has a high capacity, but when it absorbs and releases a large amount of lithium, it undergoes a large change in volume, and as a result, it is considered to be inferior in cycleability.
  • the silicon oxycarbide phase has a relatively low capacity, it has a small volume change with respect to lithium absorption and desorption, and is excellent in cycle characteristics. By combining the two, it is considered that the active material for a secondary battery that maintains a high capacity and provides a secondary battery that is excellent in volume expansion and cycle characteristics was obtained.
  • Silicon oxide is generally a general term for amorphous silicon oxides obtained by heating a mixture of silicon dioxide and metal silicon to generate silicon monoxide gas, which is then cooled and precipitated, and is represented by the following general formula ( 1).
  • SiOn (1) SiOn (1) However, in the formula (1), n is 0.4 or more and 1.8 or less, preferably 0.5 or more and 1.6 or less.
  • this active material is a composite particle in which silicon oxide particles are present in the matrix of the silicon oxycarbide phase, it is conceivable that the particle size of the silicon oxide has a large effect on the performance of this active material.
  • the average particle diameter of the silicon oxide particles exceeds 5 ⁇ m, the silicon oxide particles become large lumps, and when the present active material is used as a negative electrode active material, the silicon oxide particles cause large expansion and contraction of the negative electrode active material during charging and discharging.
  • the stress concentrates on a part of the matrix, so that the structure of the active material tends to collapse, and the capacity retention rate of the negative electrode active material tends to decrease.
  • silicon oxide particles with a small size of less than 300 nm are too fine, the silicon oxide particles tend to aggregate with each other. Therefore, the dispersibility of the silicon oxide particles in the negative electrode active material may deteriorate.
  • the silicon oxide particles are too fine the specific surface area tends to increase, and by-products tend to increase on the surfaces of the silicon oxide particles when the negative electrode active material is baked at high temperature. These may lead to deterioration in charge/discharge performance.
  • the average particle size of the present silicon oxide particles is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, from the above viewpoint.
  • the average particle size of the present silicon oxide particles is preferably 300 nm or more, more preferably 200 nm or more, from the viewpoint of particle dispersibility and specific surface area.
  • the average particle size is a D50 value that can be measured using a laser diffraction particle size analyzer or the like. D50 can be measured by a dynamic light scattering method using a laser particle size analyzer or the like.
  • the average particle diameter of the present silicon oxide particles is the particle diameter at which the volume cumulative distribution curve is drawn from the small diameter side to 50% in the particle diameter distribution.
  • the present silicon oxide particles can be granulated, for example, by pulverizing silicon oxide so that the average particle size falls within the above range.
  • pulverizers used for pulverization include pulverizers such as ball mills, bead mills, and jet mills.
  • the pulverization may be wet pulverization using an organic solvent, and as the organic solvent, for example, alcohols, ketones, etc. can be preferably used. Group hydrocarbon solvents can also be used.
  • the average particle size of the silicon oxide particles can be controlled within the above range by classifying the obtained silicon oxide particles by controlling the bead mill conditions such as the bead particle size, blending ratio, number of revolutions, and pulverization time. .
  • the shape of the present silicon oxide particles may be granular, needle-like, or flake-like.
  • the average particle size can be measured by a dynamic light scattering method, but it is possible to use an analysis means such as a transmission electron microscope (TEM) or a field emission scanning electron microscope (FE-SEM).
  • TEM transmission electron microscope
  • FE-SEM field emission scanning electron microscope
  • the sample can be cut with a focused ion beam (FIB) and the cross section can be observed with FE-SEM, or the sample can be sliced and observed with TEM. can identify the state of the present silicon oxide particles.
  • the aspect ratio of the present silicon oxide particles is the result of calculation based on 50 particles in the main portion of the sample within the field of view shown in the TEM image.
  • the silicon oxycarbide phase is composed of compounds containing silicon, oxygen, and carbon, and preferably has a three-dimensional network structure of silicon-oxygen-carbon skeleton and a structure containing free carbon.
  • free carbon is carbon that is not contained in the three-dimensional skeleton of silicon-oxygen-carbon.
  • Free carbon includes carbon present as a carbon phase, carbon bonded between carbon phase carbons, and carbon bonded between a silicon-oxygen-carbon skeleton and a carbon phase.
  • Silicon oxycarbide is preferably represented by the following formula (2).
  • SiOx Cy (2) In formula (2), x represents the molar ratio of oxygen to silicon, and y represents the molar ratio of carbon to silicon.
  • x represents the molar ratio of oxygen to silicon
  • y represents the molar ratio of carbon to silicon.
  • 1 ⁇ x ⁇ 2 is preferable, 1 ⁇ x ⁇ 1.9 is more preferable, and 1 ⁇ x ⁇ 1.8 is more preferred.
  • 1 ⁇ y ⁇ 20 is preferable, and 1.2 ⁇ y ⁇ 15 is more preferable, from the viewpoint of the balance between charge/discharge performance and initial coulombic efficiency.
  • the above x and y can be obtained by measuring the content mass of each element and then converting it into a molar ratio (atomic number ratio).
  • the content of oxygen and carbon can be quantified by using an inorganic elemental analyzer, and the content of silicon can be quantified by using an ICP optical emission spectrometer (ICP-OES).
  • ICP-OES ICP optical emission spectrometer
  • the present active material is locally analyzed, and a large number of measurement points for the content ratio data obtained thereby is obtained. It is also possible to analogize the content ratio of the entire substance. Local analysis includes, for example, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Electron Probe Microanalyzer (EPMA).
  • the silicon-oxygen- The carbon skeleton has high chemical stability, has a composite structure with free carbon, and has a small volume change with respect to lithium absorption and release. Since the silicon oxide particles are tightly wrapped in the composite structure of the silicon-oxygen-carbon skeleton and the free carbon, the volume change of the silicon oxide particles due to the intercalation and deintercalation of lithium is suppressed.
  • the silicon oxide particles in the negative electrode play the role of being the main component for the expression of charge-discharge performance, while the silicon oxycarbide phase reacts to the volume change of the silicon oxide particles during charge-discharge.
  • the accompanying particle destruction is suppressed, and the cyclability of the lithium secondary battery is improved.
  • the silicon-oxygen-carbon skeleton is converted into silicon-oxygen by the approach of lithium ions.
  • - Electron distribution inside the carbon skeleton is changed, and electrostatic bonds and coordinate bonds are formed between the silicon-oxygen-carbon skeleton and lithium ions.
  • Lithium ions are stored in the silicon-oxygen-carbon skeleton by this electrostatic bond and coordinate bond.
  • the coordination bond energy is relatively low, the desorption reaction of lithium ions easily occurs. In other words, it is considered that the silicon-oxygen-carbon skeleton can reversibly cause intercalation and deintercalation reactions of lithium ions during charging and discharging.
  • the silicon oxycarbide may contain nitrogen in addition to silicon, oxygen and carbon.
  • Nitrogen contains nitrogen as a functional group in the molecule of raw materials used in the manufacturing method of the active material described later, such as phenolic resins, dispersants, polysiloxane compounds, other nitrogen compounds, and nitrogen gas used in the firing process. By forming an atomic group, it can be introduced into the silicon oxycarbide phase. Since the silicon oxycarbide phase contains nitrogen, the charge/discharge performance and the capacity retention rate tend to be excellent when this active material is used as a negative electrode active material.
  • the silicon oxycarbide phase preferably contains a compound represented by the following formula (3).
  • SiOxCyNz (3) In formula (3), x and y have the same meanings as above, and z represents the molar ratio of nitrogen to silicon.
  • the silicon oxycarbide phase contains the compound represented by the formula (3), 1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 20 and 0 ⁇ z ⁇ 0.5 are preferable, and 1 ⁇ x ⁇ 1.9, 1.2 ⁇ y ⁇ 15 and 0 ⁇ z ⁇ 0.4 are more preferable.
  • z can be obtained by measuring the mass of the element contained and then converting it into a molar ratio (atomic number ratio). As with x and y, it is preferable to measure z by the method described above. It is also possible to analogize the content ratio of the entire active material. Local analysis includes, for example, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Electron Probe Microanalyzer (EPMA).
  • SEM-EDX Energy Dispersive X-ray Spectroscopy
  • EPMA Electron Probe Microanalyzer
  • the present active material is composite particles having the present silicon oxide particles in the silicon oxycarbide phase, and composite particles in which the present silicon oxide is dispersed in the silicon oxycarbide phase are preferable.
  • the number of the present silicon oxide particles dispersed in the silicon oxycarbide phase is 2 or more, and the upper limit is not particularly limited.
  • Silicon oxide may produce a silicon simple substance through a disproportionation reaction, but the present active material may have a structure containing a silicon simple substance produced by disproportionation from the viewpoint of increasing capacity and high initial efficiency.
  • the present active material contains a simple substance of silicon
  • Silicon may be added to the present active material separately, but the silicon contained in the present active material is preferable because the silicon crystallites produced by the disproportionation reaction are relatively small.
  • the average particle size of the active material is preferably 2 ⁇ m or more and 15 ⁇ m or less.
  • the average particle size of the active material is more preferably 2.5 ⁇ m or more, particularly preferably 3.0 ⁇ m or more.
  • the average particle size of the present active material is more preferably 12 ⁇ m or less, particularly preferably 10 ⁇ m or less.
  • the average particle size is the value of D50.
  • the specific surface area of the present active material is preferably 0.3 m 2 /g or more and 10 m 2 /g or less.
  • the specific surface area of the active material is more preferably 0.5 m 2 /g or more, particularly preferably 1 m 2 /g or more. Further, the specific surface area of the present active material is more preferably 9 m 2 /g or less, particularly preferably 8 m 2 /g or less.
  • the specific surface area is a value determined by the BET method, and can be determined by nitrogen gas adsorption measurement, for example, using a specific surface area measuring device.
  • the present active material preferably has a silicon-oxygen-carbon skeleton structure and free carbon composed only of carbon elements in the silicon oxycarbide phase.
  • the intensity ratio, I (G band)/I (D band), of the D band scattering peak intensity, I (G band), to the D band scattering intensity, I (D band) is preferably 0.7 or more and 2 or less. .
  • the scattering peak intensity ratio, I (G band)/I (D band), is more preferably 0.7 or more and 1.8 or less.
  • the fact that the scattering peak intensity ratio, I (G band)/I (D band), is within the above range means that the free carbon in the matrix has the following properties.
  • Free carbon is mainly formed in the silicon-oxygen-carbon skeleton composed of SiO 2 C 2 , SiO 3 C, and SiO 4 , and some silicon atoms of the silicon-oxygen-carbon skeleton , electron transfer within the silicon-oxygen-carbon framework and between surface silicon atoms and free carbon is facilitated. For this reason, it is thought that the lithium ion intercalation and deintercalation reactions at the time of charging and discharging when the present active material is used in a secondary battery proceed rapidly, and the charging and discharging characteristics are improved.
  • the negative electrode active material may slightly expand and contract due to the insertion and extraction reactions of lithium ions, the presence of free carbon in the vicinity of the expansion and contraction of the active material as a whole mitigates the expansion and contraction. It is considered that there is an effect of greatly improving the capacity retention rate.
  • Free carbon is formed during the thermal decomposition of the silicon-containing compound and carbon source resin in an inert gas atmosphere during the production of the silicon oxycarbide phase.
  • the carbonizable sites in the molecular structures of the silicon-containing compound and the carbon source resin become carbon components by high-temperature pyrolysis in an inert atmosphere, and some of these carbons form a silicon-oxygen-carbon skeleton.
  • the carbonizable component is preferably a hydrocarbon, more preferably alkyls, alkylenes, alkenes, alkynes, aromatics, and more preferably aromatics.
  • the presence of free carbon is expected to reduce the resistance of this active material, and when this active material is used as the negative electrode of a secondary battery, the reaction inside this active material occurs uniformly and smoothly, resulting in charging and discharging. It is considered that a secondary battery active material having an excellent balance between performance and capacity retention can be obtained.
  • free carbon can be introduced only from a silicon-containing compound, the combined use of a carbon source resin is expected to increase the abundance of free carbon and increase its effect.
  • the type of carbon source resin is not particularly limited, but a carbon compound containing a six-membered ring of carbon is preferred.
  • the existence state of the free carbon can be identified by thermogravimetric differential thermal analysis (TG-DTA) as well as Raman spectrum. Unlike the carbon atoms in the silicon-oxygen-carbon skeleton, free carbon is easily thermally decomposed in the atmosphere, and the amount of carbon present can be determined from the amount of thermogravimetric loss measured in the presence of air. That is, the carbon content can be quantified using TG-DTA.
  • TG-DTA thermogravimetric differential thermal analysis
  • changes in thermal decomposition temperature behavior such as decomposition reaction start temperature, decomposition reaction end temperature, number of thermal decomposition reaction species, temperature of maximum weight loss for each thermal decomposition reaction species can be easily grasped. .
  • the temperature values of these behaviors can be used to determine the state of the carbon.
  • the carbon atoms in the silicon-oxygen-carbon skeleton that is, the carbon atoms bonded to the silicon atoms constituting the SiO 2 C 2 , SiO 3 C, and SiO 4 have very strong chemical bonds. It has high thermal stability, and it is thought that it will not be thermally decomposed in the air within the temperature range measured by thermal analysis equipment.
  • the carbon in the silicon oxycarbide phase of the present active material has properties similar to those of amorphous carbon, it is thermally decomposed within the temperature range of about 550° C. to 900° C. in the air. As a result, rapid weight loss occurs.
  • the maximum temperature of the TG-DTA measurement conditions is not particularly limited, but TG-DTA measurement is performed in the air under conditions from about 25° C. to about 1000° C. or higher in order to completely complete the thermal decomposition reaction of carbon. is preferred.
  • the present active material preferably has a film on the surface of the composite particles.
  • the film it is preferable to use a film of a substance that can be expected to have electronic conductivity, lithium ion conductivity, and an effect of suppressing the decomposition of the electrolytic solution.
  • the coating include coatings of electron conductive substances such as carbon, titanium, and nickel. Among these, from the viewpoint of improving the chemical stability and thermal stability of the negative electrode active material, a carbon coating is preferable, and a low-crystalline carbon coating is more preferable.
  • the average thickness of the coating is 10 nm or more and 300 nm or less, or the content of the carbon coating is based on the mass of the present active material as 100% by mass. , from 1 to 10% by weight.
  • the carbon coating is preferably formed on the surface of the present active material by a vapor phase deposition method.
  • the mass of the present active material is the total amount of the present silicon oxide particles and the silicon oxycarbide phase that constitute the present active material. When the silicon oxycarbide phase contains nitrogen, it is the total amount including nitrogen, and when the present active material contains a third component such as silicon oxide described later, it is the total amount including the third component.
  • the present active material may contain other necessary third components in addition to the above.
  • the third component include a silicate compound of at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al (hereinafter also referred to as "the present silicate compound").
  • a silicate compound is generally a compound containing an anion having a structure in which one or several silicon atoms are centered and surrounded by electronegative ligands. It is a salt of at least one metal selected from the group consisting of Mg and Al and a compound containing the anion.
  • Examples of compounds containing the anion include orthosilicate ion (SiO 4 4- ), metasilicate ion (SiO 3 2- ), pyrosilicate ion (Si 2 O 7 6- ), cyclic silicate ion (Si 3 O 9 6- or Si 6 O 18 12- ) are known.
  • the present silicate compound is preferably a silicate compound which is a salt of metasilicate ion and at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al. Li or Mg is preferred among the metals.
  • the present silicate compound contains at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al, and may contain two or more of these metals.
  • one silicate ion may have a plurality of kinds of metals, or may be a mixture of silicate compounds having different metals.
  • the present silicate compound may contain other metals as long as it contains at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al.
  • the present silicate compound is preferably a lithium silicate compound or a magnesium silicate compound, more preferably lithium metasilicate ( Li2SiO3 , Li2Si2O5 , Li4SiO4 ) or magnesium metasilicate (MgSiO3 , Mg2SiO4 ).
  • lithium metasilicate Li2SiO3 , Li2Si2O5 , Li4SiO4
  • magnesium metasilicate MgSiO3 , Mg2SiO4
  • Magnesium metasilicate MgSiO 3 , Mg 2 SiO 4
  • the silicate compound may be present in either the silicon oxycarbide phase or the silicon oxide particles, or may be present in both.
  • the concentration of the present silicate compound in the present silicon oxide particles is preferably higher than the concentration in the silicon oxycarbide.
  • the present silicate compound can be detected by powder X-ray diffraction measurement (XRD) when it is in a crystalline state, and can be confirmed by solid 29 Si-NMR measurement when it is amorphous.
  • This active material can be obtained, for example, by the following method.
  • the present silicon oxide particles can be produced by heating a mixture of silicon dioxide and metal silicon to produce silicon monoxide gas, which is then cooled and precipitated.
  • commercially available silicon oxide may be used.
  • silicon oxide may be pulverized, classified, or the like to obtain a desired average particle size, and the present silicon oxide may be obtained. The pulverization and classification methods are as described above.
  • the slurry of the silicon oxide particles obtained above is mixed with the mixture of the polysiloxane compound and the carbon source resin to form a suspension, and the solvent is removed to obtain the precursor.
  • the resulting precursor is calcined to obtain a calcined product, and if necessary, pulverized to obtain the present active material having a desired average particle size or specific surface area.
  • the slurry of silicon oxide particles can be prepared by using an organic solvent and pulverizing the silicon oxide particles with a wet powder pulverizer.
  • a dispersant may be added to the organic solvent in order to accelerate the pulverization of the silicon oxide particles.
  • wet pulverizers include roller mills, high-speed rotary pulverizers, container-driven mills, and bead mills.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone; alcohols such as ethanol, methanol, normal propyl alcohol, and isopropyl alcohol; aromatics such as benzene, toluene, and xylene.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone
  • alcohols such as ethanol, methanol, normal propyl alcohol, and isopropyl alcohol
  • aromatics such as benzene, toluene, and xylene.
  • Types of the dispersant include aqueous and non-aqueous dispersants, and non-aqueous dispersants are preferred.
  • Types of non-aqueous dispersants include polymer types such as polyether, alcohol, polyalkylene polyamine, and polycarboxylic acid partial alkyl esters; low molecular types such as polyhydric alcohol esters and alkyl polyamines; Inorganic types such as salts are exemplified.
  • the concentration of silicon oxide solids in the present silicon oxide slurry is not particularly limited. A range of 5% by mass to 40% by mass is preferred, and a range of 10% by mass to 30% by mass is more preferred.
  • polysiloxane compound examples include resins containing at least one of a polycarbosilane structure, a polysilazane structure, a polysilane structure and a polysiloxane structure.
  • a resin containing only these structures may be used, or a composite resin having at least one of these structures as a segment and chemically bonded to another polymer segment may be used.
  • Forms of composite include graft copolymerization, block copolymerization, random copolymerization, alternating copolymerization, and the like.
  • Examples include composite resins having a graft structure in which polysiloxane segments are chemically bonded to the side chains of polymer segments, composite resins having a block structure in which polysiloxane segments are chemically bonded to the ends of polymer segments, and the like. .
  • a polysiloxane compound in which the polysiloxane segment has a structural unit represented by the following general formula (S-1) and/or the following general formula (S-2) is preferred.
  • the polysiloxane compound more preferably has a carboxy group, an epoxy group, an amino group, or a polyether group at the side chain or end of the siloxane bond (Si--O--Si) main skeleton.
  • R 1 represents an optionally substituted aromatic hydrocarbon group, an alkyl group, an epoxy group, a carboxy group, or the like.
  • R2 and R3 each represent an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group, an epoxy group, a carboxy group, or the like.
  • Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1 -dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl- 2-methylpropyl group, 1-ethyl-1-methylpropyl group
  • aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
  • the aralkyl group includes, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
  • polymer segments other than the polysiloxane segment possessed by the polysiloxane compound include vinyl polymer segments such as acrylic polymers, fluoroolefin polymers, vinyl ester polymers, aromatic vinyl polymers, and polyolefin polymers, Examples include polymer segments such as polyurethane polymer segments, polyester polymer segments, and polyether polymer segments. Among them, a vinyl polymer segment is preferred.
  • the polysiloxane compound may be a composite resin in which polysiloxane segments and polymer segments are bonded in a structure represented by the following structural formula (S-3), or may have a three-dimensional network-like polysiloxane structure.
  • the carbon atom is the carbon atom that constitutes the polymer segment, and the two silicon atoms are the silicon atoms that constitute the polysiloxane segment.
  • the polysiloxane segment of the polysiloxane compound may have a functional group capable of reacting by heating, such as a polymerizable double bond, in the polysiloxane segment.
  • a functional group capable of reacting by heating such as a polymerizable double bond
  • the cross-linking reaction proceeds and the polysiloxane compound becomes solid, thereby facilitating the thermal decomposition treatment.
  • polymerizable double bonds examples include vinyl groups and (meth)acryloyl groups. Two or more polymerizable double bonds are preferably present in the polysiloxane segment, more preferably 3 to 200, and even more preferably 3 to 50. In addition, by using a composite resin having two or more polymerizable double bonds as the polysiloxane compound, the cross-linking reaction can be facilitated.
  • the polysiloxane segment may have silanol groups and/or hydrolyzable silyl groups.
  • Hydrolyzable groups in hydrolyzable silyl groups include, for example, halogen atoms, alkoxy groups, substituted alkoxy groups, acyloxy groups, phenoxy groups, mercapto groups, amino groups, amido groups, aminooxy groups, iminooxy groups, alkenyloxy and the like, and the hydrolyzable silyl group becomes a silanol group by hydrolysis of these groups.
  • a hydrolytic condensation reaction proceeds between the hydroxyl group in the silanol group and the hydrolyzable group in the hydrolyzable silyl group, thereby obtaining a solid polysiloxane compound. can.
  • a silanol group as used in the present invention is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom.
  • the hydrolyzable silyl group referred to in the present invention is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom, specifically, for example, a group represented by the following general formula (S-4) is mentioned.
  • R4 is a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group; group, iminooxy group or alkenyloxy group.
  • b is an integer of 0 to 2;
  • Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1 -dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl- 2-methylpropyl group, 1-ethyl-1-methylpropyl group
  • aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
  • the aralkyl group includes, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
  • the halogen atom includes, for example, fluorine atom, chlorine atom, bromine atom, iodine atom and the like.
  • alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, and tert-butoxy groups.
  • acyloxy groups include formyloxy, acetoxy, propanoyloxy, butanoyloxy, pivaloyloxy, pentanoyloxy, phenylacetoxy, acetoacetoxy, benzoyloxy, and naphthoyloxy groups. mentioned.
  • allyloxy groups include phenyloxy groups and naphthyloxy groups.
  • alkenyloxy groups include vinyloxy, allyloxy, 1-propenyloxy, isopropenyloxy, 2-butenyloxy, 3-butenyloxy, 2-petenyloxy, 3-methyl-3-butenyloxy, 2 -hexenyloxy group and the like.
  • polysiloxane segments having structural units represented by general formula (S-1) and/or general formula (S-2) include those having the following structures.
  • the polymer segment may have various functional groups as necessary to the extent that the effects of the present invention are not impaired.
  • Such functional groups include, for example, carboxyl group, blocked carboxyl group, carboxylic anhydride group, tertiary amino group, hydroxyl group, blocked hydroxyl group, cyclocarbonate group, epoxy group, carbonyl group, primary amide group, secondary Amide, carbamate groups, functional groups represented by the following structural formula (S-5), and the like can be used.
  • polymer segment may have polymerizable double bonds such as vinyl groups and (meth)acryloyl groups.
  • the polysiloxane compound is preferably produced, for example, by the methods shown in (1) to (3) below.
  • a polymer segment containing a silanol group and/or a hydrolyzable silyl group is prepared in advance, and the polymer segment and the silanol group and/or the hydrolyzable silyl group are and a method of mixing with a silane compound having a polymerizable double bond and carrying out a hydrolytic condensation reaction.
  • a polymer segment containing a silanol group and/or a hydrolyzable silyl group is prepared in advance.
  • Polysiloxane is also prepared in advance by subjecting a silane compound having both a silanol group and/or a hydrolyzable silyl group and a polymerizable double bond to a hydrolytic condensation reaction. Then, a method of mixing the polymer segment and polysiloxane and performing a hydrolytic condensation reaction.
  • a polysiloxane compound is obtained by the method described above.
  • Examples of the polysiloxane compound include the Ceranate (registered trademark) series (organic/inorganic hybrid type coating resin; manufactured by DIC Corporation) and the Compoceran SQ series (silsesquioxane type hybrid; manufactured by Arakawa Chemical Industries, Ltd.). .
  • the carbon source resin is preferably a synthetic resin or a natural chemical raw material that has good miscibility with the polysiloxane compound, is carbonized by high-temperature baking in an inert atmosphere, and has an aromatic functional group.
  • Synthetic resins include thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, and thermosetting resins such as phenol resin and furan resin.
  • Natural chemical raw materials include heavy oils, especially tar pitches such as coal tar, light tar oil, medium tar oil, heavy tar oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, and oxygen-crosslinked petroleum pitch. , heavy oil, etc., but the use of phenolic resin is more preferable from the viewpoint of inexpensive availability and removal of impurities.
  • the carbon source resin is preferably a resin containing an aromatic hydrocarbon moiety
  • the resin containing an aromatic hydrocarbon moiety is preferably a phenol resin, an epoxy resin, or a thermosetting resin
  • the phenol resin is preferably a resol type.
  • phenolic resins include the Sumilite Resin series (resol-type phenolic resin, manufactured by Sumitomo Bakelite Co., Ltd.).
  • a slurry of the present silicon oxide particles is mixed with a mixture of a polysiloxane compound and a carbon source resin, and the solvent is removed to obtain a precursor.
  • the mixture containing the polysiloxane compound and the carbon source resin is preferably in a state in which the polysiloxane compound and the carbon source resin are uniformly mixed.
  • Said mixing is carried out using a device having the function of dispersing and mixing. Apparatuses having dispersing and mixing functions include, for example, stirrers, ultrasonic mixers, premix dispersers, and the like.
  • a dryer, a reduced-pressure dryer, a spray dryer, or the like can be used for solvent removal and drying for the purpose of distilling off the organic solvent.
  • the precursor preferably contains 3% to 50% by mass of the present silicon oxide particles, 15% to 85% by mass of the solid content of the polysiloxane compound, and 3% to 70% by mass of the solid content of the carbon source resin.
  • the solid content of the silicon oxide particles is 8% to 40% by mass
  • the solid content of the polysiloxane compound is 20% to 70% by mass
  • the solid content of the carbon source resin is 3% to 60% by mass. more preferred.
  • the precursor obtained above is fired in an inert gas atmosphere to completely decompose the thermally decomposable organic component to obtain a fired product.
  • the firing temperature for example, by firing at a temperature in which the maximum reaching temperature is in the range of 900° C. to 1200° C., the thermally decomposable organic component can be completely decomposed.
  • the polysiloxane compound and the carbon source resin are converted into a silicon oxycarbide phase having a silicon-oxygen-carbon skeleton and free carbon by the energy of the high temperature treatment.
  • Firing is carried out according to a firing program that is defined by the rate of temperature increase, the holding time at a certain temperature, etc.
  • the maximum attainable temperature is the maximum temperature to be set, and strongly affects the structure and performance of the fired product.
  • the fine structure of the present active material which possesses the chemical bonding state of silicon and carbon in the silicon oxycarbide phase, can be precisely controlled, and better charge-discharge characteristics can be obtained.
  • the calcination method is not particularly limited, but a reaction apparatus having a heating function may be used in an inert atmosphere, and continuous and batch processes are possible.
  • a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln, or the like can be appropriately selected as the firing apparatus according to the purpose.
  • the obtained fired product is pulverized and, if necessary, classified to obtain the present active material, which is a composite particle having a silicon oxycarbide phase and at least two or more of the present silicon oxide particles in the silicon oxycarbide phase. be done.
  • the pulverization may be carried out in one step until the target particle size is obtained, or may be carried out in several steps. For example, when producing an active material of about 10 ⁇ m from a sintered mass or agglomerated particles of 10 mm or more, it is roughly pulverized with a jaw crusher, a roll crusher, etc. to particles of about 1 mm, and then pulverized to about 100 ⁇ m with a glow mill, ball mill, etc.
  • a bead mill, a jet mill, or the like to a size of about 10 ⁇ m.
  • Particles produced by pulverization may contain coarse particles, and in order to remove them, or to adjust the particle size distribution by removing fine powder, classification is performed.
  • the classifier to be used may be a wind classifier, a wet classifier, or the like depending on the purpose, but when removing coarse particles, the classification method through a sieve is preferable because the purpose can be reliably achieved.
  • the pulverization step can be omitted when the precursor mixture is controlled to have a shape near the target particle size by spray drying or the like before firing, and firing is performed in that shape.
  • the present active material has at least one metal silicate compound selected from the group consisting of Li, K, Na, Ca, Mg and Al
  • a slurry of the present silicon oxide particles is mixed with a mixture of a polysiloxane compound and a carbon source resin.
  • at least one metal salt selected from the group consisting of is added, and then the same operation as described above is performed to obtain the silicate.
  • a present active material having a compound is obtained.
  • Salts of at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al include halides such as fluorides, chlorides and bromides of these metals, hydroxides and carbonates. mentioned.
  • the metal salt may be a salt of two or more metals, one salt may contain a plurality of metals, or a mixture of salts containing different metals.
  • the amount of the metal salt to be added is preferably 0.01 to 0.4 in molar ratio with respect to the number of moles of the silicon oxide particles.
  • the metal salt When the metal salt is soluble in an organic solvent, the metal salt may be dissolved in the organic solvent, added to the suspension, and mixed. When the metal salt is insoluble in the organic solvent, the metal salt particles may be dispersed in the organic solvent and then added to the suspension and mixed.
  • the metal salt is preferably nanoparticles having an average particle size of 100 nm or less from the viewpoint of improving the dispersion effect. Alcohols, ketones and the like can be suitably used as the organic solvent, but aromatic hydrocarbon solvents such as toluene, xylene, naphthalene and methylnaphthalene can also be used.
  • the metal salt molecules By uniformly dispersing the metal salt in the suspension, the metal salt molecules can be brought into sufficient contact with the silicon oxide particles.
  • silicon oxide exists on the surface or in the periphery of the silicon oxide particles, the metal salt molecules and the silicon oxide particles are sufficiently brought into contact with each other under conditions for a solid-phase reaction between the metal salt molecules and the silicon oxide particles.
  • the present silicate compound can be present in the present silicon oxide particles.
  • concentration of the silicate compound in the silicon oxide particles higher than that in silicon oxycarbide, it is important to improve the contact state between the metal salt and the silicon oxide particles.
  • by surface-modifying the metal salt molecules with an organic additive they can adhere to the surface of the present silicon oxide particles.
  • the molecular structure of the organic additive is not particularly limited, but a molecular structure that allows physical or chemical bonding with the dispersant present on the surface of the silicon oxide particles is preferred.
  • the physical or chemical bond includes electrostatic action, hydrogen bond, intermolecular Van der Waals force, ionic bond, covalent bond and the like.
  • the silicate compound can be formed in the silicon oxide particles by solid-phase reaction of the metal salt molecules with the silicon oxide particles.
  • thermally decomposable carbon source gases include acetylene, ethylene, acetone, alcohol, propane, methane, ethane, and the like.
  • the inert gas include nitrogen, helium, argon, etc. Nitrogen is usually used.
  • the present active material is excellent in cyclability, initial coulombic efficiency and capacity retention rate, and a secondary battery using the present active material as a negative electrode exhibits good characteristics.
  • a slurry containing the present active material, an organic binder, and, if necessary, other components such as a conductive aid is applied in the form of a thin film onto a current collector copper foil to form a negative electrode.
  • a negative electrode can also be produced by adding a carbon material such as graphite to the slurry.
  • Carbon materials include natural graphite, artificial graphite, amorphous carbon such as hard carbon or soft carbon, and the like.
  • the present active material and a binder that is an organic binder are kneaded together with a solvent using a dispersing device such as a stirrer, ball mill, super sand mill, or pressure kneader to prepare a negative electrode material slurry, which is used as a current collector. It can be obtained by applying it to the body to form a negative electrode layer. It can also be obtained by forming a paste-like negative electrode material slurry into a sheet-like or pellet-like shape and integrating this with a current collector.
  • a dispersing device such as a stirrer, ball mill, super sand mill, or pressure kneader
  • organic binder examples include styrene-butadiene rubber copolymer (hereinafter also referred to as "SBR"); methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile , and ethylenically unsaturated carboxylic acid esters such as hydroxyethyl (meth)acrylate, and ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid (meth)acrylic copolymerization
  • Unsaturated carboxylic acid copolymers such as coalescence; A high molecular compound is mentioned.
  • these organic binders can be dispersed or dissolved in water, or dissolved in an organic solvent such as N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the content ratio of the organic binder in the negative electrode layer of the lithium ion secondary battery negative electrode is preferably 1% by mass to 30% by mass, more preferably 2% by mass to 20% by mass, and 3% by mass. to 15% by mass is more preferable.
  • the present active material has high chemical stability and is easy to handle in terms of practical use in that an aqueous binder can also be used.
  • the negative electrode material slurry may be mixed with a conductive aid, if necessary.
  • conductive aids include carbon black, graphite, acetylene black, oxides and nitrides exhibiting conductivity, and the like.
  • the amount of the conductive aid used may be about 1% by mass to 15% by mass with respect to the negative electrode active material of the present invention.
  • the material and shape of the current collector for example, copper, nickel, titanium, stainless steel, etc. may be used in the form of a foil, a perforated foil, a mesh, or the like in a strip shape.
  • Porous materials such as porous metal (foamed metal) and carbon paper can also be used.
  • Examples of the method for applying the negative electrode material slurry to the current collector include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen printing method. etc. After coating, it is preferable to carry out a rolling treatment using a flat plate press, calendar rolls, or the like, if necessary.
  • the negative electrode material slurry can be made into a sheet or pellet form, and integrated with the current collector by, for example, rolling, pressing, or a combination thereof.
  • the negative electrode layer formed on the current collector or the negative electrode layer integrated with the current collector is preferably heat-treated according to the organic binder used.
  • the organic binder used For example, when a water-based styrene-butadiene rubber copolymer (SBR) or the like is used, heat treatment at 100 to 130° C. is sufficient, and when an organic binder having a main skeleton of polyimide or polyamideimide is used, Heat treatment at 150 to 450° C. is preferred.
  • SBR styrene-butadiene rubber copolymer
  • This heat treatment removes the solvent and hardens the binder to increase the strength, improving the adhesion between particles and between the particles and the current collector.
  • These heat treatments are preferably performed in an inert atmosphere such as helium, argon, or nitrogen, or in a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • the negative electrode using the present active material preferably has an electrode density of 1 g/cm 3 to 1.8 g/cm 3 , more preferably 1.1 g/cm 3 to 1.7 g/cm 3 . More preferably from 0.2 g/cm 3 to 1.6 g/cm 3 .
  • the electrode density there is a tendency that the higher the electrode density, the higher the adhesion and the volume capacity density of the electrode.
  • the electrode density is too high, the voids in the electrode are reduced, which weakens the effect of suppressing the volume expansion of silicon or the like, and the capacity retention rate may decrease. Therefore, an optimum range of electrode densities is selected.
  • the secondary battery of the present invention contains the present active material in the negative electrode.
  • a secondary battery having a negative electrode containing the present active material a non-aqueous electrolyte secondary battery and a solid electrolyte secondary battery are preferable, and excellent performance is exhibited particularly when used as a negative electrode of a non-aqueous electrolyte secondary battery. It is.
  • a positive electrode and a negative electrode containing the negative electrode active material of the present invention are placed facing each other with a separator interposed therebetween, and an electrolytic solution is injected. It can be configured by
  • the positive electrode can be obtained by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode.
  • the current collector may be a strip-shaped one made of a metal or alloy such as aluminum, titanium, or stainless steel in the form of foil, foil with holes, mesh, or the like.
  • the positive electrode material used for the positive electrode layer is not particularly limited.
  • a metal compound, a metal oxide, a metal sulfide, or a conductive polymer material capable of doping or intercalating lithium ions should be used.
  • lithium cobalt oxide LiCoO 2
  • lithium nickel oxide LiNiO 2
  • lithium manganate LiMnO 2
  • lithium manganese spinel LiMn 2 O 4
  • lithium vanadium compounds V2O5 , V6O13 , VO2 , MnO2 , TiO2 , MoV2O8 , TiS2 , V2S5 , VS2 , MoS2 , MoS3 , Cr3O8 , Cr 2 O 5
  • olivine-type LiMPO 4 (where M is Co, Ni, Mn or Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene and polyacene, porous carbon, etc. can be used.
  • the separator for example, a non-woven fabric, cloth, microporous film, or a combination of them can be used, the main component of which is polyolefin such as polyethylene or polypropylene.
  • the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery to be manufactured are structured such that they do not come into direct contact with each other, there is no need to use a separator.
  • electrolytes examples include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 and LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane.
  • the structure of the secondary battery of the present invention is not particularly limited, but usually, a positive electrode, a negative electrode, and an optional separator are wound into a flat spiral to form a wound electrode plate group. It is common to have a structure in which flat plates are laminated to form a laminated electrode plate group, and these electrode plate groups are enclosed in an outer package.
  • the active material is mainly used for the negative electrode, and a simple evaluation is performed using metallic lithium for the counter electrode. for comparison.
  • Secondary batteries using this active material are not particularly limited, but are used as paper-type batteries, button-type batteries, coin-type batteries, laminate-type batteries, cylindrical batteries, prismatic batteries, and the like.
  • the negative electrode active material of the present invention described above can also be applied to general electrochemical devices having a charging/discharging mechanism of intercalating and deintercalating lithium ions, such as hybrid capacitors and solid lithium secondary batteries.
  • this active material when used as a negative electrode active material for a secondary battery, it provides a secondary battery that is excellent in cyclability, initial coulombic efficiency, and capacity retention rate.
  • the present active material can be used as a negative electrode by the method described above to form a secondary battery having the negative electrode.
  • the present active material and the secondary battery including the present active material in the negative electrode have been described above, the present invention is not limited to the configurations of the above embodiments. In the configuration of the present embodiment and the secondary battery containing the present active material in the negative electrode, any other configuration may be added, or any configuration that exhibits the same function may be substituted. good.
  • the present invention will be described in detail below with reference to Examples, but the present invention is not limited to these.
  • the negative electrode is composed mainly of the silicon-containing active material of the present invention, and the counter electrode is metallic lithium. This is to clearly compare the cycle characteristics.
  • Synthesis Example 1 Preparation of Polysiloxane Compound (Synthesis of Condensate (a1) of Methyltrimethoxysilane) 1,421 parts by mass of methyltrimethoxysilane (hereinafter abbreviated as "MTMS”) was charged into a reaction vessel equipped with a stirrer, thermometer, dropping funnel, cooling tube and nitrogen gas inlet, and heated to 60°C. heated up. Then, a mixture of 0.17 parts by mass of iso-propyl acid phosphate ("Phoslex A-3" manufactured by SC Organic Chemical Co., Ltd.) and 207 parts by mass of deionized water was dropped into the reaction vessel over 5 minutes. , and stirred at a temperature of 80° C.
  • MTMS methyltrimethoxysilane
  • the active ingredient content of the obtained liquid was 70% by mass.
  • the effective ingredient is the value obtained by dividing the theoretical yield (parts by mass) when all the methoxy groups of the silane monomer such as MTMS are condensed by the actual yield (parts by mass) after the condensation reaction. Theoretical yield when all methoxy groups are condensed (parts by mass)/Actual yield after condensation reaction (parts by mass)].
  • curable resin composition (1) 150 parts by mass of butanol (hereinafter also referred to as “BuOH”) and 105 are added to a reaction vessel equipped with a stirrer, thermometer, dropping funnel, cooling tube and nitrogen gas inlet. Parts by mass of phenyltrimethoxysilane (hereinafter also referred to as “PTMS”) and 277 parts by mass of dimethyldimethoxysilane (hereinafter also referred to as “DMDMS”) were charged, and the temperature was raised to 80°C.
  • PTMS phenyltrimethoxysilane
  • DDMS dimethyldimethoxysilane
  • MMA methyl methacrylate
  • BMA butyl methacrylate
  • BA butyric acid
  • MPTS methacryloyloxypropyltrimethoxysilane
  • BuOH butylperoxy-2-ethylhexanoate
  • curable resin composition (2) 150 parts by mass of BuOH, 249 parts by mass of PTMS and 263 parts by mass of DMDMS were added to a reaction vessel equipped with a stirrer, thermometer, dropping funnel, condenser and nitrogen gas inlet. was charged and the temperature was raised to 80°C. Then, at the same temperature, 18 parts by mass of MMA, 14 parts by mass of BMA, 7 parts by mass of BA, 1 part by mass of acrylic acid (hereinafter also referred to as "AA"), 2 parts by mass of MPTS, and 6 parts by mass of A mixture containing BuOH and 0.9 parts by weight of TBPEH was added dropwise into the reaction vessel over 5 hours. After completion of the dropwise addition, reaction was continued at the same temperature for 10 hours to obtain an organic solvent solution of a vinyl polymer (a2-2) having a hydrolyzable silyl group and a number average molecular weight of 20 and 100.
  • a vinyl polymer a2-2
  • Synthesis Example 2 Grinding Conditions for Silicon Oxide Particles Zirconia beads with a particle size of 0.2 mm as grinding media and 100 ml of methyl ethyl ketone solvent were placed in a container of a 150 ml small bead mill so that the filling rate was 60%. After that, 100 parts by mass of silicon oxide powder (commercial product) having an average particle diameter of 5 ⁇ m and 20 parts by mass of a cationic dispersant liquid (BYK145, BYK-Chemie Japan Co., Ltd.) were added, and the grinding conditions described in Table 1 were applied.
  • silicon oxide powder commercial product having an average particle diameter of 5 ⁇ m and 20 parts by mass of a cationic dispersant liquid (BYK145, BYK-Chemie Japan Co., Ltd.) were added, and the grinding conditions described in Table 1 were applied.
  • Example 1 The polysiloxane resin having an average molecular weight of 3500 (curable resin composition (1)) prepared in Synthesis Example 1 and the phenolic resin having an average molecular weight of 3000 were mixed at a weight ratio of 90/10 for the resin solids, and after high-temperature baking, The SiO-1 slurry obtained in Synthesis Example 2 was added so that the content of silicon oxide particles in the product was 50% by mass, and the mixture was thoroughly mixed in a stirrer. The resin mixture suspension containing the obtained silicon oxide particles was subjected to solvent removal in an oil bath at 120° C. under nitrogen flow conditions. Then, it was dried under reduced pressure at 110° C. for 10 hours using a vacuum dryer, and finally baked at a high temperature of 900° C.
  • a black solid was pulverized with a planetary ball mill to prepare a black powder.
  • 20 g of this black powder was put into a CVD device (desktop rotary kiln: manufactured by Takasago Kogyo Co., Ltd.), and while introducing a mixed gas of 0.2 L / min of ethylene gas and 0.8 L / min of nitrogen gas, it was heated at 850 ° C.
  • the surface of the black powder was coated with carbon for 1 hour by chemical vapor deposition to prepare active material particles.
  • the carbon coating amount of the active material powder after the carbon coating treatment was measured with a thermal analyzer, it was found that the weight increased by 2.1% from the weight before the treatment.
  • the obtained active material powder had an average particle size of about 2.9 ⁇ m and a specific surface area of 6.5 m 2 /g.
  • XRD powder X-ray diffraction
  • EDS Energy dispersive X-ray spectroscopy
  • a slurry was prepared by mixing 80 parts by mass of the active material particles obtained above, 10 parts by mass of acetylene black as a conductive additive, and 10 parts by mass of a mixture of CMC and SBR as a binder.
  • the obtained slurry was formed into a film on a copper foil.
  • a coin-type lithium ion battery was produced as a half cell using a Li metal foil as a counter electrode.
  • a secondary battery charge/discharge test device manufactured by Hokuto Co., Ltd.
  • the cutoff voltage range was 0.005 to 1.5V.
  • the charge/discharge measurement results were an initial discharge capacity of 1180 mAh/g and an initial coulombic efficiency of 67.5%.
  • a single-layer sheet using LiCoO 2 as a positive electrode active material and aluminum foil as a current collector was used to prepare a positive electrode film, and graphite powder was used at a discharge capacity design value of 450 mAh / g. and the active material powder were mixed to prepare a negative electrode film.
  • lithium hexafluorophosphate was added to a mixture of ethylene carbonate (hereinafter also referred to as “EC”) and diethyl carbonate (hereinafter also referred to as “DEC”) at a volume ratio of 1/1 at a concentration of 1 mol/mol.
  • a laminated lithium ion secondary battery was fabricated using a non-aqueous electrolyte solution dissolved at a concentration of L and using a polyethylene microporous film having a thickness of 30 ⁇ m as a separator.
  • a laminated lithium ion secondary battery was charged at 25°C at a constant current of 1.2mA (0.25c based on the positive electrode) until the voltage of the test cell reached 4.2V, and after reaching 4.2V, Charging was performed by decreasing the current so as to keep the cell voltage at 4.2 V, and the discharge capacity was determined.
  • the capacity retention rate was 90% after 300 cycles, where charging and discharging within a voltage range of 2.5 V to 4.2 V was defined as one cycle.
  • the laminate cell was dismantled in an argon atmosphere in a glove box, the negative electrode was taken out, washed with an EC/DEC mixed solution, allowed to stand and dried, and then the thickness of the electrode film was measured. The rate of change in the thickness of the negative electrode film before and after charging/discharging was taken as the negative electrode expansion rate. The expansion rate of the negative electrode was 19%. Table 2 shows the results.
  • Example 2 Silicon oxide slurries with SiO-2 in Example 2 and SiO-3 in Example 3 were used. The particle size and specific surface area of the obtained active material were measured, and the half-cell and full-cell charge/discharge performances were evaluated using the obtained active material. Various evaluation results are shown in Table 2.
  • Examples 4 to 8 SiO-4 was used as silicon oxide, and the content of silicon oxide was 5% by mass in Example 4, 10% by mass in Example 5, 30% by mass in Example 6, 50% by mass in Example 7, and 8% by mass. was 58% by mass, and the active material particles were obtained under the same conditions as in Example 1. Using the obtained active material particles, half-cell and full-cell charge/discharge performances were evaluated. Table 2 shows various evaluation results obtained.
  • Examples 9 and 10 Using SiO-4 as silicon oxide, under the same conditions as in Example 1, the resin mixture suspension containing silicon oxide particles was desolvated in an oil bath at 120° C. under nitrogen flow conditions, After that, high temperature firing was performed. A black powder is obtained by changing the pulverization conditions of the fired material, and it is put into a CVD device (desktop rotary kiln: manufactured by Takasago Kogyo Co., Ltd.), and a mixed gas of 0.3 L / min of ethylene gas and 0.7 L / min of nitrogen gas is introduced. did.
  • the surface of the black powder was coated with carbon by chemical vapor deposition at 850 ° C. for 1 hour, and in Example 10, at 850 ° C. for 2 hours. Particles were produced. The particle size and specific surface area of the obtained active material were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell. Various evaluation results are shown in Table 2.
  • Examples 11 to 13 The mass ratio of the polysiloxane resin (curable resin composition (2)) having an average molecular weight of 3500 prepared in Synthesis Example 1 and the phenolic resin having an average molecular weight of 3000 was 100/0 in Example 11 and 100/0 in Example 11. 12 was mixed at 50/50 and Example 13 was mixed at 30/70, and the SiO-4 slurry obtained in Synthesis Example 2 was mixed so that the silicon oxide particle content in the product after high temperature firing was 50% by mass. was added, and the resin mixture suspension containing silicon oxide particles was desolvated in an oil bath at 120° C. under nitrogen flow conditions. Subsequent conditions were the same as in Example 1, and active material particles were produced. The particle size and specific surface area of the obtained active material were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell. Various evaluation results are shown in Table 2.
  • Example 14 Active material particles were obtained under the same conditions as in Example 1 except that SiO-5 was used as the silicon oxide. Using the obtained active material particles, half-cell and full-cell charge/discharge performances were evaluated. Table 2 shows various evaluation results obtained.
  • Examples 15 and 16 Silicon oxide slurries containing SiO-6 in Example 15 and SiO-7 in Example 16 were used, and mixed with a resin mixture suspension containing silicon oxide particles.
  • the Li element content in the obtained active material particles was 2.5% by mass in Example and 5.1% by mass in Example 16.
  • the particle size and specific surface area of the obtained active material particles were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell.
  • Various evaluation results are shown in Table 2.
  • XRD powder X-ray diffraction
  • Comparative example 1 20 g of silicon oxide powder with an average particle size of 5 ⁇ m is put into a CVD apparatus (desktop rotary kiln: manufactured by Takasago Kogyo Co., Ltd.), and a mixed gas of 0.2 L/min of ethylene gas and 0.8 L/min of nitrogen gas is introduced. Meanwhile, the surface of the black powder was coated with carbon by a chemical vapor deposition method at 850° C. for 1 hour to prepare active material particles. The amount of carbon coating after treatment was measured by a thermal analyzer and found to be 2.0% higher than the weight before treatment.
  • Comparative example 2 The curable resin composition (1) prepared in Synthesis Example 1 was dried at 110° C. under reduced pressure and then baked at a high temperature of 1100° C. for 4 hours in a nitrogen atmosphere to obtain a black solid. The resulting black solid was pulverized in a planetary ball mill to produce a black powder, which was subjected to carbon coating treatment under the same CVD conditions as in Comparative Example 1. The particle size and specific surface area of the black powder obtained after the carbon coating treatment were measured, and the half-cell and full-cell charging/discharging performances were evaluated using the black powder after the carbon coating treatment. Various evaluation results are shown in Table 2.
  • XRD powder X-ray diffraction
  • Comparative example 4 After mixing the phenolic resin having an average molecular weight of 3000 and the SiO-4 slurry obtained in Synthesis Example 2 so that the content of silicon oxide particles in the product after high-temperature firing is 50% by mass, the oil is heated to 120°C. Desolvation was performed in a bath under nitrogen follow conditions. Active material particles were obtained under the same conditions as in Example 1, except that the CVD carbon coating was not performed. Using the obtained active material particles, half-cell and full-cell charge/discharge performances were evaluated. Table 2 shows various evaluation results obtained.
  • each evaluation method is as follows. Average particle size D50: Measured using a laser diffraction particle size distribution analyzer (Mastersizer 3000, manufactured by Malvern Panalytical). Specific surface area: Measured by BET method from nitrogen adsorption measurement using a specific surface area measuring device (BELSORP-mini, manufactured by BEL JAPAN). 29 Si-NMR: JNM-ECA600 manufactured by JEOL RESONANCE was used.
  • Raman scattering spectrum measurement NRS-5500 (manufactured by JASCO Corporation) was used as a measuring instrument. The measurement conditions were an excitation laser wavelength of 532 nm, an objective lens magnification of 100, and a measurement wavenumber range of 3500 to 100 cm ⁇ 1 .
  • Measurement of nitrogen content An oxygen/nitrogen analyzer (EMGA-920) was used.
  • Measurement of carbon film amount Weight loss was measured and calculated in the atmosphere using a thermal analysis device (manufactured by Rigaku, Thermo Plus EVO2).
  • Battery characteristics evaluation Battery characteristics are measured using a secondary battery charge-discharge test device (manufactured by Hokuto Denko Co., Ltd.), room temperature 25 ° C., cutoff voltage range from 0.005 to 1.5 V, charge / discharge rate is 0
  • the charging/discharging characteristics were evaluated under conditions of constant current/constant voltage charging/constant current discharging at 0.2 C (after 4 cycles) and 1 C (1 to 3 cycles). At the time of switching between charging and discharging, the battery was left in an open circuit for 30 minutes.
  • Discharge capacity, charge capacity, initial coulombic efficiency and cyclability in the present application, refers to the capacity retention rate after 300 cycles of charging and discharging a full cell at 25° C.), and negative electrode expansion rate were obtained as follows.
  • Charge capacity and discharge capacity of active material Obtained by half-cell charge/discharge measurement.
  • the initial discharge capacity (mAh/g) was obtained by measuring a full cell (laminate cell).
  • Negative electrode expansion rate After charging and discharging the full cell for 300 cycles, the negative electrode was taken out, washed with an EC/DEC mixed solution, left to stand and dried, and then the thickness of the electrode film was measured. The rate of change in the thickness of the negative electrode film before and after charging/discharging was taken as the negative electrode expansion rate.
  • the present active material when used as a negative electrode active material, the expansion rate of the negative electrode is low while maintaining a high capacity, and both the cycle property (or capacity retention rate) and the initial coulomb efficiency are high. In addition, the characteristics of these secondary batteries are well balanced.
  • a secondary battery containing the present active material as a negative electrode active material has excellent battery characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to an active material for secondary batteries, the active material being used for lithium ion secondary batteries, and a secondary battery which contains this active material for secondary batteries as a negative electrode active material; and the present invention provides a negative electrode active material for secondary batteries, the negative electrode active material enabling the achievement of a secondary battery which has low expansibility, high cycle performance and excellent initial coulombic efficiency. The present invention provides: an active material for secondary batteries, the active material having silicon oxide particles in a silicon oxycarbide phase; and a secondary battery which contains this active material for secondary batteries in a negative electrode. It is preferable that the content of the silicon oxide particles is 1% by mass to 60% by mass. It is preferable that there is a peak ascribed to Si(111) around 2θ = 28.4° as determined by X-ray diffractometry. It is preferable that the average particle diameter of the silicon oxide particles is 5 μm or less. It is preferable that the average particle diameter of the composite particles is 2 μm to 15 μm. It is preferable that the specific surface area is 0.3 m2/g to 10 m2/g. It is preferable that the silicon oxycarbide phase additionally contains nitrogen atoms.

Description

二次電池用活物質および二次電池Active material for secondary battery and secondary battery
 本発明は、二次電池用活物質および二次電池に関する。より詳細には本発明は二次電池用活物質および前記二次電池用活物質を負極に含む二次電池に関する。 The present invention relates to a secondary battery active material and a secondary battery. More specifically, the present invention relates to a secondary battery active material and a secondary battery containing the secondary battery active material in a negative electrode.
 非水電解質二次電池は、携帯機器を始め、ハイブリッド自動車や電気自動車、家庭用蓄電池などに用いられており、電気容量、安全性、作動安定性など複数の特性をバランスよく有することが要求されている。
 さらに近年、各種電子機器および通信機器の小型化およびハイブリッド自動車等の急速な普及に伴い、これら機器等の駆動電源として、より高容量であり、かつサイクル特性や放電レート特性等の各種電池特性が更に向上したリチウムイオン二次電池の開発が強く求められている。
Non-aqueous electrolyte secondary batteries are used in mobile devices, hybrid vehicles, electric vehicles, household storage batteries, etc., and are required to have well-balanced characteristics such as electrical capacity, safety, and operational stability. ing.
Furthermore, in recent years, with the downsizing of various electronic devices and communication devices and the rapid spread of hybrid vehicles, etc., batteries with higher capacity and various battery characteristics such as cycle characteristics and discharge rate characteristics are required as power sources for driving these devices. There is a strong demand for the development of lithium-ion secondary batteries with further improved performance.
 リチウムイオン二次電池用の負極活物質として、ケイ素や無定形である酸化ケイ素はその容量が大きいということで大きな関心を持たれているが、繰り返し充放電をしたときの体積膨張が大きく、サイクル性に劣っている。また、酸化ケイ素を用いたリチウム二次電池は初期効率が低いことから、酸化ケイ素を負極活物質に用いるための様々な改良が試みられている。
 例えば特許文献1ではケイ素の微結晶を酸化ケイ素中に分散させたケイ素複合体が二次電池用負極活物質として提案されている。
As negative electrode active materials for lithium-ion secondary batteries, silicon and amorphous silicon oxide are of great interest due to their large capacity. inferior in nature. In addition, since lithium secondary batteries using silicon oxide have low initial efficiency, various improvements have been attempted to use silicon oxide as a negative electrode active material.
For example, Patent Document 1 proposes a silicon composite in which silicon microcrystals are dispersed in silicon oxide as a negative electrode active material for secondary batteries.
 しかしながら、酸化珪素は、充電時に不可逆な珪酸リチウムを生成させる酸素原子を多く含んでおり、初回効率が低いという課題がある。そのため、実際に電池を作製した場合に、正極の電池容量を過剰に必要とし、活物質の容量増加分に見合うだけの電池容量の増加が認められなかった。 However, silicon oxide contains many oxygen atoms that generate irreversible lithium silicate during charging, and has the problem of low initial efficiency. Therefore, when a battery was actually produced, an excessive battery capacity of the positive electrode was required, and an increase in battery capacity corresponding to the increase in capacity of the active material was not observed.
 特許文献2には前記の課題を解決するために、珪素微結晶がシロキサン結合を介して分散し、珪素微結晶間に微細な空間を有する構造を有する、非水電解質二次電池負極材用珪素酸化物が提案されている。
 しかしながら酸化珪素をリチウムイオン二次電池用負極活物質として使用した時に、多回数の充放電後の急激な充放電容量低下の原因については、リチウムを大量に吸蔵および放出することによって大きな体積変化が起こり、これに伴い粒子の破壊が起こるためと考えられている。
In order to solve the above problems, Patent Document 2 describes a silicon crystal for non-aqueous electrolyte secondary battery negative electrode material having a structure in which silicon crystallites are dispersed through siloxane bonds and have fine spaces between silicon crystallites. Oxides have been proposed.
However, when silicon oxide is used as the negative electrode active material for lithium-ion secondary batteries, the rapid decrease in charge-discharge capacity after many charge-discharge cycles is due to the large volume change caused by the absorption and release of large amounts of lithium. It is believed that this is due to the occurrence of particle destruction.
 この体積変化に伴う粒子の破壊を抑制するために、特許文献3では超気孔(hyperporous)構造を有するシリコンフレークを活物質として用いることで、前記大きな体積変化を抑制する試みがなされている。
 しかしこのような気孔を付与することで活物質の比表面積が増大し、サイクル特性が低下すると考えられる。
In order to suppress the destruction of particles accompanying this volume change, Patent Document 3 attempts to suppress the large volume change by using silicon flakes having a hyperporous structure as an active material.
However, it is considered that the provision of such pores increases the specific surface area of the active material and deteriorates the cycle characteristics.
特開2004-323284号公報JP 2004-323284 A 特開2015-18626号公報JP 2015-18626 A 特表2019-519067号公報Japanese Patent Publication No. 2019-519067
 したがって電気容量の大きい酸化ケイ素を用いたリチウム二次電池のサイクル性および初期効率の改良については未だ十分ではなかった。 Therefore, the cyclability and initial efficiency of lithium secondary batteries using silicon oxide, which has a large electrical capacity, have not yet been sufficiently improved.
 本発明者らは酸化ケイ素の体積変化に伴う粒子の破壊を抑制し、リチウム二次電池のサイクル性を改良し、高電気容量である酸化ケイ素を用いた二次電池用活物質を検討した。その結果、リチウム二次電池のサイクル性、初期のクーロン効率および容量維持率が改良される二次電池用複合活物質を見出した。
 即ち本発明は、リチウムイオン二次電池に用いられる二次電池用活物質および前記二次電池用活物質を負極活物質として含む二次電池に関し、サイクル性、初期のクーロン効率および容量維持率に優れた二次電池を与える二次電池用活物質を提供することを目的とする。
The present inventors have investigated a secondary battery active material using silicon oxide, which suppresses the destruction of particles due to volume change of silicon oxide, improves the cycle performance of lithium secondary batteries, and has a high electric capacity. As a result, the present inventors have found a composite active material for secondary batteries that improves the cyclability, initial coulombic efficiency and capacity retention rate of lithium secondary batteries.
That is, the present invention relates to a secondary battery active material used in a lithium-ion secondary battery and a secondary battery containing the above-mentioned secondary battery active material as a negative electrode active material. An object of the present invention is to provide an active material for a secondary battery that provides an excellent secondary battery.
 本発明は、下記の態様を有する。
[1] シリコンオキシカーバイド相と、前記シリコンオキシカーバイド相中に少なくとも2個以上の酸化ケイ素粒子を有する複合粒子である二次電池用活物質。
[2] 前記酸化ケイ素粒子の含有量が1質量%以上60質量%以下である前記[1]に記載の二次電池用活物質。
[3] X線回折において2θが28.4°付近のSi(111)に帰属されるピークを有する前記[1]から[2]に記載の二次電池用活物質。
[4] 前記酸化ケイ素粒子の平均粒径が5μm以下である前記[1]から[3]に記載の二次電池用活物質。
[5] 前記複合粒子の平均粒径が2μm以上15μm以下である前記[1]から[4]に記載の二次電池用活物質。
[6] 比表面積が0.3m/g以上10m/g以下である前記[1]から[5]に記載の二次電池用活物質。
[7] 前記シリコンオキシカーバイド相は更に窒素原子を含む前記[1]から[6]に記載の二次電池用活物質。
[8] ラマンスペクトルにおいて、炭素構造のGバンドに帰属される1590cm-1とDバンドに帰属される1330cm-1付近の散乱ピークを有し、前記散乱ピークの強度比、I(Gバンド)/I(Dバンド)が、0.7以上2以下である前記[1]から[7]に記載の二次電池用活物質。
[9] 前記複合粒子の表面に炭素被膜を有し、炭素被膜の量が1質量%以上10質量%以下である前記[1]から[8]に記載の二次電池用活物質。
[10] Li、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属のシリケート化合物を含む前記[1]から[9]に記載の二次電池用活物質。
The present invention has the following aspects.
[1] An active material for a secondary battery, which is a composite particle having a silicon oxycarbide phase and at least two silicon oxide particles in the silicon oxycarbide phase.
[2] The active material for a secondary battery according to [1], wherein the content of the silicon oxide particles is 1% by mass or more and 60% by mass or less.
[3] The active material for a secondary battery according to the above [1] to [2], which has a peak attributed to Si(111) near 28.4° in X-ray diffraction.
[4] The active material for a secondary battery according to [1] to [3], wherein the silicon oxide particles have an average particle size of 5 μm or less.
[5] The active material for a secondary battery according to [1] to [4], wherein the composite particles have an average particle diameter of 2 μm or more and 15 μm or less.
[6] The active material for a secondary battery according to any one of the above [1] to [5], which has a specific surface area of 0.3 m 2 /g or more and 10 m 2 /g or less.
[7] The active material for a secondary battery according to [1] to [6], wherein the silicon oxycarbide phase further contains nitrogen atoms.
[8] In the Raman spectrum, having a scattering peak near 1590 cm −1 attributed to the G band of the carbon structure and 1330 cm −1 attributed to the D band, the intensity ratio of the scattering peaks, I(G band)/ The active material for a secondary battery according to the above [1] to [7], wherein I (D band) is 0.7 or more and 2 or less.
[9] The active material for a secondary battery according to any one of [1] to [8], wherein the composite particles have a carbon coating on the surface thereof, and the amount of the carbon coating is 1% by mass or more and 10% by mass or less.
[10] The active material for a secondary battery according to [1] to [9] above, which contains at least one metal silicate compound selected from the group consisting of Li, K, Na, Ca, Mg and Al.
 また本発明は、下記の態様を有する。
[11] 前記[1]から[10]に記載の二次電池用活物質を負極に含む二次電池。
Moreover, this invention has the following aspects.
[11] A secondary battery comprising the secondary battery active material according to any one of [1] to [10] in a negative electrode.
 本発明によれば、リチウムイオン二次電池に用いられる二次電池用活物質および前記二次電池用活物質を負極活物質として含む二次電池に関し、サイクル性、体積膨張および初期のクーロン効率に優れた二次電池を与える二次電池用活物質が提供される。 According to the present invention, it relates to a secondary battery active material used in a lithium ion secondary battery and a secondary battery containing the secondary battery active material as a negative electrode active material. A secondary battery active material that provides an excellent secondary battery is provided.
 本発明の二次電池用活物質(以下、「本活物質」とも記す。)はシリコンオキシカーバイド相と、前記シリコンオキシカーバイド相中に少なくとも2個以上の酸化ケイ素粒子(以下、「本酸化ケイ素粒子」とも記す。)を有する複合粒子である。
 前記のとおり、酸化ケイ素は、高容量であるがリチウムを大量に吸蔵および放出することによって大きな体積変化が起こり、その結果、サイクル性に劣ると考えられる。一方、シリコンオキシカーバイド相は比較的低容量ではあるが、リチウムの吸蔵および放出に対して体積変化が小さく、サイクル特性に優れる。本活物質は両者を組み合わせることで、高容量維持の上に体積膨張やサイクル特性に優れた二次電池を与える二次電池用活物質が得られたと考えられる。
The secondary battery active material of the present invention (hereinafter also referred to as "the present active material") comprises a silicon oxycarbide phase and at least two or more silicon oxide particles in the silicon oxycarbide phase (hereinafter referred to as "the present silicon oxide Also referred to as "particles").
As described above, silicon oxide has a high capacity, but when it absorbs and releases a large amount of lithium, it undergoes a large change in volume, and as a result, it is considered to be inferior in cycleability. On the other hand, although the silicon oxycarbide phase has a relatively low capacity, it has a small volume change with respect to lithium absorption and desorption, and is excellent in cycle characteristics. By combining the two, it is considered that the active material for a secondary battery that maintains a high capacity and provides a secondary battery that is excellent in volume expansion and cycle characteristics was obtained.
 酸化ケイ素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し析出して得られた非晶質の珪素酸化物の総称であり、下記一般式(1)で表される。
   SiOn      (1)
 ただし、前記式(1)において、nは0.4以上1.8以下であり、0.5以上1.6以下が好ましい。
Silicon oxide is generally a general term for amorphous silicon oxides obtained by heating a mixture of silicon dioxide and metal silicon to generate silicon monoxide gas, which is then cooled and precipitated, and is represented by the following general formula ( 1).
SiOn (1)
However, in the formula (1), n is 0.4 or more and 1.8 or less, preferably 0.5 or more and 1.6 or less.
 本活物質は、シリコンオキシカーバイド相のマトリクスに酸化ケイ素粒子が内在する複合粒子であるため、本活物質の性能に対して酸化ケイ素の粒径が大きな影響を与えることが考えられる。酸化ケイ素粒子の平均粒径が5μmを超える場合、酸化ケイ素は大きな塊となり、本活物質を負極活物質とした時、充放電時に酸化ケイ素粒子による負極活物質の大きな膨張収縮が起こる。その結果、マトリクス内の一部に応力が集中するため活物質の構造崩壊が起きやすく、負極活物質の容量維持率が低下する傾向がある。一方、300nm未満の小サイズの酸化ケイ素粒子は細かすぎるため、酸化ケイ素粒子同士が凝集しやすくなる。そのため、負極活物質中への酸化ケイ素粒子の分散性が低下する可能性がある。また、酸化ケイ素粒子が細かすぎると、その比表面積が高くなり、負極活物質の高温焼成で酸化ケイ素粒子の表面上に副生成物などが多くなる傾向もある。これらが充放電性能の低下に繋がるおそれがある。 Since this active material is a composite particle in which silicon oxide particles are present in the matrix of the silicon oxycarbide phase, it is conceivable that the particle size of the silicon oxide has a large effect on the performance of this active material. When the average particle diameter of the silicon oxide particles exceeds 5 μm, the silicon oxide particles become large lumps, and when the present active material is used as a negative electrode active material, the silicon oxide particles cause large expansion and contraction of the negative electrode active material during charging and discharging. As a result, the stress concentrates on a part of the matrix, so that the structure of the active material tends to collapse, and the capacity retention rate of the negative electrode active material tends to decrease. On the other hand, since silicon oxide particles with a small size of less than 300 nm are too fine, the silicon oxide particles tend to aggregate with each other. Therefore, the dispersibility of the silicon oxide particles in the negative electrode active material may deteriorate. In addition, if the silicon oxide particles are too fine, the specific surface area tends to increase, and by-products tend to increase on the surfaces of the silicon oxide particles when the negative electrode active material is baked at high temperature. These may lead to deterioration in charge/discharge performance.
 したがって、本酸化ケイ素粒子の平均粒径は前記の観点から、3μm以下が好ましく、2μm以下がより好ましい。また本酸化ケイ素粒子の平均粒径は粒子分散性と比表面積の観点から、300nm以上が好ましく、200nm以上がより好ましい。
 ここで平均粒径はレーザー回折式粒度分析計などを用いて測定することができるD50の値である。D50は、レーザー粒度分析計などを用い動的光散乱法により測定することができる。本酸化ケイ素粒子の平均粒径は、粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積50%となるときの粒子径である。
Therefore, the average particle size of the present silicon oxide particles is preferably 3 μm or less, more preferably 2 μm or less, from the above viewpoint. The average particle size of the present silicon oxide particles is preferably 300 nm or more, more preferably 200 nm or more, from the viewpoint of particle dispersibility and specific surface area.
Here, the average particle size is a D50 value that can be measured using a laser diffraction particle size analyzer or the like. D50 can be measured by a dynamic light scattering method using a laser particle size analyzer or the like. The average particle diameter of the present silicon oxide particles is the particle diameter at which the volume cumulative distribution curve is drawn from the small diameter side to 50% in the particle diameter distribution.
 本酸化ケイ素粒子は、例えば平均粒径が前記範囲となるように酸化ケイ素を粉砕などで粒子化し得ることができる。
 粉砕に用いる粉砕機としては、ボールミル、ビーズミル、ジェットミルなどの粉砕機が例示できる。また、粉砕は有機溶剤を用いた湿式粉砕であってもよく、有機溶剤としては、例えば、アルコール類、ケトン類などを好適に用いることができるが、トルエン、キシレン、ナフタレン、メチルナフタレンなどの芳香族炭化水素系溶剤も用いることができる。
 得られた酸化ケイ素の粒子を、ビーズ粒径、配合率、回転数または粉砕時間などのビーズミルの条件を制御し、分級等することで本酸化ケイ素粒子の平均粒径を前記範囲することができる。
The present silicon oxide particles can be granulated, for example, by pulverizing silicon oxide so that the average particle size falls within the above range.
Examples of pulverizers used for pulverization include pulverizers such as ball mills, bead mills, and jet mills. In addition, the pulverization may be wet pulverization using an organic solvent, and as the organic solvent, for example, alcohols, ketones, etc. can be preferably used. Group hydrocarbon solvents can also be used.
The average particle size of the silicon oxide particles can be controlled within the above range by classifying the obtained silicon oxide particles by controlling the bead mill conditions such as the bead particle size, blending ratio, number of revolutions, and pulverization time. .
 本酸化ケイ素粒子の形状は、粒状、針状、フレーク状のいずれでもよい。
 本酸化ケイ素粒子の形態は、動的光散乱法で平均粒径の測定が可能であるが、透過型電子顕微鏡(TEM)や電界放出型走査電子顕微鏡(FE-SEM)の解析手段を用いることで、前記アスペクト比のサンプルをより容易かつ精密に同定することができる。本発明の二次電池用材料を含有する負極活物質の場合は、サンプルを集束イオンビーム(FIB)で切断して断面をFE-SEM観察することができ、またはサンプルをスライス加工してTEM観察により本酸化ケイ素粒子の状態を同定することができる。
 なお前記本酸化ケイ素粒子のアスペクト比は、TEM画像に映る視野内のサンプルの主要部分50粒子をベースにした計算結果である。
The shape of the present silicon oxide particles may be granular, needle-like, or flake-like.
Regarding the morphology of the present silicon oxide particles, the average particle size can be measured by a dynamic light scattering method, but it is possible to use an analysis means such as a transmission electron microscope (TEM) or a field emission scanning electron microscope (FE-SEM). can more easily and precisely identify samples of said aspect ratio. In the case of the negative electrode active material containing the secondary battery material of the present invention, the sample can be cut with a focused ion beam (FIB) and the cross section can be observed with FE-SEM, or the sample can be sliced and observed with TEM. can identify the state of the present silicon oxide particles.
The aspect ratio of the present silicon oxide particles is the result of calculation based on 50 particles in the main portion of the sample within the field of view shown in the TEM image.
 シリコンオキシカーバイド相はケイ素、酸素、炭素を含む化合物から構成されており、ケイ素-酸素-炭素骨格の三次元ネットワーク構造とフリー炭素を含む構造が好ましい。ここでフリー炭素とは、ケイ素-酸素-炭素の三次元骨格に含まれていない炭素である。フリー炭素は炭素相として存在する炭素、炭素相の炭素同士で結合している炭素、およびケイ素-酸素-炭素骨格と炭素相が結合している炭素を含む。 The silicon oxycarbide phase is composed of compounds containing silicon, oxygen, and carbon, and preferably has a three-dimensional network structure of silicon-oxygen-carbon skeleton and a structure containing free carbon. Here, free carbon is carbon that is not contained in the three-dimensional skeleton of silicon-oxygen-carbon. Free carbon includes carbon present as a carbon phase, carbon bonded between carbon phase carbons, and carbon bonded between a silicon-oxygen-carbon skeleton and a carbon phase.
 シリコンオキシカーバイドは下記式(2)で表されるのが好ましい。
   SiOxCy      (2)
 式(2)中、xはケイ素に対する酸素のモル比、yはケイ素に対する炭素のモル比を表す。
 本活物質を二次電池に用いた場合、充放電性能と容量維持率とのバランスが優位になるという観点から、1≦x<2が好ましく、1≦x≦1.9がより好ましく、1≦x≦1.8がさらに好ましい。
 また、本活物質を二次電池に用いた場合、充放電性能と初回クーロン効率のバランスとの観点から、1≦y≦20が好ましく、1.2≦y≦15がより好ましい。
Silicon oxycarbide is preferably represented by the following formula (2).
SiOx Cy (2)
In formula (2), x represents the molar ratio of oxygen to silicon, and y represents the molar ratio of carbon to silicon.
When the present active material is used in a secondary battery, 1 ≤ x < 2 is preferable, 1 ≤ x ≤ 1.9 is more preferable, and 1 ≤ x ≤ 1.8 is more preferred.
When the present active material is used in a secondary battery, 1≦y≦20 is preferable, and 1.2≦y≦15 is more preferable, from the viewpoint of the balance between charge/discharge performance and initial coulombic efficiency.
 前記xおよびyはそれぞれの元素の含有質量を測定した後、モル比(原子数比)に換算することにより求めることができる。この際、酸素と炭素は無機元素分析装置を使用することによって、その含有量を定量でき、ケイ素の含有量はICP発光分析装置(ICP-OES)を使用することによって定量できる。
 なお、前記xおよびyの測定は前記記載方法によって実施することが好ましいが、本活物質の局所的な分析を行い、それにより得られた含有比データの測定点数を多く取得して、本活物質全体の含有比を類推することでも可能である。局所的な分析としては、例えばエネルギー分散型X線分光法(SEM-EDX)や電子線プローブマイクロアナライザ(EPMA)が挙げられる。
The above x and y can be obtained by measuring the content mass of each element and then converting it into a molar ratio (atomic number ratio). At this time, the content of oxygen and carbon can be quantified by using an inorganic elemental analyzer, and the content of silicon can be quantified by using an ICP optical emission spectrometer (ICP-OES).
Although it is preferable to measure x and y by the method described above, the present active material is locally analyzed, and a large number of measurement points for the content ratio data obtained thereby is obtained. It is also possible to analogize the content ratio of the entire substance. Local analysis includes, for example, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Electron Probe Microanalyzer (EPMA).
 シリコンオキシカーバイド相を構成する化合物がケイ素、酸素、炭素を含む化合物であり、ケイ素-酸素-炭素骨格の三次元ネットワーク構造とフリー炭素を含む構造の場合、シリコンオキシカーバイド相中のケイ素-酸素-炭素骨格は化学安定性が高く、フリー炭素との複合構造をとり、リチウムの吸蔵および放出に対して体積変化が小さい。本酸化ケイ素粒子がケイ素-酸素-炭素骨格とフリー炭素との複合構造体に密に包まれることで、リチウムの吸蔵および放出に対する本酸化ケイ素粒子の体積変化が抑制される。その結果、本活物質を負極とした場合、負極中の本酸化ケイ素粒子が充放電性能発現の主要成分とする役割を果たしながら、シリコンオキシカーバイド相が充放電時に本酸化ケイ素粒子の体積変化に伴う粒子の破壊を抑制し、リチウム二次電池のサイクル性が改良される。 When the compound that constitutes the silicon oxycarbide phase is a compound containing silicon, oxygen, and carbon, and has a three-dimensional network structure of a silicon-oxygen-carbon skeleton and a structure containing free carbon, the silicon-oxygen- The carbon skeleton has high chemical stability, has a composite structure with free carbon, and has a small volume change with respect to lithium absorption and release. Since the silicon oxide particles are tightly wrapped in the composite structure of the silicon-oxygen-carbon skeleton and the free carbon, the volume change of the silicon oxide particles due to the intercalation and deintercalation of lithium is suppressed. As a result, when this active material is used as a negative electrode, the silicon oxide particles in the negative electrode play the role of being the main component for the expression of charge-discharge performance, while the silicon oxycarbide phase reacts to the volume change of the silicon oxide particles during charge-discharge. The accompanying particle destruction is suppressed, and the cyclability of the lithium secondary battery is improved.
 またシリコンオキシカーバイド相を構成する化合物がケイ素-酸素-炭素骨格の三次元ネットワーク構造とフリー炭素を含む構造を有していると、ケイ素-酸素-炭素骨格は、リチウムイオンの接近によりケイ素-酸素-炭素骨格の内部の電子分布に変動が生じ、ケイ素-酸素-炭素骨格とリチウムイオンの間に静電的な結合や配位結合などが形成される。この静電的な結合や配位結合によりリチウムイオンがケイ素-酸素-炭素骨格中に貯蔵される。一方、配位結合エネルギーは比較的低いため、リチウムイオンの脱離反応が容易に行われる。つまりケイ素-酸素-炭素骨格が充放電の際にリチウムイオンの挿入と脱離反応を可逆的に起こすことができると考えられる。 In addition, when the compound that constitutes the silicon oxycarbide phase has a three-dimensional network structure of silicon-oxygen-carbon skeleton and a structure containing free carbon, the silicon-oxygen-carbon skeleton is converted into silicon-oxygen by the approach of lithium ions. - Electron distribution inside the carbon skeleton is changed, and electrostatic bonds and coordinate bonds are formed between the silicon-oxygen-carbon skeleton and lithium ions. Lithium ions are stored in the silicon-oxygen-carbon skeleton by this electrostatic bond and coordinate bond. On the other hand, since the coordination bond energy is relatively low, the desorption reaction of lithium ions easily occurs. In other words, it is considered that the silicon-oxygen-carbon skeleton can reversibly cause intercalation and deintercalation reactions of lithium ions during charging and discharging.
 前記シリコンオキシカーバイドはケイ素、酸素、炭素以外に窒素を含んでもよい。窒素は後述する本活物質の製造方法において、使用する原料、例えばフェノール樹脂、分散剤、ポリシロキサン化合物、その他の窒素化合物、および焼成プロセスで用いる窒素ガス等を分子内に官能基として窒素を含む原子団とすることで、シリコンオキシカーバイド相に導入することができる。シリコンオキシカーバイド相が窒素を含むことで、本活物質を負極活物質とした時の充放電性能や容量維持率に優れる傾向にある。
 シリコンオキシカーバイド相を構成する化合物がケイ素、酸素、炭素および窒素を含む化合物の場合、シリコンオキシカーバイド相は下記式(3)で表される化合物を含有するのが好ましい。
   SiOxCyNz      (3)
 式(3)中、xおよびyは前記と同じ意味であり、zはケイ素に対する窒素のモル比を表す。
 シリコンオキシカーバイド相が前記式(3)で表される化合物を含む場合、本活物質を二次電池に用いた際の充放電性能や容量維持率の観点から、1≦x≦2、1≦y≦20、0<z≦0.5が好ましく、1≦x≦1.9、1.2≦y≦15、0<z≦0.4がより好ましい。
The silicon oxycarbide may contain nitrogen in addition to silicon, oxygen and carbon. Nitrogen contains nitrogen as a functional group in the molecule of raw materials used in the manufacturing method of the active material described later, such as phenolic resins, dispersants, polysiloxane compounds, other nitrogen compounds, and nitrogen gas used in the firing process. By forming an atomic group, it can be introduced into the silicon oxycarbide phase. Since the silicon oxycarbide phase contains nitrogen, the charge/discharge performance and the capacity retention rate tend to be excellent when this active material is used as a negative electrode active material.
When the compound constituting the silicon oxycarbide phase is a compound containing silicon, oxygen, carbon and nitrogen, the silicon oxycarbide phase preferably contains a compound represented by the following formula (3).
SiOxCyNz (3)
In formula (3), x and y have the same meanings as above, and z represents the molar ratio of nitrogen to silicon.
When the silicon oxycarbide phase contains the compound represented by the formula (3), 1 ≤ x ≤ 2, 1 ≤ y≦20 and 0<z≦0.5 are preferable, and 1≦x≦1.9, 1.2≦y≦15 and 0<z≦0.4 are more preferable.
 前記zは前記xおよびyと同様、元素の含有質量を測定した後、モル比(原子数比)に換算することにより求めることができる。
 前記xおよびyと同様、zの測定は前記記載方法によって実施することが好ましいが、本活物質の局所的な分析を行い、それにより得られた含有比データの測定点数を多く取得して、本活物質全体の含有比を類推することでも可能である。局所的な分析としては、例えばエネルギー分散型X線分光法(SEM-EDX)や電子線プローブマイクロアナライザ(EPMA)が挙げられる。
As with x and y, z can be obtained by measuring the mass of the element contained and then converting it into a molar ratio (atomic number ratio).
As with x and y, it is preferable to measure z by the method described above. It is also possible to analogize the content ratio of the entire active material. Local analysis includes, for example, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Electron Probe Microanalyzer (EPMA).
 本活物質は前記シリコンオキシカーバイド相中に前記本酸化ケイ素粒子を有している複合粒子であり、本酸化ケイ素が前記シリコンオキシカーバイド相中に分散している複合粒子が好ましい。シリコンオキシカーバイド相中に分散している本酸化ケイ素粒子の数は2以上であり上限は特に限定されない。 The present active material is composite particles having the present silicon oxide particles in the silicon oxycarbide phase, and composite particles in which the present silicon oxide is dispersed in the silicon oxycarbide phase are preferable. The number of the present silicon oxide particles dispersed in the silicon oxycarbide phase is 2 or more, and the upper limit is not particularly limited.
 酸化ケイ素は不均化反応によりケイ素の単体を生成する場合があるが、本活物質は高容量化、高初回効率の観点から、不均化によって生成したケイ素の単体を含んでいる構造でも良い。本活物質がケイ素の単体を含む場合、本活物質をX線回折分析した場合、X線回折パターンにおいて2θが28.4°付近のSi(111)面に帰属されるピークが検出される。
 本活物質に別途、ケイ素を添加してもよいが、本活物質が含むケイ素は前記不均化反応により生成したケイ素の結晶子が比較的に小さくて好ましい。
Silicon oxide may produce a silicon simple substance through a disproportionation reaction, but the present active material may have a structure containing a silicon simple substance produced by disproportionation from the viewpoint of increasing capacity and high initial efficiency. . When the present active material contains a simple substance of silicon, when the present active material is subjected to X-ray diffraction analysis, a peak attributed to the Si (111) plane near 28.4° of 2θ is detected in the X-ray diffraction pattern.
Silicon may be added to the present active material separately, but the silicon contained in the present active material is preferable because the silicon crystallites produced by the disproportionation reaction are relatively small.
 活物質の平均粒径が小さすぎると、比表面積の大幅な上昇につれ、本活物質を二次電池とした時、充放電時に固相界面電解質分解物(以下、「SEI」とも記す。)の生成量が増えることで単位体積当たりの可逆充放電容量が低下することがある。平均粒径が大きすぎると、電極膜作製時に集電体から剥離するおそれがある。
 したがって本活物質の平均粒径は2μm以上15μm以下が好ましい。本活物質の平均粒径は2.5μm以上がより好ましく、3.0μm以上が特に好ましい。また、本活物質の平均粒径は12μm以下がより好ましく、10μm以下が特に好ましい。平均粒径は前記D50の値である。
If the average particle size of the active material is too small, the specific surface area of the active material increases significantly, and when the active material is used as a secondary battery, a solid phase interfacial electrolyte decomposition product (hereinafter also referred to as "SEI") is generated during charging and discharging. An increase in the production amount may reduce the reversible charge/discharge capacity per unit volume. If the average particle diameter is too large, there is a risk of separation from the current collector during electrode film production.
Therefore, the average particle size of the present active material is preferably 2 μm or more and 15 μm or less. The average particle size of the active material is more preferably 2.5 μm or more, particularly preferably 3.0 μm or more. Further, the average particle size of the present active material is more preferably 12 μm or less, particularly preferably 10 μm or less. The average particle size is the value of D50.
 本活物質の比表面積は0.3m/g以上10m/g以下が好ましい。本活物質の比表面積は0.5m/g以上がより好ましく、1m/g以上が特に好ましい。また、本活物質の比表面積は9m/g以下がより好ましく、8m/g以下が特に好ましい。比表面積が前記範囲であると、電極作製時における溶媒の吸収量を適切に保つことができ、結着性を維持するための結着剤の使用量も適切に保つことができる。なお前記比表面積はBET法により求めた値であり、窒素ガス吸着測定により求めることができ、例えば比表面積測定装置を用いて測定することができる。 The specific surface area of the present active material is preferably 0.3 m 2 /g or more and 10 m 2 /g or less. The specific surface area of the active material is more preferably 0.5 m 2 /g or more, particularly preferably 1 m 2 /g or more. Further, the specific surface area of the present active material is more preferably 9 m 2 /g or less, particularly preferably 8 m 2 /g or less. When the specific surface area is within the above range, the amount of solvent absorbed during electrode production can be appropriately maintained, and the amount of binder used for maintaining binding properties can also be properly maintained. The specific surface area is a value determined by the BET method, and can be determined by nitrogen gas adsorption measurement, for example, using a specific surface area measuring device.
 本活物質は、シリコンオキシカーバイド相中にケイ素-酸素-炭素骨格構造とともに炭素元素のみで構成されるフリー炭素を有しているのが好ましい。本活物質がフリー炭素を有する場合、本活物質のラマンスペクトルにおいて、グラファイト長周期炭素格子構造のGバンドに帰属される1590cm-1と、乱れや欠陥のあるグラファイト短周期炭素格子構造のDバンドに帰属される1330cm-1付近の散乱ピークが観測される。Dバンドの散乱ピーク強度、I(Gバンド)、に対するDバンドの散乱強度、I(Dバンド)、の強度比、I(Gバンド)/I(Dバンド)、0.7以上2以下が好ましい。前記散乱ピーク強度比、I(Gバンド)/I(Dバンド)、は0.7以上1.8以下がより好ましい。前記散乱ピーク強度比、I(Gバンド)/I(Dバンド)、が前記の範囲であるということは、マトリクス中のフリー炭素において以下のことが言える。 The present active material preferably has a silicon-oxygen-carbon skeleton structure and free carbon composed only of carbon elements in the silicon oxycarbide phase. When the present active material has free carbon, in the Raman spectrum of the present active material, 1590 cm −1 attributed to the G band of the graphite long-period carbon lattice structure and the D band of the graphite short-period carbon lattice structure with disorder and defects A scattering peak is observed near 1330 cm −1 attributed to . The intensity ratio, I (G band)/I (D band), of the D band scattering peak intensity, I (G band), to the D band scattering intensity, I (D band), is preferably 0.7 or more and 2 or less. . The scattering peak intensity ratio, I (G band)/I (D band), is more preferably 0.7 or more and 1.8 or less. The fact that the scattering peak intensity ratio, I (G band)/I (D band), is within the above range means that the free carbon in the matrix has the following properties.
 フリー炭素の一部の炭素原子は、ケイ素-酸素-炭素骨格中の一部のケイ素原子と結合している。このフリー炭素は、充放電特性に影響を与える重要な成分である。フリー炭素は主に、SiO,SiOC、およびSiOで構成されるケイ素-酸素-炭素骨格中に形成しているものであり、ケイ素-酸素-炭素骨格の一部のケイ素原子と結合しているため、ケイ素-酸素-炭素骨格内部、および表面のケイ素原子とフリー炭素間の電子伝達がより容易となる。このため本活物質を二次電池に用いた時の充放電時のリチウムイオンの挿入および離脱反応が速やかに進行し、充放電特性が向上すると考えられる。また、リチウムイオンの挿入および脱離反応によって、負極活物質は僅かではあるが膨張および収縮することがあるが、フリー炭素がその近傍に存在することで活物質全体の膨張および収縮が緩和され、容量維持率を大きく向上させる効果があると考えられる。 Some of the free carbon atoms are bonded to some silicon atoms in the silicon-oxygen-carbon framework. This free carbon is an important component that affects charge/discharge characteristics. Free carbon is mainly formed in the silicon-oxygen-carbon skeleton composed of SiO 2 C 2 , SiO 3 C, and SiO 4 , and some silicon atoms of the silicon-oxygen-carbon skeleton , electron transfer within the silicon-oxygen-carbon framework and between surface silicon atoms and free carbon is facilitated. For this reason, it is thought that the lithium ion intercalation and deintercalation reactions at the time of charging and discharging when the present active material is used in a secondary battery proceed rapidly, and the charging and discharging characteristics are improved. In addition, although the negative electrode active material may slightly expand and contract due to the insertion and extraction reactions of lithium ions, the presence of free carbon in the vicinity of the expansion and contraction of the active material as a whole mitigates the expansion and contraction. It is considered that there is an effect of greatly improving the capacity retention rate.
 フリー炭素は、シリコンオキシカーバイド相を製造する際にケイ素含有化合物および炭素源樹脂の不活性ガス雰囲気中の熱分解に伴い形成する。具体的にはケイ素含有化合物および炭素源樹脂の分子構造中にある炭化可能な部位が不活性化する雰囲気中で高温熱分解によって炭素成分となり、これらの一部の炭素がケイ素-酸素-炭素骨格の一部と結合する。炭化可能な成分は、炭化水素が好ましく、アルキル類、アルキレン類、アルケン類、アルキン類、芳香族類がより好ましく、その中でも芳香族類であることがさらに好ましい。 Free carbon is formed during the thermal decomposition of the silicon-containing compound and carbon source resin in an inert gas atmosphere during the production of the silicon oxycarbide phase. Specifically, the carbonizable sites in the molecular structures of the silicon-containing compound and the carbon source resin become carbon components by high-temperature pyrolysis in an inert atmosphere, and some of these carbons form a silicon-oxygen-carbon skeleton. combine with part of The carbonizable component is preferably a hydrocarbon, more preferably alkyls, alkylenes, alkenes, alkynes, aromatics, and more preferably aromatics.
 また、フリー炭素が存在することにより、本活物質の抵抗低減効果が期待され、二次電池の負極として本活物質を使用した場合、本活物質内部の反応が均一かつスムーズに起こり、充放電性能と容量維持率のバランスに優れた二次電池用活物質が得られると考えられる。フリー炭素の導入はケイ素含有化合物由来だけでも可能であるが、炭素源樹脂を併用することにより、フリー炭素の存在量とその効果の増大が期待される。炭素源樹脂の種類は、特に限定されないが、炭素の六員環を含む炭素化合物が好ましい。 In addition, the presence of free carbon is expected to reduce the resistance of this active material, and when this active material is used as the negative electrode of a secondary battery, the reaction inside this active material occurs uniformly and smoothly, resulting in charging and discharging. It is considered that a secondary battery active material having an excellent balance between performance and capacity retention can be obtained. Although free carbon can be introduced only from a silicon-containing compound, the combined use of a carbon source resin is expected to increase the abundance of free carbon and increase its effect. The type of carbon source resin is not particularly limited, but a carbon compound containing a six-membered ring of carbon is preferred.
 前記フリー炭素の存在状態は、ラマンスペクトル以外に熱重量示差熱分析装置(TG-DTA)でも同定することが可能である。ケイ素-酸素-炭素骨格中の炭素原子と異なり、フリー炭素は、大気中で熱分解されやすく、空気存在下で測定した熱重量減少量により炭素の存在量を求めることができる。つまり炭素量は、TG-DTAを用いることで定量できる。
 また、熱重量減少挙動より、分解反応開始温度、分解反応終了温度、熱分解反応種の数、各熱分解反応種における最大重量減少量の温度などの熱分解温度挙動の変化も容易に把握できる。これら挙動の温度値を用いて炭素の状態を判断することができる。一方、ケイ素-酸素-炭素骨格中の炭素原子、すなわち前記SiO、SiOC、およびSiOを構成するケイ素原子と結合している炭素原子は、非常に強い化学結合を有するために熱安定性が高く、熱分析装置測定の温度範囲内では大気中で熱分解されることがないと考えられる。また、本活物質のシリコンオキシカーバイド相中の炭素は、非晶質炭素と類似する特性を有しているため、大気中において約550℃から900℃の温度範囲に熱分解される。その結果、急激な重量減少が発生する。TG-DTAの測定条件の最高温度は特に限定されないが、炭素の熱分解反応を完全に終了させるために、大気中、約25℃から約1000℃以上までの条件下でTG-DTA測定を行うのが好ましい。
The existence state of the free carbon can be identified by thermogravimetric differential thermal analysis (TG-DTA) as well as Raman spectrum. Unlike the carbon atoms in the silicon-oxygen-carbon skeleton, free carbon is easily thermally decomposed in the atmosphere, and the amount of carbon present can be determined from the amount of thermogravimetric loss measured in the presence of air. That is, the carbon content can be quantified using TG-DTA.
In addition, from the thermal weight loss behavior, changes in thermal decomposition temperature behavior such as decomposition reaction start temperature, decomposition reaction end temperature, number of thermal decomposition reaction species, temperature of maximum weight loss for each thermal decomposition reaction species can be easily grasped. . The temperature values of these behaviors can be used to determine the state of the carbon. On the other hand, the carbon atoms in the silicon-oxygen-carbon skeleton, that is, the carbon atoms bonded to the silicon atoms constituting the SiO 2 C 2 , SiO 3 C, and SiO 4 have very strong chemical bonds. It has high thermal stability, and it is thought that it will not be thermally decomposed in the air within the temperature range measured by thermal analysis equipment. In addition, since the carbon in the silicon oxycarbide phase of the present active material has properties similar to those of amorphous carbon, it is thermally decomposed within the temperature range of about 550° C. to 900° C. in the air. As a result, rapid weight loss occurs. The maximum temperature of the TG-DTA measurement conditions is not particularly limited, but TG-DTA measurement is performed in the air under conditions from about 25° C. to about 1000° C. or higher in order to completely complete the thermal decomposition reaction of carbon. is preferred.
 また本活物質は前記複合粒子の表面に被膜を有しているのが好ましい。被膜としては、電子伝導性、リチウムイオン伝導性、電解液の分解抑制効果が期待出来る物質の被膜が好ましい。
 前記被膜としては、炭素、チタン、ニッケル等の電子伝導性物質の被膜が挙げられる。これらの中でも、負極活物質の化学安定性や熱安定性改善の観点から、炭素の被膜が好ましく、低結晶性炭素の被膜がより好ましい。
Further, the present active material preferably has a film on the surface of the composite particles. As the film, it is preferable to use a film of a substance that can be expected to have electronic conductivity, lithium ion conductivity, and an effect of suppressing the decomposition of the electrolytic solution.
Examples of the coating include coatings of electron conductive substances such as carbon, titanium, and nickel. Among these, from the viewpoint of improving the chemical stability and thermal stability of the negative electrode active material, a carbon coating is preferable, and a low-crystalline carbon coating is more preferable.
 炭素被膜の場合、本活物質の化学安定性や熱安定性の改善の観点から、被膜の平均厚みは10nm以上300nm以下、または、炭素被膜の含有量は本活物質の質量を100質量%として、1から10質量%が好ましい。
 炭素被膜の場合、炭素の被膜は気相沈積法により本活物質表面に作製するのが好ましい。
 なお本活物質の質量とは、本活物質を構成する本酸化ケイ素粒子、シリコンオキシカーバイド相の合計量である。シリコンオキシカーバイド相が窒素を含む場合は、窒素も含む合計量であり、本活物質が後述する酸化ケイ素等の第三成分を含む場合、第三成分も含む合計量である。
In the case of a carbon coating, from the viewpoint of improving the chemical stability and thermal stability of the present active material, the average thickness of the coating is 10 nm or more and 300 nm or less, or the content of the carbon coating is based on the mass of the present active material as 100% by mass. , from 1 to 10% by weight.
In the case of a carbon coating, the carbon coating is preferably formed on the surface of the present active material by a vapor phase deposition method.
The mass of the present active material is the total amount of the present silicon oxide particles and the silicon oxycarbide phase that constitute the present active material. When the silicon oxycarbide phase contains nitrogen, it is the total amount including nitrogen, and when the present active material contains a third component such as silicon oxide described later, it is the total amount including the third component.
 本活物質は前記以外に他の必要な第三成分を含んでもよい。
 第三成分としては、Li、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属のシリケート化合物(以下、「本シリケート化合物」とも記す。)が挙げられる。
 シリケート化合物は一般に1個または数個のケイ素原子を中心とし、電気陰性な配位子がこれを取り囲んだ構造を持つアニオンを含む化合物であるが、本シリケート化合物はLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属と前記アニオンを含む化合物との塩である。
 前記アニオンを含む化合物としてはオルトケイ酸イオン(SiO 4-)、メタケイ酸イオン(SiO 2-)、ピロケイ酸イオン(Si 6-)、環状ケイ酸イオン(Si 6-またはSi18 12-)等のケイ酸イオンが知られている。本シリケート化合物はメタケイ酸イオンとLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属との塩であるシリケート化合物が好ましい。前記金属の中ではLiまたはMgが好ましい。
The present active material may contain other necessary third components in addition to the above.
Examples of the third component include a silicate compound of at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al (hereinafter also referred to as "the present silicate compound").
A silicate compound is generally a compound containing an anion having a structure in which one or several silicon atoms are centered and surrounded by electronegative ligands. It is a salt of at least one metal selected from the group consisting of Mg and Al and a compound containing the anion.
Examples of compounds containing the anion include orthosilicate ion (SiO 4 4- ), metasilicate ion (SiO 3 2- ), pyrosilicate ion (Si 2 O 7 6- ), cyclic silicate ion (Si 3 O 9 6- or Si 6 O 18 12- ) are known. The present silicate compound is preferably a silicate compound which is a salt of metasilicate ion and at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al. Li or Mg is preferred among the metals.
 本シリケート化合物はLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属を有しており、これら金属の2種以上を有していてもよい。2種以上の金属を有する場合、一つのケイ酸イオンが複数種の金属を有していてもよいし、異なる金属を有するシリケート化合物の混合物であってもよい。また本シリケート化合物はLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属を有する限り、他の金属を有してもよい。
 本シリケート化合物はリチウムシリケート化合物またはマグネシウムシリケート化合物が好ましく、メタケイ酸リチウム(LiSiO3、LiSi5、LiSiO)またはメタケイ酸マグネシウム(MgSiO3、MgSiO)がより好ましく、メタケイ酸マグネシウム(MgSiO3、MgSiO)が特に好ましい。
The present silicate compound contains at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al, and may contain two or more of these metals. When having two or more kinds of metals, one silicate ion may have a plurality of kinds of metals, or may be a mixture of silicate compounds having different metals. The present silicate compound may contain other metals as long as it contains at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al.
The present silicate compound is preferably a lithium silicate compound or a magnesium silicate compound, more preferably lithium metasilicate ( Li2SiO3 , Li2Si2O5 , Li4SiO4 ) or magnesium metasilicate (MgSiO3 , Mg2SiO4 ). Magnesium metasilicate (MgSiO 3 , Mg 2 SiO 4 ) is particularly preferred.
 本シリケート化合物は前記シリコンオキシカーバイド相および本酸化ケイ素粒子中のいずれに存在してもよく、両方に存在していてもよい。本シリケート化合物がシリコンオキシカーバイド相と本酸化ケイ素の両方に存在する場合、本酸化ケイ素粒子における本シリケート化合物の濃度が、シリコンオキシカーバイド中の濃度より高い方が好ましい。
 本シリケート化合物は、結晶状態の場合、粉末X線回折測定(XRD)で検出することができ、非晶質の場合は、固体29Si-NMR測定で確認することができる。
The silicate compound may be present in either the silicon oxycarbide phase or the silicon oxide particles, or may be present in both. When the present silicate compound exists in both the silicon oxycarbide phase and the present silicon oxide, the concentration of the present silicate compound in the present silicon oxide particles is preferably higher than the concentration in the silicon oxycarbide.
The present silicate compound can be detected by powder X-ray diffraction measurement (XRD) when it is in a crystalline state, and can be confirmed by solid 29 Si-NMR measurement when it is amorphous.
 本活物質は例えば以下の方法により得られる。
 本酸化ケイ素粒子は、前記のとおり、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し析出により製造することができる。また市販の酸化ケイ素を用いてもよい。
 本活物質を製造する際には、酸化ケイ素を粉砕、分級等により所望の平均粒径として本酸化ケイ素としてもよい。粉砕、分級の方法は前記のとおりである。
This active material can be obtained, for example, by the following method.
As described above, the present silicon oxide particles can be produced by heating a mixture of silicon dioxide and metal silicon to produce silicon monoxide gas, which is then cooled and precipitated. Alternatively, commercially available silicon oxide may be used.
When producing the present active material, silicon oxide may be pulverized, classified, or the like to obtain a desired average particle size, and the present silicon oxide may be obtained. The pulverization and classification methods are as described above.
 前記で得られた本酸化ケイ素粒子のスラリーをポリシロキサン化合物と炭素源樹脂との混合物と混合して懸濁液とし、脱溶媒して前駆体が得られる。得られた前駆体を焼成して焼成物を得、必要に応じて粉砕することで所望の平均粒径または比表面積を有する本活物質が得られる。
 本酸化ケイ素粒子のスラリーは、有機溶媒を用い、酸化ケイ素粒子を湿式粉末粉砕装置にて粉砕しながら調整することができる。酸化ケイ素粒子の粉砕を促進させるために有機溶媒に分散剤を添加して用いても良い。湿式粉砕装置としてはローラーミル、高速回転粉砕機、容器駆動型ミル、ビーズミルなどが挙げられる。
The slurry of the silicon oxide particles obtained above is mixed with the mixture of the polysiloxane compound and the carbon source resin to form a suspension, and the solvent is removed to obtain the precursor. The resulting precursor is calcined to obtain a calcined product, and if necessary, pulverized to obtain the present active material having a desired average particle size or specific surface area.
The slurry of silicon oxide particles can be prepared by using an organic solvent and pulverizing the silicon oxide particles with a wet powder pulverizer. A dispersant may be added to the organic solvent in order to accelerate the pulverization of the silicon oxide particles. Examples of wet pulverizers include roller mills, high-speed rotary pulverizers, container-driven mills, and bead mills.
 前記有機溶媒は、例えば、ケトン類のアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン;アルコール類のエタノール、メタノール、ノルマルプロピルアルコール、イソプロピルアルコール;芳香族のベンゼン、トルエン、キシレンなどが挙げられる。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone; alcohols such as ethanol, methanol, normal propyl alcohol, and isopropyl alcohol; aromatics such as benzene, toluene, and xylene.
 前記分散剤の種類は、水系や非水系の分散剤が挙げられ、非水系分散剤が好ましい。非水系分散剤の種類は、ポリエーテル系、アルコール系、ポリアルキレンポリアミン系、ポリカルボン酸部分アルキルエステル系などの高分子型、多価アルコールエステル系、アルキルポリアミン系などの低分子型、ポリリン酸塩系などの無機型が例示される。本酸化ケイ素スラリーにおける酸化ケイ素固形分の濃度は特に限定されないが、前記溶媒および、必要に応じて分散剤を含む場合は分散剤と酸化ケイ素の合計量を100質量%として、酸化ケイ素の量は5質量%から40質量%の範囲が好ましく、10質量%から30質量%がより好ましい。 Types of the dispersant include aqueous and non-aqueous dispersants, and non-aqueous dispersants are preferred. Types of non-aqueous dispersants include polymer types such as polyether, alcohol, polyalkylene polyamine, and polycarboxylic acid partial alkyl esters; low molecular types such as polyhydric alcohol esters and alkyl polyamines; Inorganic types such as salts are exemplified. The concentration of silicon oxide solids in the present silicon oxide slurry is not particularly limited. A range of 5% by mass to 40% by mass is preferred, and a range of 10% by mass to 30% by mass is more preferred.
 前記ポリシロキサン化合物としては、ポリカルボシラン構造、ポリシラザン構造、ポリシラン構造およびポリシロキサン構造を少なくとも1つ含む樹脂が挙げられる。これらの構造のみを含む樹脂であっても良く、これら構造の少なくとも一つをセグメントとして有し、他の重合体セグメントと化学的に結合した複合型樹脂でも良い。複合化の形態はグラフト共重合、ブロック共重合、ランダム共重合、交互共重合などがある。例えば、ポリシロキサンセグメントが重合体セグメントの側鎖に化学的に結合したグラフト構造を有する複合樹脂、重合体セグメントの末端にポリシロキサンセグメントが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。 Examples of the polysiloxane compound include resins containing at least one of a polycarbosilane structure, a polysilazane structure, a polysilane structure and a polysiloxane structure. A resin containing only these structures may be used, or a composite resin having at least one of these structures as a segment and chemically bonded to another polymer segment may be used. Forms of composite include graft copolymerization, block copolymerization, random copolymerization, alternating copolymerization, and the like. Examples include composite resins having a graft structure in which polysiloxane segments are chemically bonded to the side chains of polymer segments, composite resins having a block structure in which polysiloxane segments are chemically bonded to the ends of polymer segments, and the like. .
 ポリシロキサンセグメントが、下記一般式(S-1)および/または下記一般式(S-2)で表される構造単位を有するポリシロキサン化合物が好ましい。なかでもポリシロキサン化合物が、シロキサン結合(Si-O-Si)主骨格の側鎖または末端に、カルボキシ基、エポキシ基、アミノ基、またはポリエーテル基を有することがより好ましい。 A polysiloxane compound in which the polysiloxane segment has a structural unit represented by the following general formula (S-1) and/or the following general formula (S-2) is preferred. Among them, the polysiloxane compound more preferably has a carboxy group, an epoxy group, an amino group, or a polyether group at the side chain or end of the siloxane bond (Si--O--Si) main skeleton.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 なお前記一般式(S-1)および(S-2)中、Rは置換基を有していてもよい芳香族炭化水素基またはアルキル基、エポキシ基、カルボキシ基などを表す。RおよびRは、それぞれアルキル基、シクロアルキル基、アリール基またはアラルキル基、エポキシ基、カルボキシ基などを示す。)
Figure JPOXMLDOC01-appb-C000002
In general formulas (S-1) and (S-2) above, R 1 represents an optionally substituted aromatic hydrocarbon group, an alkyl group, an epoxy group, a carboxy group, or the like. R2 and R3 each represent an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group, an epoxy group, a carboxy group, or the like. )
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。前記のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1 -dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl- 2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like. Examples of the cycloalkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
 アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。 Examples of aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
 アラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。 The aralkyl group includes, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
 ポリシロキサン化合物が有するポリシロキサンセグメント以外の重合体セグメントとしては、例えば、アクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族系ビニル重合体、ポリオレフィン重合体等のビニル重合体セグメントや、ポリウレタン重合体セグメント、ポリエステル重合体セグメント、ポリエーテル重合体セグメント等の重合体セグメント等が挙げられる。中でも、ビニル重合体セグメントが好ましい。 Examples of polymer segments other than the polysiloxane segment possessed by the polysiloxane compound include vinyl polymer segments such as acrylic polymers, fluoroolefin polymers, vinyl ester polymers, aromatic vinyl polymers, and polyolefin polymers, Examples include polymer segments such as polyurethane polymer segments, polyester polymer segments, and polyether polymer segments. Among them, a vinyl polymer segment is preferred.
 ポリシロキサン化合物が、ポリシロキサンセグメントと重合体セグメントとが下記の構造式(S-3)で示される構造で結合した複合樹脂でもよく、三次元網目状のポリシロキサン構造を有してもよい。 The polysiloxane compound may be a composite resin in which polysiloxane segments and polymer segments are bonded in a structure represented by the following structural formula (S-3), or may have a three-dimensional network-like polysiloxane structure.
Figure JPOXMLDOC01-appb-C000003
 なお式中、炭素原子は重合体セグメントを構成する炭素原子であり、2個のケイ素原子はポリシロキサンセグメントを構成するケイ素原子である)
Figure JPOXMLDOC01-appb-C000003
In the formula, the carbon atom is the carbon atom that constitutes the polymer segment, and the two silicon atoms are the silicon atoms that constitute the polysiloxane segment.)
 ポリシロキサン化合物が有するポリシロキサンセグメントは、ポリシロキサンセグメント中に重合性二重結合など加熱により反応が可能な官能基を有していてもよい。熱分解前にポリシロキサン化合物を加熱処理することにより、架橋反応が進行し、固体状とすることにより、熱分解処理を容易に行うことができる。 The polysiloxane segment of the polysiloxane compound may have a functional group capable of reacting by heating, such as a polymerizable double bond, in the polysiloxane segment. By heat-treating the polysiloxane compound before thermal decomposition, the cross-linking reaction proceeds and the polysiloxane compound becomes solid, thereby facilitating the thermal decomposition treatment.
 重合性二重結合としては、例えば、ビニル基や(メタ)アクリロイル基等が挙げられる。重合性二重結合は、ポリシロキサンセグメント中に2つ以上存在することが好ましく3から200個存在することがより好ましく、3から50個存在することが更に好ましい。また、ポリシロキサン化合物として重合性二重結合が2個以上存在する複合樹脂を使用することによって、架橋反応が容易に進行させることができる。 Examples of polymerizable double bonds include vinyl groups and (meth)acryloyl groups. Two or more polymerizable double bonds are preferably present in the polysiloxane segment, more preferably 3 to 200, and even more preferably 3 to 50. In addition, by using a composite resin having two or more polymerizable double bonds as the polysiloxane compound, the cross-linking reaction can be facilitated.
 ポリシロキサンセグメントは、シラノール基および/または加水分解性シリル基を有してもよい。加水分解性シリル基中の加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、置換アルコキシ基、アシロキシ基、フェノキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基、アルケニルオキシ基等が挙げられ、これらの基が加水分解されることにより加水分解性シリル基はシラノール基となる。前記熱硬化反応と並行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行することで、固体状のポリシロキサン化合物を得ることができる。 The polysiloxane segment may have silanol groups and/or hydrolyzable silyl groups. Hydrolyzable groups in hydrolyzable silyl groups include, for example, halogen atoms, alkoxy groups, substituted alkoxy groups, acyloxy groups, phenoxy groups, mercapto groups, amino groups, amido groups, aminooxy groups, iminooxy groups, alkenyloxy and the like, and the hydrolyzable silyl group becomes a silanol group by hydrolysis of these groups. In parallel with the thermosetting reaction, a hydrolytic condensation reaction proceeds between the hydroxyl group in the silanol group and the hydrolyzable group in the hydrolyzable silyl group, thereby obtaining a solid polysiloxane compound. can.
 本発明でいうシラノール基とはケイ素原子に直接結合した水酸基を有するケイ素含有基である。本発明で言う加水分解性シリル基とはケイ素原子に直接結合した加水分解性基を有するケイ素含有基であり、具体的には、例えば、下記の一般式(S-4)で表される基が挙げられる。 A silanol group as used in the present invention is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom. The hydrolyzable silyl group referred to in the present invention is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom, specifically, for example, a group represented by the following general formula (S-4) is mentioned.
Figure JPOXMLDOC01-appb-C000004
 なお式中、Rはアルキル基、アリール基またはアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、アリルオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基またはアルケニルオキシ基である。またbは0から2の整数である。
Figure JPOXMLDOC01-appb-C000004
In the formula, R4 is a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group; group, iminooxy group or alkenyloxy group. b is an integer of 0 to 2;
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。 Alkyl groups include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1 -dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl- 2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like.
 アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。 Examples of aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
 アラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。 The aralkyl group includes, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 The halogen atom includes, for example, fluorine atom, chlorine atom, bromine atom, iodine atom and the like.
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基等が挙げられる。 Examples of alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, and tert-butoxy groups.
 アシロキシ基としては、例えば、ホルミルオキシ基、アセトキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ピバロイルオキシ基、ペンタノイルオキシ基、フェニルアセトキシ基、アセトアセトキシ基、ベンゾイルオキシ基、ナフトイルオキシ基等が挙げられる。 Examples of acyloxy groups include formyloxy, acetoxy, propanoyloxy, butanoyloxy, pivaloyloxy, pentanoyloxy, phenylacetoxy, acetoacetoxy, benzoyloxy, and naphthoyloxy groups. mentioned.
 アリルオキシ基としては、例えば、フェニルオキシ基、ナフチルオキシ基等が挙げられる。 Examples of allyloxy groups include phenyloxy groups and naphthyloxy groups.
 アルケニルオキシ基としては、例えば、ビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、2-ペテニルオキシ基、3-メチル-3-ブテニルオキシ基、2-ヘキセニルオキシ基等が挙げられる。 Examples of alkenyloxy groups include vinyloxy, allyloxy, 1-propenyloxy, isopropenyloxy, 2-butenyloxy, 3-butenyloxy, 2-petenyloxy, 3-methyl-3-butenyloxy, 2 -hexenyloxy group and the like.
 前記一般式(S-1)および/または前記一般式(S-2)で示される構造単位を有するポリシロキサンセグメントとしては、例えば以下の構造を有するもの等が挙げられる。 Examples of polysiloxane segments having structural units represented by general formula (S-1) and/or general formula (S-2) include those having the following structures.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 重合体セグメントは、本発明の効果を阻害しない範囲で、必要に応じて各種官能基を有していても良い。かかる官能基としては、例えばカルボキシル基、ブロックされたカルボキシル基、カルボン酸無水基、3級アミノ基、水酸基、ブロックされた水酸基、シクロカーボネート基、エポキシ基、カルボニル基、1級アミド基、2級アミド、カーバメート基、下記の構造式(S-5)で表される官能基等を使用することができる。 The polymer segment may have various functional groups as necessary to the extent that the effects of the present invention are not impaired. Such functional groups include, for example, carboxyl group, blocked carboxyl group, carboxylic anhydride group, tertiary amino group, hydroxyl group, blocked hydroxyl group, cyclocarbonate group, epoxy group, carbonyl group, primary amide group, secondary Amide, carbamate groups, functional groups represented by the following structural formula (S-5), and the like can be used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 また、前記重合体セグメントは、ビニル基、(メタ)アクリロイル基等の重合性二重結合を有していてもよい。 In addition, the polymer segment may have polymerizable double bonds such as vinyl groups and (meth)acryloyl groups.
 前記ポリシロキサン化合物は、例えば、下記(1)から(3)に示す方法で製造することが好ましい。 The polysiloxane compound is preferably produced, for example, by the methods shown in (1) to (3) below.
 (1)前記重合体セグメントの原料として、シラノール基および/または加水分解性シリル基を含有する重合体セグメントを予め調製しておき、この重合体セグメントと、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物とを混合し、加水分解縮合反応を行う方法。 (1) As a raw material for the polymer segment, a polymer segment containing a silanol group and/or a hydrolyzable silyl group is prepared in advance, and the polymer segment and the silanol group and/or the hydrolyzable silyl group are and a method of mixing with a silane compound having a polymerizable double bond and carrying out a hydrolytic condensation reaction.
 (2)前記重合体セグメントの原料として、シラノール基および/または加水分解性シリル基を含有する重合体セグメントを予め調製する。また、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物を加水分解縮合反応してポリシロキサンも予め調製しておく。そして、重合体セグメントとポリシロキサンとを混合し、加水分解縮合反応を行う方法。 (2) As a raw material for the polymer segment, a polymer segment containing a silanol group and/or a hydrolyzable silyl group is prepared in advance. Polysiloxane is also prepared in advance by subjecting a silane compound having both a silanol group and/or a hydrolyzable silyl group and a polymerizable double bond to a hydrolytic condensation reaction. Then, a method of mixing the polymer segment and polysiloxane and performing a hydrolytic condensation reaction.
 (3)前記重合体セグメントと、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物と、ポリシロキサンとを混合し、加水分解縮合反応を行う方法。
 上述方法によりポリシロキサン化合物が得られる。
 ポリシロキサン化合物としては、例えば、セラネート(登録商標)シリーズ(有機・無機ハイブリッド型コーティング樹脂;DIC株式会社製)やコンポセランSQシリーズ(シルセスキオキサン型ハイブリッド;荒川化学工業株式会社製)が挙げられる。
(3) A method of mixing the polymer segment, a silane compound having both a silanol group and/or a hydrolyzable silyl group and a polymerizable double bond, and polysiloxane, and performing a hydrolytic condensation reaction.
A polysiloxane compound is obtained by the method described above.
Examples of the polysiloxane compound include the Ceranate (registered trademark) series (organic/inorganic hybrid type coating resin; manufactured by DIC Corporation) and the Compoceran SQ series (silsesquioxane type hybrid; manufactured by Arakawa Chemical Industries, Ltd.). .
 前記炭素源樹脂は、ポリシロキサン化合物との混和性が良く、また、不活性雰囲気中、高温焼成により炭化され、芳香族官能基を有する合成樹脂や天然化学原料が好ましい。 The carbon source resin is preferably a synthetic resin or a natural chemical raw material that has good miscibility with the polysiloxane compound, is carbonized by high-temperature baking in an inert atmosphere, and has an aromatic functional group.
 合成樹脂としては、ポリビニルアルコール、ポリアクリル酸などの熱可塑性樹脂、フェノール樹脂、フラン樹脂などの熱硬化性樹脂が挙げられる。天然化学原料としては、重質油、特にはタールピッチ類としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられるが、安価入手や不純物排除の観点からフェノール樹脂の使用がより好ましい。 Synthetic resins include thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, and thermosetting resins such as phenol resin and furan resin. Natural chemical raw materials include heavy oils, especially tar pitches such as coal tar, light tar oil, medium tar oil, heavy tar oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, and oxygen-crosslinked petroleum pitch. , heavy oil, etc., but the use of phenolic resin is more preferable from the viewpoint of inexpensive availability and removal of impurities.
 特に、炭素源樹脂が芳香族炭化水素部位を含む樹脂であることが好ましく、芳香族炭化水素部位を含む樹脂がフェノール樹脂、エポキシ樹脂、または熱硬化性樹脂が好ましく、フェノール樹脂はレゾール型が好ましい。
 フェノール樹脂としては、例えばスミライトレジンシリーズ(レゾール型フェノール樹脂,住友ベークライト株式会社製)が挙げられる。
In particular, the carbon source resin is preferably a resin containing an aromatic hydrocarbon moiety, the resin containing an aromatic hydrocarbon moiety is preferably a phenol resin, an epoxy resin, or a thermosetting resin, and the phenol resin is preferably a resol type. .
Examples of phenolic resins include the Sumilite Resin series (resol-type phenolic resin, manufactured by Sumitomo Bakelite Co., Ltd.).
 本酸化ケイ素粒子のスラリーをポリシロキサン化合物と炭素源樹脂との混合物と混合し、脱溶媒して前駆体が得られる。
 ポリシロキサン化合物と炭素源樹脂を含む混合物は、ポリシロキサン化合物と炭素源樹脂とが均一に混合した状態であることが好ましい。前記混合は分散および混合の機能を有する装置を用いて行われる。分散および混合の機能を有する装置としては、例えば、攪拌機、超音波ミキサー、プリミックス分散機などが挙げられる。有機溶媒を溜去することを目的とする脱溶剤と乾燥の作業では、乾燥機、減圧乾燥機、噴霧乾燥機などを用いることができる。
A slurry of the present silicon oxide particles is mixed with a mixture of a polysiloxane compound and a carbon source resin, and the solvent is removed to obtain a precursor.
The mixture containing the polysiloxane compound and the carbon source resin is preferably in a state in which the polysiloxane compound and the carbon source resin are uniformly mixed. Said mixing is carried out using a device having the function of dispersing and mixing. Apparatuses having dispersing and mixing functions include, for example, stirrers, ultrasonic mixers, premix dispersers, and the like. A dryer, a reduced-pressure dryer, a spray dryer, or the like can be used for solvent removal and drying for the purpose of distilling off the organic solvent.
 前駆体は本酸化ケイ素粒子を3質量%から50質量%、ポリシロキサン化合物の固形分を15質量%から85質量%、炭素源樹脂の固形分を3質量%から70質量%含有するのが好ましく、本酸化ケイ素粒子の固形分含有量を8質量%から40質量%、ポリシロキサン化合物の固形分を20から70質量%、炭素源樹脂の固形分を3質量%から60質量%含有するのがより好ましい。 The precursor preferably contains 3% to 50% by mass of the present silicon oxide particles, 15% to 85% by mass of the solid content of the polysiloxane compound, and 3% to 70% by mass of the solid content of the carbon source resin. , the solid content of the silicon oxide particles is 8% to 40% by mass, the solid content of the polysiloxane compound is 20% to 70% by mass, and the solid content of the carbon source resin is 3% to 60% by mass. more preferred.
 前記で得られた前駆体を不活性ガス雰囲気中、焼成して熱分解可能な有機成分を完全分解させて焼成物が得られる。焼成温度は、例えば、最高到達温度が900℃から1200℃の範囲の温度で焼成することで、熱分解可能な有機成分を完全分解することができる。またポリシロキサン化合物および炭素源樹脂が高温処理のエネルギーによってケイ素-酸素-炭素骨格とフリー炭素を有するシリコンオキシカーバイド相に転化される。 The precursor obtained above is fired in an inert gas atmosphere to completely decompose the thermally decomposable organic component to obtain a fired product. As for the firing temperature, for example, by firing at a temperature in which the maximum reaching temperature is in the range of 900° C. to 1200° C., the thermally decomposable organic component can be completely decomposed. Also, the polysiloxane compound and the carbon source resin are converted into a silicon oxycarbide phase having a silicon-oxygen-carbon skeleton and free carbon by the energy of the high temperature treatment.
 焼成は昇温速度、一定温度での保持時間等により規定される焼成のプログラムに沿って行われる。なお最高到達温度は、設定する最高温度であり、焼成物の構造や性能に強く影響を与えるものである。最高到達温度により、シリコンオキシカーバイド相のケイ素と炭素の化学結合状態を保有する本活物質の微細構造が精密に制御でき、より優れた充放電特性が得られる。 Firing is carried out according to a firing program that is defined by the rate of temperature increase, the holding time at a certain temperature, etc. The maximum attainable temperature is the maximum temperature to be set, and strongly affects the structure and performance of the fired product. Depending on the maximum temperature reached, the fine structure of the present active material, which possesses the chemical bonding state of silicon and carbon in the silicon oxycarbide phase, can be precisely controlled, and better charge-discharge characteristics can be obtained.
 焼成方法は、特に限定されないが、不活性雰囲気中にて加熱機能を有する反応装置を用いればよく、連続法、回分法での処理が可能である。焼成用装置については、流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。 The calcination method is not particularly limited, but a reaction apparatus having a heating function may be used in an inert atmosphere, and continuous and batch processes are possible. A fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln, or the like can be appropriately selected as the firing apparatus according to the purpose.
 得られた焼成物を粉砕し、必要に応じて分級することでシリコンオキシカーバイド相と、前記シリコンオキシカーバイド相中に少なくとも2個以上の本酸化ケイ素粒子を有する複合粒子である本活物質が得られる。粉砕は目的とする粒径まで一段で行っても良いし、数段に分けて行っても良い。例えば10mm以上の塊または凝集粒子の焼成物を、10μm程度の活物質を作製する場合はジョークラッシャー、ロールクラッシャー等で粗粉砕を行い1mm程度の粒子にした後、グローミル、ボールミル等で100μm程度とし、ビーズミル、ジェットミル等で10μm程度まで粉砕する。粉砕で作製した粒子には粗大粒子が含まれる場合がありそれを取り除くため、また、微粉を取り除いて粒度分布を調整する場合は分級を行う。使用する分級機は風力分級機、湿式分級機等目的に応じて使い分けるが、粗大粒子を取り除く場合、篩を通す分級方式が確実に目的を達成できるために好ましい。なお、焼成前に前駆体混合物を噴霧乾燥等により目標粒子径付近の形状に制御し、その形状で焼成を行った場合は、粉砕工程を省くことも可能である。 The obtained fired product is pulverized and, if necessary, classified to obtain the present active material, which is a composite particle having a silicon oxycarbide phase and at least two or more of the present silicon oxide particles in the silicon oxycarbide phase. be done. The pulverization may be carried out in one step until the target particle size is obtained, or may be carried out in several steps. For example, when producing an active material of about 10 μm from a sintered mass or agglomerated particles of 10 mm or more, it is roughly pulverized with a jaw crusher, a roll crusher, etc. to particles of about 1 mm, and then pulverized to about 100 μm with a glow mill, ball mill, etc. , a bead mill, a jet mill, or the like to a size of about 10 μm. Particles produced by pulverization may contain coarse particles, and in order to remove them, or to adjust the particle size distribution by removing fine powder, classification is performed. The classifier to be used may be a wind classifier, a wet classifier, or the like depending on the purpose, but when removing coarse particles, the classification method through a sieve is preferable because the purpose can be reliably achieved. The pulverization step can be omitted when the precursor mixture is controlled to have a shape near the target particle size by spray drying or the like before firing, and firing is performed in that shape.
 本活物質がLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属のシリケート化合物を有する場合、本酸化ケイ素粒子のスラリーをポリシロキサン化合物と炭素源樹脂との混合物と混合して得られた懸濁液に、Li、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属の塩を添加し、その後は前記と同じ操作で、前記シリケート化合物を有する本活物質が得られる。
 Li、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属の塩としては、これら金属のフッ化物、塩化物、臭化物等のハロゲン化物、水酸化物、炭酸塩等が挙げられる。
When the present active material has at least one metal silicate compound selected from the group consisting of Li, K, Na, Ca, Mg and Al, a slurry of the present silicon oxide particles is mixed with a mixture of a polysiloxane compound and a carbon source resin. To the suspension obtained by mixing with Li, K, Na, Ca, Mg and Al, at least one metal salt selected from the group consisting of is added, and then the same operation as described above is performed to obtain the silicate. A present active material having a compound is obtained.
Salts of at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al include halides such as fluorides, chlorides and bromides of these metals, hydroxides and carbonates. mentioned.
 前記金属の塩は2種以上の金属の塩でもよく、一つの塩が複数種の金属を有していてもよいし、異なる金属を有する塩の混合物であってもよい。
 前記金属の塩を懸濁液に添加する際の金属の塩の添加量は、酸化ケイ素粒子のモル数に対してモル比で0.01から0.4までが好ましい。
 前記金属の塩が有機溶媒に可溶の場合、前記金属の塩を有機溶媒に溶かして懸濁液に加えて混合すればよい。前記金属の塩が有機溶媒に不溶の場合、金属の塩の粒子を有機溶媒に分散してから前記懸濁液に加え、混合すればよい。前記金属の塩は、分散効果向上の観点から平均粒径が100nm以下のナノ粒子が好ましい。前記有機溶媒は、アルコール類、ケトン類などを好適に用いることができるが、トルエン、キシレン、ナフタレン、メチルナフタレンなどの芳香族炭化水素系溶剤も用いることができる。
The metal salt may be a salt of two or more metals, one salt may contain a plurality of metals, or a mixture of salts containing different metals.
When the metal salt is added to the suspension, the amount of the metal salt to be added is preferably 0.01 to 0.4 in molar ratio with respect to the number of moles of the silicon oxide particles.
When the metal salt is soluble in an organic solvent, the metal salt may be dissolved in the organic solvent, added to the suspension, and mixed. When the metal salt is insoluble in the organic solvent, the metal salt particles may be dispersed in the organic solvent and then added to the suspension and mixed. The metal salt is preferably nanoparticles having an average particle size of 100 nm or less from the viewpoint of improving the dispersion effect. Alcohols, ketones and the like can be suitably used as the organic solvent, but aromatic hydrocarbon solvents such as toluene, xylene, naphthalene and methylnaphthalene can also be used.
 前記懸濁液に前記金属の塩を均一に分散させることで金属の塩の分子と本酸化ケイ素粒子を十分に接触させることができる。本酸化ケイ素粒子の表面や周辺に酸化ケイ素が存在する場合、前記金属の塩の分子と本酸化ケイ素粒子が固相反応する条件で、金属の塩の分子と本酸化ケイ素粒子を十分に接触させることで本酸化ケイ素粒子中に本シリケート化合物を存在させることができる。本酸化ケイ素粒子における本シリケート化合物の濃度を、シリコンオキシカーバイド中の濃度より高くするためには、前記金属の塩と本酸化ケイ素粒子の接触状態を向上させるのが重要である。
 また、有機添加物を用いて前記金属の塩の分子を表面修飾することで、本酸化ケイ素粒子表面付近に付着することができる。有機添加物の分子構造は、特に制限はないが、本酸化ケイ素粒子の表面上に存在している分散剤との物理的または化学的結合ができるような分子構造が好ましい。前記の物理的または化学的結合は、静電作用、水素結合、分子間ファンデルワールス力、イオン結合、共有結合などが挙げられる。高温焼成の時、前記金属の塩の分子が本酸化ケイ素粒子と固相反応することにより、本酸化ケイ素粒子中に本シリケート化合物を形成させることができる。
By uniformly dispersing the metal salt in the suspension, the metal salt molecules can be brought into sufficient contact with the silicon oxide particles. When silicon oxide exists on the surface or in the periphery of the silicon oxide particles, the metal salt molecules and the silicon oxide particles are sufficiently brought into contact with each other under conditions for a solid-phase reaction between the metal salt molecules and the silicon oxide particles. Thus, the present silicate compound can be present in the present silicon oxide particles. In order to make the concentration of the silicate compound in the silicon oxide particles higher than that in silicon oxycarbide, it is important to improve the contact state between the metal salt and the silicon oxide particles.
In addition, by surface-modifying the metal salt molecules with an organic additive, they can adhere to the surface of the present silicon oxide particles. The molecular structure of the organic additive is not particularly limited, but a molecular structure that allows physical or chemical bonding with the dispersant present on the surface of the silicon oxide particles is preferred. The physical or chemical bond includes electrostatic action, hydrogen bond, intermolecular Van der Waals force, ionic bond, covalent bond and the like. During high-temperature firing, the silicate compound can be formed in the silicon oxide particles by solid-phase reaction of the metal salt molecules with the silicon oxide particles.
 本活物質が、前記複合粒子の表面に前記炭素の被膜を有している場合、前記方法に続けて、化学気相蒸着装置内で、熱分解性炭素源ガスとキャリア不活性ガスフローの中、700℃から1000℃の温度範囲にて炭素被膜で被覆する。
 熱分解性炭素源ガスはアセチレン、エチレン、アセトン、アルコール、プロパン、メタン、エタンなどが挙げられる。
 不活性ガスとしては、窒素、ヘリウム、アルゴン等が挙げられ、通常、窒素が用いられる。
When the present active material has the carbon coating on the surface of the composite particles, following the method, in a chemical vapor deposition apparatus, in a pyrolytic carbon source gas and a carrier inert gas flow , with a carbon coating in the temperature range from 700°C to 1000°C.
Thermally decomposable carbon source gases include acetylene, ethylene, acetone, alcohol, propane, methane, ethane, and the like.
Examples of the inert gas include nitrogen, helium, argon, etc. Nitrogen is usually used.
 本活物質は、サイクル性、初期のクーロン効率および容量維持率に優れており、本活物質を含む負極として用いた二次電池は良好な特性を発揮する。
 具体的には、本活物質と有機結着剤と、必要に応じてその他の導電助剤などの成分を含んで構成されるスラリーを集電体銅箔上へ薄膜状に塗付して負極とすることができる。また、前記のスラリーに黒鉛など炭素材料を加えて負極を作製することもできる。
 炭素材料としては、天然黒鉛、人工黒鉛、ハードカーボンまたはソフトカーボンのような非晶質炭素などが挙げられる。
The present active material is excellent in cyclability, initial coulombic efficiency and capacity retention rate, and a secondary battery using the present active material as a negative electrode exhibits good characteristics.
Specifically, a slurry containing the present active material, an organic binder, and, if necessary, other components such as a conductive aid is applied in the form of a thin film onto a current collector copper foil to form a negative electrode. can be A negative electrode can also be produced by adding a carbon material such as graphite to the slurry.
Carbon materials include natural graphite, artificial graphite, amorphous carbon such as hard carbon or soft carbon, and the like.
 例えば、本活物質と、有機結着材であるバインダーとを、溶媒とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダ等の分散装置により混練して、負極材スラリーを調製し、これを集電体に塗布して負極層を形成することで得ることができる。また、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することでも得ることができる。 For example, the present active material and a binder that is an organic binder are kneaded together with a solvent using a dispersing device such as a stirrer, ball mill, super sand mill, or pressure kneader to prepare a negative electrode material slurry, which is used as a current collector. It can be obtained by applying it to the body to form a negative electrode layer. It can also be obtained by forming a paste-like negative electrode material slurry into a sheet-like or pellet-like shape and integrating this with a current collector.
 前記有機結着剤としては、例えば、スチレン-ブタジエンゴム共重合体(以下、「SBR」とも記す。);メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、およびヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、および、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸からなる(メタ)アクリル共重合体等の不飽和カルボン酸共重合体;ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド、カルボキシメチルセルロース(以下、「CMC」とも記す。)などの高分子化合物が挙げられる。 Examples of the organic binder include styrene-butadiene rubber copolymer (hereinafter also referred to as "SBR"); methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile , and ethylenically unsaturated carboxylic acid esters such as hydroxyethyl (meth)acrylate, and ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid (meth)acrylic copolymerization Unsaturated carboxylic acid copolymers such as coalescence; A high molecular compound is mentioned.
 これらの有機結着剤は、それぞれの物性によって、水に分散、あるいは溶解したもの、また、N-メチル-2-ピロリドン(NMP)などの有機溶剤に溶解したものがある。リチウムイオン二次電池負極の負極層中の有機結着剤の含有比率は、1質量%から30質量%であることが好ましく、2質量%から20質量%であることがより好ましく、3質量%から15質量%であることがさらに好ましい。 Depending on their physical properties, these organic binders can be dispersed or dissolved in water, or dissolved in an organic solvent such as N-methyl-2-pyrrolidone (NMP). The content ratio of the organic binder in the negative electrode layer of the lithium ion secondary battery negative electrode is preferably 1% by mass to 30% by mass, more preferably 2% by mass to 20% by mass, and 3% by mass. to 15% by mass is more preferable.
 有機結着剤の含有比率が1質量%以上であることで密着性がより良好で、充放電時の膨張および収縮によって負極構造の破壊がより抑制される。一方、30質量%以下であることで、電極抵抗の上昇がより抑えられる。
 かかる範囲において、本活物質は、化学安定性が高く、水性バインダーも採用することができる点で、実用化面においても取り扱い容易である。
When the content ratio of the organic binder is 1% by mass or more, the adhesion is better, and the destruction of the negative electrode structure due to expansion and contraction during charging and discharging is further suppressed. On the other hand, when the content is 30% by mass or less, an increase in electrode resistance can be further suppressed.
Within this range, the present active material has high chemical stability and is easy to handle in terms of practical use in that an aqueous binder can also be used.
 また、前記負極材スラリーには、必要に応じて、導電助材を混合してもよい。導電助材としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電助剤の使用量は、本発明の負極活物質に対して1質量%から15質量%程度とすればよい。 In addition, the negative electrode material slurry may be mixed with a conductive aid, if necessary. Examples of conductive aids include carbon black, graphite, acetylene black, oxides and nitrides exhibiting conductivity, and the like. The amount of the conductive aid used may be about 1% by mass to 15% by mass with respect to the negative electrode active material of the present invention.
 また前記集電体の材質および形状については、例えば、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用できる。 Regarding the material and shape of the current collector, for example, copper, nickel, titanium, stainless steel, etc. may be used in the form of a foil, a perforated foil, a mesh, or the like in a strip shape. Porous materials such as porous metal (foamed metal) and carbon paper can also be used.
 前記負極材スラリーを集電体に塗布する方法としては、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法などが挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うことが好ましい。 Examples of the method for applying the negative electrode material slurry to the current collector include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen printing method. etc. After coating, it is preferable to carry out a rolling treatment using a flat plate press, calendar rolls, or the like, if necessary.
 また、前記負極材スラリーをシート状またはペレット状等として、これと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等により行うことができる。 In addition, the negative electrode material slurry can be made into a sheet or pellet form, and integrated with the current collector by, for example, rolling, pressing, or a combination thereof.
 前記集電体上に形成された負極層または集電体と一体化した負極層は、用いた有機結着剤に応じて熱処理することが好ましい。例えば、水系のスチレン-ブタジエンゴム共重合体(SBR)などを用いた場合には100から130℃で熱処理すればよく、ポリイミド、ポリアミドイミドを主骨格とした有機結着剤を用いた場合には150から450℃で熱処理することが好ましい。 The negative electrode layer formed on the current collector or the negative electrode layer integrated with the current collector is preferably heat-treated according to the organic binder used. For example, when a water-based styrene-butadiene rubber copolymer (SBR) or the like is used, heat treatment at 100 to 130° C. is sufficient, and when an organic binder having a main skeleton of polyimide or polyamideimide is used, Heat treatment at 150 to 450° C. is preferred.
 この熱処理により溶媒の除去、バインダーの硬化による高強度化が進み、粒子間および粒子と集電体間の密着性が向上できる。なお、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気、真空雰囲気で行うことが好ましい。 This heat treatment removes the solvent and hardens the binder to increase the strength, improving the adhesion between particles and between the particles and the current collector. These heat treatments are preferably performed in an inert atmosphere such as helium, argon, or nitrogen, or in a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
 また、熱処理した後に、負極は加圧処理しておくことが好ましい。本活物質を用いた負極では、電極密度が1g/cmから1.8g/cmであることが好ましく、1.1g/cmから1.7g/cmであることがより好ましく、1.2g/cmから1.6g/cmであることがさらに好ましい。電極密度については、高いほど密着性および電極の体積容量密度が向上する傾向がある。一方、電極密度が高すぎると、電極中の空隙が減少することでケイ素など体積膨張の抑制効果が弱くなり、容量維持率が低下することがある。そのため電極密度の最適な範囲が選択される。 Moreover, it is preferable that the negative electrode is subjected to a pressure treatment after the heat treatment. The negative electrode using the present active material preferably has an electrode density of 1 g/cm 3 to 1.8 g/cm 3 , more preferably 1.1 g/cm 3 to 1.7 g/cm 3 . More preferably from 0.2 g/cm 3 to 1.6 g/cm 3 . Regarding the electrode density, there is a tendency that the higher the electrode density, the higher the adhesion and the volume capacity density of the electrode. On the other hand, if the electrode density is too high, the voids in the electrode are reduced, which weakens the effect of suppressing the volume expansion of silicon or the like, and the capacity retention rate may decrease. Therefore, an optimum range of electrode densities is selected.
 本発明の二次電池は前記本活物質を負極に含む。本活物質を含む負極を有する二次電池としては、非水電解質二次電池と固体型電解質二次電池が好ましく、特に非水電解質二次電池の負極として用いた際に優れた性能を発揮するものである。 The secondary battery of the present invention contains the present active material in the negative electrode. As a secondary battery having a negative electrode containing the present active material, a non-aqueous electrolyte secondary battery and a solid electrolyte secondary battery are preferable, and excellent performance is exhibited particularly when used as a negative electrode of a non-aqueous electrolyte secondary battery. It is.
 前記本発明の二次電池は、例えば、湿式電解質二次電池に用いる場合、正極と、本発明の負極活物質を含む負極とを、セパレータを介して対向して配置し、電解液を注入することにより構成することができる。 When the secondary battery of the present invention is used for a wet electrolyte secondary battery, for example, a positive electrode and a negative electrode containing the negative electrode active material of the present invention are placed facing each other with a separator interposed therebetween, and an electrolytic solution is injected. It can be configured by
 正極は、負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。 The positive electrode can be obtained by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode. In this case, the current collector may be a strip-shaped one made of a metal or alloy such as aluminum, titanium, or stainless steel in the form of foil, foil with holes, mesh, or the like.
 正極層に用いる正極材料としては、特に制限されない。非水電解質二次電池の中でも、リチウムイオン二次電池を作製する場合には、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用いればよい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、およびこれらの複合酸化物(LiCoxNiyMnzO、x+y+z=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(ただし、MはCo、Ni、MnまたはFe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。 The positive electrode material used for the positive electrode layer is not particularly limited. Among non-aqueous electrolyte secondary batteries, when producing a lithium ion secondary battery, for example, a metal compound, a metal oxide, a metal sulfide, or a conductive polymer material capable of doping or intercalating lithium ions should be used. For example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), composite oxides thereof (LiCoxNiyMnzO 2 , x+y+z=1), lithium manganese spinel (LiMn 2 O 4 ) , lithium vanadium compounds , V2O5 , V6O13 , VO2 , MnO2 , TiO2 , MoV2O8 , TiS2 , V2S5 , VS2 , MoS2 , MoS3 , Cr3O8 , Cr 2 O 5 , olivine-type LiMPO 4 (where M is Co, Ni, Mn or Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene and polyacene, porous carbon, etc. can be used.
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものを使用することができる。なお、作製する非水電解質二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。 As the separator, for example, a non-woven fabric, cloth, microporous film, or a combination of them can be used, the main component of which is polyolefin such as polyethylene or polypropylene. In addition, when the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery to be manufactured are structured such that they do not come into direct contact with each other, there is no need to use a separator.
 電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。 Examples of electrolytes include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 and LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane. , 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl Non-aqueous solvents such as propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate and ethyl acetate, or a mixture of two or more components. A dissolved, so-called organic electrolyte can be used.
 本発明の二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。なお、本発明の実施例で用いるハーフセルは、負極に本活物質を主体とする構成とし、対極に金属リチウムを用いた簡易評価を行っているが、これはより活物質自体のサイクル特性を明確に比較するためである。 The structure of the secondary battery of the present invention is not particularly limited, but usually, a positive electrode, a negative electrode, and an optional separator are wound into a flat spiral to form a wound electrode plate group. It is common to have a structure in which flat plates are laminated to form a laminated electrode plate group, and these electrode plate groups are enclosed in an outer package. In the half-cell used in the examples of the present invention, the active material is mainly used for the negative electrode, and a simple evaluation is performed using metallic lithium for the counter electrode. for comparison.
 本活物質を用いた二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。上述した本発明の負極活物質は、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタ、固体リチウム二次電池などにも適用することが可能である。 Secondary batteries using this active material are not particularly limited, but are used as paper-type batteries, button-type batteries, coin-type batteries, laminate-type batteries, cylindrical batteries, prismatic batteries, and the like. The negative electrode active material of the present invention described above can also be applied to general electrochemical devices having a charging/discharging mechanism of intercalating and deintercalating lithium ions, such as hybrid capacitors and solid lithium secondary batteries.
 前記のとおり、本活物質を二次電池の負極活物質とした時、サイクル性、初期のクーロン効率および容量維持率に優れた二次電池を与える。
 本活物質は前記方法により負極として用い、前記負極を有する二次電池とすることができる。
As described above, when this active material is used as a negative electrode active material for a secondary battery, it provides a secondary battery that is excellent in cyclability, initial coulombic efficiency, and capacity retention rate.
The present active material can be used as a negative electrode by the method described above to form a secondary battery having the negative electrode.
 以上、本活物質、本活物質を負極に含む二次電池に関して説明したが、本発明は前記の実施形態の構成に限定されない。
 本活物質および本活物質を負極に含む二次電池は前記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてもよい。
Although the present active material and the secondary battery including the present active material in the negative electrode have been described above, the present invention is not limited to the configurations of the above embodiments.
In the configuration of the present embodiment and the secondary battery containing the present active material in the negative electrode, any other configuration may be added, or any configuration that exhibits the same function may be substituted. good.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 なお、本発明の実施例で用いるハーフセルは、負極に本発明のケイ素含有活物質を主体とする構成とし、対極に金属リチウムを用いた簡易評価を行っているが、これはより活物質自体のサイクル特性を明確に比較するためである。
EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these.
In the half-cell used in the examples of the present invention, the negative electrode is composed mainly of the silicon-containing active material of the present invention, and the counter electrode is metallic lithium. This is to clearly compare the cycle characteristics.
合成例1:ポリシロキサン化合物の作製
(メチルトリメトキシシランの縮合物(a1)の合成)
 攪拌機、温度計、滴下ロート、冷却管および窒素ガス導入口を備えた反応容器に、1、421質量部のメチルトリメトキシシラン(以下、「MTMS」と略記する。)を仕込んで、60℃まで昇温した。次いで、前記反応容器中に0.17質量部のiso-プロピルアシッドホスフェート(SC有機化学株式会社製「Phoslex A-3」)と207質量部の脱イオン水との混合物を5分間で滴下した後、80℃の温度で4時間撹拌してMTMSの加水分解縮合反応をさせた。
 前記の加水分解縮合反応によって得られた縮合物を、温度40から60℃および40から1.3kPaの減圧下で蒸留した。なお、「40から1.3kPaの減圧下」とは、メタノールの留去開始時の減圧条件が40kPaであり、最終的に1.3kPaとなるまで減圧することを意味する。以下の記載においても同様である。前記反応過程で生成したメタノールおよび水を除去することによって、数平均分子量が1、000から5、000のMTMSの縮合物(以下、「a1」とも記す。)を含有する液を1、000質量部得た。得られた液の有効成分は70質量%であった。
 なお、前記有効成分とは、MTMS等のシランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)を、縮合反応後の実収量(質量部)で除した値、〔シランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)/縮合反応後の実収量(質量部)〕、により算出したものである。
Synthesis Example 1: Preparation of Polysiloxane Compound (Synthesis of Condensate (a1) of Methyltrimethoxysilane)
1,421 parts by mass of methyltrimethoxysilane (hereinafter abbreviated as "MTMS") was charged into a reaction vessel equipped with a stirrer, thermometer, dropping funnel, cooling tube and nitrogen gas inlet, and heated to 60°C. heated up. Then, a mixture of 0.17 parts by mass of iso-propyl acid phosphate ("Phoslex A-3" manufactured by SC Organic Chemical Co., Ltd.) and 207 parts by mass of deionized water was dropped into the reaction vessel over 5 minutes. , and stirred at a temperature of 80° C. for 4 hours to cause a hydrolytic condensation reaction of MTMS.
The condensate obtained by the above hydrolytic condensation reaction was distilled at a temperature of 40 to 60° C. and under reduced pressure of 40 to 1.3 kPa. Note that "under a reduced pressure of 40 to 1.3 kPa" means that the reduced pressure condition is 40 kPa at the start of distillation of methanol, and the pressure is finally reduced to 1.3 kPa. The same applies to the following description. By removing the methanol and water produced in the reaction process, 1,000 mass of a liquid containing a condensate of MTMS having a number average molecular weight of 1,000 to 5,000 (hereinafter also referred to as "a1") I got it. The active ingredient content of the obtained liquid was 70% by mass.
The effective ingredient is the value obtained by dividing the theoretical yield (parts by mass) when all the methoxy groups of the silane monomer such as MTMS are condensed by the actual yield (parts by mass) after the condensation reaction. Theoretical yield when all methoxy groups are condensed (parts by mass)/Actual yield after condensation reaction (parts by mass)].
硬化性樹脂組成物(1)の製造
 撹拌機、温度計、滴下ロート、冷却管および窒素ガス導入口を備えた反応容器に、150質量部のブタノール(以下、「BuOH」とも記す。)、105質量部のフェニルトリメトキシシラン(以下、「PTMS」とも記す。)、277質量部のジメチルジメトキシシラン(以下、「DMDMS」とも記す。)を仕込んで80℃まで昇温した。
 次いで、同温度で21質量部のメチルメタアクリレート(以下、「MMA」とも記す。)、4質量部のブチルメタアクリレート(以下、「BMA」とも記す。)、3質量部の酪酸(以下、「BA」とも記す。)、2質量部のメタクリロイルオキシプロピルトリメトキシシラン(以下、「MPTS」とも記す。)、3質量部のBuOHおよび0.6質量部のブチルペルオキシ-2-エチルヘキサノエート(以下、「TBPEH」とも記す。)を含有する混合物を、前記反応容器中へ6時間で滴下した。滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10、000のビニル重合体(a2-1)の有機溶剤溶液を得た。
Production of curable resin composition (1) 150 parts by mass of butanol (hereinafter also referred to as "BuOH") and 105 are added to a reaction vessel equipped with a stirrer, thermometer, dropping funnel, cooling tube and nitrogen gas inlet. Parts by mass of phenyltrimethoxysilane (hereinafter also referred to as "PTMS") and 277 parts by mass of dimethyldimethoxysilane (hereinafter also referred to as "DMDMS") were charged, and the temperature was raised to 80°C.
Then, at the same temperature, 21 parts by mass of methyl methacrylate (hereinafter also referred to as "MMA"), 4 parts by mass of butyl methacrylate (hereinafter also referred to as "BMA"), 3 parts by mass of butyric acid (hereinafter referred to as " BA”), 2 parts by mass of methacryloyloxypropyltrimethoxysilane (hereinafter also referred to as “MPTS”), 3 parts by mass of BuOH and 0.6 parts by mass of butylperoxy-2-ethylhexanoate ( hereinafter also referred to as “TBPEH”) was added dropwise into the reaction vessel over 6 hours. After completion of the dropwise addition, reaction was continued at the same temperature for 20 hours to obtain an organic solvent solution of a vinyl polymer (a2-1) having a hydrolyzable silyl group and a number average molecular weight of 10,000.
 次いで、0.04質量部のiso-プロピルアシッドホスフェート(SC有機化学株式会社製「Phoslex A-3」)と112質量部の脱イオン水との混合物を、5分間で滴下し、更に同温度で10時間撹拌して加水分解縮合反応させることで、ビニル重合体(a2-1)が有する加水分解性シリル基と、前記PTMSおよびDMDMS由来のポリシロキサンを有する加水分解性シリル基およびシラノール基とが結合した複合樹脂を含有する液を得た。
 次いで、この液に472質量部の合成例1で得られたMTMSの縮合物(a1)、80質量部の脱イオン水を添加し、同温度で10時間撹拌して加水分解縮合反応させ、合成例1と同様の条件で蒸留することによって生成したメタノールおよび水を除去した。次いで、250質量部のBuOHを添加し、不揮発分が60.1質量%の硬化性樹脂組成物(1)を1、000質量部得た。
Next, a mixture of 0.04 parts by mass of iso-propyl acid phosphate (“Phoslex A-3” manufactured by SC Organic Chemical Co., Ltd.) and 112 parts by mass of deionized water was added dropwise over 5 minutes, and further at the same temperature. A hydrolytic condensation reaction is carried out with stirring for 10 hours, so that the hydrolyzable silyl group of the vinyl polymer (a2-1) and the hydrolyzable silyl group and silanol group of the PTMS- and DMDMS-derived polysiloxane are formed. A liquid containing bound composite resin was obtained.
Next, 472 parts by mass of the condensate (a1) of MTMS obtained in Synthesis Example 1 and 80 parts by mass of deionized water are added to this liquid, and the mixture is stirred at the same temperature for 10 hours for a hydrolytic condensation reaction to synthesize. The methanol and water produced were removed by distillation under the same conditions as in Example 1. Then, 250 parts by mass of BuOH was added to obtain 1,000 parts by mass of curable resin composition (1) having a non-volatile content of 60.1% by mass.
硬化性樹脂組成物(2)の製造
 撹拌機、温度計、滴下ロート、冷却管および窒素ガス導入口を備えた反応容器に、150質量部のBuOH、249質量部のPTMS、263質量部のDMDMSを仕込んで80℃まで昇温した。
 次いで、同温度で18質量部のMMA、14質量部のBMA、7質量部のBA、1質量部のアクリル酸(以下、「AA」とも記す。)、2質量部のMPTS、6質量部のBuOHおよび0.9質量部のTBPEHを含有する混合物を、前記反応容器中へ5時間で滴下した。滴下終了後、更に同温度で10時間反応させて加水分解性シリル基を有する数平均分子量が20、100のビニル重合体(a2-2)の有機溶剤溶液を得た。
Production of curable resin composition (2) 150 parts by mass of BuOH, 249 parts by mass of PTMS and 263 parts by mass of DMDMS were added to a reaction vessel equipped with a stirrer, thermometer, dropping funnel, condenser and nitrogen gas inlet. was charged and the temperature was raised to 80°C.
Then, at the same temperature, 18 parts by mass of MMA, 14 parts by mass of BMA, 7 parts by mass of BA, 1 part by mass of acrylic acid (hereinafter also referred to as "AA"), 2 parts by mass of MPTS, and 6 parts by mass of A mixture containing BuOH and 0.9 parts by weight of TBPEH was added dropwise into the reaction vessel over 5 hours. After completion of the dropwise addition, reaction was continued at the same temperature for 10 hours to obtain an organic solvent solution of a vinyl polymer (a2-2) having a hydrolyzable silyl group and a number average molecular weight of 20 and 100.
 次いで、0.05質量部のiso-プロピルアシッドホスフェート(SC有機化学株式会社製「Phoslex A-3」)と147質量部の脱イオン水との混合物を、5分間で滴下し、更に同温度で10時間撹拌して加水分解縮合反応させることで、ビニル重合体(a2-2)が有する加水分解性シリル基と、前記PTMSおよびDMDMS由来のポリシロキサンが有する加水分解性シリル基およびシラノール基とが結合した複合樹脂を含有する液を得た。
 次いで、この液に76質量部の3-グリシドキシプロピルトリメトキシシラン、231質量部の合成例1で得られたMTMSの縮合物(a1)、56質量部の脱イオン水を添加し、同温度で15時間撹拌して加水分解縮合反応させ、合成例1と同様の条件で蒸留することによって生成したメタノールおよび水を除去した。次いで、250質量部のBuOHを添加し、不揮発分が60.0質量%の硬化性樹脂組成物(2)を1、000質量部得た。
Next, a mixture of 0.05 parts by mass of iso-propyl acid phosphate (“Phoslex A-3” manufactured by SC Organic Chemical Co., Ltd.) and 147 parts by mass of deionized water was added dropwise over 5 minutes, and further at the same temperature. A hydrolytic condensation reaction was carried out with stirring for 10 hours, so that the hydrolyzable silyl groups of the vinyl polymer (a2-2) and the hydrolyzable silyl groups and silanol groups of the PTMS- and DMDMS-derived polysiloxanes were formed. A liquid containing bound composite resin was obtained.
Next, 76 parts by mass of 3-glycidoxypropyltrimethoxysilane, 231 parts by mass of the condensate (a1) of MTMS obtained in Synthesis Example 1, and 56 parts by mass of deionized water were added to the liquid. The mixture was stirred at temperature for 15 hours to cause a hydrolytic condensation reaction, and distilled under the same conditions as in Synthesis Example 1 to remove the produced methanol and water. Then, 250 parts by mass of BuOH was added to obtain 1,000 parts by mass of curable resin composition (2) having a non-volatile content of 60.0% by mass.
合成例2:酸化ケイ素粒子の粉砕条件
 150mlの小型ビーズミル装置の容器中に60%の充填率となるよう、粉砕メディアとして粒径が0.2mmのジルコニアビーズ、および100mlのメチルエチルケトン溶媒を入れた。その後、100質量部の平均粒径が5μmの酸化ケイ素粉体(市販品)と20質量部のカチオン性分散剤液(ビックケミー・ジャパン株式会社:BYK145)を入れ、表1に記載の粉砕条件でビーズミル湿式粉砕を行い、固形物濃度が30質量%の濃い褐色液体状の酸化ケイ素、SiO-1からSiO-3、のスラリーを得た。レーザー光散乱測定にて各酸化ケイ素の平均粒径を測定した結果、表1のとおりであった。
Synthesis Example 2: Grinding Conditions for Silicon Oxide Particles Zirconia beads with a particle size of 0.2 mm as grinding media and 100 ml of methyl ethyl ketone solvent were placed in a container of a 150 ml small bead mill so that the filling rate was 60%. After that, 100 parts by mass of silicon oxide powder (commercial product) having an average particle diameter of 5 μm and 20 parts by mass of a cationic dispersant liquid (BYK145, BYK-Chemie Japan Co., Ltd.) were added, and the grinding conditions described in Table 1 were applied. Wet pulverization by a bead mill was performed to obtain a slurry of dark brown liquid silicon oxide, SiO-1 to SiO-3, with a solid concentration of 30% by mass. Table 1 shows the average particle size of each silicon oxide measured by laser light scattering measurement.
 また、容器直径が150mm、粉砕メディアとしてジルコニアボールを有する小型ボールミル装置を用い、メタノールを粉砕用溶媒として、100質量部の平均粒径が5μmの酸化ケイ素粉体(市販品)と20部のカチオン性分散剤液(ビックケミー・ジャパン株式会社:BYK145)を粉砕容器に入れ、表1に示すような粉砕条件にて酸化ケイ素の粉砕を行い、固形物濃度が30質量%の酸化ケイ素粉体、SiO-4からSiO-7、のスラリーを得た。SiO-4からSiO-7の平均粒径を表1に示した。 In addition, using a small ball mill apparatus having a container diameter of 150 mm and zirconia balls as grinding media, methanol as a grinding solvent, 100 parts by mass of silicon oxide powder (commercially available) having an average particle size of 5 μm and 20 parts of cation A polydispersant liquid (BYK-Chemie Japan Co., Ltd.: BYK145) is placed in a grinding container, and silicon oxide is ground under the grinding conditions shown in Table 1 to obtain a silicon oxide powder having a solid concentration of 30% by mass, SiO A slurry of SiO-4 to SiO-7 was obtained. Table 1 shows the average particle sizes of SiO-4 to SiO-7.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例1
 前記合成例1で作製した平均分子量3500のポリシロキサン樹脂(硬化性樹脂組成物(1))および平均分子量3000のフェノール樹脂を樹脂固形物の重量比で90/10で混合し、高温焼成後の生成物中の酸化ケイ素粒子含有量が50質量%となるように合成例2で得られたSiO-1のスラリーを添加し、撹拌機中にて十分に混合した。得られた酸化ケイ素粒子を含有する樹脂混合懸濁液を120℃のオイルバス中、窒素フォロー条件下にて脱溶媒を行った。その後、真空乾燥機を用いて110℃で減圧乾燥を10時間行い、最後に窒素雰囲気中900℃で4時間にて高温焼成することで黒色固形物を得た。得られた黒色固形物を遊星型ボールミルで粉砕し、黒色粉体を作製した。この黒色粉体の20gをCVD装置(デスクトップロータリキルン:高砂工業株式会社製)に投入し、エチレンガス0.2L/分および窒素ガス0.8L/分の混合ガスを導入しながら、850℃で1時間、化学的気相成長法により、黒色粉体表面への炭素被膜処理を行い、活物質粒子を作製した。
Example 1
The polysiloxane resin having an average molecular weight of 3500 (curable resin composition (1)) prepared in Synthesis Example 1 and the phenolic resin having an average molecular weight of 3000 were mixed at a weight ratio of 90/10 for the resin solids, and after high-temperature baking, The SiO-1 slurry obtained in Synthesis Example 2 was added so that the content of silicon oxide particles in the product was 50% by mass, and the mixture was thoroughly mixed in a stirrer. The resin mixture suspension containing the obtained silicon oxide particles was subjected to solvent removal in an oil bath at 120° C. under nitrogen flow conditions. Then, it was dried under reduced pressure at 110° C. for 10 hours using a vacuum dryer, and finally baked at a high temperature of 900° C. for 4 hours in a nitrogen atmosphere to obtain a black solid. The resulting black solid was pulverized with a planetary ball mill to prepare a black powder. 20 g of this black powder was put into a CVD device (desktop rotary kiln: manufactured by Takasago Kogyo Co., Ltd.), and while introducing a mixed gas of 0.2 L / min of ethylene gas and 0.8 L / min of nitrogen gas, it was heated at 850 ° C. The surface of the black powder was coated with carbon for 1 hour by chemical vapor deposition to prepare active material particles.
 炭素被膜処理後の活物質粉末の炭素被覆量を熱分析装置によって測定したところ、処理前重量より2.1%増加したことが分かった。得られた活物質粉末の平均粒径は約2.9μmであり、比表面積は6.5m/gであった。
 Cu-Kα線による粉末X線回折(XRD)の測定結果によりSi(111)結晶面に帰属される2θ=28.4°の回折ピークは検出されなかった。エネルギー分散型X線分析(Energy dispersive X-ray spectroscopy、EDS)結果から窒素元素の含有量は0.2質量%であった。また、ラマン散乱分析測定結果、炭素のGバンドに帰属される1590cm-1付近のピークとDバンドに帰属される1330cm-1付近のピークを示し、強度比I(Gバンド)/I(Dバンド)は1.4であった。
When the carbon coating amount of the active material powder after the carbon coating treatment was measured with a thermal analyzer, it was found that the weight increased by 2.1% from the weight before the treatment. The obtained active material powder had an average particle size of about 2.9 μm and a specific surface area of 6.5 m 2 /g.
A diffraction peak at 2θ=28.4° attributed to the Si (111) crystal face was not detected by powder X-ray diffraction (XRD) measurement using Cu—Kα rays. Energy dispersive X-ray spectroscopy (EDS) results indicated that the nitrogen element content was 0.2% by mass. In addition, as a result of Raman scattering analysis, a peak near 1590 cm −1 attributed to the G band of carbon and a peak near 1330 cm −1 attributed to the D band are shown, and the intensity ratio I (G band) / I (D band ) was 1.4.
 80質量部の前記で得られた活物質粒子と導電助剤として10質量部のアセチレンブラックおよびバインダーとして10質量部のCMCとSBRとの混合物とを混合してスラリーを調製した。得られたスラリーを銅箔上に製膜した。110℃で減圧乾燥後、Li金属箔を対極としてハーフセルとしてコイン型リチウムイオン電池を作製した。二次電池充放電試験装置(北斗(株)製)を用い、作製したハーフセルの充放電特性の評価を25℃にて行った。カットオフ電圧範囲は0.005から1.5Vとした。充放電の測定結果は、初回放電容量が1180mAh/g、初回クーロン効率が67.5%であった。 A slurry was prepared by mixing 80 parts by mass of the active material particles obtained above, 10 parts by mass of acetylene black as a conductive additive, and 10 parts by mass of a mixture of CMC and SBR as a binder. The obtained slurry was formed into a film on a copper foil. After drying under reduced pressure at 110° C., a coin-type lithium ion battery was produced as a half cell using a Li metal foil as a counter electrode. Using a secondary battery charge/discharge test device (manufactured by Hokuto Co., Ltd.), the charge/discharge characteristics of the half-cells produced were evaluated at 25°C. The cutoff voltage range was 0.005 to 1.5V. The charge/discharge measurement results were an initial discharge capacity of 1180 mAh/g and an initial coulombic efficiency of 67.5%.
 フルセルの評価は、正極材料としてLiCoOを正極活物質、集電体としてアルミ箔を用いた単層シートを用いて、正極膜を作製し、450mAh/gの放電容量設計値にて黒鉛粉体と活物質粉末を混合して負極膜を作製した。非水電解質には六フッ化リン酸リチウムをエチレンカーボネート(以下、「EC」とも記す。)とジエチルカーボネート(以下、「DEC」とも記す。)を体積比で1/1の混合液に1mol/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いたラミ型リチウムイオン二次電池を作製した。ラミ型リチウムイオン二次電池を25℃、テストセルの電圧が4.2Vに達するまで1.2mA(正極基準で0.25c)の定電流で充電を行い、4.2Vに達した後は、セル電圧を4.2Vに保つように電流を減少させて充電を行い、放電容量を求めた。2.5Vから4.2V電圧範囲内の充放電を1サイクルとして、300サイクル後の容量維持率は90%であった。充放電後、ラミネートセルをグローブボックス・アルゴン雰囲気中にて解体して負極を取り出し、EC/DEC混合液で洗浄してから静置乾燥後、電極膜の厚みを測定した。充放電前後に負極膜の厚さの変化率を負極膨張率した。負極膨張率は19%であった。結果を表2に示した。 In the evaluation of the full cell, a single-layer sheet using LiCoO 2 as a positive electrode active material and aluminum foil as a current collector was used to prepare a positive electrode film, and graphite powder was used at a discharge capacity design value of 450 mAh / g. and the active material powder were mixed to prepare a negative electrode film. For the non-aqueous electrolyte, lithium hexafluorophosphate was added to a mixture of ethylene carbonate (hereinafter also referred to as “EC”) and diethyl carbonate (hereinafter also referred to as “DEC”) at a volume ratio of 1/1 at a concentration of 1 mol/mol. A laminated lithium ion secondary battery was fabricated using a non-aqueous electrolyte solution dissolved at a concentration of L and using a polyethylene microporous film having a thickness of 30 μm as a separator. A laminated lithium ion secondary battery was charged at 25°C at a constant current of 1.2mA (0.25c based on the positive electrode) until the voltage of the test cell reached 4.2V, and after reaching 4.2V, Charging was performed by decreasing the current so as to keep the cell voltage at 4.2 V, and the discharge capacity was determined. The capacity retention rate was 90% after 300 cycles, where charging and discharging within a voltage range of 2.5 V to 4.2 V was defined as one cycle. After charging and discharging, the laminate cell was dismantled in an argon atmosphere in a glove box, the negative electrode was taken out, washed with an EC/DEC mixed solution, allowed to stand and dried, and then the thickness of the electrode film was measured. The rate of change in the thickness of the negative electrode film before and after charging/discharging was taken as the negative electrode expansion rate. The expansion rate of the negative electrode was 19%. Table 2 shows the results.
実施例2および3
 酸化ケイ素を実施例2はSiO-2、実施例3はSiO-3とした酸化ケイ素スラリーを用い、その他は実施例1と同様の条件にて活物質を得た。得られた活物質の粒径および比表面積を測定し、得られた活物質を用いてハーフセルおよびフルセルでの充放電性能を評価した。各種評価結果を表2に示した。
Examples 2 and 3
Silicon oxide slurries with SiO-2 in Example 2 and SiO-3 in Example 3 were used. The particle size and specific surface area of the obtained active material were measured, and the half-cell and full-cell charge/discharge performances were evaluated using the obtained active material. Various evaluation results are shown in Table 2.
実施例4から8
 酸化ケイ素にSiO-4を用い、酸化ケイ素の含有量を実施例4は5質量%、実施例5は10質量%、実施例6は30質量%、実施例7は50質量%、実施例8は58質量%とし、その他は実施例1と同様の条件下で活物質粒子を得た。得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。得られた各種評価結果を表2に示した。
Examples 4 to 8
SiO-4 was used as silicon oxide, and the content of silicon oxide was 5% by mass in Example 4, 10% by mass in Example 5, 30% by mass in Example 6, 50% by mass in Example 7, and 8% by mass. was 58% by mass, and the active material particles were obtained under the same conditions as in Example 1. Using the obtained active material particles, half-cell and full-cell charge/discharge performances were evaluated. Table 2 shows various evaluation results obtained.
実施例9および10
 酸化ケイ素にSiO-4を用い、実施例1と同様の条件下にて、酸化ケイ素粒子を含有する樹脂混合懸濁液を120℃のオイルバス中、窒素フォロー条件下にて脱溶媒を行い、その後、高温焼成を行った。焼成物の粉砕条件を変えて黒色粉末を得、CVD装置(デスクトップロータリキルン:高砂工業株式会社製)に投入し、エチレンガス0.3L/分および窒素ガス0.7L/分の混合ガスを導入した。実施例9は850℃で1時間、実施例10は850℃で2時間、化学的気相成長法により、黒色粉体表面への炭素被覆処理を行い、実施例9と実施例10の活物質粒子を作製した。得られた活物質の粒径および比表面積を測定し、得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。各種評価結果を表2に示した。
Examples 9 and 10
Using SiO-4 as silicon oxide, under the same conditions as in Example 1, the resin mixture suspension containing silicon oxide particles was desolvated in an oil bath at 120° C. under nitrogen flow conditions, After that, high temperature firing was performed. A black powder is obtained by changing the pulverization conditions of the fired material, and it is put into a CVD device (desktop rotary kiln: manufactured by Takasago Kogyo Co., Ltd.), and a mixed gas of 0.3 L / min of ethylene gas and 0.7 L / min of nitrogen gas is introduced. did. In Example 9, the surface of the black powder was coated with carbon by chemical vapor deposition at 850 ° C. for 1 hour, and in Example 10, at 850 ° C. for 2 hours. Particles were produced. The particle size and specific surface area of the obtained active material were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell. Various evaluation results are shown in Table 2.
実施例11から13
 前記合成例1で作製した平均分子量3500のポリシロキサン樹脂(硬化性樹脂組成物(2))および平均分子量3000のフェノール樹脂を樹脂固形物の質量比で、実施例11は100/0、実施例12は50/50、実施例13は30/70として混合し、高温焼成後の生成物中の酸化ケイ素粒子含有量が50質量%となるように合成例2で得られたSiO-4のスラリーを添加し、酸化ケイ素粒子を含有する樹脂混合懸濁液を120℃のオイルバス中、窒素フォロー条件下にて脱溶媒を行った。それ以降の条件は実施例1と同様にして、活物質粒子を作製した。得られた活物質の粒径および比表面積を測定し、得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。各種評価結果を表2に示した。
Examples 11 to 13
The mass ratio of the polysiloxane resin (curable resin composition (2)) having an average molecular weight of 3500 prepared in Synthesis Example 1 and the phenolic resin having an average molecular weight of 3000 was 100/0 in Example 11 and 100/0 in Example 11. 12 was mixed at 50/50 and Example 13 was mixed at 30/70, and the SiO-4 slurry obtained in Synthesis Example 2 was mixed so that the silicon oxide particle content in the product after high temperature firing was 50% by mass. was added, and the resin mixture suspension containing silicon oxide particles was desolvated in an oil bath at 120° C. under nitrogen flow conditions. Subsequent conditions were the same as in Example 1, and active material particles were produced. The particle size and specific surface area of the obtained active material were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell. Various evaluation results are shown in Table 2.
実施例14
 酸化ケイ素にSiO-5を用い、その他は実施例1と同様の条件下で活物質粒子を得た。得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。得られた各種評価結果を表2に示した。
Example 14
Active material particles were obtained under the same conditions as in Example 1 except that SiO-5 was used as the silicon oxide. Using the obtained active material particles, half-cell and full-cell charge/discharge performances were evaluated. Table 2 shows various evaluation results obtained.
実施例15および16
 酸化ケイ素を実施例15はSiO-6、実施例16はSiO-7とした酸化ケイ素スラリーを用い、酸化ケイ素粒子を含有する樹脂混合懸濁液を混合した。酸化ケイ素粒子の量に対してLi/酸化ケイ素をモル比で実施例15は30/100、実施例16は50/100となるようにLiClを原料として酸化ケイ素粒子を含有する樹脂混合懸濁液に添加し、120℃のオイルバス中、窒素フォロー条件下にて脱溶媒を行った。それ以降の条件は実施例1と同様にして、活物質粉末を作製した。得られた活物質粒子中のLi元素の含有量は実施例が2.5質量%、実施例16は5.1質量%であった。得られた活物質粒子の粒径および比表面積を測定し、得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。各種評価結果を表2に示した。
Examples 15 and 16
Silicon oxide slurries containing SiO-6 in Example 15 and SiO-7 in Example 16 were used, and mixed with a resin mixture suspension containing silicon oxide particles. A resin mixed suspension containing silicon oxide particles using LiCl as a raw material so that the molar ratio of Li + /silicon oxide to the amount of silicon oxide particles is 30/100 in Example 15 and 50/100 in Example 16. It was added to the liquid, and the solvent was removed in an oil bath at 120° C. under nitrogen follow conditions. Subsequent conditions were the same as in Example 1, and an active material powder was produced. The Li element content in the obtained active material particles was 2.5% by mass in Example and 5.1% by mass in Example 16. The particle size and specific surface area of the obtained active material particles were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell. Various evaluation results are shown in Table 2.
実施例17
 酸化ケイ素にSiO-7を用い、その他は実施例1と同様の条件にて酸化ケイ素粒子を含有する樹脂混合懸濁液を120℃のオイルバス中、窒素フォロー条件下にて脱溶媒を行い、窒素雰囲気中、1000℃で4時間、高温焼成して活物質粒子を得た。得られた活物質粒子をCu-Kα線による粉末X線回折(XRD)の測定を行った結果、Si(111)結晶面に帰属される2θ=28.4°の回折ピークが検出された。得られた活物質粒子の粒径および比表面積を測定し、得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。各種評価結果を表2に示した。
Example 17
Using SiO-7 as the silicon oxide, under the same conditions as in Example 1, the resin mixture suspension containing silicon oxide particles was desolvated in an oil bath at 120° C. under nitrogen follow conditions, High-temperature firing was performed at 1000° C. for 4 hours in a nitrogen atmosphere to obtain active material particles. As a result of powder X-ray diffraction (XRD) measurement using Cu—Kα rays of the obtained active material particles, a diffraction peak at 2θ=28.4° attributed to the Si (111) crystal plane was detected. The particle size and specific surface area of the obtained active material particles were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell. Various evaluation results are shown in Table 2.
比較例1
 20gの平均粒径が5μmの酸化ケイ素粉体をCVD装置(デスクトップロータリキルン:高砂工業株式会社製)に投入し、エチレンガス0.2L/分および窒素ガス0.8L/分の混合ガスを導入しながら、850℃で1時間、化学的気相成長法により、黒色粉体表面への炭素被覆処理を行い、活物質粒子を作製した。処理後の炭素被覆量を熱分析装置によって測定したところ、処理前重量より2.0%増加したことが分かった。得られた活物質粒子をCu-Kα線による粉末X線回折(XRD)の測定を行った結果、Si(111)結晶面に帰属される2θ=28.4°の回折ピークが検出されなかった。得られた活物質粒子の粒径および比表面積を測定し、得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。各種評価結果を表2に示した。
Comparative example 1
20 g of silicon oxide powder with an average particle size of 5 μm is put into a CVD apparatus (desktop rotary kiln: manufactured by Takasago Kogyo Co., Ltd.), and a mixed gas of 0.2 L/min of ethylene gas and 0.8 L/min of nitrogen gas is introduced. Meanwhile, the surface of the black powder was coated with carbon by a chemical vapor deposition method at 850° C. for 1 hour to prepare active material particles. The amount of carbon coating after treatment was measured by a thermal analyzer and found to be 2.0% higher than the weight before treatment. As a result of powder X-ray diffraction (XRD) measurement using Cu—Kα rays of the obtained active material particles, no diffraction peak at 2θ=28.4° attributed to the Si (111) crystal plane was detected. . The particle size and specific surface area of the obtained active material particles were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell. Various evaluation results are shown in Table 2.
比較例2
 合成例1で作成した硬化性樹脂組成物(1)を110℃にて減圧乾燥後、窒素雰囲気中、1100℃で4時間、高温焼成することで黒色固形物を得た。得られた黒色固形物を遊星型ボールミルで粉砕後に黒色粉体を作製後、比較例1と同様なCVD条件下にて炭素被膜処理を行った。
 得られた炭素被膜処理後の黒色粉体の粒径および比表面積を測定し、炭素被膜処理後の黒色粉体を用いてハーフセルおよびフルセルでの充放電性能を評価した。各種評価結果を表2に示した。
Comparative example 2
The curable resin composition (1) prepared in Synthesis Example 1 was dried at 110° C. under reduced pressure and then baked at a high temperature of 1100° C. for 4 hours in a nitrogen atmosphere to obtain a black solid. The resulting black solid was pulverized in a planetary ball mill to produce a black powder, which was subjected to carbon coating treatment under the same CVD conditions as in Comparative Example 1.
The particle size and specific surface area of the black powder obtained after the carbon coating treatment were measured, and the half-cell and full-cell charging/discharging performances were evaluated using the black powder after the carbon coating treatment. Various evaluation results are shown in Table 2.
比較例3
 酸化ケイ素粒子の代わりに平均粒径が100nmの市販のケイ素粒子(Alfa Aesar製)を用いて、実施例1と同様な条件にてケイ素粒子を含有する樹脂混合懸濁液を120℃のオイルバス中、窒素フォロー条件下にて脱溶媒を行い、窒素雰囲気中、1000℃で4時間、高温焼成することで黒色固形物を得た。得られた活物質粒子をCu-Kα線による粉末X線回折(XRD)の測定を行った結果、Si(111)結晶面に帰属される2θ=28.4°の回折ピークが強く検出された。得られた活物質粒子の粒径および比表面積を測定し、得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。各種評価結果を表2に示した。
Comparative example 3
Using commercially available silicon particles (manufactured by Alfa Aesar) having an average particle size of 100 nm instead of silicon oxide particles, a resin mixture suspension containing silicon particles was placed in an oil bath at 120° C. under the same conditions as in Example 1. A black solid was obtained by removing the solvent under medium and nitrogen follow conditions, and sintering at a high temperature of 1000° C. for 4 hours in a nitrogen atmosphere. As a result of powder X-ray diffraction (XRD) measurement of the obtained active material particles using Cu-Kα rays, a strong diffraction peak at 2θ = 28.4° attributed to the Si (111) crystal plane was detected. . The particle size and specific surface area of the obtained active material particles were measured, and the obtained active material particles were used to evaluate charge/discharge performance in half-cell and full-cell. Various evaluation results are shown in Table 2.
比較例4
 平均分子量3000のフェノール樹脂と、高温焼成後の生成物中の酸化ケイ素粒子含有量が50質量%となるように合成例2で得られたSiO-4のスラリーとを混合後、120℃のオイルバス中、窒素フォロー条件下にて脱溶媒を行った。CVD炭素被膜を実施しなかった以外は実施例1と同様の条件下で活物質粒子を得た。得られた活物質粒子を用いてハーフセルおよびフルセルでの充放電性能を評価した。得られた各種評価結果を表2に示した。
Comparative example 4
After mixing the phenolic resin having an average molecular weight of 3000 and the SiO-4 slurry obtained in Synthesis Example 2 so that the content of silicon oxide particles in the product after high-temperature firing is 50% by mass, the oil is heated to 120°C. Desolvation was performed in a bath under nitrogen follow conditions. Active material particles were obtained under the same conditions as in Example 1, except that the CVD carbon coating was not performed. Using the obtained active material particles, half-cell and full-cell charge/discharge performances were evaluated. Table 2 shows various evaluation results obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[評価方法]
 表2中、各評価方法は以下のとおりである。
 平均粒径 D50:レーザー回折式粒度分布測定装置(マルバーン・パナリティカル社製、マスターサイザー3000)を用いて測定した。
 比表面積:比表面積測定装置(BELJAPAN社製、BELSORP-mini)を用いて窒素吸着測定より、BET法で測定した。29Si-NMR:JEOL RESONANCE社製、JNM-ECA600を用いた。
[Evaluation method]
In Table 2, each evaluation method is as follows.
Average particle size D50: Measured using a laser diffraction particle size distribution analyzer (Mastersizer 3000, manufactured by Malvern Panalytical).
Specific surface area: Measured by BET method from nitrogen adsorption measurement using a specific surface area measuring device (BELSORP-mini, manufactured by BEL JAPAN). 29 Si-NMR: JNM-ECA600 manufactured by JEOL RESONANCE was used.
 ラマン散乱スペクトル測定:測定機器としてNRS-5500(日本分光株式会社製)を用いた。測定条件は励起レーザーの波長は532nm、対物レンズの倍率は100倍、測定波数範囲は3500から100cm-1とした。
 粉末X線回折(XRD): X線回折装置(リガク社製、SmartLab)を用いて大気中で測定した。
Raman scattering spectrum measurement: NRS-5500 (manufactured by JASCO Corporation) was used as a measuring instrument. The measurement conditions were an excitation laser wavelength of 532 nm, an objective lens magnification of 100, and a measurement wavenumber range of 3500 to 100 cm −1 .
Powder X-ray diffraction (XRD): Measured in air using an X-ray diffractometer (manufactured by Rigaku, SmartLab).
 窒素含有量の測定:酸素・窒素分析装置(EMGA-920)を用いた。
 炭素被膜量の測定:熱分析装置(リガク社製、Thermo Plus EVO2)を用いて大気中にて重量損失を測って計算した。
Measurement of nitrogen content: An oxygen/nitrogen analyzer (EMGA-920) was used.
Measurement of carbon film amount: Weight loss was measured and calculated in the atmosphere using a thermal analysis device (manufactured by Rigaku, Thermo Plus EVO2).
 電池特性評価:二次電池充放電試験装置(北斗電工株式会社製)を用いて電池特性を測定し、室温25℃、カットオフ電圧範囲が0.005から1.5Vに、充放電レートが0.1C(1から3回)と0.2C(4サイクル以後)にし、定電流・定電圧式充電/定電流式放電の設定条件下で充放電特性の評価試験を行った。各充放電時の切り替え時には、30分間、開回路で放置した。放電容量、充電容量、初回クーロン効率とサイクル性(本願では、25℃でフルセルを300サイクル充放電後の容量維持率を指す)、負極膨張率は以下のようにして求めた。活物質の充電容量と放電容量:ハーフセルの充放電測定で求めた。活物質の初回クーロン効率(%)=初回放電容量(mAh/g)/初回充電容量(mAh/g)容量維持率(%@300回目)=300回目の負極放電容量(mAh/g)/負極初回放電容量(mAh/g)、フルセル(ラミネートセル)の測定で求めた。負極膨張率:フルセルを300サイクルでの充放電後、負極を取り出し、EC/DEC混合液で洗浄してから静置乾燥後、電極膜の厚みを測定した。充放電前後に負極膜の厚さの変化率を負極膨張率した。 Battery characteristics evaluation: Battery characteristics are measured using a secondary battery charge-discharge test device (manufactured by Hokuto Denko Co., Ltd.), room temperature 25 ° C., cutoff voltage range from 0.005 to 1.5 V, charge / discharge rate is 0 The charging/discharging characteristics were evaluated under conditions of constant current/constant voltage charging/constant current discharging at 0.2 C (after 4 cycles) and 1 C (1 to 3 cycles). At the time of switching between charging and discharging, the battery was left in an open circuit for 30 minutes. Discharge capacity, charge capacity, initial coulombic efficiency and cyclability (in the present application, refers to the capacity retention rate after 300 cycles of charging and discharging a full cell at 25° C.), and negative electrode expansion rate were obtained as follows. Charge capacity and discharge capacity of active material: Obtained by half-cell charge/discharge measurement. Initial coulomb efficiency (%) of active material = initial discharge capacity (mAh/g)/initial charge capacity (mAh/g) capacity retention rate (% @ 300th cycle) = 300th negative electrode discharge capacity (mAh/g)/negative electrode The initial discharge capacity (mAh/g) was obtained by measuring a full cell (laminate cell). Negative electrode expansion rate: After charging and discharging the full cell for 300 cycles, the negative electrode was taken out, washed with an EC/DEC mixed solution, left to stand and dried, and then the thickness of the electrode film was measured. The rate of change in the thickness of the negative electrode film before and after charging/discharging was taken as the negative electrode expansion rate.
 前記結果から明らかなように、本活物質を負極活物質として用いた場合、高容量維持の上、負極の膨張率が低く、サイクル性(あるいは容量維持率)及び初回クーロン効率はいずれも高く、またこれら二次電池の特性のバランスに優れる。また本活物質を負極活物質として含む二次電池はその電池特性に優れている。 As is clear from the above results, when the present active material is used as a negative electrode active material, the expansion rate of the negative electrode is low while maintaining a high capacity, and both the cycle property (or capacity retention rate) and the initial coulomb efficiency are high. In addition, the characteristics of these secondary batteries are well balanced. A secondary battery containing the present active material as a negative electrode active material has excellent battery characteristics.

Claims (11)

  1.  シリコンオキシカーバイド相と、前記シリコンオキシカーバイド相中に少なくとも2個以上の酸化ケイ素粒子を有する複合粒子である二次電池用活物質。 A secondary battery active material that is a composite particle having a silicon oxycarbide phase and at least two or more silicon oxide particles in the silicon oxycarbide phase.
  2.  前記酸化ケイ素粒子の含有量が1質量%以上60質量%以下である請求項1に記載の二次電池用活物質。 The active material for a secondary battery according to claim 1, wherein the content of the silicon oxide particles is 1% by mass or more and 60% by mass or less.
  3.  X線回折において2θが28.4°付近のSi(111)に帰属されるピークを有する請求項1または2に記載の二次電池用活物質。 The active material for a secondary battery according to claim 1 or 2, which has a peak attributed to Si(111) near 28.4° in X-ray diffraction.
  4.  前記酸化ケイ素粒子の平均粒径が5μm以下である請求項1または2に記載の二次電池用活物質。 The active material for a secondary battery according to claim 1 or 2, wherein the silicon oxide particles have an average particle size of 5 µm or less.
  5.  前記複合粒子の平均粒径が2μm以上15μm以下である請求項1または2に記載の二次電池用活物質。 The active material for a secondary battery according to claim 1 or 2, wherein the composite particles have an average particle size of 2 µm or more and 15 µm or less.
  6.  比表面積が0.3m/g以上10m/g以下である請求項1または2に記載の二次電池用活物質。 3. The active material for a secondary battery according to claim 1, which has a specific surface area of 0.3 m 2 /g or more and 10 m 2 /g or less.
  7.  前記シリコンオキシカーバイド相は更に窒素原子を含む請求項1または2に記載の二次電池用活物質。 The active material for a secondary battery according to claim 1 or 2, wherein the silicon oxycarbide phase further contains nitrogen atoms.
  8.  ラマンスペクトルにおいて、炭素構造のGバンドに帰属される1590cm-1とDバンドに帰属される1330cm-1付近の散乱ピークを有し、前記散乱ピークの強度比、I(Gバンド)/I(Dバンド)が、0.7以上2以下である請求項1または2に記載の二次電池用活物質。 In the Raman spectrum, there are scattering peaks near 1590 cm −1 attributed to the G band of the carbon structure and 1330 cm −1 attributed to the D band, and the intensity ratio of the scattering peaks, I (G band) / I (D band) is 0.7 or more and 2 or less.
  9.  前記複合粒子の表面に炭素被膜を有し、炭素被膜の量が1質量%以上10質量%以下である請求項1または2に記載の二次電池用活物質。 The active material for a secondary battery according to claim 1 or 2, wherein the surface of the composite particles has a carbon coating, and the amount of the carbon coating is 1% by mass or more and 10% by mass or less.
  10.  Li、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属のシリケート化合物を含む請求項1または2に記載の二次電池用活物質。 The secondary battery active material according to claim 1 or 2, comprising a silicate compound of at least one metal selected from the group consisting of Li, K, Na, Ca, Mg and Al.
  11.  請求項1または2に記載の二次電池用活物質を負極に含む二次電池。 A secondary battery comprising the secondary battery active material according to claim 1 or 2 in a negative electrode.
PCT/JP2023/003304 2022-02-21 2023-02-02 Active material for secondary batteries, and secondary battery WO2023157642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023540943A JP7491478B2 (en) 2022-02-21 2023-02-02 Active material for secondary battery and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-024812 2022-02-21
JP2022024812 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157642A1 true WO2023157642A1 (en) 2023-08-24

Family

ID=87578517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003304 WO2023157642A1 (en) 2022-02-21 2023-02-02 Active material for secondary batteries, and secondary battery

Country Status (3)

Country Link
JP (1) JP7491478B2 (en)
TW (1) TW202345438A (en)
WO (1) WO2023157642A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310759A (en) * 2004-03-26 2005-11-04 Shin Etsu Chem Co Ltd Silicon composite particle, production method of same, and negative electrode material for nonaqueous electrolyte secondary battery
WO2014098070A1 (en) * 2012-12-19 2014-06-26 Dic株式会社 Active material for negative electrodes of nonaqueous secondary batteries, and nonaqueous secondary battery
KR20160045378A (en) * 2014-10-17 2016-04-27 주식회사 케이씨씨 Silicon-silicon oxycarbide glass composite, preparation method of thereof, and anode materials and lithium secondary battery comprising the same
JP2016139579A (en) * 2015-01-29 2016-08-04 東レ株式会社 Negative electrode material for lithium ion secondary battery, paste for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2020113495A (en) * 2019-01-16 2020-07-27 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery
JP2020138895A (en) * 2019-03-01 2020-09-03 Jnc株式会社 SILICON-BASED FINE PARTICLE/SILICON-CONTAINING POLYMER COMPOSITE, SiOC STRUCTURE, AND COMPOSITION USING SiOC STRUCTURE FOR ANODE, ANODE AND SECONDARY BATTERY
JP2021048049A (en) * 2019-09-18 2021-03-25 信越化学工業株式会社 Negative electrode active material, negative electrode, and manufacturing method of them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310759A (en) * 2004-03-26 2005-11-04 Shin Etsu Chem Co Ltd Silicon composite particle, production method of same, and negative electrode material for nonaqueous electrolyte secondary battery
WO2014098070A1 (en) * 2012-12-19 2014-06-26 Dic株式会社 Active material for negative electrodes of nonaqueous secondary batteries, and nonaqueous secondary battery
KR20160045378A (en) * 2014-10-17 2016-04-27 주식회사 케이씨씨 Silicon-silicon oxycarbide glass composite, preparation method of thereof, and anode materials and lithium secondary battery comprising the same
JP2016139579A (en) * 2015-01-29 2016-08-04 東レ株式会社 Negative electrode material for lithium ion secondary battery, paste for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2020113495A (en) * 2019-01-16 2020-07-27 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery
JP2020138895A (en) * 2019-03-01 2020-09-03 Jnc株式会社 SILICON-BASED FINE PARTICLE/SILICON-CONTAINING POLYMER COMPOSITE, SiOC STRUCTURE, AND COMPOSITION USING SiOC STRUCTURE FOR ANODE, ANODE AND SECONDARY BATTERY
JP2021048049A (en) * 2019-09-18 2021-03-25 信越化学工業株式会社 Negative electrode active material, negative electrode, and manufacturing method of them

Also Published As

Publication number Publication date
JPWO2023157642A1 (en) 2023-08-24
TW202345438A (en) 2023-11-16
JP7491478B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
JP7447865B2 (en) Silicon nanoparticles and active materials for non-aqueous secondary battery negative electrodes and secondary batteries using the same
KR102627149B1 (en) Negative active material and method of manufacturing the same
WO2021157459A1 (en) Secondary-battery negative-electrode active material, negative electrode, and secondary battery
WO2022009572A1 (en) Active material for battery, composite active material for battery, and secondary battery
WO2023017694A1 (en) Secondary battery material, negative electrode active material, and secondary battery
WO2022172585A1 (en) Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery
JP7491478B2 (en) Active material for secondary battery and secondary battery
JP7491482B2 (en) Active material for secondary battery, method for producing active material for secondary battery, and secondary battery
JP7485230B2 (en) Nanosilicon, nanosilicon slurry, method for producing nanosilicon, active material for secondary battery, and secondary battery
JP7364125B2 (en) Composite active materials for secondary batteries and secondary batteries
JP7435916B1 (en) Manufacturing method of negative electrode active material, negative electrode active material and secondary battery
JP7453631B2 (en) Silicon-based materials, composite materials containing silicon-based materials, negative electrode materials for secondary batteries, and secondary batteries
JP7323089B1 (en) Negative electrode active material, secondary battery, and method for producing negative electrode active material
JP7473098B1 (en) Anode active material precursor, anode active material, secondary battery, and method for producing anode active material
JP7088438B1 (en) Negative electrode active material, manufacturing method of negative electrode active material and non-aqueous electrolyte secondary battery
WO2024101263A1 (en) Composite active material for secondary batteries, and secondary battery
JP2024035246A (en) Negative electrode active material and secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023540943

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756169

Country of ref document: EP

Kind code of ref document: A1