JPH10251785A - Oxide dispersion strengthened type alloy, its production and high temperature parts for gas turbine - Google Patents

Oxide dispersion strengthened type alloy, its production and high temperature parts for gas turbine

Info

Publication number
JPH10251785A
JPH10251785A JP6342697A JP6342697A JPH10251785A JP H10251785 A JPH10251785 A JP H10251785A JP 6342697 A JP6342697 A JP 6342697A JP 6342697 A JP6342697 A JP 6342697A JP H10251785 A JPH10251785 A JP H10251785A
Authority
JP
Japan
Prior art keywords
content
less
alloy
oxide dispersion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6342697A
Other languages
Japanese (ja)
Inventor
Takahiro Hamada
孝浩 浜田
Hiroaki Yoshioka
洋明 吉岡
Yutaka Ishiwatari
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6342697A priority Critical patent/JPH10251785A/en
Publication of JPH10251785A publication Critical patent/JPH10251785A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To impart sufficient high temp. strength and excellent workability to an alloy as the material for high temp. parts by dispersing a specified amt. of Y2 O3 particles into the mother phases of an Ni base alloy contg. specified amounts of Cr, Co, Mo, W, Fe, Mn, Si and C. SOLUTION: The compsn. of an Ni base mother phase alloy is composed of 18.0 to 25.0% Cr, >0 to 3.0% Co, 7.0 to 12.0% Mo+W, 15.0 to 22.0% Fe, >0 to 1.0% Mn, >0 to 1.0% Si, >0 to 0.5% C, and the balance Ni with inevitable impurities. Into this Ni base mother phase alloy, 0.01 to 10.0% Y2 O3 particles are dispersed. Furthermore, the content of Mo in the mother phase alloy is preferably regulated to 8 to 10% and the content of W to 0.2 to 1.0%. Moreover, the Y2 O3 particles are dispersed into the mother phases of the Ni base alloy in a state in which the size distribution in regulated to 0.01 to 5μm. Furthermore, the content of oxygen in the mother phases in the Ni base alloy is preferably regulated to <=600ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高温強度および
加工性等に優れ、ガスタービン高温部品材料等に好適な
酸化物分散強化型合金及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide dispersion-strengthened alloy which is excellent in high-temperature strength and workability and is suitable for high-temperature gas turbine component materials and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、発電用ガスタービン分野では、エ
ネルギー資源の有効活用等の点から、ガスタービンの高
効率化への研究開発が積極的に行われている。ガスター
ビンでは、燃焼器出口ガス温度が高いほど発電効率が向
上するため、ガスタービン入口温度の高温化が推進され
ている。しかし、ガスタービンを構成する高温部品用材
料では極めて過酷な環境となっており、高温における強
度低下や著しい高温腐食および高温酸化が問題となって
いる。
2. Description of the Related Art In recent years, in the field of gas turbines for power generation, research and development for increasing the efficiency of gas turbines has been actively conducted from the viewpoint of effective utilization of energy resources. In a gas turbine, since the power generation efficiency increases as the temperature of the gas at the outlet of the combustor increases, the temperature at the inlet of the gas turbine is increased. However, the environment for the materials for high-temperature components constituting a gas turbine is extremely severe, and there is a problem of a decrease in strength at high temperatures, remarkable high-temperature corrosion and high-temperature oxidation.

【0003】そこで最近、このようなガスタービン入口
温度の高温化に伴う過酷な環境下でも適用可能な耐熱材
料として、合金中に高温でも比較的安定なセラミック分
散粒子を導入することにより、超高温において優れたク
リープ強度を有し且つ極めて安定な酸化物分散強化型合
金(以下、「ODS(Oxide Dispersion Strengthed)
合金」と呼ぶ)が脚光を浴び、その研究開発が積極的に
進められている。このODS合金は、例えば米国特許明
細書(第3591362号、第3723092号、第3
723092号、第3837930号、及び第3926
568号等)等に記載されており、その中でも特に合金
母相としてFe基合金を使用したMA956合金や、N
i基合金を使用したMA754合金及びMA6000合
金等が製品化されている。
[0003] Recently, as a heat-resistant material which can be used even in a severe environment accompanying the high temperature of the gas turbine inlet, a ceramic dispersed particle which is relatively stable even at a high temperature is introduced into an alloy, so that an ultra-high temperature is obtained. Oxide Dispersion Strengthed (ODS) alloy having excellent creep strength and extremely stable
Alloys) are in the limelight, and research and development are being actively pursued. This ODS alloy is described in, for example, U.S. Pat. Nos. 3,951,362, 3,732,092,
No. 723092, No. 3837930, and No. 3926
No. 568, etc.). Among them, MA956 alloy using an Fe-based alloy as an alloy matrix,
MA754 alloy and MA6000 alloy using an i-base alloy have been commercialized.

【0004】このようなODS合金は、高温まで十分な
強度を維持できるほか、耐食性にも非常に優れているた
め、高温部品への適用化が強く期待されている。即ち、
ODS合金を高温部品に適用化すれば、高温強度の改善
だけでなく、高温腐食および高温酸化対策としても有効
であるため、例えば後者の対策として現在採用されてい
るMCrAlY合金やAl等のコーティング処理も不要
となり、コストを大幅に低減できる等の利点があるため
である。
[0004] Since such an ODS alloy can maintain sufficient strength up to high temperatures and is also very excellent in corrosion resistance, its application to high-temperature parts is strongly expected. That is,
If the ODS alloy is applied to high-temperature parts, it is effective not only for improvement of high-temperature strength but also for measures against high-temperature corrosion and high-temperature oxidation. For example, a coating treatment of MCrAlY alloy or Al, which is currently adopted as the latter measure. This is because there is an advantage that the cost can be greatly reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
従来例のODS合金では、一般に高温強度および高温耐
食性に優れているといった特性があるものの、例えばF
e基合金の場合では高温部品材料としての高温強度が不
足する一方、Ni基合金の場合では強度は十分であるが
加工性が必ずしもよいものではないといった問題があ
り、いずれの合金であっても高温部品に適用することは
現状では難しい。
However, the above-mentioned conventional ODS alloys generally have excellent properties such as high-temperature strength and high-temperature corrosion resistance.
In the case of the e-base alloy, the high-temperature strength as a high-temperature component material is insufficient, while in the case of the Ni-base alloy, there is a problem that the strength is sufficient but the workability is not always good. At present it is difficult to apply to high temperature parts.

【0006】この発明は、このような従来の問題を改善
するもので、高温強度及び高温耐食性に優れた特性を最
大限に生かしつつ、実際に適用化可能な高温部品材料と
してより十分な高温強度を有し且つ加工性にもより優れ
た酸化物分散強化型合金及びその製造方法を提供するこ
とを、目的とする。
The present invention solves the above-mentioned conventional problems, and makes the most of high-temperature strength and high-temperature corrosion-resistant properties, while having a more sufficient high-temperature strength as a high-temperature component material that can be actually applied. It is an object of the present invention to provide an oxide dispersion-strengthened alloy which has excellent workability and is more excellent in workability, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、この発明に係る酸化物分散強化型合金は、Cr、C
o、Mo、W、Fe、Mn、Si、及びCを含むNi基
合金の母相と、この母相中に分散させたY2 3 の粒子
とで構成され、上記Crの含有量を18.0%以上2
5.0%以下とし、上記Coの含有量を0%を超えて
3.0%以下とし、上記MoとWとの合計含有量を7.
0%以上12.0%以下とし、上記Feの含有量を1
5.0%以上22.0%以下とし、上記Mnの含有量を
0%を超えて1.0%以下とし、上記Siの含有量を0
%を超えて1.0%以下とし、上記Cの含有量を0%を
超えて0.5%以下とし、上記Y2 3 の含有量を0.
01%以上10.0%以下とし、残部をNi及び不可避
的不純物とした化学組成を有することを特徴とする。特
に好ましくは、前記Moの含有量を8.0%以上10.
0%以下とし、前記Wの含有量を0.2%以上1.0%
以下とする。
In order to achieve the above object, an oxide dispersion strengthened alloy according to the present invention comprises Cr, C
It is composed of a matrix of a Ni-based alloy containing o, Mo, W, Fe, Mn, Si, and C, and particles of Y 2 O 3 dispersed in the matrix. 0.0% or more 2
5.0% or less, the content of Co is more than 0% to 3.0% or less, and the total content of Mo and W is 7.
0% or more and 12.0% or less, and the content of Fe is 1
5.0% or more and 22.0% or less, the Mn content is more than 0% to 1.0% or less, and the Si content is 0% or less.
% To 1.0% or less, the C content to more than 0% to 0.5% or less, and the Y 2 O 3 content to 0.1% or less.
It is characterized by having a chemical composition of not less than 01% and not more than 10.0%, with the balance being Ni and unavoidable impurities. Particularly preferably, the content of Mo is 8.0% or more.
0% or less, and the content of W is 0.2% or more and 1.0% or less.
The following is assumed.

【0008】別の好ましい態様として、この発明に係る
酸化物分散強化型合金は、Cr、Co、W、Fe、M
n、Si、及びCを含むNi基合金の母相と、この母相
中に分散させたY2 3 の粒子とで構成され、上記Cr
の含有量を18.0%以上25.0%以下とし、上記C
oの含有量を0%を超えて3.0%以下とし、上記Wの
含有量を7.0%以上12.0%以下とし、上記Feの
含有量を15.0%以上22.0%以下とし、上記Mn
の含有量を0%を超えて1.0%以下とし、上記Siの
含有量を0%を超えて1.0%以下とし、上記Cの含有
量を0%を超えて0.5%以下とし、上記Y2 3 の含
有量を0.01%以上10.0%以下とし、残部をNi
及び不可避的不純物とした化学組成を有することを特徴
とする。特に好ましくは、前記Wの含有量を8.0%以
上10.0%以下とする。
In another preferred embodiment, the oxide dispersion strengthened alloy according to the present invention is composed of Cr, Co, W, Fe, M
a matrix of a Ni-based alloy containing n, Si, and C, and particles of Y 2 O 3 dispersed in the matrix;
Is not less than 18.0% and not more than 25.0%,
The content of o is set to more than 0% to 3.0% or less, the content of W is set to 7.0% or more and 12.0% or less, and the content of Fe is set to 15.0% or more and 22.0%. Below, and the above Mn
Content of more than 0% to 1.0% or less, the content of Si is more than 0% to 1.0% or less, and the content of C is more than 0% and 0.5% or less. The content of Y 2 O 3 is set to 0.01% or more and 10.0% or less, and the balance is Ni
And have a chemical composition as unavoidable impurities. Particularly preferably, the content of W is set to 8.0% or more and 10.0% or less.

【0009】この発明に係る合金では、その高温強度を
より一層向上させるために、好ましくはNi基合金の母
相中にY2 3 の粒子をその粒径分布が0.01μm以
上5μmとなる状態で分散させるものとする。また、N
i基合金の母相中の酸素含有量を600ppm以下とす
ることが望ましい。
In the alloy according to the present invention, in order to further improve the high-temperature strength, Y 2 O 3 particles are preferably present in the matrix of the Ni-based alloy in a particle size distribution of 0.01 μm or more and 5 μm or more. It shall be dispersed in a state. Also, N
It is desirable that the oxygen content in the parent phase of the i-based alloy be 600 ppm or less.

【0010】この発明に係る酸化物分散強化型合金の製
造方法によれば、上述のいずれかの合金に相当するNi
基合金及びY2 3 のそれぞれの粉末を高エネルギーミ
ルを用いて機械的に合金化することにより、Ni基合金
の母相中にY2 3 を粒子として分散させることを特徴
とする。ここで、Ni基合金の粉末として好ましくは、
粒径分布が150μm以下の粉末を用いる。
According to the method of manufacturing an oxide dispersion strengthened alloy according to the present invention, Ni equivalent to any of the above alloys is used.
It is characterized in that Y 2 O 3 is dispersed as particles in the matrix of the Ni-based alloy by mechanically alloying each powder of the base alloy and Y 2 O 3 using a high energy mill. Here, the powder of the Ni-based alloy is preferably
A powder having a particle size distribution of 150 μm or less is used.

【0011】この発明に係るガスタービン用高温部品
は、上述の合金から作製されたことを特徴とする。ガス
タービン用高温部品としては、例えばガスタービン用燃
焼器ライナ等が含まれる。
A high-temperature component for a gas turbine according to the present invention is characterized by being manufactured from the above-mentioned alloy. The gas turbine high-temperature component includes, for example, a gas turbine combustor liner.

【0012】以下、この発明に係る酸化物分散強化型合
金の各構成元素についてその組成範囲の限定理由を説明
する。ここで、特に断らない限り、各元素の含有量を示
す百分率%は重量%を表すものとする。
The reasons for limiting the composition ranges of the respective constituent elements of the oxide dispersion strengthened alloy according to the present invention will be described below. Here, unless otherwise specified, the percentage (%) indicating the content of each element indicates wt%.

【0013】Crは、耐酸化性および耐食性を向上させ
るに必要不可欠な元素であるが、その含有量が18.0
%よりも小さいと所望の高温耐食性を確保することがで
きず、25.0%を超えると延性および靭性が劣化して
しまう。そこで、Cr含有量の範囲を18.0%以上2
5.0%以下、好ましくは20.5%以上23.0%以
下と規定した。
[0013] Cr is an indispensable element for improving oxidation resistance and corrosion resistance, and its content is 18.0.
%, The desired high-temperature corrosion resistance cannot be secured, and if it exceeds 25.0%, the ductility and toughness deteriorate. Therefore, the range of the Cr content is set to 18.0% or more and 2
It is defined as 5.0% or less, preferably 20.5% or more and 23.0% or less.

【0014】Coは、固溶強化に寄与すると共に、高温
耐食性を向上させる特性を有しているが、その含有量が
3.0%を超えると高温強化が低下させてしまう。そこ
で、Co含有量の範囲を0%超3.0%以下、好ましく
は0.5%以上2.5%以下と規定した。
Co contributes to solid solution strengthening and has the property of improving high-temperature corrosion resistance. However, if its content exceeds 3.0%, high-temperature strengthening is reduced. Therefore, the range of the Co content is specified to be more than 0% and 3.0% or less, preferably 0.5% or more and 2.5% or less.

【0015】WとMoは、固溶強化元素として非常に有
効な元素であるが、過剰な添加は靭性および加熱脆化特
性を著しく低下させるため、W+Moの合計含有量の範
囲を7.0%以上12.0%以下、好ましくはMo含有
量の範囲を8.0%以上10.0%以下、W含有量の範
囲を0.2%以上1.0%以下と規定した。また、Mo
を含有しない別の態様として、W含有量の範囲を7.0
%以上12.0%以下、好ましくは8.0%以上10.
0%以下と規定した。
[0015] W and Mo are very effective elements as solid solution strengthening elements. However, since excessive addition significantly reduces toughness and heat embrittlement properties, the range of the total content of W + Mo is 7.0%. It is specified that the range of Mo content is not less than 8.0% and not more than 10.0%, and the range of W content is not less than 0.2% and not more than 1.0%. Also, Mo
In another embodiment that does not contain, the range of W content is 7.0.
% To 12.0%, preferably 8.0% to 10.
It was defined as 0% or less.

【0016】Feは、固溶強化元素として有効な役割を
担うと共に、展性を向上させる特性を有しているが、そ
の含有量が22.0%を超えると耐酸化性が著しく劣化
してしまう。そこで、Fe含有量の範囲を15.0%以
上22.0%以下、好ましく17.0%以上20.0%
以下と規定した。
[0016] Fe plays an effective role as a solid solution strengthening element and has the property of improving malleability. However, if its content exceeds 22.0%, oxidation resistance is remarkably deteriorated. I will. Therefore, the range of the Fe content is set to 15.0% to 22.0%, preferably 17.0% to 20.0%.
It is specified as follows.

【0017】Mnは、脱硫及び脱酸剤として重要な元素
であると共に、組織を安定化する役割を担うが、過剰な
添加は靭性を劣化させてしまう。そこで、Mn含有量の
範囲を0%を超えて1.0%以下と定めた。
Mn is an important element as a desulfurizing and deoxidizing agent, and plays a role in stabilizing the structure. However, excessive addition degrades toughness. Therefore, the range of the Mn content is determined to be more than 0% and 1.0% or less.

【0018】Siは、脱酸剤として添加するが、過剰な
添加は高温加熱中の著しい脆化を引き起こすため、Si
含有量の範囲を0%を超えて1.0%以下と定めた。
Although Si is added as a deoxidizing agent, excessive addition causes significant embrittlement during high-temperature heating.
The range of the content was determined to be more than 0% and 1.0% or less.

【0019】Cは、粒界強化元素であると共に組織を安
定化する役割を担うが、Cの含有量が0.5%を超える
と靭性および加工性が著しく劣化することから、C含有
量の範囲を0.5%以下、好ましくは0.05%以上
0.2%以下と規定した。
C is a grain boundary strengthening element and plays a role in stabilizing the structure. However, if the content of C exceeds 0.5%, the toughness and workability are significantly deteriorated. The range is defined as 0.5% or less, preferably 0.05% or more and 0.2% or less.

【0020】Y2 3 は、機械的合金化により均一分散
させることにより、クリープ強度を向上させる役割を担
うが、その含有量が10.0%を超えると延性および加
工性が著しく劣化してしまう。そこで、Y2 3 含有量
の範囲を0.01%以上10.0%以下、好ましくは
0.2%以上5.0%以下と規定した。
Y 2 O 3 plays a role of improving creep strength by uniformly dispersing it by mechanical alloying. However, if its content exceeds 10.0%, ductility and workability are remarkably deteriorated. I will. Therefore, the range of the Y 2 O 3 content is defined as 0.01% or more and 10.0% or less, preferably 0.2% or more and 5.0% or less.

【0021】[0021]

【発明の実施の形態】以下、この発明に係る酸化物分散
強化型合金及びその製造方法の具体的な実施形態を説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of an oxide dispersion strengthened alloy and a method for producing the same according to the present invention will be described.

【0022】(第1実施形態)実施例1〜16 本発明合金として、表1に示す化学組成を有する実施例
1〜16の試料を作製した。試料の作製に際し、予め目
標とする組成に応じて調整されたNi基合金の原料粉末
とY2 3 の粉末とを用意し、両者をAr雰囲気中で4
8時間、高エネルギ−ボールミル(アトライタ)を用い
て機械的に合金化処理を施した。そこで、回収した粉末
をステンレス鋼製カプセルに真空封入し、1050℃で
2時間保持する条件を用いたHIP(Hot Isostatic Pr
essing:熱間静水圧圧縮成形)処理を施して固形化し
た。その後、1050℃の熱間圧延処理を行って平鋼を
作製し、その平鋼から試験片を切り出した。
(First Embodiment) Examples 1 to 16 Samples of Examples 1 to 16 having the chemical compositions shown in Table 1 were prepared as the alloys of the present invention. In preparing a sample, a raw material powder of a Ni-based alloy and a powder of Y 2 O 3 , which are adjusted in advance according to a target composition, are prepared.
The alloying treatment was mechanically performed using a high energy ball mill (attritor) for 8 hours. Therefore, the recovered powder is vacuum-sealed in a stainless steel capsule and kept at 1050 ° C. for 2 hours using a HIP (Hot Isostatic Pr
essing: hot isostatic pressing) and solidified. Thereafter, a flat bar was prepared by performing a hot rolling treatment at 1050 ° C., and a test piece was cut out from the flat bar.

【0023】[0023]

【表1】 [Table 1]

【0024】このような製造方法で得られた実施例1〜
16の高温強度および熱間加工性を評価するために、各
試験片に対して高温引張試験(試験温度:1000℃)
を行って0.2%耐力(YS)、最大引張応力(UT
S)、伸び、絞りを測定した。ここで、高温での伸び及
び絞りの測定値は、その値が低いほど高温における加工
抵抗を招きやすく加工性が悪いことを示す。また、耐酸
化性を評価するために。同様の各試験片に対して大気中
高温酸化試験(950℃、1000時間)を行って質量
増加量を測定した。
Examples 1 to 4 obtained by such a manufacturing method
High-temperature tensile test (test temperature: 1000 ° C.) on each test piece to evaluate the high-temperature strength and hot workability of No. 16
To 0.2% proof stress (YS), maximum tensile stress (UT
S), elongation, and drawing were measured. Here, the measured values of elongation and drawing at high temperature indicate that the lower the value, the more likely it is to cause a processing resistance at high temperature and poor workability. Also, to evaluate oxidation resistance. The same test piece was subjected to an atmospheric high-temperature oxidation test (950 ° C., 1000 hours) to measure the mass increase.

【0025】比較のため、従来合金として、表2の化学
組成を有する従来合金(MA754及びMA956)を
上記と同様の製造条件で作製し、同様の試験を行った。
For comparison, conventional alloys (MA754 and MA956) having the chemical compositions shown in Table 2 were produced under the same manufacturing conditions as described above, and the same tests were performed.

【0026】[0026]

【表2】 [Table 2]

【0027】以上の各測定結果を表3、表4及び図1〜
図3にそれぞれ示す。
Tables 3 and 4 and FIGS.
Each is shown in FIG.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】表3、4及び図1〜図3に示すように、高
温引張試験の測定結果によれば、本発明合金では0.2
%耐力が154〜191MPa、最大引張応力が174
〜219MPa、伸びが33〜41%、絞りが41〜5
3%であり、いずれの測定値も従来合金よりも明らかに
高く、高温強度および熱間加工性に優れていることが確
認された。この特性は、特にMo含有量が8.0〜1
0.0%、W含有量が0.2〜1.0%で設定された実
施例1、2の場合と、Moを含有せずにW含有量が8.
0〜10.0%で設定された実施例3、4の場合に顕著
であった。
As shown in Tables 3 and 4 and FIGS. 1 to 3, according to the measurement results of the high-temperature tensile test, the alloy of the present invention has a thickness of 0.2%.
% Yield strength is 154 to 191 MPa, and maximum tensile stress is 174.
~ 219MPa, elongation 33 ~ 41%, aperture 41 ~ 5
The measured value was 3%, which was clearly higher than that of the conventional alloy, and was confirmed to be excellent in high-temperature strength and hot workability. This characteristic is especially true when the Mo content is 8.0-1.
In the case of Examples 1 and 2 in which the W content was set to 0.0% and the W content was set to 0.2 to 1.0%, the W content was set to 8.
It was remarkable in the case of Examples 3 and 4 set at 0 to 10.0%.

【0031】また、大気中高温酸化試験の測定結果によ
れば、本発明合金では質量増加量が1.3〜2.6mg
/cm2 であり、この測定値についても従来合金よりも
低く、耐酸化性に関しても優れた性能を示すことが確認
された。この特性は、上記と同様に特に実施例1〜4で
顕著であった。
According to the measurement results of the high-temperature oxidation test in the air, the alloy of the present invention has a mass increase of 1.3 to 2.6 mg.
/ Cm 2 , and the measured value was lower than that of the conventional alloy, and it was confirmed that the alloy exhibited excellent performance with respect to oxidation resistance. This characteristic was particularly remarkable in Examples 1 to 4 as described above.

【0032】次に、比較合金について説明する。ここ
で、各元素の上限値および下限値は、本発明の各元素の
成分組成を意味するものとする。
Next, a comparative alloy will be described. Here, the upper limit value and the lower limit value of each element mean the component composition of each element of the present invention.

【0033】比較例1、2 比較例1では、表1に示すようにCr含有量を下限値1
8.0%よりも低く、比較例2では、同含有量を上限値
25.0%を超えて設定し、その他については上記と同
様の条件とした。その結果、表3及び図1〜図3に示す
ようにCr含有量が低い比較例1では特に耐酸化性が低
くなる傾向にあること、Cr含有量が高い比較例2では
特に高温強度が低下する傾向にあることが確認された。
Comparative Examples 1 and 2 In Comparative Example 1, as shown in Table 1, the Cr content was set to the lower limit of 1
It is lower than 8.0%, and in Comparative Example 2, the content was set to exceed the upper limit of 25.0%, and the other conditions were the same as above. As a result, as shown in Table 3 and FIGS. 1 to 3, Comparative Example 1 having a low Cr content tends to have a particularly low oxidation resistance, and Comparative Example 2 having a high Cr content has a particularly low high-temperature strength. It was confirmed that there was a tendency to.

【0034】比較例3 比較例3では、表1に示すようにCo含有量を上限値
3.0%を超えて設定し、その他については上記と同様
の条件とした。その結果、表3及び図1〜図3に示すよ
うにCo含有量が高い比較例3では特に高温強度および
耐酸化性が低下する傾向にあることが確認された。
Comparative Example 3 In Comparative Example 3, as shown in Table 1, the Co content was set to exceed the upper limit of 3.0%, and the other conditions were the same as above. As a result, as shown in Table 3 and FIGS. 1 to 3, it was confirmed that in Comparative Example 3 having a high Co content, the high-temperature strength and the oxidation resistance particularly tended to decrease.

【0035】比較例4〜7 比較例4、5では、表1に示すようにWとMoとの合計
含有量を下限値7.0%よりも低く、比較例6、7で
は、同含有量を上限値12.0%を超えて設定し、その
他については上記と同様の条件とした、その結果、表3
及び図1〜図3に示すようにWとMoとの合計含有量が
低い比較例4、5と、それが高い比較例6、7とのいず
れの場合であっても、特に高温強度および耐酸化性が低
下する傾向にあることが確認された。
Comparative Examples 4 to 7 In Comparative Examples 4 and 5, the total content of W and Mo was lower than the lower limit of 7.0% as shown in Table 1, and in Comparative Examples 6 and 7, the same content was used. Was set to exceed the upper limit of 12.0%, and the other conditions were the same as those described above.
In addition, as shown in FIGS. 1 to 3, in each of Comparative Examples 4 and 5 in which the total content of W and Mo is low and Comparative Examples 6 and 7 in which the total content is high, particularly high-temperature strength and acid resistance It was confirmed that the chemical property tended to decrease.

【0036】比較例8、9 比較例8では、表1に示すようにFe含有量を下限値1
5.0%よりも低く、比較例9では、同含有量を上限値
22.0%を超えて設定し、その他については上記の発
明合金と同様の条件とした。その結果、表3及び図1〜
図3に示すようにFe含有量が低い比較例8では特に高
温強度および加工性が低下する傾向にあること、Fe含
有量が低い比較例9では特に耐酸化性が著しく劣化する
傾向にあることが確認された。
Comparative Examples 8 and 9 In Comparative Example 8, as shown in Table 1, the Fe content was reduced to the lower limit of 1
It is lower than 5.0%, and in Comparative Example 9, the content was set to exceed the upper limit of 22.0%, and the other conditions were the same as those of the above-described invention alloy. As a result, Table 3 and FIGS.
As shown in FIG. 3, Comparative Example 8 having a low Fe content tends to have a particularly low strength at high temperatures and workability, and Comparative Example 9 having a low Fe content has a tendency to have a particularly degraded oxidation resistance. Was confirmed.

【0037】比較例10 比較例10では、表1に示すようにMn含有量を上限値
1.0%を超えて設定し、その他については上記の発明
合金と同様の条件とした。その結果、表3及び図1〜図
3に示すようにMn含有量が高い比較例10では特に高
温強度および耐酸化性が著しく低下していることが確認
された。
Comparative Example 10 In Comparative Example 10, as shown in Table 1, the Mn content was set to exceed the upper limit of 1.0%, and the other conditions were the same as those of the above-mentioned invention alloy. As a result, as shown in Table 3 and FIGS. 1 to 3, it was confirmed that in Comparative Example 10 having a high Mn content, particularly the high-temperature strength and the oxidation resistance were significantly reduced.

【0038】比較例11 比較例11では、表1に示すようにSi含有量を上限値
1.0%を超えて設定し、その他については上記の発明
合金と同様の条件とした。その結果、表3及び図1〜図
3に示すようにSi含有量が高い比較例11では、特に
高温強度が低下していることが確認された。
Comparative Example 11 In Comparative Example 11, as shown in Table 1, the Si content was set to exceed the upper limit of 1.0%, and the other conditions were the same as those of the above-mentioned invention alloy. As a result, as shown in Table 3 and FIGS. 1 to 3, in Comparative Example 11 having a high Si content, it was confirmed that the high-temperature strength was particularly reduced.

【0039】比較例12 比較例12では、表1に示すようにC含有量を上限値
0.5%を超えて設定し、その他については上記の発明
合金と同様の条件とした。その結果、表3及び図1〜図
3に示すようにC含有量が高い比較例12では、特に高
温強度が著しく低下していることが確認された。
Comparative Example 12 In Comparative Example 12, as shown in Table 1, the C content was set to exceed the upper limit of 0.5%, and the other conditions were the same as those of the above-mentioned invention alloy. As a result, as shown in Table 3 and FIGS. 1 to 3, in Comparative Example 12 having a high C content, it was confirmed that the high-temperature strength was particularly significantly reduced.

【0040】比較例13、14 比較例13では、表1に示すようにY2 3 含有量を下
限値0.01%よりも低く、比較例14では、同含有量
を上限値10.0%を超えて設定し、その他については
上記の発明合金と同様の条件とした。その結果、表3及
び図1〜図3に示すようにY2 3 含有量が低い比較例
13では、特に高温強度及び耐酸化性が著しく低下して
いること、Y2 3 含有量が高い比較例14では特に加
工性が低下していることが確認された。
Comparative Examples 13 and 14 In Comparative Example 13, as shown in Table 1, the Y 2 O 3 content was lower than the lower limit of 0.01%, and in Comparative Example 14, the Y 2 O 3 content was lower than the upper limit of 10.0%. %, And the other conditions were the same as those of the above-mentioned invention alloy. As a result, as shown in Table 3 and FIGS. 1 to 3, in Comparative Example 13 in which the Y 2 O 3 content was low, particularly, the high-temperature strength and the oxidation resistance were significantly reduced, and the Y 2 O 3 content was low. In Comparative Example 14, which was high, it was confirmed that workability was particularly reduced.

【0041】(第2実施形態)実施例17〜20 実施例17〜20では、実施例1と同様の化学組成(表
1参照)で、Y2 3粒子の粒径分布を異ならせた条件
で各試験片を作製し、上記と同様の高温引張試験で高温
強度を評価した。その結果、表5に示すように、Y2
3 粒子の粒径分布を0.01〜5.0μmとした実施例
17では、その粒径分布の範囲を広く又は高い側にシフ
トさせた実施例18〜20と比べ、0.2%耐力および
最大引張応力がより一層高くなる傾向にあり、高温強度
が更に優れていることが確認された。
(Second Embodiment) Examples 17 to 20 In Examples 17 to 20, the same chemical composition as in Example 1 (see Table 1) was used, and the particle size distribution of the Y 2 O 3 particles was changed. Each test piece was prepared, and the high-temperature strength was evaluated by the same high-temperature tensile test as described above. As a result, as shown in Table 5, Y 2 O
In Example 17 in which the particle size distribution of the three particles was 0.01 to 5.0 μm, 0.2% proof stress and 0.2% proof stress were obtained, as compared with Examples 18 to 20 in which the range of the particle size distribution was widened or shifted to a higher side. It was confirmed that the maximum tensile stress tended to be higher and the high temperature strength was more excellent.

【0042】[0042]

【表5】 [Table 5]

【0043】(第3実施形態)実施例21〜24 実施例21〜24では、実施例1と同様の化学組成(表
1参照)で、Ni基合金の母相中の酸素含有量を異なら
せた条件で各試験片を作製し、上記と同様の高温引張試
験で高温強度を評価した。その結果、表6に示すよう
に、酸素含有量が500ppmと最も低めに設定した実
施例21では、同含有量が高い実施例22〜24と比
べ、0.2%耐力および最大引張応力の測定値がより一
層高くなる傾向にあり、高温強度も更に優れていること
が確認された。
(Third Embodiment) Examples 21 to 24 In Examples 21 to 24, the chemical composition was the same as that of Example 1 (see Table 1), and the oxygen content in the parent phase of the Ni-based alloy was varied. Each test piece was prepared under the following conditions, and the high-temperature strength was evaluated by the same high-temperature tensile test as described above. As a result, as shown in Table 6, in Example 21 in which the oxygen content was set as low as 500 ppm, the 0.2% proof stress and the maximum tensile stress were measured as compared with Examples 22 to 24 in which the oxygen content was high. The values tended to be higher, and it was confirmed that the high-temperature strength was further excellent.

【0044】[0044]

【表6】 [Table 6]

【0045】[0045]

【発明の効果】以上説明したように、この発明によれ
ば、上述の理由で各元素の成分組成の範囲を適宜に設定
したため、高温強度安定性および高温耐食性に関する従
来の利点を最大限に生かしつつ、実際に適用可能な高温
部品材料として十分に優れた高温強度を有すると同時に
加工性にもより優れた特性の酸化物分散強化型合金及び
その製造方法を提供できる。
As described above, according to the present invention, the range of the component composition of each element is appropriately set for the above-mentioned reasons, and therefore, the conventional advantages relating to high-temperature strength stability and high-temperature corrosion resistance are utilized to the maximum. In addition, it is possible to provide an oxide dispersion-strengthened alloy having sufficiently high temperature strength as a high-temperature component material that can be actually applied and also having more excellent workability and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高温引張試験による0.2%耐力の測定結果を
説明するグラフ。
FIG. 1 is a graph illustrating a result of measuring a 0.2% proof stress by a high-temperature tensile test.

【図2】高温引張試験による最大引張応力の測定結果を
説明するグラフ。
FIG. 2 is a graph illustrating a result of measuring a maximum tensile stress by a high-temperature tensile test.

【図3】高温酸化試験による質量増加量の測定結果を説
明するグラフ。
FIG. 3 is a graph illustrating a measurement result of a mass increase by a high-temperature oxidation test.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Cr、Co、Mo、W、Fe、Mn、S
i、及びCを含むNi基合金の母相と、この母相中に分
散させたY2 3 の粒子とで構成され、 上記Crの含有量を18.0%以上25.0%以下と
し、上記Coの含有量を0%を超えて3.0%以下と
し、上記MoとWとの合計含有量を7.0%以上12.
0%以下とし、上記Feの含有量を15.0%以上2
2.0%以下とし、上記Mnの含有量を0%を超えて
1.0%以下とし、上記Siの含有量を0%を超えて
1.0%以下とし、上記Cの含有量を0%を超えて0.
5%以下とし、上記Y2 3 の含有量を0.01%以上
10.0%以下とし、残部をNi及び不可避的不純物と
した化学組成を有することを特徴とする酸化物分散強化
型合金。
1. Cr, Co, Mo, W, Fe, Mn, S
It is composed of a matrix of a Ni-based alloy containing i and C and particles of Y 2 O 3 dispersed in the matrix, and the content of Cr is set to 18.0% or more and 25.0% or less. , The content of Co is set to more than 0% to 3.0% or less, and the total content of Mo and W is set to 7.0% or more.
0% or less, and the content of Fe is 15.0% or more 2
2.0% or less, the Mn content is more than 0% to 1.0% or less, the Si content is more than 0% to 1.0% or less, and the C content is 0% or less. %.
An oxide dispersion strengthened alloy having a chemical composition of not more than 5%, the content of Y 2 O 3 being not less than 0.01% and not more than 10.0%, and the balance being Ni and unavoidable impurities. .
【請求項2】 前記Moの含有量を8.0%以上10.
0%以下とし、前記Wの含有量を0.2%以上1.0%
以下とした請求項1記載の酸化物分散強化型合金。
2. The content of Mo is 8.0% or more.
0% or less, and the content of W is 0.2% or more and 1.0% or less.
The oxide dispersion strengthened alloy according to claim 1, wherein:
【請求項3】 Cr、Co、W、Fe、Mn、Si、及
びCを含むNi基合金の母相と、この母相中に分散させ
たY2 3 の粒子とで構成され、 上記Crの含有量を18.0%以上25.0%以下と
し、上記Coの含有量を0%を超えて3.0%以下と
し、上記Wの含有量を7.0%以上12.0%以下と
し、上記Feの含有量を15.0%以上22.0%以下
とし、上記Mnの含有量を0%を超えて1.0%以下と
し、上記Siの含有量を0%を超えて1.0%以下と
し、上記Cの含有量を0%を超えて0.5%以下とし、
上記Y2 3 の含有量を0.01%以上10.0%以下
とし、残部をNi及び不可避的不純物とした化学組成を
有することを特徴とする酸化物分散強化型合金。
3. A Cr-based alloy comprising a matrix of a Ni-based alloy containing Cr, Co, W, Fe, Mn, Si, and C, and particles of Y 2 O 3 dispersed in the matrix. Content of 18.0% or more and 25.0% or less, the content of Co is more than 0% and 3.0% or less, and the content of W is 7.0% or more and 12.0% or less. The content of Fe is 15.0% or more and 22.0% or less, the content of Mn is more than 0% and 1.0% or less, and the content of Si is more than 0% and 1% or more. 0.0% or less, and the content of C is more than 0% and 0.5% or less,
An oxide dispersion strengthened alloy having a chemical composition in which the content of Y 2 O 3 is 0.01% or more and 10.0% or less and the balance is Ni and unavoidable impurities.
【請求項4】 前記Wの含有量を8.0%以上10.0
%以下とした請求項3記載の酸化物分散強化型合金。
4. The content of W is not less than 8.0% and not more than 10.0%.
%. The oxide dispersion-strengthened alloy according to claim 3, wherein the content is not more than%.
【請求項5】 前記Ni基合金の母相中に前記Y2 3
の粒子をその粒径分布が0.01μm以上5μmとなる
状態で分散させた請求項1から4までのいずれか1項記
載の酸化物分散強化型合金。
5. The method according to claim 1, wherein said Y 2 O 3
The oxide dispersion-strengthened alloy according to any one of claims 1 to 4, wherein the particles of (1) are dispersed in a state where the particle size distribution is 0.01 µm to 5 µm.
【請求項6】 前記Ni基合金の母相中の酸素含有量を
600ppm以下ととした請求項1から5までのいずれ
か1項記載の酸化物分散強化型合金。
6. The oxide dispersion strengthened alloy according to claim 1, wherein the content of oxygen in the parent phase of the Ni-based alloy is 600 ppm or less.
【請求項7】 請求項1から6までのいずれか1項記載
のNi基合金及びY2 3 のそれぞれの粉末を高エネル
ギーミルを用いて機械的に合金化することにより、Ni
基合金の母相中にY2 3 を粒子として分散させること
を特徴とする酸化物分散強化型合金の製造方法。
7. Ni is obtained by mechanically alloying each powder of the Ni-based alloy and Y 2 O 3 according to claim 1 using a high energy mill.
A method for producing an oxide dispersion strengthened alloy, comprising dispersing Y 2 O 3 as particles in a base phase of a base alloy.
【請求項8】 前記Ni基合金の粉末として、粒径分布
が150μm以下の粉末を用いる請求項7記載の酸化物
分散強化型合金の製造方法。
8. The method according to claim 7, wherein a powder having a particle size distribution of 150 μm or less is used as the Ni-based alloy powder.
【請求項9】 請求項1から6までのいずれか1項記載
の酸化物分散強化型合金から作製されたことを特徴とす
るガスタービン用高温部品。
9. A high-temperature component for a gas turbine, which is made from the oxide dispersion strengthened alloy according to claim 1. Description:
JP6342697A 1997-03-17 1997-03-17 Oxide dispersion strengthened type alloy, its production and high temperature parts for gas turbine Pending JPH10251785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6342697A JPH10251785A (en) 1997-03-17 1997-03-17 Oxide dispersion strengthened type alloy, its production and high temperature parts for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6342697A JPH10251785A (en) 1997-03-17 1997-03-17 Oxide dispersion strengthened type alloy, its production and high temperature parts for gas turbine

Publications (1)

Publication Number Publication Date
JPH10251785A true JPH10251785A (en) 1998-09-22

Family

ID=13228959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6342697A Pending JPH10251785A (en) 1997-03-17 1997-03-17 Oxide dispersion strengthened type alloy, its production and high temperature parts for gas turbine

Country Status (1)

Country Link
JP (1) JPH10251785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same
US11846006B2 (en) 2019-10-03 2023-12-19 Tokyo Metropolitan Public University Corporation Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy structural component, and manufacturing method of the same

Similar Documents

Publication Publication Date Title
EP1842934B1 (en) Heat-resistant superalloy
US5006163A (en) Turbine blade superalloy II
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
WO2010021314A1 (en) Oxide-dispersion-strengthened alloy
CN112281043B (en) High fracture toughness Ti2AlNb-based alloy and preparation method and application thereof
EP0197347B1 (en) Nickel-chromium alloy having a dispersed phase
JP7450639B2 (en) Low stacking fault energy superalloys, structural members and their uses
AU2017200656A1 (en) Ni-based superalloy for hot forging
KR20120053645A (en) Polycrystal ni base superalloy with good mechanical properties at high temperature
CN109072384A (en) Alfer
JPH06145854A (en) Alumina nickel single crystal alloy composition and its preparation
CN112458369B (en) Precipitation-strengthened ferritic heat-resistant steel and preparation method thereof
CN112899525A (en) Titanium-based multi-principal-element alloy
JPS6350448A (en) Dispersion reinforced alloy
CN113249620B (en) Delta-phase reinforced nickel-base high-temperature alloy and preparation method thereof
CN113025848B (en) Iron-nickel-based precipitation strengthening type high-temperature alloy and preparation method and application thereof
JPH10251785A (en) Oxide dispersion strengthened type alloy, its production and high temperature parts for gas turbine
JPH06287667A (en) Heat resistant cast co-base alloy
JP4543380B2 (en) Fuel cell stack fastening bolt alloy
WO1996012827A1 (en) TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY
JPS60100646A (en) High toughness sintered body of ceramic
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
US2842439A (en) High strength alloy for use at elevated temperatures
EP0194683A1 (en) Nickel-chromium alloys having a dispersed phase