JPH10251751A - Production of nonoriented silicon steel sheet high in magnetic flux density - Google Patents

Production of nonoriented silicon steel sheet high in magnetic flux density

Info

Publication number
JPH10251751A
JPH10251751A JP9054657A JP5465797A JPH10251751A JP H10251751 A JPH10251751 A JP H10251751A JP 9054657 A JP9054657 A JP 9054657A JP 5465797 A JP5465797 A JP 5465797A JP H10251751 A JPH10251751 A JP H10251751A
Authority
JP
Japan
Prior art keywords
hot
rolling
annealing
steel sheet
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9054657A
Other languages
Japanese (ja)
Other versions
JP4091673B2 (en
Inventor
Ryutaro Kawamata
竜太郎 川又
Takehiro Sasaki
剛宏 佐々木
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05465797A priority Critical patent/JP4091673B2/en
Publication of JPH10251751A publication Critical patent/JPH10251751A/en
Application granted granted Critical
Publication of JP4091673B2 publication Critical patent/JP4091673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the magnetic flux density of a formed product by subjecting a steel slab having a specified compsn. contg. Si, Mn, C, N and S to finish hot rolling and thereafter coiling the coil while the tension between a final stand and a coiler is held to specific value. SOLUTION: A slab contg., by weight, >2.00 to 7.00% Si, 0.10 to 1.50% Mn, <=0.0050% C, <=0.0050% N, <=0.0050% S, and the balance Fe with inevitable impurities is subjected to hot rolling, is subjected to cold rolling for one time or >= two times including process annealing and is next subjected to finish annealing to produce a silicon steel sheet. At this time, after the completion of the finish hot rolling, the hot rolled sheet is coiled round a coil while the tension σ(kgf/mm<2> ) between a final stand and a coiler is held to satisfy the inequality in the relation with the finish rolling finishing temp. T( deg.C). The upper limit of the tension is not particularly set, but it is spontaneously decided from the shape controllability of the hot rolled sheet, and about 5kgf/mm<2> is the limit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が高い無方向性電磁鋼板
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density, which is used as a core material of electric equipment.

【0002】[0002]

【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。この
ため使用時のエネルギーロスである鉄損を少しでも低く
して高効率化を図るため、需要家の低鉄損電磁鋼板への
要求は増してきている。
2. Description of the Related Art In recent years, in the fields of electric machines, especially rotating machines and medium-sized and small-sized transformers in which non-oriented electrical steel sheets are used as iron core materials, worldwide electric power and energy savings, as well as chlorofluorocarbon gas regulations. Among the movements for global environmental conservation, such as the above, the movement for higher efficiency is rapidly spreading. For this reason, in order to improve the efficiency by reducing the iron loss, which is the energy loss during use, as much as possible, the demand for low iron loss electromagnetic steel sheets by customers is increasing.

【0003】一方で、回転機では鉄心を小型化して同一
出力を得るためには動作磁束密度を高める必要があり、
このためには高磁束密度の無方向性電磁鋼板が求められ
ている。このように回転機の小型化はそれ自身が架装さ
れる移動体である自動車、電車等の軽量化につながるた
め、それら自身が消費するエネルギーの節約にもつなが
るという利点がある。このため昨今では需要家から低鉄
損かつ磁束密度の高い無方向性電磁鋼板が強く求められ
るようになっている。
On the other hand, in order to obtain the same output by reducing the size of the iron core in a rotating machine, it is necessary to increase the operating magnetic flux density.
For this purpose, a non-oriented electrical steel sheet having a high magnetic flux density is required. As described above, the reduction in the size of the rotating machine leads to a reduction in the weight of a moving body on which the rotating machine itself is mounted, such as an automobile or a train. Therefore, in recent years, there has been a strong demand from customers for non-oriented electrical steel sheets having low iron loss and high magnetic flux density.

【0004】また、世界的な大競争時代に突入している
現代にあって、無方向性電磁鋼板への需要家のコストダ
ウンの要求は厳しく、先述の電気機器の高効率化のすう
勢と相まって、価格が同一であれは磁気特性が少しでも
優れた無方向性電磁鋼板が需要家に選択されるのが実情
である。
[0004] Further, in the present age of entering the global competition era, there is a severe demand for customers to reduce the cost of non-oriented electrical steel sheets, and this is coupled with the aforementioned trend toward higher efficiency of electrical equipment. In fact, if the price is the same, the fact is that non-oriented electrical steel sheets with excellent magnetic properties are selected by consumers.

【0005】ところで、無方向性電磁鋼板においては、
従来、低鉄損化の手段として一般に、電気抵抗増大によ
る渦電流損低減の観点からSiあるいはAl等の含有量
を高める方法がとられてきた。しかし、この方法では反
面、磁束密度の低下は避け得ないという問題点があっ
た。このような問題点の克服のために、熱延板結晶粒径
を粗大化することで主として磁束密度を改善させる方法
が行われてきた。
By the way, in non-oriented electrical steel sheets,
Conventionally, as a means of reducing iron loss, a method of increasing the content of Si, Al, or the like has been generally adopted from the viewpoint of reducing eddy current loss due to an increase in electric resistance. However, this method has a problem that the magnetic flux density cannot be reduced. In order to overcome such problems, a method of improving the magnetic flux density mainly by increasing the crystal grain size of the hot-rolled sheet has been performed.

【0006】従来、Si含有量が高い無方向性電磁鋼板
においては、仕上熱延後の結晶組織の成長が不十分であ
り、高磁束密度低鉄損の材料を提供するためには、仕上
熱延終了後、何らかの方法で熱延板焼鈍を施し、結晶組
織の粗大化を図ることが必須とされてきた。しかしなが
ら熱延板焼鈍を施すことによって、多少の製品の磁気特
性改善が可能となったとしても、前記の高磁束密度低鉄
損材に対する需要家の要求に応えるには不十分であっ
た。
Conventionally, in non-oriented electrical steel sheets having a high Si content, the growth of the crystal structure after finish hot rolling is insufficient, and in order to provide a material having a high magnetic flux density and a low iron loss, the finish heat After the completion of the rolling, it has been essential to perform annealing of the hot-rolled sheet by some method so as to make the crystal structure coarse. However, even if the magnetic properties of a product can be improved to some extent by performing hot-rolled sheet annealing, it has not been sufficient to meet the demands of customers for the above-mentioned high magnetic flux density and low iron loss material.

【0007】このような問題点に鑑み、高Si系無方向
性電磁鋼板の磁気特性を改善する手段として、特開昭5
9−74224号公報にはSi含有量が2.5%〜4.
0%である鋼において、一回冷延法において不純物であ
るS≦15ppm 、O≦20ppm 、N≦25ppm に制限す
ることに加えて熱延板焼鈍条件を規定し、かつ冷間圧延
率を65%以上にする技術が、特開昭59−74225
号公報には二回冷延法においてS≦15ppm 、O≦20
ppm 、N≦25ppm にすることに加えて中間焼鈍条件を
規定し、かつ二回目の冷間圧延率を70%以上で行う技
術がそれぞれ開示されている。
In view of the above problems, Japanese Patent Application Laid-Open No. Sho 5 (1993) discloses a means for improving the magnetic properties of a high Si non-oriented electrical steel sheet.
No. 9-74224 discloses that the Si content is 2.5% to 4.
In the case of 0% steel, in the single cold rolling method, in addition to restricting the impurities to S ≦ 15 ppm, O ≦ 20 ppm and N ≦ 25 ppm, the conditions for annealing the hot-rolled sheet are specified, and the cold rolling ratio is set to 65%. % Is disclosed in Japanese Unexamined Patent Publication No. 59-74225.
No. 2 discloses that S ≦ 15 ppm and O ≦ 20 in the double cold rolling method.
A technique is disclosed in which the intermediate annealing conditions are defined in addition to the setting of ppm and N ≦ 25 ppm, and the second cold rolling reduction is 70% or more.

【0008】しかしながらこれらの先行発明のように、
鋼の高純化を中心とする技術では、鉄損が改善されても
磁束密度の向上が十分でないという高Si系無方向性電
磁鋼板特有の問題の解決に至らなかった。
However, as in these prior inventions,
Techniques centered on purifying steel have not been able to solve the problem unique to high-Si non-oriented electrical steel sheets, in which the magnetic flux density is not sufficiently improved even if the iron loss is improved.

【0009】また、特開昭54−76422号公報に
は、無方向性電磁鋼板の冷延前結晶組織を安価に粗大化
し磁束密度を高める技術として、仕上熱延後の熱延板を
700℃から1000℃の高温で巻取り、これをコイル
の保有熱で焼鈍する自己焼鈍法が、また、特公昭62−
61644号公報には、熱延終了温度を1000℃以上
の高温として無注水時間を設定し、いわゆるランアウト
テーブル上で巻取前に熱延組織を再結晶・粒成長を図る
方法が開示されている。
Japanese Patent Application Laid-Open No. 54-76422 discloses a technique for inexpensively coarsening the crystal structure of a non-oriented electrical steel sheet before cold rolling to increase the magnetic flux density. The self-annealing method of winding at a high temperature of 1000 ° C. and annealing with the heat held by the coil is also disclosed in
No. 61644 discloses a method in which the hot-rolling end temperature is set to a high temperature of 1000 ° C. or higher and no water injection time is set, and the hot-rolled structure is recrystallized and grown on a so-called run-out table before winding. .

【0010】しかしながらこの技術によって、熱延組織
の結晶粒成長をはかっても、やはり磁束密度の向上が十
分でないという高Si系無方向性電磁鋼板特有の問題は
解決に至らなかった。
However, this technique has not solved the problem specific to high-Si non-oriented electrical steel sheets that the improvement of the magnetic flux density is still insufficient even if the crystal grain growth of the hot-rolled structure is attempted.

【0011】また、再結晶および粒成長の進行の緩慢な
高Si系成分のハイグレード無方向性電磁鋼板の磁気特
性を制御熱延により改善する技術として、特開昭59−
74222号公報には、仕上熱延最終スタンドの圧下率
を20%以上として、熱延板の巻取温度を700℃以上
とする技術が開示されている。この先行発明において
は、最終スタンド圧下率を高めて巻取温度を上昇させる
ことにより熱延終了後の熱延組織の再結晶および粒成長
を促進し、結果として磁気特性を改善することを狙って
いる。しかしながら鋼板中のSi含有量が高い場合、そ
の後の粒成長が不十分であり、やはり磁束密度の向上が
十分でないという高Si系無方向性電磁鋼板特有の問題
は解決に至らなかった。
As a technique for improving the magnetic properties of a high-grade non-oriented electrical steel sheet having a high Si content and having a slow progress of recrystallization and grain growth by controlled hot rolling, Japanese Patent Laid-Open No.
No. 74222 discloses a technique in which the rolling reduction of a hot-rolled sheet is set to 700 ° C. or higher by setting the rolling reduction of the final hot-rolled final stand to 20% or more. In this prior invention, the aim is to increase the final stand draft and raise the winding temperature to promote recrystallization and grain growth of the hot-rolled structure after the end of hot-rolling, thereby improving magnetic properties. I have. However, when the Si content in the steel sheet is high, the subsequent grain growth is insufficient, and the problem specific to the high Si-based non-oriented electrical steel sheet that the improvement of the magnetic flux density is also insufficient is not solved.

【0012】一方で、特開昭56−38420号広報に
は、変態を有するローグレード無方向性電磁鋼板の磁気
特性改善を目的として、αγ2相域の中間温度以下かつ
750℃以上の温度で仕上げ熱延を終了する制御熱延技
術が公開されている。しかしながら、熱延終了温度を高
めるだけでは需要家の要求する高磁束密度無方向性電磁
鋼板を供給するに至らないのが現状であった。
On the other hand, Japanese Patent Laid-Open Publication No. Sho 56-38420 discloses that in order to improve the magnetic properties of a low-grade non-oriented electrical steel sheet having a transformation, finishing at a temperature lower than the intermediate temperature of the αγ2 phase region and higher than 750 ° C. A controlled hot rolling technology for terminating hot rolling is disclosed. However, at present, simply increasing the end temperature of hot rolling does not lead to supply of high magnetic flux density non-oriented electrical steel sheets required by customers.

【0013】以上のように、従来技術では、Si含有量
の低いローグレード、およびSi含有量の高いハイグレ
ード無方向性電磁鋼板の何れもにおいて磁束密度が十分
に高く、かつ鉄損が低い無方向性電磁鋼板を製造できる
には至らず、無方向性電磁鋼板に対する前記の需要家の
要請に応えることは出来なかった。
As described above, in the prior art, both the low-grade low-grade electrical steel sheet having a low Si content and the high-grade non-oriented electrical steel sheet having a high Si content have a sufficiently high magnetic flux density and a low iron loss. It was not possible to manufacture grain-oriented electrical steel sheets, and it was not possible to meet the demands of the above-mentioned consumers for non-oriented electrical steel sheets.

【0014】[0014]

【発明が解決しようとする課題】本発明は、従来技術で
行われてきた制御熱延に見られるような、熱延終了温度
の管理ならびにこの観点からのパススケジュール管理の
思想とは異なり、無方向性電磁鋼板の仕上熱延におい
て、最終スタンドからコイラ間の張力を一定以上に制御
することにより、成品の磁束密度を高めることを可能と
し、さらに、粗圧延後のシートバーを仕上熱延前に先行
するシートバーに接合し、当該シートバーを連続して仕
上熱延に供することでより最終スタンドからコイラ間の
張力制御を容易とし、高張力下での仕上熱延を安定して
実施しうる磁束密度の高い無方向性電磁鋼板の製造方法
を提供するものである。
SUMMARY OF THE INVENTION The present invention is different from the concept of the control of the hot rolling end temperature and the pass schedule management from this point of view, as is the case with the control hot rolling performed in the prior art. In the finishing hot rolling of grain-oriented electrical steel sheets, it is possible to increase the magnetic flux density of the product by controlling the tension between the final stand and the coiler to a certain level or more, and to further reduce the sheet bar after rough rolling before finishing hot rolling. The tension is easily controlled from the final stand to the coiler by continuously applying the sheet bar to the finishing hot rolling, and the finishing hot rolling under high tension is performed stably. It is intended to provide a method for producing a non-oriented electrical steel sheet having a high magnetic flux density.

【0015】[0015]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1)鋼中に重量%で、2.00%<Si≦7.00%、
0.10%≦Mn≦1.50%、C≦0.0050
%、 N≦0.0050%、S≦0.005
0%を含有し、残部がFeおよび不可避的不純物からな
るスラブを用い、熱間圧延し熱延板とし、一回もしくは
中間焼鈍をはさむ二回以上の冷間圧延を施し次いで仕上
焼鈍を施し、絶縁皮膜を施すか、或いは施さずに最終製
品とする無方向性電磁鋼板の製造方法において、仕上熱
間圧延終了後、最終スタンドとコイラ間の張力σ(kgf/
mm2 )を仕上げ熱延終了温度T(℃)との関係で、下記
(1)式に保って熱延板をコイルに巻取ることを特徴と
する磁束密度の高い無方向性電磁鋼板の製造方法。 σ(kgf/mm2 )≧2−T0.3 +lnT ‥‥‥(1) (2)スラブ成分として、さらに重量%で、0.10%〜
1.00%のAlを含有せしめたことを特徴とする前項
(1) 記載の無方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) 2.00% <Si ≦ 7.00% by weight in steel,
0.10% ≦ Mn ≦ 1.50%, C ≦ 0.0050
%, N ≦ 0.0050%, S ≦ 0.005
Using a slab containing 0%, the balance being Fe and unavoidable impurities, hot-rolled to a hot-rolled sheet, subjected to one or two or more cold-rolling steps including intermediate annealing, and then to finish annealing, In the method of manufacturing a non-oriented electrical steel sheet with or without an insulating coating, which is the final product, after finishing hot rolling, the tension σ (kgf / kgf) between the final stand and the coiler
mm 2 ) in relation to the finish hot-rolling end temperature T (° C.), producing a non-oriented electrical steel sheet having a high magnetic flux density, wherein the hot-rolled sheet is wound around a coil while maintaining the following equation (1). Method. σ (kgf / mm 2 ) ≧ 2-T 0.3 + lnT ‥‥‥ (1) (2) As slab component, 0.10% or more by weight%
The preceding paragraph, characterized by containing 1.00% of Al.
(1) The method for producing a non-oriented electrical steel sheet according to (1).

【0016】(3)重量%で、0.10%<Si≦2.0
0%、 0.10%≦Mn≦1.50%、C≦0.00
50%、 N≦0.0050%、S≦0.0
050%を含有し、残部がFeおよび不可避的不純物か
らなるスラブを熱間圧延して熱延板とし、該熱延板に一
回もしくは中間焼鈍をはさむ二回以上の冷間圧延を施し
て冷延板とし、次いで仕上焼鈍を施し、絶縁皮膜を施す
か、あるいは施さない工程を含んで最終製品とする無方
向性電磁鋼板の製造方法において、仕上熱延終了温度が
700℃以上(Ar3 +Ar1 )/2以下で、かつ仕上
熱間圧延終了後、最終スタンドとコイラ間の張力σ(kg
f/mm2 )を仕上げ熱延終了温度T(℃)との関係で、下
記(1)式に保って熱延板をコイルに巻取ることを特徴
とする磁束密度の高い無方向性電磁鋼板の製造方法。 σ(kgf/mm2 )≧2−T0.3 +lnT ‥‥‥(1) (4)スラブ成分として、さらに重量%で、0.10%〜
1.00%のAlを含有させ、かつ(Si+2Al)≦
2.5%を満足させることを特徴とする前項(3)記載の
無方向性電磁鋼板の製造方法。
(3) By weight%, 0.10% <Si ≦ 2.0
0%, 0.10% ≦ Mn ≦ 1.50%, C ≦ 0.00
50%, N ≦ 0.0050%, S ≦ 0.0
A slab containing 050% with the balance being Fe and unavoidable impurities is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet is cold-rolled once or twice or more with intermediate annealing. In a method for producing a non-oriented electrical steel sheet which is a final product including a step of forming a sheet and then performing a finish annealing and applying or not applying an insulating film, the finish hot rolling end temperature is 700 ° C. or more (Ar 3 + Ar 1 ) / 2 or less, and after finishing hot rolling, tension σ (kg
f / mm 2 ) in relation to the finishing hot-rolling end temperature T (° C.), wherein the non-oriented electrical steel sheet having a high magnetic flux density is characterized in that the hot-rolled sheet is wound around a coil while maintaining the following equation (1). Manufacturing method. σ (kgf / mm 2 ) ≧ 2-T 0.3 + lnT ‥‥‥ (1) (4) As a slab component, 0.10% or more by weight%
1.00% Al and (Si + 2Al) ≦
The method for producing a non-oriented electrical steel sheet according to the above (3), wherein 2.5% is satisfied.

【0017】(5)仕上熱延終了後、冷間圧延前に、鋼板
に850℃以上1150℃以下の温度で20秒以上5分
未満の連続焼鈍で熱延板焼鈍を行うことを特徴とする前
項(1)乃至(4) の何れか1項に記載の磁束密度が高く、
鉄損の低い無方向性電磁鋼板の製造方法。 (6)仕上熱延終了後、冷間圧延前に、鋼板に750℃以
上850℃以下の温度で5分以上30時間未満の箱焼鈍
で熱延板焼鈍を行うことを特徴とする前項(1) 乃至(4)
の何れか1項に記載の磁束密度が高く、鉄損の低い無方
向性電磁鋼板の製造方法。
(5) After finishing hot rolling and before cold rolling, the steel sheet is subjected to continuous annealing at a temperature of 850 ° C. or more and 1150 ° C. or less for 20 seconds or more and less than 5 minutes. The magnetic flux density according to any one of (1) to (4) is high,
A method for manufacturing non-oriented electrical steel sheets with low iron loss. (6) After finishing hot rolling and before cold rolling, the steel sheet is subjected to box annealing at a temperature of 750 ° C. or more and 850 ° C. or less by box annealing for 5 minutes or more and less than 30 hours. ) To (4)
The method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss according to any one of the above.

【0018】(7)仕上熱延終了後、750℃以上100
0℃以下の温度でコイルに巻き取り、5分以上5時間以
下コイル自身の保有熱で自己焼鈍することを特徴とする
前項(1) 乃至(4) の何れか1項に記載の磁束密度が高
く、鉄損の低い無方向性電磁鋼板の製造方法。 (8)下記(2)式の範囲で行う仕上熱延終了温度T
(℃)との関係で、熱延終了後下記の(3)式で規定さ
れる時間tの間注水を行わず、コイルに巻き取ることを
特徴とする、前項(1) 乃至(7) の何れか1項に記載の磁
束密度が高く、鉄損の低い無方向性電磁鋼板の製造方
法。 950≦T(℃)≦1150 ‥‥‥(2) 9.6−8×10-3T≦t(秒)≦15.6−8×10-3T‥‥‥(3)
(7) After finishing hot rolling, the temperature is 750 ° C. or more and 100
The magnetic flux density according to any one of the above (1) to (4), wherein the coil is wound around the coil at a temperature of 0 ° C. or less and self-annealed with the heat of the coil itself for 5 minutes to 5 hours. A method for manufacturing non-oriented electrical steel sheets with high iron loss. (8) Finish hot rolling end temperature T performed in the range of the following formula (2)
(1) through (7), wherein after the hot rolling is completed, the coil is wound around the coil without water injection for a time t defined by the following equation (3). The method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss according to any one of the preceding claims. 950 ≦ T (° C.) ≦ 1150 {(2) 9.6-8 × 10 −3 T ≦ t (second) ≦ 15.6-8 × 10 −3 T} (3)

【0019】(9)粗圧延後のシートバーを仕上熱延前に
先行するシートバーに接合し、当該シートバーを連続し
て仕上熱延に供することを特徴とする前項(1) 乃至(8)
の何れか1項に記載の磁束密度が高く、鉄損の低い無方
向性電磁鋼板の製造方法。 (10)仕上焼鈍を施した後、さらに、圧下率2%以上20
%以下のスキンパス圧延工程を実施することを特徴とす
る、前項(1) 乃至(9) の何れか1項に記載の磁束密度が
高い無方向性電磁鋼板の製造方法。
(9) The sheet bars after the rough rolling are joined to the preceding sheet bar before the hot-rolling for finish, and the sheet bar is continuously subjected to the hot-rolling for the finish, wherein (1) to (8). )
The method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss according to any one of the above. (10) After the finish annealing, the reduction rate is 2% or more and 20% or more.
%. The method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to any one of the above items (1) to (9), wherein a skin pass rolling step of at most% is performed.

【0020】[0020]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。 [成分規定の理由について]Siは鋼板の固有抵抗を増
大させ渦流損を低減させ、鉄損値を改善するために添加
される。Si含有量が0.10%以下であると固有抵抗
が十分に得られないので0.10%を上回る量を添加す
る必要がある。一方、Si含有量が7.00%を超える
と圧延時の耳割れが著しく増加し、圧延が困難になると
ともにコスト増ともなるので7.00%以下とする必要
がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. [Reasons for specifying components] Si is added to increase the specific resistance of the steel sheet, reduce the eddy current loss, and improve the iron loss value. If the Si content is 0.10% or less, sufficient resistivity cannot be obtained, so it is necessary to add an amount exceeding 0.10%. On the other hand, if the Si content exceeds 7.00%, edge cracks at the time of rolling increase remarkably, making rolling difficult and increasing costs. Therefore, it is necessary to be 7.00% or less.

【0021】Alは、Siと同様に、鋼板の固有抵抗を
増大させ渦電流損を低減させる効果を有する。このた
め、0.10%以上添加する必要がある。一方、Al含
有量が1.00%を超えると、磁束密度が低下し、コス
ト高ともなるので1.00%以下とする。なお、Alは
必要に応じて添加するものであり、Al含有量が0.1
0%未満であっても本発明の効果はなんら損なわれるも
のではない。
Al, like Si, has the effect of increasing the specific resistance of the steel sheet and reducing the eddy current loss. Therefore, it is necessary to add 0.10% or more. On the other hand, if the Al content exceeds 1.00%, the magnetic flux density decreases and the cost increases, so the content is set to 1.00% or less. Here, Al is added as needed, and the Al content is 0.1%.
Even if it is less than 0%, the effect of the present invention is not impaired at all.

【0022】Mnは、Al,Siと同様に鋼板の固有抵
抗を増大させ渦電流損を低減させる効果を有する。この
目的のため、Mn含有量は0.10%以上とする必要が
ある。一方、Mn含有量が1.50%を超えると熱延時
の変形抵抗が増加し熱延が困難となるとともに、熱延後
の結晶組織が微細化しやすくなり、磁気特性が悪化する
ので、Mn含有量は1.50%以下とする必要がある。
また、Mn添加量は仕上げ熱延前の高温のシートバー接
合部の強度確保の点からもきわめて重要である。なぜな
ら、低融点の硫化物が結晶粒界に存在することによるシ
ートバー接合部の熱間脆化を防止するために、MnとS
との重量濃度の比であるMn/Sの値を20以上とする
ことが必要であるからである。本発明に規定する成分範
囲では、Mn含有量が0.1%以上であり、S含有量は
0.0050%以下であるので、Mn/Sの値は20以
上に保たれ、この観点からは問題がない。
Mn, like Al and Si, has the effect of increasing the specific resistance of the steel sheet and reducing the eddy current loss. For this purpose, the Mn content needs to be 0.10% or more. On the other hand, if the Mn content exceeds 1.50%, the deformation resistance during hot rolling increases and hot rolling becomes difficult, and the crystal structure after hot rolling tends to become finer and the magnetic properties deteriorate. The amount must be 1.50% or less.
Further, the amount of Mn addition is extremely important from the viewpoint of securing the strength of the high temperature sheet bar joint before the hot rolling. This is because Mn and S in order to prevent hot embrittlement of the sheet bar joint due to the presence of low-melting sulfide at the crystal grain boundaries.
This is because it is necessary to set the value of Mn / S, which is the ratio of the weight concentration to the above, to 20 or more. In the component range defined in the present invention, since the Mn content is 0.1% or more and the S content is 0.0050% or less, the value of Mn / S is maintained at 20 or more. there is no problem.

【0023】C含有量が0.0050%を超えると使用
中の磁気時効により鉄損が悪化して使用時のエネルギー
ロスが増加するため、0.0050%以下、好ましくは
0.0030%以下に制御することが必要である。
If the C content exceeds 0.0050%, the iron loss deteriorates due to magnetic aging during use and the energy loss during use increases, so that the C content is reduced to 0.0050% or less, preferably 0.0030% or less. It is necessary to control.

【0024】S,Nは熱間圧延工程におけるスラブ加熱
中に一部再固溶し、熱間圧延中にMnS等の硫化物、A
lN等の窒化物を形成する。これらが存在することによ
り熱延組織の粒成長を妨げ鉄損が悪化するのでSは0.
0050%、Nは0.0050%以下にする必要があ
る。
S and N partially re-dissolve during slab heating in the hot rolling step, and sulfides such as MnS and A
A nitride such as 1N is formed. Since the presence of these elements hinders the grain growth of the hot-rolled structure and deteriorates the iron loss, S is set to 0.1.
0050% and N must be 0.0050% or less.

【0025】また、製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P,
B,Ni,Cr,Sb,Sn,Cuの1種または2種以
上を鋼中に含有させても本発明の効果は損なわれない。
In order to improve the mechanical properties, magnetic properties and rust resistance of the product or for other purposes, P,
Even if one or more of B, Ni, Cr, Sb, Sn, and Cu are contained in steel, the effect of the present invention is not impaired.

【0026】[プロセス条件の規定について]次に本発
明のプロセス条件について説明する。前記成分からなる
鋼スラブは、転炉で溶製され連続鋳造あるいは造塊−分
塊圧延により製造される。鋼スラブは公知の方法にて加
熱される。このスラブに熱間圧延を施し所定の厚みとす
る。
[Definition of Process Conditions] Next, the process conditions of the present invention will be described. The steel slab composed of the above components is produced by melting in a converter and being manufactured by continuous casting or ingot-bulking rolling. The steel slab is heated by a known method. This slab is subjected to hot rolling to a predetermined thickness.

【0027】このスラブを粗圧延によりシートバー状に
圧延し、仕上熱延に供する。仕上熱延終了後、仕上熱延
終了温度T(℃)との関係で式(1)で定める張力σを
最終スタンドとコイラ間に付与することにより、製品磁
束密度を向上させることが可能である。 σ(kgf/mm2 )≧2−T0.3 +lnT ‥‥‥(1)
The slab is rolled into a sheet bar by rough rolling, and is subjected to finish hot rolling. After the finish hot rolling, the product magnetic flux density can be improved by applying a tension σ defined by the equation (1) between the final stand and the coiler in relation to the finish hot rolling end temperature T (° C.). . σ (kgf / mm 2 ) ≧ 2-T 0.3 + lnT ‥‥‥ (1)

【0028】張力の上限は特に設けない。しかしなが
ら、熱延板の形状制御性から、最終スタンドとコイラ間
の張力の上限は自ずから決まる。すなわち、最終スタン
ドとコイラ間の張力を大きくすればコイルの巻取りは容
易となるが、クリープによる鋼板の幅変化が生じ、これ
を補償するためにスラブ幅を広める必要がある。また、
この変形により鋼板幅方向の板厚偏差が大きくなるとい
う問題点が生じる。無方向性電磁鋼板は積層して使用に
供されるため、板幅方向および長手方向の板厚偏差に対
しては厳しい管理が必要であり、熱延板の段階において
も板幅方向および長手方向の板厚偏差に対しては厳しい
管理が必要である。これらの観点からは最終スタンドと
コイラ間の張力は5kgf/mm2 程度が限界である。
There is no particular upper limit on the tension. However, due to the shape controllability of the hot rolled sheet, the upper limit of the tension between the final stand and the coiler is naturally determined. That is, if the tension between the final stand and the coiler is increased, winding of the coil is facilitated, but the width of the steel sheet changes due to creep, and it is necessary to increase the slab width to compensate for this. Also,
This deformation causes a problem that the thickness deviation in the width direction of the steel sheet increases. Since non-oriented electrical steel sheets are laminated and used for use, strict control is required for thickness deviations in the sheet width direction and the longitudinal direction. Strict control is required for sheet thickness deviation. From these viewpoints, the tension between the final stand and the coiler is limited to about 5 kgf / mm 2 .

【0029】また、本発明では最終スタンドとコイラ間
の張力制御が無方向性電磁鋼板の磁気特性向上に重要な
役割を果たすことを見いだしたのであるが、一般的に単
一のスラブの圧延を一本のシートバーに粗圧延し、これ
を一本毎に圧延する際には、一つのシートバーの圧延が
終わりに近づくにつれ、最終スタンドとコイラ間の張力
を徐々に下げねばならない。なぜなら、コイルの最終端
が仕上熱延機最終スタンドを抜けた瞬間(いわゆる仕上
抜け時)に、無張力状態となり鋼板に負荷される張力の
変動が極めて大きくなるばかりでなく、高張力を負荷し
た状態で仕上抜けに至ると、鋼板終端部が冷却帯上で波
打ち、鋼板の巻取時の形状が著しく悪化する。
Also, in the present invention, it has been found that the tension control between the final stand and the coiler plays an important role in improving the magnetic properties of the non-oriented electrical steel sheet. When roughly rolling into one sheet bar and rolling it one by one, the tension between the final stand and the coiler must be gradually reduced as the rolling of one sheet bar approaches the end. This is because, at the moment when the final end of the coil passes through the final stand of the finishing hot-rolling machine (so-called finishing finishing), a tensionless state is brought about, and not only the fluctuation of the tension applied to the steel sheet becomes extremely large, but also a high tension is applied. If the finish is lost in this state, the end portion of the steel sheet is wavy on the cooling zone, and the shape of the steel sheet at the time of winding is significantly deteriorated.

【0030】このような問題点を解決し、高張力下での
巻取を連続して安定的に行うために、粗圧延後のシート
バーを、先行するシートバーに接合し、仕上熱間圧延を
連続的に行うことが特に有効である。すなわち、連続熱
延により仕上抜け部が消失し、仕上げ熱延中の熱延板に
負荷される張力の変動を抑制することが可能になる。さ
らに、ピンチロールをコイラの前に複数設置しその間で
高速剪断を行い、順番にコイルを巻き取ってゆくこと
で、仕上げ熱延中の熱延板に負荷される張力の変動を最
小限に抑制することが可能となる。これにより鋼板長手
方向の張力変動による磁束密度の変化を最小限に押さえ
ることが可能である。
In order to solve these problems and continuously and stably carry out winding under high tension, the sheet bar after the rough rolling is joined to the preceding sheet bar, and the finish hot rolling is performed. Is particularly effective. In other words, the unfinished portion disappears due to the continuous hot rolling, and it is possible to suppress the fluctuation of the tension applied to the hot rolled sheet during the finish hot rolling. Furthermore, by installing multiple pinch rolls in front of the coiler and performing high-speed shearing between them, winding the coils in order, minimizes fluctuations in the tension applied to the hot rolled sheet during finishing hot rolling. It is possible to do. As a result, it is possible to minimize a change in magnetic flux density due to a change in tension in the longitudinal direction of the steel sheet.

【0031】以上の方法により得られた熱延板は一回も
しくは中間焼鈍をはさむ二回以上の冷間圧延を施し次い
で仕上焼鈍を施すか、またはさらなる磁気特性の改善を
図ることを目的に、最初の冷間圧延前に、連続焼鈍もし
くは箱焼鈍により熱延板焼鈍を施すか、あるいは高温で
コイルを巻取りその保有熱で自己焼鈍を行うか、高温で
仕上げ熱延を終了し一定以上の無注水時間を設定し、そ
の後冷却し巻き取り、冷間圧延に供しても良い。
The hot-rolled sheet obtained by the above method is subjected to one or two or more cold rollings including an intermediate annealing followed by a finish annealing, or to further improve the magnetic properties, Before the first cold rolling, apply hot-rolled sheet annealing by continuous annealing or box annealing, or wind the coil at high temperature and perform self-annealing with the retained heat, or finish hot rolling at high temperature A non-water injection time may be set, followed by cooling, winding and cold rolling.

【0032】冷間圧延後の鋼板には、仕上焼鈍を行った
後絶縁皮膜を施すか、あるいは施さずに最終製品とす
る。またさらに仕上焼鈍した鋼板にはスキンパス圧延工
程を施して製品としても良い。スキンパス圧延工程を付
加する場合は、スキンパス圧延率が2%未満ではその効
果が得られず、20%超では磁気特性が悪化するため2
%以上から20%未満とする。
The steel sheet after cold rolling is subjected to finish annealing and then coated with an insulating film, or is not subjected to a coating to obtain a final product. Further, the finish-annealed steel sheet may be subjected to a skin pass rolling step to obtain a product. When a skin pass rolling step is added, the effect cannot be obtained when the skin pass rolling ratio is less than 2%, and when the skin pass rolling ratio exceeds 20%, the magnetic properties are deteriorated.
% To less than 20%.

【0033】[変態を有する成分系の制御熱延プロセス
について]0.10%<Si≦2.00%かつ(Si+
2Al)≦2.5%を満たす成分系あるいはMn含有量
が多い成分系の鋼ではα−γ変態を有する。このような
成分系の無方向性電磁鋼板の場合、仕上熱延終了温度を
過度に上昇させ、仕上げ熱延終了時のγ相率が過度に高
いと熱延終了後の冷却時にγ相からα相への変態に伴い
熱延板の結晶組織が微細となり、圧延、再結晶後の磁気
特性が著しく悪化する。このため、熱延終了温度は(A
3 +Ar1 )/2以下とする。一方で、熱延終了温度
が700℃を下回ると鋼板の圧延反力が増大して圧延が
困難になり、ロール原単位も著しく低下して生産性が悪
化するとともに、熱延鋼板において、熱延時に導入され
た歪が回復および再結晶により解放される比率が激減
し、製品の磁気特性が著しく悪化するので、仕上熱延終
了温度は700℃以上とする。
[Regarding Controlled Hot Rolling Process of Component System Having Transformation] 0.10% <Si ≦ 2.00% and (Si +
2Al) steel having a composition satisfying ≦ 2.5% or a composition having a high Mn content has α-γ transformation. In the case of such a non-oriented electrical steel sheet, the finish hot rolling end temperature is excessively increased, and if the γ phase ratio at the end of the finish hot rolling is excessively high, the γ phase is changed from the γ phase at the time of cooling after the end of the hot rolling. With the transformation to the phase, the crystal structure of the hot-rolled sheet becomes fine, and the magnetic properties after rolling and recrystallization are significantly deteriorated. Therefore, the hot rolling end temperature is (A
r 3 + Ar 1 ) / 2 or less. On the other hand, if the hot-rolling end temperature is lower than 700 ° C., the rolling reaction force of the steel sheet increases, making it difficult to perform rolling. Since the rate at which the introduced strain is sometimes recovered and released by recrystallization is drastically reduced, and the magnetic properties of the product are remarkably deteriorated, the finishing hot rolling end temperature is set to 700 ° C. or more.

【0034】なお、得られた熱延板を一回の冷延を施し
最終板厚とし、仕上げ焼鈍を施すか、あるいは一回目の
冷延後、仕上げ焼鈍を施し、スキンパス圧延を施す工程
の場合、熱延終了温度は(Ar3 +Ar1 )/2を上限
として高い方が冷延前の結晶組織がより粗大化して製品
磁束密度が向上する。反対に、仕上げ熱延終了後連続焼
鈍もしくは箱焼鈍で熱延板焼鈍を施す場合は、逆に熱延
終了温度は低い方が熱延板焼鈍時の粒成長が促進され、
製品の磁束密度がより高くなる。このように変態を有す
る無方向性電磁鋼板の制御熱延では後工程によりその熱
延終了温度をきめ細かく制御することがより好ましい。
In the case of a step of subjecting the obtained hot-rolled sheet to one final cold-rolling to a final thickness and subjecting it to finish annealing, or subjecting the first cold-rolling to finish annealing and skin pass rolling. On the other hand, the higher the hot rolling end temperature is (Ar 3 + Ar 1 ) / 2 as the upper limit, the coarser the crystal structure before cold rolling and the higher the product magnetic flux density. Conversely, when performing hot-rolled sheet annealing by continuous annealing or box annealing after finishing hot-rolling, grain growth during hot-rolled sheet annealing is promoted when the hot-rolling end temperature is lower,
The magnetic flux density of the product is higher. In the control hot rolling of the non-oriented electrical steel sheet having such a transformation, it is more preferable to control the hot rolling end temperature finely in a post-process.

【0035】[熱延以降のプロセスについて]酸洗後の
熱延板には、連続焼鈍もしくは箱焼鈍により熱延板焼鈍
を行っても良い。また、熱延後のコイルを、750℃以
上1000℃以下の温度で巻き取り、5分以上5時間以
下コイル自身の保有熱で自己焼鈍を行っても良い。ある
いは、熱延終了後特定の式で規定される時間の間注水を
行わず、コイルを巻き取っても良い。
[Regarding Process after Hot Rolling] The hot rolled sheet after pickling may be subjected to continuous annealing or box annealing. Further, the coil after hot rolling may be wound at a temperature of 750 ° C. or more and 1000 ° C. or less, and self-annealing may be performed with the heat held by the coil itself for 5 minutes or more and 5 hours or less. Alternatively, the coil may be wound up without performing water injection for a time specified by a specific formula after the end of hot rolling.

【0036】このようにして得られた熱延板は1回の冷
間圧延工程を施し次いで仕上げ焼鈍を施すか、あるいは
中間焼鈍をはさみ2回以上の冷間圧延を施した後、仕上
げ焼鈍を施しても良い。また、この最終板厚に仕上げる
ための圧延は、公知の冷延技術で行っても良いが、高S
i成分系の場合、圧延中の破断や耳割れを防止するため
に鋼板の温度をSi含有量に応じ上昇させ、温間圧延を
行っても良い。
The hot-rolled sheet thus obtained is subjected to one cold rolling step and then to finish annealing, or to intermediate annealing and to two or more cold rolling steps, followed by finish annealing. May be applied. Rolling for finishing to the final sheet thickness may be performed by a known cold rolling technique.
In the case of the i-component system, the temperature of the steel sheet may be increased in accordance with the Si content to perform warm rolling in order to prevent breakage and edge cracks during rolling.

【0037】また、上記仕上焼鈍の後さらにスキンパス
圧延工程を施して製品としても良い。スキンパス圧延工
程を付加する場合は、スキンパス圧延率が2%未満では
その効果が得られず、20%超では磁気特性が悪化する
ため2%以上から20%未満とする。
After the finish annealing, a skin pass rolling step may be further performed to obtain a product. When a skin pass rolling step is added, the effect cannot be obtained if the skin pass rolling ratio is less than 2%, and if it exceeds 20%, the magnetic properties deteriorate, so the content is set to 2% or more and less than 20%.

【0038】以下に、本発明が規定する各プロセスの規
定理由について説明する。まず、熱延板焼鈍省略プロセ
スで仕上熱延時の最終スタンドとコイラ間の張力が磁気
特性にどのような影響を与えるかを説明する。
The reasons for defining each process defined by the present invention will be described below. First, how the tension between the final stand and the coiler at the time of finishing hot rolling in the hot strip annealing omitting process affects the magnetic properties will be described.

【0039】熱延板焼鈍を省略する場合、仕上熱間圧延
終了後、最終スタンドとコイラ間の張力の成品磁束密度
に対する影響を調査するため下記のような実験を行っ
た。表1に示す成分の鋼を溶製しスラブとし、仕上げ熱
延を実施した。
When the hot-rolled sheet annealing was omitted, the following experiment was conducted to investigate the effect of the tension between the final stand and the coiler on the product magnetic flux density after finishing hot rolling. Steel having the components shown in Table 1 was smelted to form a slab, and hot rolling was performed.

【0040】[0040]

【表1】 [Table 1]

【0041】仕上熱間圧延終了後、最終スタンドとコイ
ラ間の張力を変更して試験を行い、熱延仕上げ温度、製
品磁束密度との関係を詳細に調査した。鋼AのAr3
は904℃であり、Ar1 点は870℃であるため、熱
延仕上げ温度は(Ar3 +Ar1 )/2の887℃以下
で700℃以上の範囲で変化させた。また、鋼Bは75
0℃から1050℃の範囲で熱延終了温度を変化させ、
両者とも2.5mm厚に仕上げ、水冷して550℃で巻き
取った。
After finishing the hot rolling, a test was conducted by changing the tension between the final stand and the coiler, and the relationship between the hot rolling finishing temperature and the product magnetic flux density was examined in detail. Since the Ar 3 point of the steel A is 904 ° C. and the Ar 1 point is 870 ° C., the hot-rolling finishing temperature was changed to (Ar 3 + Ar 1 ) / 2 of 887 ° C. or less and 700 ° C. or more. In addition, steel B is 75
Change the hot rolling end temperature in the range of 0 ° C to 1050 ° C,
Both were finished to a thickness of 2.5 mm, cooled with water and wound at 550 ° C.

【0042】その後、酸洗、冷延し0.50mm厚とし、
脱脂した後、鋼Aは750℃、30秒焼鈍しエプスタイ
ン試料を切断して磁気特性を測定した。また、鋼Bは酸
洗、冷延し0.50mm厚とし、脱脂した後、950℃、
30秒焼鈍し、エプスタイン試料を切断して磁気特性を
測定した。
Thereafter, pickling and cold rolling were performed to a thickness of 0.50 mm.
After degreasing, the steel A was annealed at 750 ° C. for 30 seconds, and the Epstein sample was cut to measure magnetic properties. Steel B was pickled, cold rolled to a thickness of 0.50 mm, degreased, and then heated at 950 ° C.
After annealing for 30 seconds, the Epstein sample was cut and its magnetic properties were measured.

【0043】鋼Aの実験結果による仕上熱間圧延時の熱
延終了温度、および最終スタンドとコイラ間の張力との
関係を図1に、鋼Bの実験結果による仕上熱間圧延時の
熱延終了温度、および最終スタンドとコイラ間の張力と
の関係を図2に示す。図1,図2によれば式(1)で示
される境界線以上の張力を有する場合に、鋼A,鋼Bと
も成品磁束密度が上昇することがわかる。
FIG. 1 shows the relationship between the hot-rolling end temperature during the finish hot rolling and the tension between the final stand and the coiler according to the experimental results of steel A, and FIG. The relationship between the end temperature and the tension between the final stand and the coiler is shown in FIG. According to FIGS. 1 and 2, it is understood that when the tension is equal to or higher than the boundary indicated by the equation (1), the product magnetic flux density of both the steel A and the steel B increases.

【0044】なお、ここでの最終スタンドとコイラ間の
張力とは、一般的には最終スタンドからコイラまでの間
の張力をさして言うが、コイラの直前に巻取を安定して
行うためのピンチロール等を設置している場合は、最終
スタンドとピンチロール間の張力を示して言う。また、
シートバー最後端が仕上熱延機を通過した後の仕上抜け
後の場合、最終スタンドとピンチロール間には張力は作
用しないので、ピンチロールとマンドレル間の張力ある
いはマンドレル自身が熱延板を引き込む力を指して言
う。
The tension between the last stand and the coiler is generally referred to as the tension between the last stand and the coiler. A pinch for stably performing winding immediately before the coiler. When a roll or the like is installed, the tension between the final stand and the pinch roll is indicated. Also,
In the case where the final end of the sheet bar has passed through the finishing hot-rolling machine and after finishing, no tension acts between the final stand and the pinch roll, so the tension between the pinch roll and the mandrel or the mandrel itself draws the hot-rolled sheet. Say the power.

【0045】以上の実験から示されるように、仕上熱延
において、仕上熱間圧延終了後の最終スタンドとコイラ
間の張力、および熱延終了温度との関係が式(1)を満
たしていれば、成品磁束密度が上昇することがわかる。
As can be seen from the above experiments, if the relationship between the tension between the final stand and the coiler after finishing hot rolling and the temperature at the end of hot rolling in the finishing hot rolling satisfies the equation (1), It can be seen that the product magnetic flux density increases.

【0046】次に連続焼鈍もしくは箱焼鈍による熱延板
焼鈍を含むプロセスの場合について説明する。冷間圧延
前に熱延板焼鈍を施す場合において、最終スタンドとコ
イラ間の張力の成品磁気特性に対する影響を調査するた
め下記のような実験を行った。表2に示す成分の鋼を溶
製し仕上げ熱延を実施した。
Next, a case of a process including hot-rolled sheet annealing by continuous annealing or box annealing will be described. The following experiment was conducted to investigate the effect of the tension between the final stand and the coiler on the magnetic properties of the product when hot-rolled sheet annealing was performed before cold rolling. Steels having the components shown in Table 2 were melted and subjected to finish hot rolling.

【0047】[0047]

【表2】 [Table 2]

【0048】仕上熱間圧延終了温度および最終スタンド
とコイラ間の張力を変更して試験を行い、製品磁束密度
との関係を詳細に調査した。熱延板は2.5mm厚に仕上
げ水冷して550℃で巻き取った。この熱延コイルを連
続焼鈍炉で鋼Cを950℃で90秒の焼鈍を行った。こ
れを酸洗、冷延し0.35mm厚とし、脱脂した後、95
0℃30秒焼鈍しエプスタイン試料を切り出して磁気特
性を測定した。
A test was conducted by changing the finishing hot rolling end temperature and the tension between the final stand and the coiler, and the relationship with the product magnetic flux density was investigated in detail. The hot rolled sheet was finished to a thickness of 2.5 mm, cooled with water, and wound at 550 ° C. This hot-rolled coil was annealed at 950 ° C. for 90 seconds in steel C in a continuous annealing furnace. This is pickled, cold rolled to a thickness of 0.35 mm, degreased,
After annealing at 0 ° C. for 30 seconds, an Epstein sample was cut out and its magnetic properties were measured.

【0049】仕上熱間圧延時の熱延終了温度、および最
終スタンドとコイラ間の張力との関係を図3に示す。図
3によれば式(1)で示される境界線以上の張力を有す
る場合に、熱延板焼鈍を施した鋼Cの成品磁束密度が上
昇することがわかる。
FIG. 3 shows the relationship between the hot rolling end temperature during the finish hot rolling and the tension between the final stand and the coiler. According to FIG. 3, it can be seen that the product magnetic flux density of the steel C subjected to hot-rolled sheet annealing increases when the tension is equal to or greater than the boundary indicated by the equation (1).

【0050】以上の実験から示されるように、仕上熱延
において、仕上熱間圧延終了後の最終スタンドとコイラ
間の張力、および熱延終了温度との関係が式(1)を満
たしていれば、成品磁束密度が上昇することが明らかで
ある。
As can be seen from the above experiments, in the finishing hot rolling, if the relationship between the tension between the final stand and the coiler after the finishing hot rolling and the hot rolling finishing temperature satisfies the equation (1). It is clear that the product magnetic flux density increases.

【0051】次に、連続焼鈍による熱延板焼鈍時間、熱
延板焼鈍温度が磁束密度に与える影響を調査するため、
以下のような実験を行った。表2の成分の鋼Cを溶製し
仕上げ熱延を実施した。連続焼鈍による熱延板焼鈍時間
の製品磁束密度に対する影響を図4に示した。図4に示
される通り、焼鈍時間が20秒以下では熱延板焼鈍によ
る磁束密度向上効果が得られず、焼鈍時間が5分以上で
は鋼板表面に深いスケールが生成し酸洗不良が発生し、
鋼板表層に著しい肌荒れが生じた。このため、本発明で
は連続焼鈍による熱延板焼鈍時間は20秒以上5分以下
とする。焼鈍の効果、および経済性からみた好ましい連
続焼鈍による熱延板焼鈍時間は30秒以上3分以下であ
る。
Next, in order to investigate the influence of the annealing time of the hot-rolled sheet and the annealing temperature of the hot-rolled sheet on the magnetic flux density by continuous annealing,
The following experiment was performed. Steel C having the components shown in Table 2 was melted and subjected to finish hot rolling. FIG. 4 shows the effect of the annealing time of the hot-rolled sheet on the product magnetic flux density by continuous annealing. As shown in FIG. 4, when the annealing time is 20 seconds or less, the effect of improving the magnetic flux density by hot-rolled sheet annealing is not obtained, and when the annealing time is 5 minutes or more, a deep scale is formed on the steel sheet surface, and pickling failure occurs,
Significant skin roughness occurred on the surface layer of the steel sheet. Therefore, in the present invention, the annealing time of the hot-rolled sheet by the continuous annealing is set to 20 seconds or more and 5 minutes or less. From the viewpoint of the effect of the annealing and the economical efficiency, the time of the hot-rolled sheet annealing by the preferable continuous annealing is 30 seconds or more and 3 minutes or less.

【0052】連続焼鈍による熱延板焼鈍温度の製品磁束
密度に対する影響を図5に示した。図5に示される通
り、焼鈍温度が850℃未満では連続焼鈍での熱延板焼
鈍による磁束密度向上効果が得られず、焼鈍温度が11
50℃以上では深いスケールの生成により酸洗不良が発
生し、鋼板表層に著しい肌荒れが生じた。このため、本
発明では連続焼鈍による熱延板焼鈍温度は850℃以上
1150℃以下とする。焼鈍の効果、および酸洗性等の
経済性からみた好ましい連続焼鈍による熱延板焼鈍温度
は850℃以上1000℃以下である。
FIG. 5 shows the effect of the annealing temperature of the hot-rolled sheet on the product magnetic flux density due to continuous annealing. As shown in FIG. 5, when the annealing temperature is lower than 850 ° C., the effect of improving the magnetic flux density by hot-rolled sheet annealing in continuous annealing cannot be obtained, and the annealing temperature is 11 ° C.
Above 50 ° C., poor pickling occurred due to the formation of a deep scale, and marked surface roughness occurred on the surface layer of the steel sheet. Therefore, in the present invention, the hot-rolled sheet annealing temperature by continuous annealing is set to 850 ° C. or more and 1150 ° C. or less. The hot-rolled sheet annealing temperature by continuous annealing is preferably 850 ° C. or more and 1000 ° C. or less in view of the effect of annealing and economy such as pickling properties.

【0053】本発明では熱延板焼鈍を箱焼鈍により行っ
ても良い。その際、熱延板焼鈍温度が750℃未満であ
ると製品磁気特性の改善に必要な焼鈍時間が著しく長く
なり、不経済である。また、焼鈍温度が850℃以上で
あると炉の設備投資に多額の費用を要するとともに、焼
鈍時にコイルが焼き付く現象が発生する。以上の理由で
箱焼鈍による熱延板焼鈍を実施する場合は、焼鈍温度の
下限を750℃、上限は850℃とする。その際、箱焼
鈍での熱延板焼鈍時間が5分以下であると製品磁気特性
の改善に必要な焼鈍温度が著しく高くなり炉そのものの
設備投資が過大となり不経済であるので焼鈍時間の下限
は5分以上とする。また、熱延板焼鈍時間が30時間を
超えると焼鈍温度が過度に高い場合と同様にコイルの焼
き付きが生じるので箱焼鈍での熱延板焼鈍時間は30時
間以内とする。
In the present invention, the hot-rolled sheet annealing may be performed by box annealing. At that time, if the hot-rolled sheet annealing temperature is lower than 750 ° C., the annealing time required for improving the product magnetic properties becomes extremely long, which is uneconomical. Further, if the annealing temperature is 850 ° C. or more, a large amount of investment is required for equipment investment in the furnace, and a phenomenon that the coil is seized during annealing occurs. When performing hot-rolled sheet annealing by box annealing for the above reasons, the lower limit of the annealing temperature is 750 ° C and the upper limit is 850 ° C. At this time, if the annealing time of the hot-rolled sheet in box annealing is 5 minutes or less, the annealing temperature necessary for improving the magnetic properties of the product becomes extremely high, and the equipment investment of the furnace itself becomes excessive, which is uneconomical. Is 5 minutes or more. If the hot-rolled sheet annealing time exceeds 30 hours, coil seizure occurs as in the case where the annealing temperature is excessively high. Therefore, the hot-rolled sheet annealing time in box annealing is set to 30 hours or less.

【0054】このようにして熱延板焼鈍を施した熱延板
は1回の冷間圧延工程を施し次いで仕上げ焼鈍を施す
か、その後さらにスキンパス圧延工程を施して製品とし
ても良い。仕上焼鈍は連続焼鈍により施すが、その際に
特開昭61−231120号公報に開示されているごと
く、前段で950℃〜1100℃の温度範囲で5秒〜1
分間の短時間焼鈍し、後段で800℃〜950℃で10
秒〜2分間保定するなどの方法により仕上げ焼鈍を行っ
ても良い。
The hot-rolled sheet subjected to the hot-rolled sheet annealing in this manner may be subjected to a single cold rolling step and then to a finish annealing, or may be further subjected to a skin pass rolling step to obtain a product. The finish annealing is performed by continuous annealing. At that time, as disclosed in Japanese Patent Application Laid-Open No. 61-231120, the pre-stage is performed at a temperature range of 950 ° C. to 1100 ° C. for 5 seconds to 1 hour.
For a short time at 800 ° C to 950 ° C for 10 minutes.
Finish annealing may be performed by a method such as holding for 2 to 2 minutes.

【0055】さらに、自己焼鈍法プロセスを採用する場
合について説明する。熱延コイルの保有熱により自己焼
鈍行うプロセスにおいて、仕上熱延時の最終スタンドと
コイラ間の張力が成品磁気特性に対する影響を調査する
ため下記のような実験を行った。表3に示す成分の鋼を
溶製し仕上げ熱延を実施した。
Further, a case where a self-annealing process is adopted will be described. In the process of performing self-annealing by the retained heat of the hot-rolled coil, the following experiment was conducted to investigate the effect of the tension between the final stand and the coiler during the finish hot rolling on the magnetic properties of the product. Steels having the components shown in Table 3 were melted and subjected to finish hot rolling.

【0056】[0056]

【表3】 [Table 3]

【0057】熱延終了温度は1000℃とし、水冷して
860℃で巻取り、直ちに保熱カバーをかぶせてガス加
熱による補助加熱を施し、コイルの保有熱により850
℃1時間の自己焼鈍を施した。この場合、式(1)から
規定される最終スタンドとコイラ間の張力の張力は、
0.97kgf/mm2 以上となる。
The hot rolling end temperature is 1000 ° C., water-cooled and wound at 860 ° C., immediately covered with a heat retaining cover, subjected to auxiliary heating by gas heating, and heated to 850 ° C. by the heat retained in the coil.
Self-annealing for 1 hour was performed. In this case, the tension of the tension between the final stand and the coiler defined by the equation (1) is
0.97 kgf / mm 2 or more.

【0058】これを酸洗、冷延し0.50mm厚とし、脱
脂した後、鋼Dは900℃で、鋼Eは980℃で45秒
焼鈍しエプスタイン試料を切断して磁気特性を測定し
た。仕上熱延時の最終スタンドとコイラ間の張力に対す
る製品磁束密度の依存性を図6に示した。図6より、最
終スタンドとコイラ間の張力が0.97kgf/mm2 以上で
あると成品磁束密度が上昇し、0.97kgf/mm2 以下で
あると成品磁束密度が低下する。
This was pickled, cold rolled to a thickness of 0.50 mm, degreased, and then annealed at 900 ° C. for steel D at 980 ° C. for 45 seconds and cut the Epstein sample to measure its magnetic properties. FIG. 6 shows the dependence of the product magnetic flux density on the tension between the final stand and the coiler during hot rolling. As shown in FIG. 6, when the tension between the final stand and the coiler is 0.97 kgf / mm 2 or more, the product magnetic flux density increases, and when it is 0.97 kgf / mm 2 or less, the product magnetic flux density decreases.

【0059】自己焼鈍を行う際のコイルの巻取温度は7
50℃未満では磁気特性の改善が不十分であるので、7
50℃以上とする。一方1000℃を上回るとコイルの
巻きずれが発生しやすくなり、鋼板表層の酸化も激しく
なるため1000℃以下とする。自己焼鈍の時間は、5
分未満では磁気特性改善が不十分であるので、5分以上
行う。また、5時間を超えると鋼板の酸化が激しくなり
酸洗不良が発生しやすくなるので、5時間以下とする。
焼鈍の効果、および経済性からみた好ましい自己焼鈍時
間は30分から120分である。本発明では自己焼鈍中
のコイルの酸化を防止するため水素を含有する還元性雰
囲気、あるいは窒素、アルゴン等の不活性ガス雰囲気、
あるいは減圧下で自己焼鈍を行っても良い。
The coil winding temperature during self-annealing is 7
If the temperature is lower than 50 ° C., the magnetic properties are not sufficiently improved.
50 ° C. or higher. On the other hand, if the temperature is higher than 1000 ° C., the coil is likely to be displaced, and the surface layer of the steel sheet is oxidized too much. The time for self-annealing is 5
If the time is less than 10 minutes, the improvement of the magnetic properties is insufficient, so that the heat treatment is performed for 5 minutes or more. If the time exceeds 5 hours, oxidation of the steel sheet becomes severe, and poor pickling tends to occur.
The preferable self-annealing time is 30 minutes to 120 minutes in view of the effect of the annealing and the economy. In the present invention, in order to prevent oxidation of the coil during self-annealing, a reducing atmosphere containing hydrogen, or an inert gas atmosphere such as nitrogen or argon,
Alternatively, self-annealing may be performed under reduced pressure.

【0060】このようにして自己焼鈍を施した熱延板は
1回の冷間圧延工程を施し次いで仕上げ焼鈍を施すか、
その後さらにスキンパス圧延工程を施して製品としても
良い。スキンパス圧延の圧延率は2%未満ではその効果
が得られず、20%超では磁気特性が悪化するため2%
から20%とする。
The hot-rolled sheet thus self-annealed may be subjected to one cold rolling step and then to finish annealing, or
Thereafter, a skin pass rolling step may be further performed to obtain a product. If the rolling rate of skin pass rolling is less than 2%, the effect cannot be obtained, and if it exceeds 20%, the magnetic properties deteriorate, so that the rolling rate is 2%.
To 20%.

【0061】本発明は、熱延終了後一定時間の無注水を
設けるプロセスを採用することができる。仕上熱延終了
後一定時間の無注水を設けるプロセスにおいて、最終ス
タンドとコイラ間の張力が成品磁気特性に対する影響を
調査するため下記のような実験を行った。表4に示す成
分の鋼Fを溶製し仕上げ熱延を実施した。
The present invention can employ a process of providing no water injection for a certain period of time after the end of hot rolling. The following experiment was conducted to investigate the effect of the tension between the final stand and the coiler on the magnetic properties of the product in the process of providing no water injection for a certain time after finishing hot rolling. Steel F having the components shown in Table 4 was melted and hot-rolled for finishing.

【0062】[0062]

【表4】 [Table 4]

【0063】仕上熱延終了温度は1050℃で一定とし
た。この時、式(1)から規定される最終スタンドとコ
イラ間の張力の張力は、0.90kgf/mm2 以上となる。
また、式(2)および式(3)より、無注水時間は3.
5秒とし、その後冷却して680℃で巻き取った。これ
を酸洗、冷延し0.50mm厚とし、脱脂した後、900
℃、30秒焼鈍しエプスタイン試料を切断して磁気特性
を測定した。
The finishing hot rolling end temperature was kept constant at 1050 ° C. At this time, the tension of the tension between the final stand and the coiler defined by the expression (1) is 0.90 kgf / mm 2 or more.
Also, from the equations (2) and (3), the no-water injection time is 3.
After 5 seconds, it was cooled and wound up at 680 ° C. This was pickled, cold rolled to a thickness of 0.50 mm, degreased,
The sample was annealed at 30 ° C. for 30 seconds, and the Epstein sample was cut to measure magnetic properties.

【0064】仕上熱延時の最終スタンドとコイラ間の張
力に対する製品磁束密度の依存性を図7に示した。図7
より、仕上熱延時の最終スタンドとコイラ間の張力が
0.90kg/mm2 以上であると成品磁束密度が上昇する
ことがわかる。
FIG. 7 shows the dependence of the product magnetic flux density on the tension between the final stand and the coiler during hot rolling. FIG.
It can be seen that the product magnetic flux density increases when the tension between the final stand and the coiler at the time of hot rolling is 0.90 kg / mm 2 or more.

【0065】以上の実験から示されるように、仕上熱延
において、仕上熱間圧延終了後の最終スタンドとコイラ
間の張力、および熱延終了温度との関係が式(1)を満
たしていれば、成品磁束密度が上昇することがわかる。
コイルの巻取温度については規定を設けていないが、高
温で熱延を終了した鋼板表面に過度の酸化層が生じ、酸
洗性が悪化することを防止するため、750℃以下で巻
き取ることが好ましい。
As can be seen from the above experiment, if the relationship between the tension between the final stand and the coiler after finishing hot rolling and the hot rolling finishing temperature in the finishing hot rolling satisfies the equation (1), It can be seen that the product magnetic flux density increases.
Although there is no regulation on the coil winding temperature, the coil must be wound at 750 ° C or lower to prevent the formation of an excessively oxidized layer on the surface of the steel sheet that has been hot-rolled at a high temperature and deteriorate the pickling properties. Is preferred.

【0066】熱延終了後の無注水設定時間は熱延終了温
度T℃との関係で下記のように定める。本発明では最終
スタンドとコイラ間の張力を熱延終了温度との関係で調
査するとともに、仕上熱延において熱延終了温度T
(℃)、熱延終了後注水開始までの時間t(秒)と磁気
特性との関係を発明者等は詳細に検討を行った結果、 950≦T(℃)≦1150 ‥‥‥(2) 9.6−8×10-3T≦t(秒)≦15.6−8×10-3T‥‥‥(3) にて定められる範囲内において、酸洗性、通板速度、磁
気特性を満足する良好な条件を定めることが可能となっ
た。また、熱延終了後注水開始までが式(3)で定めた
時間を超えると、鋼板を冷却する時間が不足し、高温で
コイルを巻き取るか、冷却を十分に施すために圧延速度
を低下させねばならず、生産性が悪化する。高温でのコ
イル巻取りは巻きずれの発生や酸洗性の悪化等の弊害を
招くので好ましくない。このため無注水時間は式(3)
で定めた上限時間以下とする。式(3)で定められる時
間よりも無注水時間が短くなると磁気特性の改善が不十
分である。熱延終了温度T(℃)が950℃を下回った
場合も同様に、磁気特性の改善が不十分である。また、
熱延終了温度を1150℃超にするためには、通常の粗
圧延、仕上圧延を有する熱延工程ではスラブの加熱温度
を著しく高める必要があり、スラブ加熱中に再固溶した
析出物が熱延中に微細に析出し、磁気特性を著しく悪化
させるので熱延終了温度は1150℃以下とする。
The set time of no water injection after the end of hot rolling is determined as follows in relation to the hot rolling end temperature T ° C. In the present invention, the tension between the final stand and the coiler is investigated in relation to the hot-rolling end temperature, and the hot-rolling end temperature T
As a result of detailed studies by the inventors on the relationship between the magnetic properties and the time t (second) from the end of hot rolling to the start of water injection after completion of hot rolling, 950 ≦ T (° C.) ≦ 1150 (2) 9.6-8 × 10 −3 T ≦ t (sec) ≦ 15.6-8 × 10 −3 T ‥‥‥ (3) Within a range defined by (3), pickling property, sheet passing speed, and magnetic properties It has become possible to determine good conditions that satisfy Also, if the time from the end of hot rolling to the start of water injection exceeds the time defined by the formula (3), the time for cooling the steel sheet is insufficient, and the coil is wound at a high temperature or the rolling speed is reduced to sufficiently cool the steel sheet. Must be done, and productivity will deteriorate. Winding the coil at a high temperature is not preferable because it causes adverse effects such as occurrence of winding deviation and deterioration of pickling properties. Therefore, the no-water injection time is given by equation (3)
The time is not more than the upper limit time set in. If the non-water injection time is shorter than the time determined by the equation (3), the improvement of the magnetic properties is insufficient. Similarly, when the hot rolling end temperature T (° C.) is lower than 950 ° C., the improvement of the magnetic properties is insufficient. Also,
In order to raise the hot rolling end temperature to over 1150 ° C., it is necessary to significantly increase the heating temperature of the slab in the usual hot rolling process including rough rolling and finish rolling, and the precipitates that have re-dissolved during the slab heating become hot. The hot rolling end temperature is set to 1150 ° C. or less, since it is finely precipitated during rolling and significantly deteriorates magnetic properties.

【0067】本発明では1回の冷間圧延工程を施し次い
で仕上げ焼鈍を施すか、その後さらにスキンパス圧延工
程を施して製品としても良い。スキンパス圧延工程を付
加する場合はスキンパス圧延率は2%未満ではその効果
が得られず、20%超では磁気特性が悪化するため2%
以上から20%以下とする。
In the present invention, one cold rolling step may be performed followed by finish annealing, or a skin pass rolling step may be further performed to obtain a product. When a skin pass rolling step is added, the effect cannot be obtained when the skin pass rolling ratio is less than 2%, and when the skin pass rolling ratio is more than 20%, the magnetic properties are deteriorated.
From the above, it is set to 20% or less.

【0068】[0068]

【実施例】次に、本発明の実施例について述べる。 [実施例1]表5に示した成分を有する無方向性電磁鋼
用スラブを通常の方法にて加熱し、粗圧延機により厚み
40mmの粗バーに仕上げ、その後、仕上げ熱延機により
2.5mmに仕上げた。本発明では、最終スタンドとコイ
ラ間の張力を安定して制御するために、粗圧延後のシー
トバーを先行するシートバーに溶接し、仕上熱間圧延を
連続して行った。
Next, an embodiment of the present invention will be described. Example 1 A slab for non-oriented electrical steel having the components shown in Table 5 was heated by a usual method, finished into a coarse bar having a thickness of 40 mm by a rough rolling mill, and then finished by a finishing hot rolling mill. Finished to 5mm. In the present invention, in order to stably control the tension between the final stand and the coiler, the sheet bar after the rough rolling is welded to the preceding sheet bar, and finish hot rolling is continuously performed.

【0069】鋼GのAr3 点は901℃であり、Ar1
点は872℃であるため、熱延仕上げ温度は(Ar3
Ar1 )/2以下で700℃以上である860℃とし、
水冷して700℃で巻き取った。なお、熱延終了温度が
860℃の場合、式(1)から計算できる最終スタンド
とコイラ間の張力の最低値は1.17kgf/mm2 である。
比較例として、同じ成分の鋼をそれぞれ最終スタンドと
コイラ間の張力以外は同一条件として仕上熱延に供し
た。
[0069] Ar 3 point of the steel G is 901 ° C., Ar 1
Since the point is 872 ° C., the hot rolling finish temperature is (Ar 3 +
Ar 1 ) / 2 or less and 860 ° C. which is 700 ° C. or more,
It was cooled with water and wound up at 700 ° C. When the hot rolling end temperature is 860 ° C., the minimum value of the tension between the final stand and the coiler that can be calculated from the equation (1) is 1.17 kgf / mm 2 .
As a comparative example, steels having the same composition were subjected to finish hot rolling under the same conditions except for the tension between the final stand and the coiler.

【0070】これらの鋼を酸洗後、鋼Gは750℃、鋼
Hは830℃、鋼Iは950℃でそれぞれ30秒焼鈍を
行い、エプスタイン試料を切り出して磁束密度を測定し
た。試料は圧延中の鋼板長手方向の張力を測定し、試料
採取位置の張力が特定できるようにした。表6に本発明
と比較例の張力と磁気測定結果をあわせて示す。
After pickling these steels, steel G was annealed at 750 ° C., steel H at 830 ° C., and steel I at 950 ° C. for 30 seconds, and an Epstein sample was cut out and the magnetic flux density was measured. For the sample, the tension in the longitudinal direction of the steel sheet during rolling was measured, so that the tension at the sampling position could be specified. Table 6 also shows the tensile and magnetic measurement results of the present invention and the comparative example.

【0071】このように最終スタンドとコイラ間の張力
を式(1)に従って制御することにより、磁束密度の値
が高い磁気特性の優れた無方向性電磁鋼板を得ることが
可能である。
As described above, by controlling the tension between the final stand and the coiler in accordance with the equation (1), it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【0072】[0072]

【表5】 [Table 5]

【0073】[0073]

【表6】 [Table 6]

【0074】[実施例2]表7に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延
機により厚み40mmの粗バーに仕上げ、その後、仕上げ
熱延機により2.0mmに仕上げた。仕上熱延終了温度は
900℃とし、熱延終了後直ちに水冷して550℃で熱
延板を巻き取った。なお、熱延終了温度が900℃の場
合、式(1)から計算できる最終スタンドとコイラ間の
張力の最低値は1.11kgf/mm2 である。
Example 2 A slab for non-oriented electromagnetic steel having the components shown in Table 7 was heated by a usual method, and finished into a coarse bar having a thickness of 40 mm by a rough rolling mill. To 2.0 mm. The finish hot rolling end temperature was 900 ° C., and immediately after the hot rolling was completed, the sheet was water-cooled and the hot rolled sheet was wound at 550 ° C. When the hot rolling end temperature is 900 ° C., the minimum value of the tension between the final stand and the coiler, which can be calculated from equation (1), is 1.11 kgf / mm 2 .

【0075】得られた熱延板に熱延板焼鈍を連続焼鈍炉
で鋼Jは900℃、鋼Kは1000℃でそれぞれ2分間
施した。その後、酸洗を施し、冷間圧延により0.50
mmに仕上げた。これを連続焼鈍炉にて鋼Jは900℃
で、鋼Kは980℃でそれぞれ30秒間焼鈍した。その
後、エプスタイン試料を切り出し、磁気特性を測定し
た。
The obtained hot rolled sheet was subjected to hot rolled sheet annealing in a continuous annealing furnace at 900 ° C. for steel J and 1000 ° C. for steel K for 2 minutes. After that, it is pickled and cold rolled to 0.50.
mm. This was heated in a continuous annealing furnace at 900 ° C.
The steel K was annealed at 980 ° C. for 30 seconds each. Thereafter, an Epstein sample was cut out and its magnetic properties were measured.

【0076】さらに、鋼Kを熱延板焼鈍、酸洗までは同
一条件とし、その後冷間圧延の仕上板厚を0.55mmに
した。これを連続焼鈍炉にて900℃で30秒間焼鈍し
た。その後、スキンパス圧延を施し0.50mmに仕上
げ、エプスタイン試料に切断し、750℃2時間の歪取
り焼鈍を施し、磁気特性を測定した。表8に鋼J,鋼K
の本発明と比較例の張力と磁気測定結果をあわせて示
す。
Further, the same conditions were applied to the steel K until the hot-rolled sheet annealing and pickling, and then the cold-rolled finished sheet thickness was set to 0.55 mm. This was annealed at 900 ° C. for 30 seconds in a continuous annealing furnace. Then, it was subjected to skin pass rolling to finish to 0.50 mm, cut into Epstein samples, subjected to strain relief annealing at 750 ° C. for 2 hours, and the magnetic properties were measured. Table 8 shows steel J and steel K.
The present invention and the comparative example are shown together with the results of tension and magnetic measurement.

【0077】このように最終スタンドとコイラ間の張力
を式(1)に従って制御することにより、磁束密度の値
が高い磁気特性の優れた無方向性電磁鋼板を得ることが
可能である。
As described above, by controlling the tension between the final stand and the coiler in accordance with the equation (1), it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【0078】[0078]

【表7】 [Table 7]

【0079】[0079]

【表8】 [Table 8]

【0080】[実施例3]表9に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて1200℃に加
熱し、粗圧延機により厚み30mmの粗バーに仕上げ、そ
の後、仕上げ熱延機により1.8mmに仕上げた。熱延終
了温度は1000℃とし、圧延終了後冷却して650℃
で巻き取った。なお、熱延終了温度が1000℃の場
合、式(1)から計算できる最終スタンドとコイラ間の
張力の最低値は0.96kgf/mm2 である。
Example 3 A slab for non-oriented electromagnetic steel having the components shown in Table 9 was heated to 1200 ° C. by a usual method, finished to a rough bar of 30 mm thickness by a rough rolling mill, and then finished. Finished to 1.8 mm by hot rolling. The hot rolling end temperature is set to 1000 ° C., and after the end of the rolling, cooled to 650 ° C.
Rolled up. When the hot rolling end temperature is 1000 ° C., the minimum value of the tension between the final stand and the coiler, which can be calculated from the equation (1), is 0.96 kgf / mm 2 .

【0081】その後、板温を300℃として0.85mm
まで圧延し、さらにこれを980℃、30秒の中間焼鈍
を施し、その後200℃の温間圧延により0.25mmに
仕上げ、酸洗した。これを連続焼鈍炉にて850℃で3
0秒保定し焼鈍し、8%のスキンパス圧延により、0.
23mmに仕上げた。その後、エプスタイン試料に切断
し、800℃2時間の歪取り焼鈍後、磁気特性を測定し
た。表10に本発明と比較例の張力と磁気測定結果をあ
わせて示す。
Thereafter, the sheet temperature was set to 300 ° C. and 0.85 mm
This was subjected to intermediate annealing at 980 ° C. for 30 seconds, and then finished to 0.25 mm by warm rolling at 200 ° C., followed by pickling. This is heated at 850 ° C in a continuous annealing furnace for 3 hours.
Hold for 0 seconds, anneal, and 8% skin pass rolling.
Finished to 23mm. Thereafter, the sample was cut into Epstein samples, and the magnetic properties were measured after strain relief annealing at 800 ° C. for 2 hours. Table 10 also shows the tensile and magnetic measurement results of the present invention and the comparative example.

【0082】表10に示されるように、最終スタンドと
コイラ間の張力を式(1)に従って制御することによ
り、磁束密度の値が高い磁気特性の優れた無方向性電磁
鋼板を得ることが可能である。
As shown in Table 10, by controlling the tension between the final stand and the coiler according to equation (1), it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties. It is.

【0083】[0083]

【表9】 [Table 9]

【0084】[0084]

【表10】 [Table 10]

【0085】[実施例4]表11に示した成分を有する
無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧
延機により厚み40mmの粗バーに仕上げ、その後、仕上
げ熱延機により2.0mmに仕上げた。仕上熱延終了温度
は900℃とし、圧延終了後冷却して650℃で巻き取
った。なお、熱延終了温度が900℃の場合、式(1)
から計算できる最終スタンドとコイラ間の張力の最低値
は1.11kgf/mm2 である。
Example 4 A slab for non-oriented electromagnetic steel having the components shown in Table 11 was heated by a usual method, and finished into a coarse bar having a thickness of 40 mm by a rough rolling mill. To 2.0 mm. The finishing hot rolling end temperature was 900 ° C., and after the rolling was completed, the roll was cooled and wound at 650 ° C. When the hot rolling end temperature is 900 ° C., the equation (1)
The minimum value of the tension between the final stand and the coiler which can be calculated from the above is 1.11 kgf / mm 2 .

【0086】得られた熱延板に熱延板焼鈍を箱焼鈍炉で
800℃、5時間施した。その後、酸洗を施し、冷間圧
延により0.50mmに仕上げた。これを連続焼鈍炉にて
鋼Mは900℃で30秒間、鋼Nは980℃で30秒間
焼鈍した。その後、エプスタイン試料を切り出し、磁気
特性を測定した。表12に本発明と比較例の張力と磁気
測定結果をあわせて示す。
The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing in a box annealing furnace at 800 ° C. for 5 hours. Then, it was pickled and finished to 0.50 mm by cold rolling. The steel M was annealed at 900 ° C. for 30 seconds and the steel N at 980 ° C. for 30 seconds in a continuous annealing furnace. Thereafter, an Epstein sample was cut out and its magnetic properties were measured. Table 12 also shows the tensile and magnetic measurement results of the present invention and the comparative example.

【0087】このように、最終スタンドとコイラ間の張
力を式(1)に従って制御することにより、磁束密度の
値が高い磁気特性の優れた無方向性電磁鋼板を得ること
が可能である。
As described above, by controlling the tension between the final stand and the coiler according to the equation (1), it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【0088】[0088]

【表11】 [Table 11]

【0089】[0089]

【表12】 [Table 12]

【0090】[実施例5]表13に示した成分を有する
無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧
延機により厚み50mmの粗バーに仕上げ、その後、仕上
げ熱延機により2.5mmに仕上げた。仕上熱延終了温度
は1000℃とし、圧延終了後冷却して875℃で巻き
取り、直ちにコイルを保熱炉に装入し850℃で1時間
の自己焼鈍を施した。なお、熱延終了温度が1000℃
の場合、式(1)から計算できる最終スタンドとコイラ
間の張力の最低値は0.96kgf/mm2 である。
Example 5 A slab for non-oriented electromagnetic steel having the components shown in Table 13 was heated by a usual method, and was finished into a rough bar having a thickness of 50 mm by a rough rolling machine. To 2.5 mm. The finish hot rolling end temperature was set to 1000 ° C., and after the rolling was completed, cooled and wound up at 875 ° C., and the coil was immediately charged into a heat retaining furnace and subjected to self-annealing at 850 ° C. for 1 hour. The hot rolling end temperature is 1000 ° C.
In the case of, the minimum value of the tension between the final stand and the coiler, which can be calculated from the equation (1), is 0.96 kgf / mm 2 .

【0091】その後、酸洗を施し、冷間圧延により0.
50mmに仕上げた。これを連続焼鈍炉にて鋼Oは950
℃で30秒間、鋼Pは975℃で30秒間、鋼Qは85
0℃で30秒間焼鈍した。その後、エプスタイン試料を
切り出し、磁気特性を測定した。表14に本発明と比較
例の張力と磁気測定結果をあわせて示す。
After that, pickling is performed, and cold rolling is performed to obtain 0.1%.
Finished to 50mm. The steel O was 950 in a continuous annealing furnace.
° C for 30 seconds, steel P at 975 ° C for 30 seconds, steel Q at 85
Annealed at 0 ° C. for 30 seconds. Thereafter, an Epstein sample was cut out and its magnetic properties were measured. Table 14 also shows the tensile and magnetic measurement results of the present invention and the comparative example.

【0092】このように、最終スタンドとコイラ間の張
力を式(1)に従って制御することにより、磁束密度の
値が高い磁気特性の優れた無方向性電磁鋼板を得ること
が可能である。
As described above, by controlling the tension between the final stand and the coiler according to the equation (1), it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【0093】[0093]

【表13】 [Table 13]

【0094】[0094]

【表14】 [Table 14]

【0095】[実施例6]表15に示した成分を有する
無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧
延機により厚み50mmの粗バーに仕上げ、その後、仕上
げ熱延機により2.5mmに仕上げた。仕上熱延終了温度
は1020℃とし、無注水時間を3.5秒とし、640
℃で巻き取った。この時、式(1)から定まる最終スタ
ンドとコイラ間の張力は0.94kgf/mm2 以上である。
Example 6 A slab for non-oriented electromagnetic steel having the components shown in Table 15 was heated by a usual method, and finished into a rough bar having a thickness of 50 mm by a rough rolling mill. To 2.5 mm. The finish hot rolling end temperature was set to 1020 ° C., the non-water injection time was set to 3.5 seconds, and 640
Wound at ℃. At this time, the tension between the final stand and the coiler determined from the equation (1) is 0.94 kgf / mm 2 or more.

【0096】その後、酸洗を施し、冷間圧延により0.
50mmに仕上げた。これを連続焼鈍炉にて鋼Rは950
℃で、鋼Sは980℃でそれぞれ30秒間焼鈍した。そ
の後、エプスタイン試料を切り出し、磁気特性を測定し
た。表16に本発明と比較例の張力と磁気測定結果をあ
わせて示す。
[0096] After that, pickling is carried out, and cold rolling is carried out.
Finished to 50mm. The steel R was 950 in a continuous annealing furnace.
C, the steel S was annealed at 980 C for 30 seconds each. Thereafter, an Epstein sample was cut out and its magnetic properties were measured. Table 16 also shows the tensile and magnetic measurement results of the present invention and the comparative example.

【0097】このように、最終スタンドとコイラ間の張
力を式(1)に従って制御することにより、磁束密度の
値が高い磁気特性の優れた無方向性電磁鋼板を得ること
が可能である。
As described above, by controlling the tension between the final stand and the coiler according to the equation (1), it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【0098】[0098]

【表15】 [Table 15]

【0099】[0099]

【表16】 [Table 16]

【0100】[実施例7]表17に示した成分を有する
無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧
延機により厚み50mmの粗バーに仕上げ、その後、仕上
げ熱延機により2.5mmに仕上げた。熱延終了温度は1
050℃とし、無注水時間を変化させ、巻取温度は68
0℃で一定とした。この場合、式(1)で規定される最
終スタンドとコイラ間の張力は0.90kgf/mm2 以上で
ある。このため、最終スタンドとコイラ間の張力は1.
35〜1.45kgf/mm2 に保って熱延板を巻き取った。
さらに、最終スタンドとコイラ間の張力を安定させるた
めに、先行するシートバーの後端に、後続のシートバー
を圧接しながら溶接し、連続して熱延を行った。また、
式(2)および式(3)で規定される無注水時間は1.
2秒以上7.2秒以下である。
[Example 7] A slab for non-oriented electromagnetic steel having the components shown in Table 17 was heated by a usual method, and finished into a coarse bar having a thickness of 50 mm by a rough rolling mill. To 2.5 mm. Hot rolling end temperature is 1
050 ° C., changing the no-water injection time,
It was kept constant at 0 ° C. In this case, the tension between the final stand and the coiler defined by the equation (1) is 0.90 kgf / mm 2 or more. Therefore, the tension between the final stand and the coiler is 1.
The hot rolled sheet was wound up while maintaining the pressure at 35 to 1.45 kgf / mm 2 .
Further, in order to stabilize the tension between the final stand and the coiler, the succeeding sheet bar was welded to the rear end of the preceding sheet bar while being pressed, and hot rolling was continuously performed. Also,
The no-water injection time defined by the equations (2) and (3) is 1.
It is 2 seconds or more and 7.2 seconds or less.

【0101】その後、酸洗を施し、冷間圧延により0.
50mmに仕上げた。これを連続焼鈍炉にて900℃で3
0秒間焼鈍した。その後、エプスタイン試料を切り出
し、磁気特性を測定した。表18に熱延条件と磁気測定
結果をあわせて示す。表18に示されるように、無注水
時間が1.2秒以上であれば良好な磁気特性が得られて
いることがわかる。
Thereafter, pickling is carried out and cold rolling is carried out.
Finished to 50mm. This was heated at 900 ° C in a continuous annealing furnace for 3 hours.
Annealed for 0 seconds. Thereafter, an Epstein sample was cut out and its magnetic properties were measured. Table 18 shows the hot rolling conditions and the results of the magnetic measurement. As shown in Table 18, it is understood that good magnetic properties are obtained when the no-water injection time is 1.2 seconds or more.

【0102】このように、最終スタンドとコイラ間の張
力の適切な制御とともに、熱延終了後の冷却条件を適切
に制御することにより、磁束密度の値が高く、鉄損値の
低い磁気特性の優れた無方向性電磁鋼板を得ることが可
能である。
As described above, by appropriately controlling the tension between the final stand and the coiler and appropriately controlling the cooling conditions after the end of hot rolling, the magnetic properties of a high magnetic flux density value and a low iron loss value can be obtained. It is possible to obtain an excellent non-oriented electrical steel sheet.

【0103】[0103]

【表17】 [Table 17]

【0104】[0104]

【表18】 [Table 18]

【0105】[0105]

【発明の効果】このように本願発明によれば、磁束密度
が高い無方向性電磁鋼板を製造することが可能である。
As described above, according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet having a high magnetic flux density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】0.3%Si系成分の熱延板焼鈍省略一回冷延
法における仕上熱延時の熱延終了温度、最終スタンドと
コイラ間の張力と成品磁束密度の関係を示す図。
FIG. 1 is a diagram showing the relationship between the hot-rolling end temperature, the tension between a final stand and a coiler, and the magnetic flux density of a product at the time of finishing hot-rolling in a one-time cold rolling method in which hot-rolled sheet annealing of 0.3% Si component is omitted.

【図2】2%Si系成分の熱延板焼鈍省略一回冷延法に
おける仕上熱延時の熱延終了温度、最終スタンドとコイ
ラ間の張力と成品磁束密度の関係を示す図。
FIG. 2 is a graph showing the relationship between the hot-rolling end temperature, the tension between the final stand and the coiler, and the magnetic flux density of the finished product in the finish hot-rolling in the one-time cold rolling method in which the hot-rolled sheet annealing of 2% Si component is omitted.

【図3】2%Si系成分の熱延板焼鈍一回冷延法におけ
る仕上熱延時の熱延終了温度、最終スタンドとコイラ間
の張力と成品磁束密度の関係を示す図。
FIG. 3 is a diagram showing the relationship between the hot-rolling end temperature, the tension between the final stand and the coiler, and the magnetic flux density of the finished product during the finishing hot-rolling in the hot-rolled sheet annealing cold rolling method of a 2% Si-based component.

【図4】2%Si系成分の連続焼鈍による熱延板焼鈍一
回冷延法における熱延板焼鈍時間と製品磁束密度との関
係を示す図。
FIG. 4 is a view showing a relationship between a hot-rolled sheet annealing time and a product magnetic flux density in the hot-rolled sheet annealing single cold rolling method by continuous annealing of a 2% Si-based component.

【図5】2%Si系成分の連続焼鈍による熱延板焼鈍一
回冷延法における熱延板焼鈍温度と製品磁束密度との関
係を示す図。
FIG. 5 is a diagram showing the relationship between the hot-rolled sheet annealing temperature and the product magnetic flux density in the hot-rolled sheet annealing single cold rolling method by continuous annealing of 2% Si-based components.

【図6】2%Siおよび3%Si系成分の熱延後自己焼
鈍プロセス一回冷延法における仕上熱延時の最終スタン
ドとコイラ間の張力と成品磁束密度の関係を示す図。
FIG. 6 is a view showing the relationship between the tension between the final stand and the coiler and the magnetic flux density of the finished product at the time of finish hot rolling in the single cold rolling method after the self-annealing process after hot rolling of 2% Si and 3% Si components.

【図7】2.5%Si成分系の熱延終了後無注水時間設
定プロセス一回冷延法における仕上熱延時の最終スタン
ドとコイラ間の張力と成品磁束密度の関係を示す図であ
る。
FIG. 7 is a diagram showing the relationship between the tension between the final stand and the coiler and the magnetic flux density of the final stand at the time of finish hot rolling in the single cold rolling method after the end of hot rolling of the 2.5% Si component system.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 2.00%<Si≦7.00%、 0.10%≦Mn≦1.50%、 C≦0.0050%、 N≦0.0050%、 S≦0.0050%を含有し、残部がFeおよび不可避
的不純物からなるスラブを熱間圧延して熱延板とし、該
熱延板に一回もしくは中間焼鈍をはさむ二回以上の冷間
圧延を施して冷延板とし、次いで仕上焼鈍を施し、絶縁
皮膜を施すか、或いは施さない工程を含んで最終製品と
する無方向性電磁鋼板の製造方法において、仕上熱間圧
延終了後、最終スタンドとコイラ間の張力σ(kgf/m
m2 )を仕上げ熱延終了温度T(℃)との関係で、下記
(1)式に保って熱延板をコイルに巻取ることを特徴と
する磁束密度の高い無方向性電磁鋼板の製造方法。 σ(kgf/mm2 )≧2−T0.3 +lnT ‥‥‥(1)
1.% by weight: 2.00% <Si ≦ 7.00%, 0.10% ≦ Mn ≦ 1.50%, C ≦ 0.0050%, N ≦ 0.0050%, S ≦ 0 A slab containing 0.0050%, with the balance being Fe and unavoidable impurities, is hot-rolled to give a hot-rolled sheet, and the hot-rolled sheet is subjected to one or two or more cold rolling steps including intermediate annealing. In a method of manufacturing a non-oriented electrical steel sheet which is a final product including a step of applying a cold rolled sheet and then performing a finish annealing and applying or not applying an insulating film, after finishing hot rolling, the final stand and the coiler Tension σ (kgf / m
m 2 ) in relation to the finish hot rolling end temperature T (° C.), and manufacturing a non-oriented electrical steel sheet having a high magnetic flux density, wherein the hot rolled sheet is wound around a coil while maintaining the following equation (1). Method. σ (kgf / mm 2 ) ≧ 2-T 0.3 + lnT ‥‥‥ (1)
【請求項2】 スラブ成分として、さらに重量%で、
0.10%〜1.00%のAlを含有せしめたことを特
徴とする請求項1記載の無方向性電磁鋼板の製造方法。
2. As a slab component, further in weight%:
The method for producing a non-oriented electrical steel sheet according to claim 1, wherein 0.10% to 1.00% of Al is contained.
【請求項3】 重量%で、 0.10%<Si≦2.00%、 0.10%≦Mn≦1.50%、 C≦0.0050%、 N≦0.0050%、 S≦0.0050%を含有し、残部がFeおよび不可避
的不純物からなるスラブを熱間圧延して熱延板とし、該
熱延板に一回もしくは中間焼鈍をはさむ二回以上の冷間
圧延を施して冷延板とし、次いで仕上焼鈍を施し、絶縁
皮膜を施すか、あるいは施さない工程を含んで最終製品
とする無方向性電磁鋼板の製造方法において、仕上熱延
終了温度が700℃以上(Ar3 +Ar1 )/2以下
で、かつ仕上熱間圧延終了後、最終スタンドとコイラ間
の張力σ(kgf/mm2 )を仕上げ熱延終了温度T(℃)と
の関係で、下記(1)式に保って熱延板をコイルに巻取
ることを特徴とする磁束密度の高い無方向性電磁鋼板の
製造方法。 σ(kgf/mm2 )≧2−T0.3 +lnT ‥‥‥(1)
3.% by weight: 0.10% <Si ≦ 2.00%, 0.10% ≦ Mn ≦ 1.50%, C ≦ 0.0050%, N ≦ 0.0050%, S ≦ 0 A slab containing 0.0050%, the balance being Fe and unavoidable impurities, is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet is subjected to one or two or more cold rolling steps including intermediate annealing. In a method for producing a non-oriented electrical steel sheet which is a final product including a step of forming a cold rolled sheet and then performing a finish annealing and applying or not applying an insulating film, the finish hot rolling end temperature is 700 ° C. or more (Ar 3 + Ar 1 ) / 2 or less, and after finishing hot rolling, the tension σ (kgf / mm 2 ) between the final stand and the coiler is expressed by the following equation (1) in relation to the finishing hot rolling end temperature T (° C.). Non-directional electromagnetic with high magnetic flux density characterized by winding a hot rolled sheet into a coil while keeping the temperature Method of manufacturing the plate. σ (kgf / mm 2 ) ≧ 2-T 0.3 + lnT ‥‥‥ (1)
【請求項4】 スラブ成分として、さらに重量%で、
0.10%〜1.00%のAlを含有させ、かつ(Si
+2Al)≦2.5%を満足させることを特徴とする請
求項3記載の無方向性電磁鋼板の製造方法。
4. As a slab component, further by weight%
0.10% to 1.00% Al, and (Si
4. The method for producing a non-oriented electrical steel sheet according to claim 3, wherein (+ 2Al) ≦ 2.5% is satisfied.
【請求項5】 仕上熱延終了後、冷間圧延前に、鋼板に
850℃以上1150℃以下の温度で20秒以上5分未
満の連続焼鈍で熱延板焼鈍を行うことを特徴とする請求
項1乃至4の何れか1項に記載の磁束密度が高く、鉄損
の低い無方向性電磁鋼板の製造方法。
5. After finishing hot rolling and before cold rolling, the steel sheet is subjected to continuous annealing at a temperature of 850 ° C. or more and 1150 ° C. or less for 20 seconds or more and less than 5 minutes. Item 5. The method for producing a non-oriented electrical steel sheet according to any one of Items 1 to 4, wherein the magnetic flux density is high and the iron loss is low.
【請求項6】 仕上熱延終了後、冷間圧延前に、鋼板に
750℃以上850℃以下の温度で5分以上30時間未
満の箱焼鈍で熱延板焼鈍を行うことを特徴とする請求項
1乃至4の何れか1項に記載の磁束密度が高く、鉄損の
低い無方向性電磁鋼板の製造方法。
6. After finishing hot rolling and before cold rolling, the steel sheet is subjected to box annealing at a temperature of 750 ° C. or more and 850 ° C. or less by box annealing for 5 minutes or more and less than 30 hours. Item 5. The method for producing a non-oriented electrical steel sheet according to any one of Items 1 to 4, wherein the magnetic flux density is high and the iron loss is low.
【請求項7】 仕上熱延終了後、750℃以上1000
℃以下の温度でコイルに巻き取り、5分以上5時間以下
コイル自身の保有熱で自己焼鈍することを特徴とする請
求項1乃至4の何れか1項に記載の磁束密度が高く、鉄
損の低い無方向性電磁鋼板の製造方法。
7. After finishing hot rolling, the temperature is 750 ° C. or more and 1000
The magnetic flux density is high according to any one of claims 1 to 4, wherein the coil is wound around the coil at a temperature of not more than 5 ° C and self-annealed by the heat held by the coil itself for 5 minutes to 5 hours. Method for producing non-oriented electrical steel sheet with low hardness.
【請求項8】 下記(2)式の範囲で行う仕上熱延終了
温度T(℃)との関係で、熱延終了後下記の(3)式で
規定される時間tの間注水を行わず、コイルに巻き取る
ことを特徴とする請求項1乃至7の何れか1項に記載の
磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方
法。 950≦T(℃)≦1150 ‥‥‥(2) 9.6−8×10-3T≦t(秒)≦15.6−8×10-3T‥‥‥(3)
8. In relation to the finishing hot rolling end temperature T (° C.) performed in the range of the following equation (2), water is not injected for a time t defined by the following equation (3) after the end of the hot rolling. The method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss according to any one of claims 1 to 7, wherein the non-oriented electrical steel sheet is wound around a coil. 950 ≦ T (° C.) ≦ 1150 {(2) 9.6-8 × 10 −3 T ≦ t (second) ≦ 15.6-8 × 10 −3 T} (3)
【請求項9】 粗圧延後のシートバーを仕上熱延前に先
行するシートバーに接合し、当該シートバーを連続して
仕上熱延に供することを特徴とする請求項1乃至8の何
れか1項に記載の磁束密度が高く、鉄損の低い無方向性
電磁鋼板の製造方法。
9. The sheet bar according to claim 1, wherein the sheet bar after the rough rolling is joined to a preceding sheet bar before the hot rolling, and the sheet bar is continuously subjected to the hot rolling. 2. The method for producing a non-oriented electrical steel sheet according to claim 1 having a high magnetic flux density and a low iron loss.
【請求項10】 仕上焼鈍を施した後、さらに、圧下率
2%以上20%以下のスキンパス圧延工程を実施するこ
とを特徴とする請求項1乃至9の何れか1項に記載の磁
束密度が高い無方向性電磁鋼板の製造方法。
10. The magnetic flux density according to claim 1, wherein after the finish annealing, a skin pass rolling step at a rolling reduction of 2% or more and 20% or less is further performed. Highly non-oriented electrical steel sheet manufacturing method.
JP05465797A 1997-03-10 1997-03-10 Method for producing non-oriented electrical steel sheet with high magnetic flux density Expired - Fee Related JP4091673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05465797A JP4091673B2 (en) 1997-03-10 1997-03-10 Method for producing non-oriented electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05465797A JP4091673B2 (en) 1997-03-10 1997-03-10 Method for producing non-oriented electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH10251751A true JPH10251751A (en) 1998-09-22
JP4091673B2 JP4091673B2 (en) 2008-05-28

Family

ID=12976868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05465797A Expired - Fee Related JP4091673B2 (en) 1997-03-10 1997-03-10 Method for producing non-oriented electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP4091673B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220643A (en) * 2001-01-29 2002-08-09 Nippon Steel Corp Non-oriented electromagnetic steel sheet with low iron loss and adequate workability, and manufacturing method therefor
JP2008524449A (en) * 2004-12-21 2008-07-10 ポスコ カンパニーリミテッド Non-oriented electrical steel sheet with improved magnetic flux density and manufacturing method thereof
EP2778244A4 (en) * 2011-11-11 2015-07-08 Nippon Steel & Sumitomo Metal Corp Anisotropic electromagnetic steel sheet and method for producing same
CN110004280A (en) * 2017-12-26 2019-07-12 Posco公司 The preparation method of non-oriented electromagnetic steel sheet
CN113198866A (en) * 2021-05-07 2021-08-03 新余钢铁股份有限公司 Thin-gauge middle-high-grade non-oriented silicon steel acid rolling production process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220643A (en) * 2001-01-29 2002-08-09 Nippon Steel Corp Non-oriented electromagnetic steel sheet with low iron loss and adequate workability, and manufacturing method therefor
JP2008524449A (en) * 2004-12-21 2008-07-10 ポスコ カンパニーリミテッド Non-oriented electrical steel sheet with improved magnetic flux density and manufacturing method thereof
JP4804478B2 (en) * 2004-12-21 2011-11-02 ポスコ Method for producing non-oriented electrical steel sheet with improved magnetic flux density
EP2778244A4 (en) * 2011-11-11 2015-07-08 Nippon Steel & Sumitomo Metal Corp Anisotropic electromagnetic steel sheet and method for producing same
US9728312B2 (en) 2011-11-11 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
US10214791B2 (en) 2011-11-11 2019-02-26 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet
CN110004280A (en) * 2017-12-26 2019-07-12 Posco公司 The preparation method of non-oriented electromagnetic steel sheet
CN113198866A (en) * 2021-05-07 2021-08-03 新余钢铁股份有限公司 Thin-gauge middle-high-grade non-oriented silicon steel acid rolling production process
CN113198866B (en) * 2021-05-07 2023-03-17 新余钢铁股份有限公司 Thin-gauge middle-high-grade non-oriented silicon steel acid rolling production process

Also Published As

Publication number Publication date
JP4091673B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
CA2781916C (en) Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby
JP5350253B2 (en) Method for producing flat steel products from boron microalloyed multiphase steels
JPH10251751A (en) Production of nonoriented silicon steel sheet high in magnetic flux density
JPH11335793A (en) Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, and its production
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2001131636A (en) Method for producing non-oriented silicon steel sheet uniform in magnetism
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JPH09310124A (en) Manufacture of nonoriented silicon steel sheet excellent in shape and magnetic property
JPH1036912A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property
JPH10298649A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density and low iron loss and minimal in anisotropy
JPH0794689B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2001198606A (en) Cold rolling method for obtaining grain oriented silicon steel sheet small in variation of magnetic property in cold rolling direction
CN115720594A (en) Method and apparatus for manufacturing grain-oriented electrical steel sheet
JP2001098325A (en) Method of producing nonoriented silicon steel sheet high in magnetic flux density
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH10140239A (en) Production of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JP2001172719A (en) Method for producing nonoriented silicon steel sheet excellent in magnetic property
JPH09125144A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2000297325A (en) Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees