JPH1025158A - Sintered compact for termistor and production thereof - Google Patents

Sintered compact for termistor and production thereof

Info

Publication number
JPH1025158A
JPH1025158A JP8201178A JP20117896A JPH1025158A JP H1025158 A JPH1025158 A JP H1025158A JP 8201178 A JP8201178 A JP 8201178A JP 20117896 A JP20117896 A JP 20117896A JP H1025158 A JPH1025158 A JP H1025158A
Authority
JP
Japan
Prior art keywords
sintered body
thermistor
powder
crystal phase
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP8201178A
Other languages
Japanese (ja)
Inventor
Atsushi Otsuka
淳 大塚
Yoshio Hayashi
義勇 林
Satoshi Iio
聡 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP8201178A priority Critical patent/JPH1025158A/en
Publication of JPH1025158A publication Critical patent/JPH1025158A/en
Ceased legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered compact for a thermistor having a high stability at a high temperature, especially in >=600 deg.C temperature range, and to provide a method for producing the same. SOLUTION: This five sintered compact for a thermistor having >=95% relative density, is obtained by wet-mixing high purity Y2 O5 powder and Cr2 O3 powder, drying the mixed powder, then calcining the powder at 1300 deg.C for 5hr to obtain YCrO3 single phase powder, wet-crushing the calcined powder, drying the crushed powder, forming a compact having an optical shape, burning the compact under any atmosphere of nitrogen gas, hydrogen gas an inert gas and a mixed gas of them under 10<-20> -10-4 atm oxygen partial pressure at 1500-1700 deg.C, e.g. approximately 1600 deg.C, for approximately 1hr, and then heat- treating the sintered compact at >=600 deg.C, e.g. at 1000 deg.C for >=10hr, especially for 200hr. As a heating furnace for burning, a tungsten heater, etc., are preferred to a carbon heater.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負の温度係数を持
ったサーミスタ(NTCサーミスタ)用焼結体及びその
製造方法に関する。本発明のサーミスタ用焼結体は、高
温における安定性が高く、特に600℃以上で使用され
るサーミスタ用焼結体として使用することができる。
The present invention relates to a sintered body for a thermistor (NTC thermistor) having a negative temperature coefficient and a method for producing the same. INDUSTRIAL APPLICABILITY The sintered body for a thermistor of the present invention has high stability at high temperatures, and can be used particularly as a sintered body for a thermistor used at 600 ° C. or higher.

【0002】[0002]

【従来の技術】高温において使用されるサーミスタ用材
料としては、従来より、(1) Al2 3 及びCr2 3
を主成分とするコランダム型結晶構造を主体とする材料
(特開昭50−118294号公報等)、(2) MgAl
2 4 、MgCr2 4 及びMgFe2 4 等のスピネ
ル型結晶構造を有する化合物を主体とした材料(特開昭
49−63995号公報等)、
2. Description of the Related Art Materials for thermistors used at high temperatures include: (1) Al 2 O 3 and Cr 2 O 3;
A material having a corundum-type crystal structure mainly composed of (for example, JP-A-50-118294), (2) MgAl
Materials mainly composed of compounds having a spinel-type crystal structure such as 2 O 4 , MgCr 2 O 4 and MgFe 2 O 4 (JP-A-49-63995, etc.);

【0003】(3) 融点が高く、導電性を有するペロブス
カイト型結晶構造の化合物を主体とした材料であり、例
えばLa(Al1-X CrX )O3 系の組成をもつ材料
(特開昭51−108298号公報等)、絶縁基板上
にLaCrO3 を薄膜化して用いる材料(特開昭61−
161701号公報等)、及びLaCrO3 とMgA
2 4 とを混合した材料(特開昭51−95297号
公報、特開昭51−23691号公報等)、などが使用
されている。
(3) A material mainly composed of a compound having a perovskite type crystal structure having a high melting point and conductivity, for example, a material having a La (Al 1 -x Cr x ) O 3 -based composition (Japanese Unexamined Patent Publication No. 51-108298), a material using LaCrO 3 in a thin film on an insulating substrate (Japanese Patent Application Laid-Open No. 61-108298).
161701), and LaCrO 3 and MgA
l 2 O 4 and a mixture material (JP 51-95297, JP-JP 51-23691 Publication), etc. are used.

【0004】[0004]

【発明が解決しようとする課題】しかし、現在用いられ
ているNTCサーミスタは、実用上、500℃或いは6
00℃以下の使用範囲のものがほとんどである。実際、
高温用サーミスタとして供されているものであっても、
上記温度を上回る領域では導電特性が不安定となり、長
時間の使用には適さないものが多い。また、上記(1) 〜
(3) のサーミスタ用材料のうち、ペロブスカイト化合物
の中には耐熱性の高い材料もいくつかある。しかし、耐
熱性の高い材料は一般に難焼結性であり、緻密化するた
めには焼結助剤を必要とするが、この焼結助剤によって
焼結体の耐熱性が低下するとの問題を生ずる。更に、ラ
ンタン、ネオジム等の元素及びその酸化物などが材料中
に残存した場合、空気中の水分と反応して水酸化物が形
成され、素子の崩壊をもたらす恐れもある。
However, the NTC thermistor currently used is practically 500 ° C. or 6 ° C.
Most of them are in the use range below 00 ° C. In fact,
Even if it is provided as a high temperature thermistor,
In a region exceeding the above temperature, the conductive characteristics become unstable, and many of them are not suitable for long-time use. In addition, the above (1) ~
Among the thermistor materials of (3), some perovskite compounds have high heat resistance. However, materials having high heat resistance are generally difficult to sinter, and require a sintering aid for densification. However, there is a problem that the heat resistance of the sintered body is reduced by the sintering aid. Occurs. Furthermore, when elements such as lanthanum and neodymium and their oxides remain in the material, they react with moisture in the air to form hydroxides, which may cause the element to collapse.

【0005】YCrO3 系材料は耐熱性が高く、且つ優
れた導電特性を有する材料であるが、その耐熱性の高さ
ゆえに、緻密化のためには大気中では焼結助剤の添加が
必須である。しかし、焼結助剤の添加によって、材料の
耐熱性が低下し、経時的な抵抗変化が大きくなる等、材
料特性が不安定となる。また、焼結体の緻密性が低い、
即ち、低密度であるということは、材料表面に開口した
気孔の割合が高く、雰囲気に晒される素子の面積が大き
いということである。そのような素子では、酸素分圧の
変化或いは素子へのガスの吸着等、サーミスタの比抵抗
が雰囲気に大いに影響を受けることになる。この雰囲気
の影響を低減するためには、素子の周りに耐熱性のケー
ス等を設けて、素子が雰囲気に直接晒されないようにす
る手法等が有効である。しかし、そうすると応答速度が
遅くなる等の新たな問題を生ずることになる。
[0005] YCrO 3 -based materials have high heat resistance and excellent conductivity, but due to their high heat resistance, the addition of a sintering aid in air is essential for densification. It is. However, the addition of the sintering aid reduces the heat resistance of the material and makes the material characteristics unstable, such as a large change in resistance over time. In addition, the compactness of the sintered body is low,
That is, low density means that the proportion of pores opened on the material surface is high, and the area of the element exposed to the atmosphere is large. In such a device, the specific resistance of the thermistor is greatly affected by the atmosphere, such as a change in oxygen partial pressure or adsorption of gas to the device. In order to reduce the influence of the atmosphere, it is effective to provide a heat-resistant case or the like around the element to prevent the element from being directly exposed to the atmosphere. However, this causes new problems such as a slow response speed.

【0006】一方、クロムを含む化合物は、一般に、還
元雰囲気中で焼成すると焼結性が向上することが知られ
ている。そして、YCrO3 系材料も還元雰囲気におい
て焼成することにより、緻密化を促進することができ
る。しかし、そのようにして得られた焼結体では、クロ
ム等のキャリアを形成する金属の価数が変化し易いため
か、初期の比抵抗が変動し易いとの問題がある。
On the other hand, it is known that sinterability of a compound containing chromium is generally improved when fired in a reducing atmosphere. Further, the YCrO 3 -based material is also fired in a reducing atmosphere, whereby the densification can be promoted. However, the sintered body thus obtained has a problem in that the valence of the metal forming the carrier such as chromium is easily changed, or the initial specific resistance is easily changed.

【0007】本発明は上記の問題を解決するものであ
り、実質的にYCrO3 のペロブスカイト型結晶相のみ
を含む焼結体からなるサーミスタ用焼結体及びその製造
方法を提供することを目的とする。本発明のサーミスタ
用焼結体は、不純物が極めて少なく、その材料特性が安
定しており、且つ十分に緻密化されている。そのため、
本発明の焼結体を用いたサーミスタは、500〜600
℃以上、特にこの温度を大きく上回る1000℃程度の
高温においても、実用上、何ら問題なく使用することが
できる。
An object of the present invention is to provide a sintered body for a thermistor comprising a sintered body containing substantially only a perovskite type crystal phase of YCrO 3 and a method for producing the same. I do. The sintered body for a thermistor of the present invention has very few impurities, has stable material properties, and is sufficiently densified. for that reason,
The thermistor using the sintered body of the present invention is 500 to 600
Even at a high temperature of 1000 ° C. or more, especially about 1000 ° C., which is much higher than this temperature, it can be practically used without any problem.

【0008】[0008]

【課題を解決するための手段】第1発明のサーミスタ用
焼結体は、結晶相としてYCrO3 を主体とするペロブ
スカイト型結晶相のみを含むサーミスタ用焼結体であっ
て、該焼結体の相対密度は95%以上であり、且つ該焼
結体に含まれる上記ペロブスカイト型結晶相以外の不純
物は、該ペロブスカイト型結晶相100容量%に対して
0.5容量%以下であることを特徴とする。
A sintered body for a thermistor according to the first invention is a sintered body for a thermistor containing only a perovskite-type crystal phase mainly composed of YCrO 3 as a crystal phase. The relative density is 95% or more, and impurities other than the perovskite-type crystal phase contained in the sintered body are 0.5% by volume or less with respect to 100% by volume of the perovskite-type crystal phase. I do.

【0009】上記「YCrO3 のペロブスカイト型結晶
相」を構成する化合物は、Y2 3とCr2 3 とを、
YとCrとの比が1:1になるように混合した後、成形
し、焼成して得られる。また、成形に先立ち、1200
〜1500℃で数時間仮焼することが好ましい。そし
て、本発明では、焼結助剤を使用しないもかかわらず、
その「相対密度」が「95%以上」の焼結体とすること
ができる。焼結体の相対密度が95%以上であれば、焼
結体の表面に開口する気孔が実質的に存在せず、サーミ
スタの導電特性への焼成雰囲気の影響が大きく低減され
る。
The compound constituting the “perovskite-type crystal phase of YCrO 3 ” includes Y 2 O 3 and Cr 2 O 3 ,
After mixing so that the ratio of Y to Cr becomes 1: 1, it is obtained by molding and firing. Prior to molding, 1200
It is preferable to calcine at ~ 1500C for several hours. And, in the present invention, despite not using a sintering aid,
A sintered body having a "relative density" of "95% or more" can be obtained. If the relative density of the sintered body is 95% or more, there are substantially no pores opened on the surface of the sintered body, and the influence of the firing atmosphere on the conductive characteristics of the thermistor is greatly reduced.

【0010】また、上記「サーミスタ用焼結体」は、そ
の焼成に特に焼結助剤を必要としない。そのため、ペロ
ブスカイト型結晶相以外の「不純物」は「0.5容量%
以下」と非常に少ない。そして、この不純物が少ないほ
ど、得られるサーミスタの耐熱性が高くなる。従って、
焼結助剤を使用しないばかりでなく、原料として可能な
限り高純度なY2 3 及びCr2 3 を使用することが
好ましい。不純物は0.1容量%以下とすることが更に
好ましく、より耐熱性の高いサーミスタを得ることがで
きる。
The above-mentioned "sintered body for thermistor" does not require a sintering aid for firing. Therefore, “impurities” other than the perovskite type crystal phase are “0.5% by volume”.
Below. " And the less the impurities, the higher the heat resistance of the obtained thermistor. Therefore,
In addition to not using a sintering aid, it is preferable to use as pure Y 2 O 3 and Cr 2 O 3 as possible as raw materials. The impurity is more preferably 0.1% by volume or less, and a thermistor having higher heat resistance can be obtained.

【0011】また、第2発明のサーミスタ用焼結体の製
造方法は、焼成後における結晶相としてYCrO3 のペ
ロブスカイト型結晶相のみを含み且つ該ペロブスカイト
型結晶相以外の不純物が、該ペロブスカイト型結晶相1
00容量%対して0.5容量%以下になるように原料粉
末を混合し、成形した後、窒素ガス、水素ガス、不活性
ガス及びこれらのうちの2種以上のガスの混合ガスより
選ばれ、且つその酸素分圧が10-20 〜10-4気圧であ
る雰囲気中にて、1500℃以上の温度で焼成し、次い
で、大気中、900℃以上の温度で10時間以上熱処理
することを特徴とする。
Further, the method for producing a sintered body for a thermistor according to the second invention is characterized in that the crystal phase after firing contains only a perovskite crystal phase of YCrO 3 and impurities other than the perovskite crystal phase are mixed with the perovskite crystal phase. Phase 1
After mixing and molding the raw material powders so as to be 0.5% by volume or less with respect to 00% by volume, selected from nitrogen gas, hydrogen gas, inert gas, and a mixed gas of two or more of these gases. And firing in an atmosphere having an oxygen partial pressure of 10 −20 to 10 −4 atm at a temperature of 1500 ° C. or more, and then heat-treating in air at 900 ° C. or more for 10 hours or more. And

【0012】上記「原料粉末」としては、通常、Y又は
Crの酸化物であるY2 3 とCr2 3 とを用いる
が、他に焼成により該酸化物になり得る化合物を用いて
もよい。また、これら原料粉末としては、特にその純度
が99.8%を越える高純度のものを使用することが好
ましい。それによって焼結体中の不純物がより低減さ
れ、得られるサーミスタの耐熱性等が向上する。
As the above-mentioned "raw material powder", Y 2 O 3 and Cr 2 O 3 , which are oxides of Y or Cr, are generally used. Good. In addition, as these raw material powders, it is particularly preferable to use high-purity powders having a purity exceeding 99.8%. This further reduces impurities in the sintered body, and improves the heat resistance and the like of the obtained thermistor.

【0013】焼成は上記のように不活性雰囲気又は還元
雰囲気において実施される。還元雰囲気は、不活性ガ
ス、特に窒素ガスに数%程度の水素ガスを混在させて構
成される。また、焼成は、その雰囲気中の「酸素分圧」
を「10-20 〜10-4気圧」として実施される。この焼
成を大気中など酸素分圧の高い酸化雰囲気で実施した場
合は、得られる焼結体の緻密性が低下する。
The calcination is performed in an inert atmosphere or a reducing atmosphere as described above. The reducing atmosphere is formed by mixing an inert gas, particularly a nitrogen gas, with a hydrogen gas of about several percent. In addition, firing is performed under the “oxygen partial pressure” in the atmosphere.
As "10 -20 to 10 -4 atm". If the sintering is performed in an oxidizing atmosphere having a high oxygen partial pressure, such as in the air, the density of the obtained sintered body decreases.

【0014】一方、例えばグラファイト製のヒータ或い
は断熱材を用いるなどして、雰囲気中の酸素分圧が10
-20 気圧を下回った場合は、Cr成分の揮散が激しくな
って焼結体の緻密性はやはり低下する。また、Cr成分
の揮散、減少によって焼結体の組成も変動する。このよ
うに、上記のグラファイト等、炭素系の素材からなるヒ
ータを用いた場合は、緻密性の低下及び組成の変動等の
問題を生ずる。そのため、第3発明のように、炭素系以
外の素材、例えばタングステン等の素材からなるヒータ
によって、加熱、焼成することが好ましい。
On the other hand, when the oxygen partial pressure in the atmosphere is reduced to 10 by using a graphite heater or a heat insulating material, for example.
If the pressure is lower than -20 atm, the volatilization of the Cr component becomes intense, and the compactness of the sintered body also decreases. In addition, the composition of the sintered body fluctuates due to the volatilization and reduction of the Cr component. As described above, when a heater made of a carbon-based material such as graphite is used, problems such as a decrease in denseness and a change in composition occur. Therefore, as in the third invention, it is preferable to heat and sinter with a heater made of a material other than carbon, for example, a material such as tungsten.

【0015】焼成の温度が1500℃未満では焼結体の
緻密化が不十分となる。この焼成温度を高くすれば焼結
性が向上し、緻密化も促進される。しかし、焼成温度が
1700℃を越えると、Cr成分の揮散量が多くなって
緻密性の低下及び組成の変動等を生ずることがある。従
って、焼成温度は1500〜1700℃、特に1550
〜1650℃程度とすることが好ましい。また、焼成時
間は30分〜数時間、特に1時間程度でよい。
If the firing temperature is lower than 1500 ° C., the densification of the sintered body becomes insufficient. Increasing the firing temperature improves sinterability and promotes densification. However, if the sintering temperature exceeds 1700 ° C., the amount of the Cr component volatilized increases, which may cause a reduction in the density and a change in the composition. Therefore, the firing temperature is 1500 to 1700 ° C., and especially 1550 ° C.
The temperature is preferably set to about 1650 ° C. The firing time may be 30 minutes to several hours, particularly about 1 hour.

【0016】上記「熱処理」は、大気以外の酸素分圧の
雰囲気であっても、Crの酸化等は促進され、焼結体の
品質の安定化等の熱処理効果は奏される。しかし、大気
より酸素分圧が低い雰囲気では熱処理効果が不十分とな
り、大気より酸素分圧が高い雰囲気では、CrO3 の形
で揮散するCrの量が増加する。また、大気以外の特別
な雰囲気を調製したのではコストアップとなる。
In the "heat treatment", even in an atmosphere having an oxygen partial pressure other than the atmosphere, oxidation of Cr and the like is promoted, and a heat treatment effect such as stabilization of the quality of the sintered body is exhibited. However, in an atmosphere having an oxygen partial pressure lower than the atmosphere, the heat treatment effect becomes insufficient, and in an atmosphere having an oxygen partial pressure higher than the atmosphere, the amount of Cr volatilized in the form of CrO 3 increases. Also, preparing a special atmosphere other than the atmosphere increases costs.

【0017】更に、熱処理温度が900℃を下回った場
合も、熱処理効果が不十分となる。この熱処理温度を所
要温度以上に高くした場合、熱処理効果の観点からは特
に問題はない。しかし、「10時間以上」の長時間の熱
処理であるため、処理温度があまりに高いと焼結体表面
からのCr成分の揮散を生ずる。また、温度の逆数と比
抵抗の対数との直線性が若干ではあるが低下するようで
もある。この熱処理温度は900〜1300℃、特に1
000〜1100℃、更には1000℃前後が好まし
い。また、熱処理時間は20時間以上、特に200時間
程度と相当な長時間とすることが好ましい。尚、熱処理
時間が10時間未満の場合は十分な熱処理効果が得られ
ず、抵抗の変化が大きくなる等、焼結体の品質が低下す
る。
Further, when the heat treatment temperature is lower than 900 ° C., the heat treatment effect becomes insufficient. When the heat treatment temperature is higher than the required temperature, there is no particular problem from the viewpoint of the heat treatment effect. However, since the heat treatment is a long-time heat treatment of “10 hours or more”, if the treatment temperature is too high, the Cr component volatilizes from the surface of the sintered body. Also, it seems that the linearity between the reciprocal of the temperature and the logarithm of the specific resistance slightly decreases. The heat treatment temperature is 900 to 1300 ° C., particularly 1
The temperature is preferably from 000 to 1100C, more preferably around 1000C. Further, the heat treatment time is preferably at least 20 hours, particularly about 200 hours. If the heat treatment time is less than 10 hours, a sufficient heat treatment effect cannot be obtained, and the quality of the sintered body deteriorates, for example, a change in resistance becomes large.

【0018】焼結助剤を使用していない本発明のサーミ
スタ用焼結体では、その比抵抗及びサーミスタ定数は焼
成条件によってほぼ決定される。しかし、所望の導電特
性を得るために、Y若しくはCrの一部を他の元素に置
換するのも有効である。但し、その場合には純粋なYC
rO3 に比べて耐熱性或いは耐久性等に劣ることがあ
る。そのため、使用温度域及び使用状況などによって元
素を選択する必要がある。Y若しくはCrと置換し固溶
させる元素は、Y以外の希土類元素、アルカリ土類金属
及び遷移金属等、通常、この種の焼結体において置換、
固溶されるものの中から選択すればよい。しかし、還元
雰囲気において焼成する場合は、Cr以外の価数が変動
し易い金属種を含むと導電特性の制御が困難となるた
め、そのような金属種の添加は好ましくない。また、ア
ルカリ金属等、揮散性の高い金属種の使用も好ましくな
い。
The specific resistance and the thermistor constant of the sintered body for a thermistor of the present invention in which no sintering aid is used are almost determined by the firing conditions. However, it is also effective to substitute a part of Y or Cr with another element in order to obtain desired conductive properties. However, in that case, pure YC
Heat resistance or durability may be inferior to rO 3 . Therefore, it is necessary to select an element according to a use temperature range and a use situation. The element to be replaced with Y or Cr to form a solid solution is a rare earth element other than Y, an alkaline earth metal, a transition metal, or the like.
What is necessary is just to select from solid solution. However, when firing in a reducing atmosphere, the addition of such a metal species is not preferred, since the control of the conductive properties becomes difficult if a metal species other than Cr whose valence is liable to change is included. Also, the use of a highly volatile metal species such as an alkali metal is not preferred.

【0019】本発明のサーミスタ用焼結体は、焼結助剤
等からもたらされる不純物が極めて少ないため耐熱性に
優れる。この耐熱性の高さはイオンの拡散係数が低いこ
とと相関性があるが、熱処理を行って比抵抗を安定化し
ておくことにより、酸素の拡散等による比抵抗変化を生
じ難くすることができる。また、還元雰囲気における焼
成では、YCrO3 系材料は液相焼結しているものと考
えられ、焼結時の温度と緻密化との相関を表す曲線よ
り、液相が生成し始める温度は1400℃前後であると
予想される。従って、還元雰囲気において使用するにし
ても、1000℃程度の温度領域であれば特に問題はな
い。
The sintered body for a thermistor according to the present invention is excellent in heat resistance because the amount of impurities brought from the sintering aid and the like is extremely small. Although the high heat resistance is correlated with the low diffusion coefficient of ions, by performing heat treatment to stabilize the specific resistance, a change in specific resistance due to diffusion of oxygen or the like can be suppressed. . Further, in the firing in a reducing atmosphere, the YCrO 3 -based material is considered to have undergone liquid phase sintering, and the temperature at which the liquid phase starts to be generated is 1400 from the curve showing the correlation between the sintering temperature and densification. Expected to be around ° C. Therefore, even when used in a reducing atmosphere, there is no particular problem in a temperature range of about 1000 ° C.

【0020】[0020]

【発明の実施の形態】以下、本発明を実施例によって具
体的に説明する。Y2 3 粉末(BET比表面積;1
0.8m2 /g、純度>99.9%)と、Cr2 3
末(BET比表面積;2.7m2 /g、純度99.8
%)とを湿式混合した。乾燥後、Y2 3 とCr2 3
との混合粉末を、1300℃で5時間仮焼することによ
り、YCrO3 単相粉末を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples. Y 2 O 3 powder (BET specific surface area; 1)
0.8 m 2 / g, purity> 99.9%) and Cr 2 O 3 powder (BET specific surface area; 2.7 m 2 / g, purity 99.8)
%) Was wet-mixed. After drying, Y 2 O 3 and Cr 2 O 3
Was calcined at 1300 ° C. for 5 hours to obtain a YCrO 3 single phase powder.

【0021】この仮焼粉末を湿式で粉砕し、乾燥した
後、直径及び厚さともに約10mmのディスク状に成形
し、1.5t/cm2 の圧力でCIP(冷間静水圧プレ
ス)処理を施した。この成形体を表1に示す条件で焼成
及び熱処理して焼結体を得た。また、焼成には主にタン
グステンヒータ炉を用いた。尚、比較のため、焼成条件
又は熱処理条件が第2発明を外れた例、焼成炉としてカ
ーボンヒータ炉を用いた例、及び焼結助剤を用いた例
(試料No13)についても同様にして焼結体を製造し
た。また、焼結助剤の添加、混合は仮焼粉末の湿式粉砕
と同時に行った。
The calcined powder is pulverized by a wet method, dried, formed into a disk having a diameter and thickness of about 10 mm, and subjected to a CIP (cold isostatic pressing) treatment at a pressure of 1.5 t / cm 2. gave. This compact was fired and heat-treated under the conditions shown in Table 1 to obtain a sintered body. In addition, a tungsten heater furnace was mainly used for firing. For comparison, in the same manner, the firing conditions or heat treatment conditions deviated from the second invention, the examples using a carbon heater furnace as the firing furnace, and the examples using the sintering aid (sample No. 13) were also performed. A compact was produced. The addition and mixing of the sintering aid were performed simultaneously with the wet pulverization of the calcined powder.

【0022】[0022]

【表1】 [Table 1]

【0023】表1には、焼結体の密度を、YCrO3
理論密度(5.751g/cm3 とする。)に対する相
対密度として示す。この表1によれば、タングステンヒ
ータ炉を用いた場合は、カーボンヒータ炉の場合よりも
焼結性に優れ、1600℃の焼成温度で相対密度95%
以上の緻密な焼結体が得られていることが分かる。ま
た、カーボンヒータ炉を用いた場合は、1700℃と焼
成温度を高めれば相対密度は95%以上となっている。
しかし、焼成中のCrの揮散が激しいため、得られた焼
結体の表面付近にポーラスな部分が形成されていた。
Table 1 shows the density of the sintered body as a relative density with respect to the theoretical density of YCrO 3 (5.751 g / cm 3 ). According to Table 1, when the tungsten heater furnace was used, the sinterability was superior to that of the carbon heater furnace, and the relative density was 95% at the firing temperature of 1600 ° C.
It can be seen that the above dense sintered body was obtained. When a carbon heater furnace is used, the relative density becomes 95% or more when the firing temperature is increased to 1700 ° C.
However, the volatilization of Cr during firing was so severe that a porous portion was formed near the surface of the obtained sintered body.

【0024】得られた焼結体を、研磨加工によって直径
7mm、厚さ5mmのディスク状とした後、高純度アル
ミナ製のるつぼ中で表1に示す条件によって熱処理を施
した。表1中の*は第1発明の範囲外であることを表
し、**は第2発明の範囲外であることを表す。また、
カーボンヒータ炉を使用している試料No11及び12
は第3発明の範囲外である。尚、焼成時間はすべて1時
間、焼成雰囲気の圧力は常圧、及び熱処理は大気雰囲気
とした。試料No13に添加した焼結助剤はMg−Ca
−Al−Si−O系組成物である。この試料No13で
は、焼結助剤を使用しているため、焼成温度を1450
℃と低温にしたが、十分に相対密度の高い焼結体が得ら
れた。
The obtained sintered body was formed into a disk having a diameter of 7 mm and a thickness of 5 mm by polishing, and then heat-treated in a high-purity alumina crucible under the conditions shown in Table 1. In Table 1, * indicates that the value is out of the range of the first invention, and ** indicates that the value is out of the range of the second invention. Also,
Sample Nos. 11 and 12 using a carbon heater furnace
Is outside the scope of the third invention. The firing time was all one hour, the pressure of the firing atmosphere was normal pressure, and the heat treatment was air atmosphere. The sintering aid added to Sample No. 13 was Mg-Ca
-Al-Si-O-based composition. In this sample No. 13, since the sintering aid was used, the firing temperature was 1450.
Although the temperature was lowered to as low as ° C., a sintered body having a sufficiently high relative density was obtained.

【0025】次に、熱処理したディスク状の試片の両端
(二つの円形の端面)において白金電極を作製し、大気
中及び窒素中における抵抗値を測定した。測定は900
℃、750℃、650℃の順に行い、それぞれの温度で
試片を20分間保持した後の抵抗値を測定値とした。そ
れらの結果より算出された比抵抗及びサーミスタ定数
(B定数)を、表2及び表3に示す。B値は下記の (1)
式によって求めた。
Next, platinum electrodes were formed at both ends (two circular end faces) of the heat-treated disk-shaped specimen, and resistance values in the air and in nitrogen were measured. Measurement is 900
C., 750.degree. C., and 650.degree. C. in this order, and the resistance value after holding the specimen at each temperature for 20 minutes was taken as a measured value. Tables 2 and 3 show the specific resistance and thermistor constant (B constant) calculated from the results. B value is as follows (1)
It was determined by the formula.

【0026】また、上記の結果に基づき、窒素中の比抵
抗ρN2の大気中の比抵抗ρAIR からの変化率ΔR1 を下
記の (2)式を用いて算出した。更に、その変化率ΔR1
に相当する温度差ΔT1 を大気中の比抵抗の変化を基準
として求めた。その計算には下記の (3)式を用いた。求
められたΔR1 とΔT1 の値を表4に示す。尚、 (3)式
におけるBAIR の値としては、900℃と650℃の比
抵抗から求めたB値を便宜的に用いた。 B=ln(ρT1/ρT2)/(1/T1 −1/T2 ) (1) ΔR1 (%)=100(ρN2−ρAIR )/ρAIR (2) ΔT1 (℃)=BAIR ・T/(ln(ρN2/ρAIR )・T+BAIR )−T(3) T,T1 ,T2 :測定温度 ρT1,ρT2:温度T1 ,T2 における比抵抗 BAIR :大気中B定数(900〜650℃)
Further, based on the above results, the rate of change ΔR 1 of the resistivity ρ N2 in nitrogen from the resistivity ρ AIR in the atmosphere was calculated using the following equation (2). Further, the rate of change ΔR 1
The temperature difference [Delta] T 1 corresponding calculated based on the change in the specific resistance of the atmosphere. The following equation (3) was used for the calculation. Table 4 shows the obtained values of ΔR 1 and ΔT 1 . As the value of B AIR in the equation (3), the B value obtained from the specific resistance at 900 ° C. and 650 ° C. was used for convenience. B = ln (ρ T1 / ρ T2 ) / (1 / T 1 −1 / T 2 ) (1) ΔR 1 (%) = 100 (ρ N2 −ρ AIR ) / ρ AIR (2) ΔT 1 (° C.) = B AIR · T / (ln (ρ N2 / ρ AIR ) · T + B AIR ) −T (3) T, T 1 , T 2 : measured temperature ρ T1 , ρ T2 : specific resistance at temperature T 1 , T 2 B AIR : B constant in the atmosphere (900 to 650 ° C)

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】表2〜4の結果によれば、大気中の測定に
おいてはすべての試料が安定した抵抗値を示した。しか
し、窒素中の測定においては、試料No2及び11の抵
抗値が20分間の保持時間の後も更に上昇し続けた。こ
れらの試料では窒素中の比抵抗は大気中に比較して数十
%以上も上昇しており、温度に換算すると数十℃以上の
誤差をもたらすことが分かる。試料No2及び11以外
の焼結体では、窒素中の測定でも安定した抵抗値を示し
ており、緻密性の低い試料No2及び11の焼結体で
は、測定雰囲気の影響が大きいことが分かる。尚、試料
No2及び11に比べてかなり緻密な試料No12にお
いても、窒素中の比抵抗は大気中のそれに比べて数%〜
十数%上昇しており、これは試片の表面付近に形成され
たポーラスな部分によるものと考えられる。
According to the results shown in Tables 2 to 4, all the samples showed stable resistance values in the measurement in the atmosphere. However, in the measurement in nitrogen, the resistance values of Sample Nos. 2 and 11 continued to increase even after the holding time of 20 minutes. In these samples, the specific resistance in nitrogen is increased by several tens% or more as compared with that in the atmosphere, and it can be seen that an error of several tens degrees Celsius or more is caused when converted into temperature. The sintered bodies other than Samples Nos. 2 and 11 exhibited stable resistance values even when measured in nitrogen, indicating that the influence of the measurement atmosphere was large for the sintered bodies of Samples Nos. 2 and 11 having low density. Incidentally, even in the sample No. 12 which is considerably denser than the samples No. 2 and 11, the specific resistance in nitrogen is several% to that in the atmosphere.
This is thought to be due to a porous portion formed near the surface of the specimen.

【0031】上記の3試料以外の各試料では、窒素中に
おける抵抗変化は温度換算で2℃以内に相当し、測定温
度が高いほど変化が少ない傾向にあった。また、750
℃以上での変化率はほとんど誤差範囲内のレベルにある
といえる。尚、熱処理温度の高い試料No8では、アル
ミナ製のるつぼが少し紫色に着色し、熱処理中にCrの
揮散を生じている様子がみられたが、その特性にはまっ
たく問題がなかった。また、試料No8以外では熱処理
中のるつぼの着色はなかった。
In each of the samples other than the above three samples, the resistance change in nitrogen was equivalent to 2 ° C. or less in terms of temperature, and the higher the measurement temperature, the smaller the change. Also, 750
It can be said that the rate of change above ℃ is almost within the error range. In sample No. 8, in which the heat treatment temperature was high, the crucible made of alumina was colored a little purple, and it appeared that Cr was volatilized during the heat treatment, but there was no problem with the characteristics. Except for sample No. 8, there was no coloring of the crucible during the heat treatment.

【0032】上記の評価に続いて、比抵抗変化率等の劣
っていた試料No2、11及び12を除いた各試料につ
いて耐久試験を行った。耐久試験は試片を1100℃で
300時間、大気中に晒した後、その大気中の抵抗値を
測定することによって実施した。抵抗値の測定方法は前
記と同様である。その結果を表5及び表6に示す。表6
のΔR2 とΔT2 は下記の (4)式及び (5)式により求め
た。 ΔR2 (%)=100(ρDUR −ρAIR )/ρAIR (4) ΔT2 (℃)=BAIR ・T/(ln(ρDUR /ρAIR )・T+BAIR )−T(5) ρDUR :耐久試験後の比抵抗(大気中)
Subsequent to the above evaluation, a durability test was performed on each of the samples except for Samples Nos. 2, 11, and 12, which were inferior in the rate of change in specific resistance. The durability test was performed by exposing the test piece to the air at 1100 ° C. for 300 hours, and then measuring the resistance value in the air. The method of measuring the resistance value is the same as described above. The results are shown in Tables 5 and 6. Table 6
ΔR 2 and ΔT 2 were determined by the following equations (4) and (5). ΔR 2 (%) = 100 (ρ DUR −ρ AIR ) / ρ AIR (4) ΔT 2 (° C.) = B AIR · T / (ln (ρ DUR / ρ AIR ) · T + B AIR ) −T (5) ρ DUR : Specific resistance after endurance test (in air)

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】表5及び表6の結果によれば、試料No3
及び4は熱処理が不十分であったため、耐久試験後の抵
抗値が数十%低下していた。これは10℃以上の温度変
化に相当するものであり問題である。また、焼結助剤を
添加した試料No13も抵抗変化が大きく、不純物の存
在が材料特性を不安定にしていることが分かる。これら
試料No3、4及び13以外の試片の比抵抗変化率は温
度変化に換算して10℃以内であり、特に高温であるほ
ど温度変化が少ない傾向にあった。殊に試料No1、
5、6、9及び10では、耐久試験の温度が熱処理温度
より高いのにもかかわらず、試料No7及び8と同様に
比抵抗変化率が小さい。尚、表6における比抵抗の変化
率は一見大きな値であるようにみえるが、これらの試料
は、そのB定数が大きいため、温度変化に換算した場合
は小さな変化となる。
According to the results shown in Tables 5 and 6, Sample No. 3
In Nos. And 4, the heat treatment was insufficient, so that the resistance value after the durability test was reduced by several tens of percent. This is equivalent to a temperature change of 10 ° C. or more, which is a problem. Sample No. 13 to which the sintering aid was added also showed a large change in resistance, indicating that the presence of impurities made the material characteristics unstable. The specific resistance change rates of the test pieces other than Sample Nos. 3, 4, and 13 were within 10 ° C. in terms of temperature change, and the temperature change tended to be smaller at higher temperatures. In particular, sample No. 1,
In 5, 6, 9 and 10, although the temperature of the durability test was higher than the heat treatment temperature, the specific resistance change rate was small similarly to Sample Nos. 7 and 8. Although the change rate of the specific resistance in Table 6 seems to be a large value at first glance, these samples have a large B constant, and therefore, when converted to a temperature change, the change is small.

【0036】[0036]

【発明の効果】第1発明によれば、YCrO3 を主体と
する焼結体は、相対密度が95%以上と高く、外部へ開
口した気孔を有さないため、サーミスタとして使用する
場合に、その雰囲気に対する安定性が高い。また、焼結
助剤を用いていないため不純物が極めて少なく、成分が
拡散、移動し難く、その結果、耐熱性、耐久性に優れ
る。更に、第2発明によれば、特定の雰囲気中において
焼成した後、大気中、特定の温度及び時間、熱処理する
ことによって、第1発明のサーミスタ用焼結体を容易に
得ることができる。
According to the first invention, the sintered body mainly composed of YCrO 3 has a relative density as high as 95% or more and has no pores opened to the outside. High stability to the atmosphere. Further, since no sintering aid is used, impurities are extremely small, and components are not easily diffused or moved. As a result, heat resistance and durability are excellent. Further, according to the second invention, the sintered body for a thermistor of the first invention can be easily obtained by firing in a specific atmosphere and then performing heat treatment in the air at a specific temperature and time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶相としてYCrO3 を主体とするペ
ロブスカイト型結晶相のみを含むサーミスタ用焼結体で
あって、該焼結体の相対密度は95%以上であり、且つ
該焼結体に含まれる上記ペロブスカイト型結晶相以外の
不純物は、該ペロブスカイト型結晶相100容量%に対
して0.5容量%以下であることを特徴とするサーミス
タ用焼結体。
1. A sintered body for a thermistor containing only a perovskite-type crystal phase mainly composed of YCrO 3 as a crystal phase, wherein the relative density of the sintered body is 95% or more, and A sintered body for a thermistor, characterized in that the content of impurities other than the perovskite-type crystal phase is 0.5% by volume or less based on 100% by volume of the perovskite-type crystal phase.
【請求項2】 焼成後における結晶相としてYCrO3
を主体とするペロブスカイト型結晶相のみを含み、且つ
該ペロブスカイト型結晶相以外の不純物が、該ペロブス
カイト型結晶相100容量%対して0.5容量%以下と
なるように原料粉末を混合し、成形した後、窒素ガス、
水素ガス、不活性ガス及びこれらのうちの2種以上のガ
スの混合ガスより選ばれ、且つその酸素分圧が10-20
〜10-4気圧である雰囲気中にて、1500℃以上の温
度で焼成し、次いで、大気中、900℃以上の温度で1
0時間以上熱処理することを特徴とするサーミスタ用焼
結体の製造方法。
2. YCrO 3 as a crystal phase after firing.
The raw material powder is mixed so as to contain only the perovskite-type crystal phase mainly composed of, and 0.5% by volume or less of impurities other than the perovskite-type crystal phase with respect to 100% by volume of the perovskite-type crystal phase, and then molding. After that, nitrogen gas,
It is selected from hydrogen gas, inert gas, and a mixed gas of two or more of these gases, and has an oxygen partial pressure of 10 -20.
Firing at a temperature of 1500 ° C. or more in an atmosphere of 10 to 4 atm,
A method for producing a sintered body for a thermistor, comprising heat-treating for at least 0 hour.
【請求項3】 炭素系以外の素材からなるヒータを使用
して焼成する請求項2記載のサーミスタ用焼結体の製造
方法。
3. The method for producing a sintered body for a thermistor according to claim 2, wherein the firing is performed using a heater made of a material other than a carbon-based material.
JP8201178A 1996-07-10 1996-07-10 Sintered compact for termistor and production thereof Ceased JPH1025158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8201178A JPH1025158A (en) 1996-07-10 1996-07-10 Sintered compact for termistor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8201178A JPH1025158A (en) 1996-07-10 1996-07-10 Sintered compact for termistor and production thereof

Publications (1)

Publication Number Publication Date
JPH1025158A true JPH1025158A (en) 1998-01-27

Family

ID=16436655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8201178A Ceased JPH1025158A (en) 1996-07-10 1996-07-10 Sintered compact for termistor and production thereof

Country Status (1)

Country Link
JP (1) JPH1025158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195570A (en) * 2007-02-13 2008-08-28 Covalent Materials Corp Translucent yttrium aluminum oxide garnet sintered compact and its producing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195570A (en) * 2007-02-13 2008-08-28 Covalent Materials Corp Translucent yttrium aluminum oxide garnet sintered compact and its producing method

Similar Documents

Publication Publication Date Title
JP5228915B2 (en) Semiconductor porcelain composition and method for producing the same
JP3254594B2 (en) Porcelain composition for thermistor and thermistor element
JP4527347B2 (en) Sintered body for thermistor
JP2617204B2 (en) Method for producing solid electrolyte
KR100427900B1 (en) High temperature thermistor containing rare earth metal element
JP3254595B2 (en) Porcelain composition for thermistor
JP3331447B2 (en) Method for producing porcelain composition for thermistor
KR101545763B1 (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
JPH1025158A (en) Sintered compact for termistor and production thereof
CA2721186A1 (en) Thermistor material for use in hydrogen atmosphere
JP6675050B1 (en) Thermistor sintered body and temperature sensor element
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
JP2020161759A (en) Thermistor material
JP3131071B2 (en) Ceramic heating element
JP7389306B1 (en) Temperature sensor element and temperature sensor
WO2024004845A1 (en) Temperature sensor element and temperature sensor
JP7389307B1 (en) Temperature sensor element and temperature sensor
JPH08321404A (en) Batio3-based thermistor and its production
JP2004003998A (en) Zirconia-based sintered material for gas sensors and its manufacturing method, electric resistance adjusting method, and gas sensor element
JPH05844A (en) Heat resistant conductive sintered body
JPH03268303A (en) Thermistor material and thermistor element
JP4153112B2 (en) Conductive sintered body and manufacturing method thereof
JP3145568B2 (en) Ceramic heating element
JP2002329602A (en) Method of manufacturing negative temperature coefficient thermistor device
JPH0380502A (en) Thermistor material and thermistor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20050426