JPH10251510A - Electroconductive polyaniline complex and its production - Google Patents

Electroconductive polyaniline complex and its production

Info

Publication number
JPH10251510A
JPH10251510A JP5672897A JP5672897A JPH10251510A JP H10251510 A JPH10251510 A JP H10251510A JP 5672897 A JP5672897 A JP 5672897A JP 5672897 A JP5672897 A JP 5672897A JP H10251510 A JPH10251510 A JP H10251510A
Authority
JP
Japan
Prior art keywords
polyaniline
derivative
conductivity
fine particles
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5672897A
Other languages
Japanese (ja)
Other versions
JP3679541B2 (en
Inventor
Noriyuki Kuramoto
憲幸 倉本
Hideyuki Tagaya
英幸 多賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP05672897A priority Critical patent/JP3679541B2/en
Publication of JPH10251510A publication Critical patent/JPH10251510A/en
Application granted granted Critical
Publication of JP3679541B2 publication Critical patent/JP3679541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject complex useful for a positive electrode material of a secondary battery, etc., capable of extremely improving electrical conductivity of a polyaniline, excellent in practical moldability, stability, etc., by dispersing very fine inorganic particles into a polyaniline. SOLUTION: This complex is obtained by dispersing (B) very fine inorganic particles into (A) a polyaniline or its derivative. The component B is porous particles, has <=100nm particle diameter and an oxide, to be concrete, TiO2 is used as the component B. The complex is obtained by compounding an aqueous or organic solvent solution of the component A with the component B in the blending amount of the component B of preferably about 10-80wt.% based on the total of the components A and B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、導電性ポ
リアニリン複合体とその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive polyaniline composite and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】ポリアニリンやポリフェニレ
ン、ポリチオフェン、ポリピロールなどの芳香族系の導
電性高分子は空気中での安定性に優れており、また合成
も容易であることから応用を目的として研究数が増大し
ている。なかでもポリアニリンは導電性高分子の中でも
安定性に優れており、安価な材料であるため二次電池の
正極材料として最初に実用化された導電性高分子材料で
ある。ポリアニリンはその特異な電気化学特性により、
多くの応用分野が検討されており、二次電池の正極材
料、エレクトロクロミック材料、各種センサー材料、帯
電防止塗料、電磁波シールド材料、光記録素子、固体電
解コンデンサー材料、プラスチックの金属メッキ下地、
人工筋肉材料、各種マイクロセンサー、湿度センサー、
防錆塗料、エレクトロレオロジー流体用分散剤などの応
用が検討されており、実用化されれば電気・電子・機械
の各分野において多くの影響を与えることが予想される
機能性素材である。
2. Description of the Related Art Aromatic conductive polymers such as polyaniline, polyphenylene, polythiophene, and polypyrrole have excellent stability in air and are easy to synthesize, so they are studied for application. The number is growing. Among them, polyaniline has excellent stability among conductive polymers and is an inexpensive material, so it is the first conductive polymer material to be practically used as a positive electrode material for secondary batteries. Polyaniline is characterized by its unique electrochemical properties
Many application fields are being studied, including positive electrode materials for secondary batteries, electrochromic materials, various sensor materials, antistatic paints, electromagnetic shielding materials, optical recording elements, solid electrolytic capacitor materials, plastic metal plating bases,
Artificial muscle material, various micro sensors, humidity sensor,
The application of anticorrosive paints, dispersants for electrorheological fluids, and the like is under study, and if practically used, it is a functional material that is expected to have many effects in the fields of electricity, electronics, and machinery.

【0003】従来、このような特徴を有するポリアニリ
ンについては、その導電性を向上させるための検討が、
主としてドーパントとの関連により行われている。すな
わちポリアニリンに取り込まれる種々のドーパントを変
化させてポリアニリンの合成を行い、溶解性並びに導電
率を向上させることが試みられている。また物理的な導
電率向上手段としては、延伸による配向制御で延伸方向
の導電率の向上が図られている。しかしながらこれまで
の検討においては、ドーパント添加による方法も、物理
的な配向制御による方法も導電率を顕著に向上させるこ
とはできないでいる。そして、従来のいずれの方法にお
いても加熱という手段が欠かせないが、一般的には加熱
処理は導電率の低下をまねくことが知られている。
[0003] Conventionally, with respect to polyaniline having such characteristics, studies for improving its conductivity have been conducted.
This is mainly done in connection with the dopant. That is, attempts have been made to improve the solubility and conductivity by synthesizing polyaniline by changing various dopants incorporated into polyaniline. As a physical conductivity improving means, the conductivity in the stretching direction is improved by controlling the orientation by stretching. However, in the studies so far, neither the method based on the addition of the dopant nor the method based on the physical orientation control can significantly improve the conductivity. In any of the conventional methods, a means of heating is indispensable, but it is generally known that heat treatment causes a decrease in conductivity.

【0004】この出願の発明は、以上のような現状に鑑
みてなされたものであって、従来法の欠点、その限界を
超えて、通常、その導電率が2〜5S/cmの範囲にと
どまっているポリアニリンの導電率を大きく向上させ、
しかも実用的に成形性、安定性等にも優れた導電性ポリ
アニリン類を提供することを目的としている。
[0004] The invention of this application has been made in view of the above situation, and exceeds the disadvantages and limitations of the conventional method, and usually has an electric conductivity in the range of 2 to 5 S / cm. Greatly improve the conductivity of polyaniline,
Moreover, it is an object of the present invention to provide a conductive polyaniline which is practically excellent in moldability, stability and the like.

【0005】[0005]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、ポリアニリンまたはその
誘導体に微細無機微粒子が分散されていることを特徴と
する導電性ポリアニリン複合体を提供する。また、この
発明は、その態様として、微細無機微粒子は多孔性粒子
である複合体をはじめ、微細無機微粒子は粒径が100
nm以下である複合体、微細無機微粒子は酸化物である
複合体、ポリアニリンまたはその誘導体はアニリンまた
はその誘導体モノマーを水溶液中で酸化重合して得られ
たものである複合体等も提供する。
Means for Solving the Problems The present invention provides a conductive polyaniline composite characterized in that fine inorganic fine particles are dispersed in polyaniline or a derivative thereof to solve the above problems. . Further, the present invention includes, as an embodiment thereof, a composite in which the fine inorganic fine particles are porous particles, and the fine inorganic fine particles having a particle diameter of 100%.
Also provided are a composite having a diameter of not more than nm, a composite in which the fine inorganic fine particles are an oxide, a composite in which polyaniline or its derivative is obtained by oxidative polymerization of aniline or its derivative monomer in an aqueous solution, and the like.

【0006】さらにまた、この発明は、上記の複合体の
製造法であって、ポリアニリンまたはその誘導体の水性
もしくは有機溶媒溶液に微細無機微粒子を混合し、加熱
処理することを特徴とする導電性ポリアニリン複合体の
製造法、その態様としての、加熱処理によって、所定形
状の成形体を製造する製造法等も提供する。
The present invention still further provides a method for producing the above-mentioned composite, comprising mixing fine inorganic fine particles in an aqueous or organic solvent solution of polyaniline or a derivative thereof and subjecting the mixture to heat treatment. The present invention also provides a method for producing a composite, a method for producing a molded article having a predetermined shape by heat treatment, and the like.

【0007】[0007]

【発明の実施の形態】この出願の発明は、上記のとおり
の特徴を有するものであるが、この発明は、通常、ポリ
アニリンの導電率は従来、最大でも2〜5S/cm程度
の範囲であって、熱処理を行うと一般的に導電率が低下
するが、粒径の小さな無機の粒子、特に表面積の大きな
多孔性粒子と混合して加熱処理すると導電率が大きく向
上するとの新たに見出された知見に基づいて完成された
ものである。このような導電率向上はいままでに観測さ
れていない特異な現象であり、ポリアニリンの導電率を
画期的に向上させる手段として有効であることが判明し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the above-mentioned features. However, in the present invention, the conductivity of polyaniline is usually in the range of about 2 to 5 S / cm at most. However, it has been found that the conductivity generally decreases when heat treatment is performed, but the conductivity is greatly improved when heat treatment is performed by mixing with inorganic particles having a small particle size, particularly, porous particles having a large surface area. It was completed based on the knowledge obtained. Such improvement in conductivity is a unique phenomenon that has not been observed so far, and has been found to be effective as a means for dramatically improving the conductivity of polyaniline.

【0008】ポリアニリンまたはその誘導体に分散され
る微細無機微粒子については、その粒径は小さく、好ま
しくは100nm以下、さらに好ましくは10nm以下
程度のものが使用される。これらの微粒子は、表面積が
大きいもの、つまり多孔性のものが好ましいものとして
考慮される。その種類については、酸化物、炭化物、金
属、合金、有機金属、あるいはそれらの複合物の各種の
ものであってよく、チタン、ジルコニウム、ハフニウ
ム、バナジウム、ニオブ、タンタル、スズ、インジウ
ム、アルミニウム、鉄、シリコン等の各種元素の化合
物、カーボン等がその例として示される。
The fine inorganic fine particles dispersed in polyaniline or a derivative thereof have a small particle size, preferably 100 nm or less, more preferably about 10 nm or less. Those fine particles having a large surface area, that is, porous ones are considered to be preferable. The type may be an oxide, a carbide, a metal, an alloy, an organic metal, or various kinds of a composite thereof, and may be titanium, zirconium, hafnium, vanadium, niobium, tantalum, tin, indium, aluminum, iron Examples thereof include compounds of various elements such as silicon and silicon, and carbon.

【0009】ポリアニリンの誘導体については、モノマ
ーアニリンの分子中に各種の置換基を持つものが含まれ
る。あるいはまた、重合反応後に修飾したものであって
もよい。ポリアニリンまたはその誘導体は、水溶液また
は各種の有機溶媒の溶液として、前記の無機微粒子と混
合し、加熱処理することになる。この場合の無機微粒子
の配合については、その種類、粒径等によっても異なる
が、一般的には、ポリアニリンまたはその誘導体との全
体量に対して、10〜80重量%を目安とすることがで
きる。混合のための溶媒が水である場合には、水溶液中
でのモノマーの酸化重合に続いて無機微粒子を混合する
ようにしてもよい。また有機溶媒を用いる場合には、炭
化水素、ハロゲン化炭化水素、アルコール類、エーテル
類、エステル類、アミド類、スルホキシド類等の各種の
ものの単独、あるいは混合であってもよい。
The derivatives of polyaniline include those having various substituents in the molecule of monomer aniline. Alternatively, it may be modified after the polymerization reaction. Polyaniline or a derivative thereof is mixed with the above-mentioned inorganic fine particles as an aqueous solution or a solution of various organic solvents, and subjected to heat treatment. The blending of the inorganic fine particles in this case varies depending on the type, particle size, etc., but generally, 10 to 80% by weight based on the total amount of the polyaniline or its derivative can be used as a standard. . When the solvent for mixing is water, the inorganic fine particles may be mixed following the oxidative polymerization of the monomer in the aqueous solution. When an organic solvent is used, various solvents such as hydrocarbons, halogenated hydrocarbons, alcohols, ethers, esters, amides, and sulfoxides may be used alone or as a mixture.

【0010】加熱処理は、通常は、30〜120℃程度
の温度において、0.5〜5時間程度を目安とすること
ができる。もちろんこれらは限定的ではない。この加熱
処理は、各種形状の成形体の成形と同時に行うことがで
き、たとえばフィルムのキャストとともに行われる。以
下、実施例を示し、さらに詳しくこの発明の実施の形態
について説明する。
The heat treatment can be performed at a temperature of about 30 to 120 ° C. for about 0.5 to 5 hours. Of course, these are not limiting. This heat treatment can be performed at the same time as the formation of molded articles of various shapes, for example, together with the casting of a film. Hereinafter, examples will be shown, and embodiments of the present invention will be described in more detail.

【0011】[0011]

【実施例】まず、アニリンもしくはアニリン誘導体、ア
ニオン性界面活性剤、過硫酸アンモニウムの混合液を作
成して均一なポリアニリン水溶液を作成する。すなわ
ち、具体例としては、アニリン塩酸塩0.2モルの水溶
液100mlにドデシルベンゼンスルホン酸(DBS
A)0.2モルを加えて加温して溶解し、その溶液をさ
らに0℃以下の低温に保って攪拌しながら過硫酸アンモ
ニウム0.25モルを加えて4時間反応を行なった。当
初不均一系であったものが反応が進行するにつれて、均
一系となりポリアニリン特有の緑色の水溶液が得られ
た。この生成したポリアニリン重合液にアセトンまたは
メタノールを加えるとポリアニリンの沈殿が得られる。
この得られたポリアニリンはさらにドデシルベンゼンス
ルホン酸(DBSA)0.2モルを加えることで水に可
溶化されてポリアニリンの水溶液を与える。
EXAMPLE First, a mixed solution of aniline or an aniline derivative, an anionic surfactant, and ammonium persulfate is prepared to prepare a uniform aqueous solution of polyaniline. That is, as a specific example, dodecylbenzenesulfonic acid (DBS) is added to 100 ml of a 0.2 mol aqueous solution of aniline hydrochloride.
A) 0.2 mol was added and dissolved by heating, and the solution was further added with 0.25 mol of ammonium persulfate while stirring at a low temperature of 0 ° C. or lower to carry out a reaction for 4 hours. As the reaction progressed from an initially heterogeneous system to a homogeneous one, a green aqueous solution unique to polyaniline was obtained. When acetone or methanol is added to the resulting polyaniline polymerization solution, a precipitate of polyaniline is obtained.
The obtained polyaniline is further solubilized in water by adding 0.2 mol of dodecylbenzenesulfonic acid (DBSA) to give an aqueous solution of polyaniline.

【0012】次に粒径が7nmといった超微粒子である
二酸化チタンをポリアニリンの水溶液と混合して均一な
コロイド溶液とし、膜としてキャストした。このものを
85度において加熱処理し、導電率を測定した。このプ
ロセスを例示したものが図1である。表1は、導電率の
測定結果を示したものである。
Next, ultrafine titanium dioxide having a particle size of 7 nm was mixed with an aqueous solution of polyaniline to form a uniform colloid solution, and cast as a film. This was heated at 85 ° C., and the conductivity was measured. FIG. 1 illustrates this process. Table 1 shows the measurement results of the conductivity.

【0013】また、二酸化チタンに代えて、シリカゲ
ル、五酸化バナジウムを添加させた場合についても表1
に示した。さらに比較のために、無機微粒子を添加した
場合、室温乾燥させた場合等についても、表1にその導
電率を示した。
Table 1 also shows the case where silica gel and vanadium pentoxide were added instead of titanium dioxide.
It was shown to. For comparison, Table 1 also shows the conductivity when inorganic fine particles were added, when dried at room temperature, and the like.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】以上詳しく説明したとおり、この発明に
よって、ポリアニリンまたはその誘導体の導電率は大き
く向上することになる。たとえば、実際にも、水可溶性
ポリアニリンをそのままキャストして加熱処理を施した
ポリアニリン膜にした場合には、抵抗値が大きく105
−106 オームとなるが、これを無機の微粒子と混合し
て分散液として、キャストし、さらに加熱処理したポリ
アニリンの抵抗値は2桁から5桁減少して導電率が向上
する。この技術により少ないポリアニリン量で効果的な
導電率を得ることができる。またこの技術はポリアニリ
ンの数少ない導電率向上の手段をもたらす。このこと
は、ポリアニリンの応用の可能性をひろげ、加熱処理し
た部分だけが導電率が向上して、その他未処理部分は導
電率が低いままであり、この導電率の違いを利用した熱
記録素子としての利用が考えられ、さらに他のエレクト
ロニクス材料と組み合わせて各種の応用に展開できる可
能性をもたらすものである。
As described above in detail, according to the present invention, the conductivity of polyaniline or a derivative thereof is greatly improved. For example, in practice, when a water-soluble polyaniline is cast as it is to form a heat-treated polyaniline film, the resistance value is large and 10 5
Although it becomes −10 6 ohms, it is mixed with inorganic fine particles to form a dispersion, cast, and heat-treated. The resistance of polyaniline is reduced by two to five orders of magnitude, and the conductivity is improved. By this technique, an effective electrical conductivity can be obtained with a small amount of polyaniline. This technique also provides a few means for improving the conductivity of polyaniline. This opens up the possibility of application of polyaniline, in which only the heat-treated portion has improved conductivity, and the other untreated portions remain low in conductivity. This thermal recording element utilizes this difference in conductivity. It is considered to be used as a material, and furthermore, brings a possibility that it can be applied to various applications in combination with other electronic materials.

【0016】またこの発明の技術はポリアニリンに限ら
ず多くの導電性高分子や導電性物質の導電率向上の手段
として用いられる可能性を有している。
The technique of the present invention has a possibility of being used as a means for improving the conductivity of not only polyaniline but also many conductive polymers and conductive substances.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例のプロセスを例示した手順図である。FIG. 1 is a flowchart illustrating a process according to an embodiment.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ポリアニリンまたはその誘導体に微細無
機微粒子が分散されていることを特徴とする導電性ポリ
アニリン複合体。
1. A conductive polyaniline composite, wherein fine inorganic fine particles are dispersed in polyaniline or a derivative thereof.
【請求項2】 微細無機微粒子は多孔性粒子である請求
項1の複合体。
2. The composite according to claim 1, wherein the fine inorganic fine particles are porous particles.
【請求項3】 微細無機微粒子は粒径が100nm以下
である請求項1または2の複合体。
3. The composite according to claim 1, wherein the fine inorganic fine particles have a particle size of 100 nm or less.
【請求項4】 微細無機微粒子は酸化物である請求項1
ないし3のいずれかの複合体。
4. The fine inorganic fine particles are oxides.
Or the complex of any one of (3) to (3).
【請求項5】 ポリアニリンまたはその誘導体はアニリ
ンまたはその誘導体モノマーを水溶液中で酸化重合して
得られたものである請求項1ないし4のいずれかの複合
体。
5. The composite according to claim 1, wherein the polyaniline or a derivative thereof is obtained by oxidative polymerization of an aniline or a derivative monomer in an aqueous solution.
【請求項6】 請求項1ないし5のいずれかの複合体の
製造法であって、ポリアニリンまたはその誘導体の水性
もしくは有機溶媒溶液に微細無機微粒子を混合し、加熱
処理することを特徴とする導電性ポリアニリン複合体の
製造法。
6. The method for producing a composite according to claim 1, wherein fine inorganic fine particles are mixed with an aqueous or organic solvent solution of polyaniline or a derivative thereof and heat-treated. Method for producing conductive polyaniline complex.
【請求項7】 加熱処理によって、所定形状の成形体を
製造する請求項6の製造法。
7. The method according to claim 6, wherein a molded article having a predetermined shape is produced by heat treatment.
JP05672897A 1997-03-11 1997-03-11 Process for producing conductive polyaniline composite Expired - Fee Related JP3679541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05672897A JP3679541B2 (en) 1997-03-11 1997-03-11 Process for producing conductive polyaniline composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05672897A JP3679541B2 (en) 1997-03-11 1997-03-11 Process for producing conductive polyaniline composite

Publications (2)

Publication Number Publication Date
JPH10251510A true JPH10251510A (en) 1998-09-22
JP3679541B2 JP3679541B2 (en) 2005-08-03

Family

ID=13035573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05672897A Expired - Fee Related JP3679541B2 (en) 1997-03-11 1997-03-11 Process for producing conductive polyaniline composite

Country Status (1)

Country Link
JP (1) JP3679541B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285633A (en) * 2007-05-21 2008-11-27 Nitto Denko Corp Composite dielectric and use thereof
CN103861571A (en) * 2014-03-06 2014-06-18 西安交通大学 Preparation method, application and regeneration method of polyaniline and titanium dioxide composite adsorbent
JP2019112499A (en) * 2017-12-21 2019-07-11 出光興産株式会社 Composition, conductive film, method for producing conductive film, and capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285633A (en) * 2007-05-21 2008-11-27 Nitto Denko Corp Composite dielectric and use thereof
CN103861571A (en) * 2014-03-06 2014-06-18 西安交通大学 Preparation method, application and regeneration method of polyaniline and titanium dioxide composite adsorbent
JP2019112499A (en) * 2017-12-21 2019-07-11 出光興産株式会社 Composition, conductive film, method for producing conductive film, and capacitor

Also Published As

Publication number Publication date
JP3679541B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
Li et al. Self‐stabilized nanoparticles of intrinsically conducting copolymers from 5‐sulfonic‐2‐anisidine
Marie et al. Synthesis of polyaniline particles via inverse and direct miniemulsion
Huang et al. The intrinsic nanofibrillar morphology of polyaniline
Gemeay et al. Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization: Effect of acids
Li et al. Facile high‐yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity
Cooper et al. Electrically conducting organic films and beads based on conducting latex particles
Liu et al. Enhancements in conductivity and thermal and conductive stabilities of electropolymerized polypyrrole with caprolactam-modified clay
Ballav et al. Preparation and evaluation of a nanocomposite of polythiophene with Al2O3
Karim et al. Conducting polyaniline‐titanium dioxide nanocomposites prepared by inverted emulsion polymerization
US4959162A (en) Colloidal polypyrrole
Ma et al. Cetyl trimethyl ammonium bromide (CTAB) micellar templates directed synthesis of water-dispersible polyaniline rhombic plates with excellent processability and flow-induced color variation
Sowmiya et al. Design of hollow nanosphere structured polypyrrole/Sn and SnO2 nanoparticles by COP approach for enhanced electron transport behavior
Lu et al. Synthesis of submicron PEDOT particles of high electrical conductivity via continuous aerosol vapor polymerization
Antony et al. Normal and reverse AOT micelles assisted interfacial polymerization for polyaniline nanostructures
Masdarolomoor et al. Nanocomposites of Polyaniline/Poly (2‐methoxyaniline‐5‐sulfonic acid)
Ghebache et al. Effect of hematite on the energy storage performance of polyaniline/zeolite HY/α-Fe2O3 nanocomposite supercapacitor electrode
JPH10251510A (en) Electroconductive polyaniline complex and its production
Lee et al. One-Step Synthetic Route for Conducting Core− Shell Poly (styrene/pyrrole) Nanoparticles
KR100779255B1 (en) Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization
KR101687396B1 (en) Preparation method of conductive polymer nano-marterial
US5134177A (en) Conducting composite polymer beads and methods for preparation and use thereof
Mandal et al. Synthesis and characterization of polyaniline based materials: their biological relevance—an overview
Dong et al. A novel approach to the construction of core–shell gold–polyaniline nanoparticles
Wang et al. Uniform Fe 3 O 4–PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres
Ray Synthesis and evaluation of conducting polypyrrole/Al2O3 nanocomposites in aqueous and non-aqueous medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Effective date: 20041001

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees