JPH10250150A - Optical scan apparatus - Google Patents
Optical scan apparatusInfo
- Publication number
- JPH10250150A JPH10250150A JP9070625A JP7062597A JPH10250150A JP H10250150 A JPH10250150 A JP H10250150A JP 9070625 A JP9070625 A JP 9070625A JP 7062597 A JP7062597 A JP 7062597A JP H10250150 A JPH10250150 A JP H10250150A
- Authority
- JP
- Japan
- Prior art keywords
- adhesive
- optical
- housing
- concave portion
- optical member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Dot-Matrix Printers And Others (AREA)
- Laser Beam Printer (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ビーム光を一定角
度反復偏向させて画像形成するようにした電子写真プロ
セスを有するレーザービームプリンタ(LBP)やデジ
タル複写機等の光走査装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device such as a laser beam printer (LBP) or a digital copying machine having an electrophotographic process in which an image is formed by repeatedly deflecting a light beam at a constant angle. .
【0002】[0002]
【従来の技術】LBP等の光走査装置においては、従来
より光源手段から放射したビーム光を画像信号に応じて
光変調し、この変調されたビーム光をポリゴンミラーか
らなる光偏向器により周期的に偏向させ、この偏向した
光ビームをfθ特性を有する結像光学系によって感光性
の記録媒体面上にスポット状に集光させ、画像形成を行
なっている。2. Description of the Related Art In an optical scanning apparatus such as an LBP, a light beam emitted from a light source means is conventionally modulated in accordance with an image signal, and this modulated light beam is periodically modulated by an optical deflector comprising a polygon mirror. Then, the deflected light beam is condensed into a spot on a photosensitive recording medium surface by an imaging optical system having fθ characteristics to form an image.
【0003】図24は、従来の走査光学系の概略図で、
光源1から放射された発散ビーム光は出射方向にあるコ
リメータレンズ2によって平行ビーム光になり、その光
軸上にある絞り3によってビーム光断面形状が形成さ
れ、シリンドリカルレンズ4に入射する。シリンドリカ
ルレンズ4は副走査方向のみに屈折力を有し、入射した
ビーム光は主走査面上に集束し、ポリゴンミラーからな
る光偏向器5の反射面にほぼ線像として結像する。光偏
向器5の反射面で反射偏向されたビーム光はfθ特性を
有する結像光学系6及びビーム光を反射して光路を変え
る反射ミラー7を介して感光体8上で集光し、画像を形
成する。ポリゴンミラーの角度誤差等による主走査方向
の誤差を解決するため、変調開始直前に主走査線上の所
定方向のビーム光を、レンズ9を介して同期信号を出力
する同期検知装置10に入射する。制御装置はその同期
信号から所定の時間遅れて画像信号を開始するように各
部の動作を制御している。FIG. 24 is a schematic view of a conventional scanning optical system.
The divergent light beam emitted from the light source 1 is converted into a parallel light beam by a collimator lens 2 in the emission direction, and a beam light cross-sectional shape is formed by a stop 3 on the optical axis, and is incident on a cylindrical lens 4. The cylindrical lens 4 has a refractive power only in the sub-scanning direction, and the incident light beam is focused on the main scanning surface and forms an almost linear image on the reflection surface of the optical deflector 5 composed of a polygon mirror. The light beam reflected and deflected by the reflection surface of the light deflector 5 is condensed on the photoreceptor 8 through an imaging optical system 6 having fθ characteristics and a reflection mirror 7 that reflects the light beam and changes the optical path, thereby forming an image. To form In order to solve an error in the main scanning direction due to an angle error of the polygon mirror or the like, a light beam in a predetermined direction on a main scanning line is incident on a synchronization detection device 10 which outputs a synchronization signal via a lens 9 immediately before the start of modulation. The control device controls the operation of each unit so as to start the image signal with a predetermined time delay from the synchronization signal.
【0004】上記光学部品が光学ハウジング11上に配
置され、光学ユニットを形成している。図25は図24
を横から見た図で、光学ハウジング11上に結像光学系
6を取り付ける方法は、図26に示すように、光学ハウ
ジング11に一体成形で取り付け基準面12を設け、結
像光学系6をバネ13、ねじ14で取り付け基準面12
に押しつけて固定する方法と、図27に示す様に、結像
光学系6を直接接着剤15によって光学ハウジング11
に固定する方法が一般的に用いられる。The above optical components are arranged on an optical housing 11 to form an optical unit. FIG. 25 shows FIG.
26 is a side view, the method of mounting the imaging optical system 6 on the optical housing 11 is as follows. As shown in FIG. Mounting reference surface 12 with spring 13 and screw 14
27, and the image forming optical system 6 is directly attached to the optical housing 11 by the adhesive 15 as shown in FIG.
Is generally used.
【0005】[0005]
【発明が解決しようとする課題】上述のような光走査装
置をLBPデジタル複写機等の装置に組み込み使用する
場合、高品位な画像を得るためには、光走査装置におけ
る光学部品の位置ずれや傾きなど厳しく規制する必要が
ある。そのために、従来では、光学部品及び光学ハウジ
ングの取り付け部の精度を高めて対処していたが、これ
らの精度を高めるには限界があり、かつ、コストが掛か
るという欠点がある。When the above-described optical scanning device is incorporated in an apparatus such as an LBP digital copying machine or the like, in order to obtain a high-quality image, it is necessary to adjust the position of optical components in the optical scanning device. It is necessary to regulate strictly such as inclination. For this reason, conventionally, the accuracy of the mounting portion of the optical component and the optical housing has been increased to cope with the problem. However, there is a limit in increasing the accuracy, and there is a disadvantage that the cost is increased.
【0006】また、近年、光学部品、光学ハウジング
は、プラスチックの成形によって作られているが、成形
装置の金型が高精度化の為に高価になる、季節による成
形品の精度ばらつきが発生する、徐々に消耗劣化し精度
が落ちるため金型の管理が大変などの欠点がある。ま
た、光学部品の高さや角度を調整した後、接着固定する
方法もあるが、接着剤の硬化時の収縮による位置ずれ、
光学部品への歪みへの影響などがある。さらに、光学部
品と光学ハウジングの材質の違いにより膨張係数が異な
り、温度サイクルやヒートショックを受けると光学部品
に膨張による応力歪みが発生し、光学特性が劣化してし
まう欠点があった。また、これらの影響を少なくするた
めに、接着面積を少なくすると接着強度が減少して、信
頼性が問題となる。In recent years, optical parts and optical housings are made by molding plastics. However, molds of molding equipment become expensive due to high precision, and precision variations of molded products due to seasons occur. However, there is a drawback that the mold is difficult to manage because the wear is gradually deteriorated and the accuracy is lowered. After adjusting the height and angle of the optical component, there is also a method of bonding and fixing, but displacement of the adhesive due to shrinkage during curing,
There is an effect on distortion to optical components. Furthermore, the expansion coefficient differs due to the difference in the material of the optical component and the optical housing, and when subjected to a temperature cycle or heat shock, stress distortion occurs due to expansion of the optical component, and the optical characteristics are deteriorated. Further, if the bonding area is reduced in order to reduce these effects, the bonding strength decreases and reliability becomes a problem.
【0007】本発明は、上述の問題点を解消し、より高
品位な画像形成が可能で、かつ、品質の安定した光走査
装置を提供することを目的としてなされたものである。An object of the present invention is to solve the above-mentioned problems and to provide an optical scanning device capable of forming a higher-quality image and having stable quality.
【0008】[0008]
【課題を解決するための手段】請求項1の発明は、画像
信号により変調されたビーム光を一定角度反復偏向させ
画像形成面に対して主走査を行なう偏向手段と、前記ビ
ーム光を前記画像形成面に結像させるための光学部材
と、その光学部材と前記偏向手段とを収納するハウジン
グと、前記偏向手段により偏向された変調開始直前の前
記光ビームを検知し変調開始のための同期信号を出力す
る同期検知装置とを備えた光走査装置において、前記光
学部材に固定用の凸部を設け、前記ハウジングに光学部
材の凸部に比較し充分大きな凹部を設け、前記光学部材
の位置の調整を行なった後、前記光学部材の凸部と前記
ハウジングの凹部を接着剤で固定することを特徴とし、
もって、光学ハウジングの取り付け部の精度をラフにで
きるようにして、部品コストを安くし、また、成形で光
学ハウジングを作る場合、成形装置の金型の精度がラフ
でよく、かつ、季節による成形品の精度ばらつきの影響
を気にせずに済み、金型の精度管理を大幅に削減できる
ようにしたものである。また、結像光学系に凸部を設
け、この凸部を接着固定するために、光学部品の光学特
性を作り込む部分への歪みの影響がほとんど発生しない
ようにし、また、接着面積を多く取ることができるよう
にし、強い接着強度が得られるようにしたものである。According to a first aspect of the present invention, there is provided a deflecting means for repetitively deflecting a light beam modulated by an image signal by a predetermined angle to perform a main scan on an image forming surface, and to deflect the light beam into the image. An optical member for forming an image on a forming surface, a housing for accommodating the optical member and the deflecting means, and a synchronization signal for detecting the light beam immediately before the start of modulation deflected by the deflecting means and for starting the modulation In the optical scanning device provided with a synchronization detecting device that outputs the optical member, a fixing convex portion is provided on the optical member, a sufficiently large concave portion is provided on the housing as compared with the convex portion of the optical member, and the position of the optical member is After performing the adjustment, the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive,
Therefore, the accuracy of the mounting part of the optical housing can be made rough, and the cost of parts can be reduced. Also, when making the optical housing by molding, the accuracy of the mold of the molding equipment may be rough, and the seasonal molding This eliminates the need to worry about the effects of variations in product accuracy, and significantly reduces the accuracy control of the mold. In addition, a convex portion is provided in the image forming optical system, and the convex portion is bonded and fixed, so that the influence of distortion on a portion for creating optical characteristics of the optical component is hardly generated, and a large bonding area is taken. And a strong adhesive strength can be obtained.
【0009】請求項2の発明は、請求項1の発明におい
て、前記光学部材に複数の固定用の凸部を設け、その凸
部の突起部に横方向の溝を設けたことを特徴し、もっ
て、結像光学系に凸部を2個設け、この凸部を接着固定
する場合、結像光学系ハウジングの膨張係数の違いによ
る温度による部品歪みを、凸部の突起部に設けた横方向
の溝部で吸収し、光学部品の光学部の歪みを抑えるよう
にしたものである。According to a second aspect of the present invention, in the first aspect of the present invention, the optical member is provided with a plurality of fixing projections, and the projections of the projections are provided with lateral grooves. In the case where two projections are provided on the imaging optical system and the projections are bonded and fixed, component distortion due to temperature due to a difference in expansion coefficient of the imaging optical system housing is reduced in the lateral direction provided on the projections of the projections. The optical part of the optical component is restrained from being distorted.
【0010】請求項3の発明は、請求項1の発明におい
て、前記光学部材の固定用の凸部の形状と前記ハウジン
グの凹部の形状を同心状の円筒形状とし、その凸部、凹
部の突起部が入り込む形状にしたことを特徴し、もっ
て、凸部、凹部の接着固定する部分を同心状の円筒形状
とすることで、接着部の表面積を多くし、接着強度を強
くしたものである。According to a third aspect of the present invention, in the first aspect of the present invention, the shape of the fixing convex portion of the optical member and the shape of the concave portion of the housing are concentric cylindrical shapes. It is characterized in that it is formed in a shape into which the portion enters, and thus, by making the portions to be bonded and fixed of the convex portion and the concave portion concentrically cylindrical, the surface area of the bonded portion is increased and the bonding strength is increased.
【0011】請求項4の発明は、請求項1の発明におい
て、前記光学部材の固定用の凸部の形状を多数の針状の
突起形状にしたことを特徴とし、もって、凸部の接着固
定する部分を針状の突起形状とすることで、接着剤硬化
時の収縮による位置ずれを多数の針状の部分で分散吸収
し、低減化できるようにし、また、接着部の表面積も多
く、接着強度を強くしたものである。According to a fourth aspect of the present invention, in the first aspect of the present invention, the shape of the fixing projection of the optical member is a large number of needle-like projections. By making the part to be made into a needle-like projection shape, misalignment due to shrinkage during curing of the adhesive can be dispersed and absorbed by many needle-like parts and reduced, and the surface area of the bonding part is large, The strength is increased.
【0012】請求項5の発明は、請求項1の発明におい
て、前記光学部材の固定用の凸部の形状を多数の針状の
突起形状とし、前記ハウジングの凹部のへこんだ部分の
形状を多数の針状の突起形状とし、凸部、凹部針状の突
起形状部が入り込む形状にしたことを特徴とし、もっ
て、凸部、凹部の接着固定する部分をお互い重なり合う
針状の突起形状とすることで、接着剤硬化時の収縮によ
る位置ずれをお互いの針状の部分で吸収分散し、低減化
できるようにし、また、接着部の表面積が非常に多く、
非常に強力な接着強度を得られるようにしたものであ
る。According to a fifth aspect of the present invention, in the first aspect of the present invention, the shape of the fixing projection of the optical member is a large number of needle-like projections, and the shape of the concave portion of the concave portion of the housing is a large number. The protrusions and recesses are formed into a shape into which the needle-like protrusions are inserted, so that the protrusions and the recesses are formed into needle-like protrusions that are bonded and fixed to each other. In, the position shift due to shrinkage during curing of the adhesive is absorbed and dispersed by the needle-like portions of each other, so that it can be reduced, and the surface area of the bonding portion is very large,
Very strong adhesive strength can be obtained.
【0013】請求項6の発明は、請求項1の発明におい
て、前記ハウジングの凹部に粘土、もしくは砂、もしく
はセラミック粉、もしくはガラス粉を入れ、前記光学部
材を前記粘土、もしくは砂、もしくはセラミック粉、も
しくはガラス粉の入ったハウジングの凹部に挿入し、光
学的位置調整を行なった後、前記光学部材の凸部の上部
と前記ハウジングの凹部周辺を接着剤で固定することを
特徴とし、もって、凸部、凹部の接着固定する部分を凸
部の根本に集中させ、接着剤の容積を低減化すること
で、接着剤硬化時の収縮による位置ずれを少なくしたも
のである。According to a sixth aspect of the present invention, in the first aspect of the invention, clay, sand, ceramic powder, or glass powder is placed in the recess of the housing, and the optical member is made of the clay, sand, or ceramic powder. Or, after inserting into a concave portion of the housing containing the glass powder and performing optical position adjustment, the upper portion of the convex portion of the optical member and the periphery of the concave portion of the housing are fixed with an adhesive, The position of the convex portion and the concave portion to be bonded and fixed is concentrated on the root of the convex portion to reduce the volume of the adhesive, thereby reducing the displacement due to shrinkage during curing of the adhesive.
【0014】請求項7の発明は、請求項1の発明におい
て、前記ハウジングの凹部に球形もしくは細粒径の金
属、もしくは石、もしくはセラミック、もしくはガラス
を入れ、前記光学部材を前記球形もしくは細粒径の金
属、もしくは石、もしくはセラミック、もしくはガラス
の入ったハウジングの凹部に挿入し光学的位置調整を行
なった後、前記ハウジングの凹部に接着剤を注入し浸透
させて固定することを特徴とし、もって、凸部、凹部の
隙間に球状もしくは、細粒径の金属、もしくは石、もし
くはセラミック、もしくはガラスを入れ、接着剤以外の
固形物質で凸部、凹部接触支持し、全体を接着剤で固め
てしまうことで、接着剤硬化時の収縮による位置ずれを
少なくするようにし、また、この構成は接着剤の使用量
も少なく、硬化時の収縮を発生しにくくしたものであ
る。According to a seventh aspect of the present invention, in the first aspect of the present invention, metal, stone, ceramic, or glass having a spherical or fine particle size is placed in the recess of the housing, and the optical member is formed into the spherical or fine particle shape. Metal, or stone, or ceramic, or inserted into the recess of the housing containing the glass, after performing the optical position adjustment, characterized in that it is fixed by injecting and penetrating an adhesive into the recess of the housing, Therefore, spherical or fine-grained metal, stone, ceramic, or glass is put in the gap between the convex and concave portions, and the convex and concave portions are contact-supported with a solid substance other than the adhesive, and the whole is solidified with the adhesive. This reduces the amount of misalignment due to shrinkage during curing of the adhesive. It is those that make it harder to generate.
【0015】請求項8の発明は、請求項1の発明におい
て、前記光学部材の凸部と前記ハウジングの凹部を接着
剤で固定する時、凹部に数ミリの層を形成するように接
着剤を入れ固化させた後、次の数ミリの層の接着剤を入
れさらに固化させ、部品を固定する下部から薄い層順に
硬化させ、部品を固定することを特徴とし、もって、凸
部、凹部に数ミリの層を形成するように順に接着剤を硬
化させることで、1度に発生する接着剤硬化時の収縮量
をできるだけ少なくし、硬化時の収縮反応が終わった
後、接着剤を追加して硬化させることで、位置ずれの少
ない高精度な接着が行えるようにしたものである。According to an eighth aspect of the present invention, in the first aspect of the present invention, when the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the adhesive is formed so as to form a layer of several millimeters in the concave portion. After adding and solidifying, the next few millimeters of adhesive are added and further solidified, and the parts are fixed in the order of the thinner layer from the bottom to fix the parts, and the parts are fixed. By curing the adhesive in order to form a layer of millimeters, the amount of shrinkage at the time of curing the adhesive which occurs at once is minimized, and after the shrinkage reaction at the time of curing is completed, the adhesive is added By curing, high-precision bonding with little displacement can be performed.
【0016】請求項9の発明は、請求項1の発明におい
て、前記光学部材の凸部と前記ハウジングの凹部を接着
剤で固定する時、接着剤を紫外線硬化型接着剤とし、接
着剤を凹部に注入後、凹部の周囲から同心円状に順に固
まるように紫外線ビームを照射し、薄い層を形成するよ
うに接着剤を硬化させ、部品を固定することを特徴と
し、もって、凹部の外周から薄い同心円状の層を形成す
るように順に接着剤を硬化させることで、接着剤の化学
反応して硬化する接着剤の反応する位置を、容積の大き
い外周から反応を進ませ、調整した結像光学系の凸部が
最後に硬化するようにコントロールする接着法は、部品
の位置ずれをできるだけ抑え、溶剤の収縮による内部応
力の影響を受けないように接着が行えるようにしたもの
である。According to a ninth aspect of the present invention, in the first aspect of the present invention, when the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the adhesive is an ultraviolet curable adhesive, and the adhesive is a concave portion. After the injection into the concave portion, it is characterized by irradiating an ultraviolet beam so as to solidify concentrically in order from the periphery of the concave portion, curing the adhesive so as to form a thin layer, and fixing the component. By curing the adhesive in order so as to form a concentric layer, the chemical reaction of the adhesive causes the adhesive to react, and the reaction proceeds from the outer periphery with a large volume to adjust the imaging optics. The bonding method for controlling the convex portion of the system to be finally cured is to minimize the displacement of components and to perform bonding without being affected by internal stress due to contraction of the solvent.
【0017】請求項10の発明は、請求項1の発明にお
いて、前記光学部材の凸部と前記ハウジングの凹部を接
着剤で固定する時、接着剤を紫外線硬化型接着剤とし、
接着剤を凹部に注入後、一度凹部に紫外線ビームを照射
し硬化を開始させ、継続的に部品の位置を計測しながら
硬化収縮による変形を矯正する場所に紫外線ビームの照
射位置を移動し、接着剤を硬化させ部品を測定位置に固
定することを特徴とし、もって、部品の位置をモニタリ
ングしながら接着剤を硬化させることで、接着剤硬化時
の収縮による位置ずれが無くなるようにしたものであ
る。According to a tenth aspect of the present invention, in the first aspect of the present invention, when the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the adhesive is an ultraviolet-curable adhesive;
After injecting the adhesive into the recess, the recess is once irradiated with an ultraviolet beam to start curing, and the position of the ultraviolet beam is moved to a location where the deformation due to curing shrinkage is corrected while continuously measuring the position of the part, and bonding is performed. It is characterized by hardening the agent and fixing the part at the measurement position, and by curing the adhesive while monitoring the position of the part, the positional deviation due to shrinkage during curing of the adhesive is eliminated. .
【0018】請求項11の発明は、請求項1の発明にお
いて、前記光学部材の凸部と前記ハウジングの凹部を接
着剤で固定する時、接着剤を紫外線硬化型接着剤とし、
接着剤を凹部に注入後、紫外線ビームを照射し一度硬化
させた後、部品の位置を測定し、硬化収縮による位置ず
れを矯正する位置に再度適度な量の接着剤を滴下後、紫
外線ビームを照射し、接着剤を硬化させ部品を指定位置
に固定することを特徴とし、もって、一度部品を接着固
定した後、部品の位置を測定し、さらに硬化時に変形し
た位置を矯正するように追加接着を行なうことで位置ず
れを減少できるようにしたものである。According to an eleventh aspect of the present invention, in the first aspect of the invention, when the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the adhesive is an ultraviolet-curable adhesive;
After injecting the adhesive into the recess, irradiating with an ultraviolet beam and curing once, measuring the position of the part, dropping an appropriate amount of adhesive again at the position to correct the misalignment due to curing shrinkage, and then applying the ultraviolet beam It is characterized by irradiating, curing the adhesive, and fixing the parts at the specified position.After bonding and fixing the parts once, the position of the parts is measured, and additional bonding is performed to correct the deformed position during curing Is performed to reduce the displacement.
【0019】[0019]
(請求項1の発明)図1は、本発明による光走査装置の
一実施例を横から見た概要図で、結像光学系6には固定
用の凸部16を有し、光学ハウジング11には該結像光
学系6の凸部16に比較して充分大きな凹部17を有す
る。結像光学系6をロボットのハンド18で把持する。
感光体8の光走査位置に光学特性測定センサー19を設
置し、レーザビームのビーム形状や、レーザ光の感光体
8上の走査位置など重要な光学特性を測定し、特性値が
適正な値になるように結像光学系6の位置をロボットで
動かし位置を調整する。FIG. 1 is a schematic view of an optical scanning device according to an embodiment of the present invention as viewed from the side. The image forming optical system 6 has a fixing projection 16 and an optical housing 11. Has a concave portion 17 which is sufficiently larger than the convex portion 16 of the imaging optical system 6. The imaging optical system 6 is gripped by the robot hand 18.
An optical characteristic measuring sensor 19 is installed at the optical scanning position of the photoconductor 8 to measure important optical characteristics such as the beam shape of the laser beam and the scanning position of the laser beam on the photoconductor 8, and the characteristic value is adjusted to an appropriate value. The position of the imaging optical system 6 is adjusted by moving the position of the imaging optical system 6 by a robot.
【0020】調整完了後、光学ハウジング11の凹部1
7に接着剤15を注入し硬化させ、結像光学系6と光学
ハウジング11を接着剤で固定する。After the adjustment is completed, the concave portion 1 of the optical housing 11 is
An adhesive 15 is injected into the resin 7 and cured, and the imaging optical system 6 and the optical housing 11 are fixed with the adhesive.
【0021】図2、図3は図1の結像光学系6を縦方向
から見た断面図で、図2(A)は、結像光学系6の中心
に凸部16を1個設け、光学ハウジング11の凹部17
に接着剤15で接着固定した実施例、図3は、結像光学
系6の凸部16、光学ハウジング11の凹部17を2組
設け接着剤15で接着固定した実施例である。なお、図
2(B),(C)はそれぞれ図2(A)のS部の変形例
を説明するための拡大図である。FIGS. 2 and 3 are cross-sectional views of the imaging optical system 6 of FIG. 1 viewed from the vertical direction. FIG. 2A shows a configuration in which one projection 16 is provided at the center of the imaging optical system 6. Recess 17 of optical housing 11
FIG. 3 shows an embodiment in which two sets of the convex portion 16 of the imaging optical system 6 and the concave portion 17 of the optical housing 11 are provided and fixed by the adhesive 15. 2 (B) and 2 (C) are enlarged views for explaining a modification of the portion S in FIG. 2 (A).
【0022】従来の方法は、光学部品及び光学ハウジン
グの取り付け部の部品精度を高め、精度を維持するよう
バネで押えつけるか、接着層をできるだけ薄くして対処
していたが、これらの精度を高めるには限界があり、か
つコストが掛るという欠点がある。特に、高精度部品を
作る成形装置の金型が高精度化の為に高価になる、季節
による成形品の精度ばらつきが発生する,徐々に消耗劣
化し精度が落ちるため金型の管理が大変であるなどの欠
点がある。In the conventional method, the precision of the components of the optical component and the mounting portion of the optical housing is increased and pressed with a spring or the adhesive layer is made as thin as possible to maintain the precision. There is a drawback in that there is a limit to increase the cost and the cost is high. In particular, molds of molding equipment for producing high-precision parts become expensive due to high precision, precision variations of molded products occur due to seasons, and wear deteriorates gradually and precision deteriorates, so mold management is difficult. There are disadvantages such as there.
【0023】本発明では、光学特性を測定し、特性値が
適正な位置になるよう調整を行なうため、光学ハウジン
グの光学部品取り付け面や、光学部品の取り付け面を高
精度にする必要はない。また、光学部品の高さや角度を
調整した後、接着固定する方法もあるが、従来の接着で
は光学特性を決定するレンズ面の下部を直接接着するた
め、接着面が広い、あるいは2ケ所以上接着し、その接
着位置の間隔が広い場合、光学部品と光学ハウジングの
材料の膨張係数の違いにより部品の長さが温度で変化
し、応力歪みが発生し、光学特性が劣化してしまう欠点
があった。In the present invention, since the optical characteristics are measured and adjusted so that the characteristic values are at appropriate positions, it is not necessary to make the optical component mounting surface of the optical housing or the optical component mounting surface highly accurate. There is also a method of adjusting the height and angle of the optical components and then bonding and fixing them. However, in the conventional bonding, since the lower part of the lens surface that determines the optical characteristics is directly bonded, the bonding surface is wide or two or more positions are bonded. However, if the distance between the bonding positions is large, there is a disadvantage that the length of the component changes with temperature due to the difference in the expansion coefficient between the optical component and the material of the optical housing, stress distortion occurs, and the optical characteristics deteriorate. Was.
【0024】本発明では、光学部品に膨張による応力歪
みが発生しても凸部の部分で吸収するため、光学特性を
作るレンズの部分まで応力歪みの影響を受けにくい構造
になる。従って、温度サイクルやヒートショックを受け
ても、光学特性が変化することはない。また、光学ハウ
ジングの凹部と結像光学系の凸部を接着剤で固定する方
法であるため、3次元の立体的に接着面が構成されるた
め、接着の保持力が安定する。さらに、図2(A)のS
部は、図2(B)に示すように、結像光学系6の凸部1
6に溝16aを設けたり、図2(C)に示すように結像
光学系6の凸部16を下の方が大きい円錐形にすること
で、外部力に対する接着強度が高まる。In the present invention, even if stress distortion due to expansion occurs in the optical component, it is absorbed by the convex portion, so that the structure is less affected by the stress distortion up to the lens portion that produces optical characteristics. Therefore, the optical characteristics do not change even when subjected to a temperature cycle or a heat shock. In addition, since the concave portion of the optical housing and the convex portion of the image forming optical system are fixed with an adhesive, a three-dimensionally three-dimensionally bonded surface is formed, so that the bonding holding force is stabilized. Further, S in FIG.
The portion is, as shown in FIG. 2B, a convex portion 1 of the imaging optical system 6.
By providing a groove 16a in 6 or forming the convex portion 16 of the imaging optical system 6 into a conical shape with a larger lower portion as shown in FIG. 2C, the adhesive strength against an external force is increased.
【0025】(請求項2の発明)図4、図5は、請求項
2の発明の実施例を縦方向から見た要部断面図で、結像
光学系6の凸部16、光学ハウジング11の凹部17を
2組設けて接着固定した図3に示した実施例において、
結像光学系6の固定用の凸部16の突起部の根本に横方
向の溝20を設けたものである。図4の実施例は図3の
結像光学系6の2つの凸部16のうちの片方の凸部の突
起部に横方向の溝20を1個設けた実施例、図5の実施
例は図3の結像光学系6の2つの凸部16のうち両方の
凸部の突起部に横方向の溝20をそれぞれ設けた実施例
である。図3に示したように、結像光学系に設けた2カ
所の凸部を接着する場合、その接着位置の間隔は、光学
部品6と光学ハウジング11の材質の膨張係数の違いに
より長さが温度で変化してしまい、応力歪みが発生す
る。光学ハウジングは結像光学系に比較して大きく、剛
性が高く作られているため、この応力歪みはすべて結像
光学系の凸部16にかかり、温度変化が起きる毎に凸部
のピッチを広げたり、狭めたりする応力が発生し、光学
特性を作り込むレンズ部分に歪みが及んでしまう。FIGS. 4 and 5 are cross-sectional views of a main part of the embodiment of the second aspect of the present invention viewed from the vertical direction. In the embodiment shown in FIG. 3 in which two sets of concave portions 17 are provided and bonded and fixed,
A lateral groove 20 is provided at the base of the projection of the fixing projection 16 of the imaging optical system 6. The embodiment shown in FIG. 4 is an embodiment in which one lateral groove 20 is provided in the projection of one of the two projections 16 of the imaging optical system 6 in FIG. 3, and the embodiment shown in FIG. This is an embodiment in which a lateral groove 20 is provided in each of the projections of the two projections 16 of the imaging optical system 6 in FIG. As shown in FIG. 3, when two convex portions provided on the imaging optical system are bonded, the distance between the bonding positions may be longer due to a difference in expansion coefficient between the materials of the optical component 6 and the optical housing 11. It changes with temperature, causing stress distortion. Since the optical housing is larger and has a higher rigidity than the imaging optical system, all of the stress and strain is applied to the projection 16 of the imaging optical system, and the pitch of the projection is increased each time a temperature change occurs. Or narrowing stress is generated, and distortion is exerted on a lens portion for creating optical characteristics.
【0026】本発明では、結像光学系6の凸部16の突
起部のレンズ面と凸部の境目に横方向の溝20を設けた
もので、この溝20の部分は、結像光学系のほかの部分
よりも強度が劣るため、光学部品に膨張による応力歪み
が発生した場合、溝部の周辺で応力を積極的に吸収する
構造となる。この溝が応力を受けることにより、結像光
学系のレンズ面にまで応力が及ばない構造を構成でき、
光学特性は、請求項1の構成よりさらに熱膨張の影響を
受けなくなる。In the present invention, a lateral groove 20 is provided at the boundary between the lens surface of the projection of the projection 16 of the imaging optical system 6 and the projection, and the portion of the groove 20 is Since the strength is inferior to the other parts, when stress distortion occurs due to expansion of the optical component, the structure becomes a structure that actively absorbs stress around the groove. By receiving the stress in this groove, a structure that does not reach the lens surface of the imaging optical system can be configured,
The optical characteristics are less affected by thermal expansion than in the first aspect.
【0027】(請求項3の発明)図6は、請求項3の発
明の実施例における結像光学系6の側面及び底面図を示
す。図7、図8は、これら結像光学系6をハウジング1
1へ接着した時の実施例の断面図で、この発明は、結像
光学系6の凸部21の形状と光学ハウジング11の凹部
22の形状を同心状の円筒形状とし、これら結像光学系
6の凸部21と光学ハウジング11の凹部22のお互い
の円筒形状の突起部が入り込み、組み合わされる形状に
したものである。図6は、結像光学系6の中心に同心状
の円筒形状の凸部21を1組設けた例を示す。図7
(A)は結像光学系6の同心状の円筒形状凸部21、光
学ハウジング11の同心状の円筒形状凹部22を1組設
けて接着固定した実施例で、図7(B)に凸部21、凹
部22の接着部を拡大して示す。図8は、結像光学系6
の同心状の円筒形状凸部21、光学ハウジング11の同
心状の円筒形状凹部22を2組設け接着固定した実施例
である。本発明は、凸部、凹部の接着固定した部分を同
心状の円筒形状とすることで、請求項1の発明に比較し
て光学ハウジング接着部と結像光学系接着部の表面積を
多く取ることができ、接着強度がより強くなる。FIG. 6 is a side view and a bottom view of the imaging optical system 6 according to an embodiment of the present invention. 7 and 8 show these imaging optical systems 6 connected to the housing 1.
FIG. 1 is a sectional view of an embodiment of the present invention, wherein the shape of the projection 21 of the imaging optical system 6 and the shape of the recess 22 of the optical housing 11 are concentric cylindrical shapes. The projections 21 and the recesses 22 of the optical housing 11 have cylindrical projections which are inserted and combined. FIG. 6 shows an example in which one set of concentric cylindrical protrusions 21 is provided at the center of the imaging optical system 6. FIG.
FIG. 7A shows an embodiment in which one set of a concentric cylindrical convex portion 21 of the imaging optical system 6 and a concentric cylindrical concave portion 22 of the optical housing 11 are provided and bonded and fixed. 21, the bonding portion of the concave portion 22 is shown in an enlarged manner. FIG. 8 shows the imaging optical system 6.
In this embodiment, two sets of concentric cylindrical convex portions 21 and two concentric cylindrical concave portions 22 of the optical housing 11 are provided and fixed. According to the present invention, the surface areas of the optical housing bonding portion and the imaging optical system bonding portion are increased compared to the first aspect of the present invention by making the portions where the convex portions and the concave portions are bonded and fixed have concentric cylindrical shapes. And the bonding strength becomes stronger.
【0028】(請求項4の発明)図9は、請求項4の発
明の結像光学系6を示す側面図及び底面図で、図10、
図11にハウジング11に取り付けた時の断面図を示
す。結像光学系6の凸部23の形状を多数の針状の突起
形状にし、光学ハウジング11の凹部17の形状を結像
光学系6の凸部23の針状の突起部が入り込む形状にす
る。図9には、結像光学系6の中心に凸部23の多数の
針状の突起形状を1組設けた例を示す。また、図9
(B)に凸部23の多数の針状の突起形状の拡大図を示
す。図10は結像光学系6の凸部23、光学ハウジング
11の凹部17を1組設けて接着固定した実施例を示す
図で、図10(B)に凸部23、凹部17の接着部の拡
大図を示す。(Invention of Claim 4) FIG. 9 is a side view and a bottom view showing the imaging optical system 6 of the invention of claim 4, and FIG.
FIG. 11 shows a cross-sectional view of the case in which the housing 11 is attached. The shape of the projection 23 of the imaging optical system 6 is made into a large number of needle-like projections, and the shape of the recess 17 of the optical housing 11 is made into a shape into which the needle-like projection of the projection 23 of the imaging optical system 6 enters. . FIG. 9 shows an example in which one set of a large number of needle-like projections of the projection 23 is provided at the center of the imaging optical system 6. FIG.
(B) shows an enlarged view of a large number of needle-like projections of the projection 23. FIG. 10 is a view showing an embodiment in which one set of the projection 23 of the imaging optical system 6 and the recess 17 of the optical housing 11 are provided and bonded and fixed. FIG. FIG.
【0029】図11は、結像光学系6の凸部23、光学
ハウジング11の凹部17を2組設けて接着固定した実
施例を示す図で、接着材による部品の締結法は、接着剤
が化学反応し硬化して部品を保持することで行なわれ
る。この接着剤が硬化するとき溶剤の収縮による内部応
力で体積変化が発生し、部品の位置ずれが発生する。本
発明は、凸部の接着固定する部分を針状の突起形状とす
ることで、接着剤硬化時の収縮による内部応力を多数の
針状の部分で分散吸収することで、応力の集中を防ぎ、
部品の位置ずれを低減化する。また、針状の突起形状に
より接着部の表面積も多く、請求項1と比較し接着強度
が強くなる。FIG. 11 is a view showing an embodiment in which two sets of the convex portion 23 of the imaging optical system 6 and the concave portion 17 of the optical housing 11 are provided and bonded and fixed. This is done by holding the part after a chemical reaction and hardening. When the adhesive cures, a volume change occurs due to internal stress due to the shrinkage of the solvent, and a component displacement occurs. The present invention prevents the concentration of stress by dispersing and absorbing internal stress due to shrinkage during curing of the adhesive by forming a needle-shaped projection at the portion of the convex portion to be bonded and fixed, thereby dispersing and absorbing the stress. ,
Reduce component displacement. Further, the surface area of the bonding portion is large due to the needle-like projection shape, and the bonding strength is higher than that of the first aspect.
【0030】(請求項5の発明)図12、図13は、そ
れぞれ請求項5の発明の断面図で、結像光学系6の凸部
23の形状を多数の針状の突起形状にし、光学ハウジン
グ11の凹部24の形状も多数の針状の突起形状にし、
結像光学系6の凸部23、光学ハウジング11の凹部2
4のお互いの針状の突起部が入り込み、組合わさる形状
にしたものである。図12(A)は、結像光学系6の凸
部23、光学ハウジング11の凹部24に多数の突起形
状を1組設けた例を示し、図12(B)に凸部23、凹
部24のお互いの針状の突起部が組み合わさった接着部
を拡大して示す。図13は、結像光学系6の凸部23、
光学ハウジング11の凹部24を2組設け接着固定する
実施例である。(Invention of Claim 5) FIGS. 12 and 13 are cross-sectional views of the invention of claim 5, wherein the projections 23 of the imaging optical system 6 are formed into a large number of needle-like projections. The shape of the concave portion 24 of the housing 11 is also a large number of needle-like protrusions,
The convex portion 23 of the imaging optical system 6 and the concave portion 2 of the optical housing 11
No. 4 has a shape in which the needle-like projections of each other enter and combine. FIG. 12A shows an example in which one set of a large number of projections is provided in the projection 23 of the imaging optical system 6 and the recess 24 of the optical housing 11. FIG. 12B shows the example of the projection 23 and the recess 24. An enlarged view of the bonded portion in which the needle-like protrusions are combined with each other is shown. FIG. 13 shows a projection 23 of the imaging optical system 6,
This is an embodiment in which two sets of concave portions 24 of the optical housing 11 are provided and fixed.
【0031】本発明は、凸部、凹部の接着固定する部分
をお互い針状の突起形状とすることで、請求項4の発明
と比較し、接着剤硬化時の収縮による内部応力をより強
力に分散吸収することができ、かつ接着剤の量も少なく
て済むため、部品の位置ずれを大幅に低減化できる。ま
た、請求項4の発明と比較し針状の突起形状の接着部の
表面積もより多くなり、接着強度がより強くなる。According to the present invention, the portions to be bonded and fixed of the convex portion and the concave portion are formed in a needle-like projection shape, so that the internal stress due to shrinkage at the time of curing the adhesive can be more powerfully compared with the invention of claim 4. Since the components can be dispersed and absorbed and the amount of the adhesive is small, the displacement of components can be greatly reduced. In addition, the surface area of the needle-shaped protrusion-shaped bonding portion is larger than that of the invention of claim 4, and the bonding strength is further increased.
【0032】(請求項6の発明)図14、図15は、請
求項6の発明の実施例を説明するための断面図で、図1
4(A)に示すように、結像光学系6の凸部16、光学
ハウジング11の凹部17を接着固定する時、光学ハウ
ジング11の凹部17に粘土もしくは砂、もしくはセラ
ミック粉、もしくはガラス粉25をあらかじめ入れ、結
像光学系6の凸部16を粘土もしくは砂、もしくはセラ
ミック粉、もしくはガラス粉25の入ったハウジング1
1の凹部17に挿入し光学的位置調整を行なった後、光
学ハウジング11の凹部17の上部に粘土もしくは砂、
セラミック粉、ガラス粉25を密封するため全体を覆う
ように接着剤15を滴下し、結像光学系6の凸部16の
上部と光学ハウジング11の凹部周辺を接着剤15で固
定する。図14(A)は、結像光学系6の凸部16、光
学ハウジング11の凹部17を1組設け接着する実施例
で、図14(B)に接着部を拡大して示す。図15は、
結像光学系6の凸部16、光学ハウジング11の凹部1
7を2組設け接着固定する実施例である。(Invention of Claim 6) FIGS. 14 and 15 are sectional views for explaining an embodiment of the invention of claim 6, and FIG.
As shown in FIG. 4A, when the convex portion 16 of the imaging optical system 6 and the concave portion 17 of the optical housing 11 are bonded and fixed, clay, sand, ceramic powder, or glass powder 25 is formed in the concave portion 17 of the optical housing 11. Is inserted in advance, and the convex portion 16 of the imaging optical system 6 is made of a housing 1 containing clay, sand, ceramic powder, or glass powder 25.
After adjusting the optical position by inserting it into the concave portion 17, clay or sand is placed on the upper portion of the concave portion 17 of the optical housing 11.
An adhesive 15 is dropped so as to cover the entirety of the ceramic powder and the glass powder 25 so as to cover the whole, and the upper portion of the convex portion 16 of the imaging optical system 6 and the periphery of the concave portion of the optical housing 11 are fixed with the adhesive 15. FIG. 14A shows an embodiment in which one set of the convex portion 16 of the imaging optical system 6 and the concave portion 17 of the optical housing 11 are provided and bonded, and FIG. 14B shows an enlarged bonded portion. FIG.
The convex portion 16 of the imaging optical system 6 and the concave portion 1 of the optical housing 11
This is an embodiment in which two sets 7 are provided and bonded and fixed.
【0033】本発明は、凸部、凹部の接着固定する部分
を凸部の根本に集中させ、接着剤の容積を低減化し、溶
剤の収縮による内部応力による体積変化量を少なくし、
接着剤硬化時の収縮による位置ずれが少なくできる。凸
部の先端が粘土、砂、セラミック粉、ガラス粉に入り込
み、押えられるため、請求項1の発明に比較すると位置
ずれは少ない。According to the present invention, the portions to be bonded and fixed of the convex portions and the concave portions are concentrated on the roots of the convex portions, the volume of the adhesive is reduced, and the volume change due to the internal stress due to the contraction of the solvent is reduced.
The displacement due to shrinkage during curing of the adhesive can be reduced. Since the tip of the projection enters clay, sand, ceramic powder, and glass powder and is pressed down, the displacement is small as compared with the first aspect of the invention.
【0034】(請求項7の発明)図16、図17は、請
求項7の発明の実施例を説明するための断面図で、図1
6にて説明すると、結像光学系6の凸部16、光学ハウ
ジング11の凹部17を接着固定するとき、光学ハウジ
ング11の凹部17に球形もしくは細粒径の金属、もし
くは石、もしくはセラミック、もしくはガラス26をあ
らかじめ入れ、結像光学系6の凸部16を球形もしくは
細粒径の金属、もしくは石、もしくはセラミック、もし
くはガラス26の入ったハウジングの凹部17に挿入し
て光学的位置調整を行なった後、光学ハウジング11の
凹部17の球形もしくは細粒径の金属、もしくは石、も
しくはセラミック、もしくはガラス26に接着剤15を
注入し浸透させ、結像光学系6の凸部16、光学ハウジ
ング11の凹部、球形もしくは、細粒径の金属、もしく
は石もしくはセラミック、もしくはガラス26の全体を
接着剤15で固定する。図16(A)は、結像光学系6
の凸部16、光学ハウジング11の凹部17を1組設け
た実施例で、図16(B)に接着部を拡大して示す。図
17は、結像光学系6の凸部16、光学ハウジング11
の凹部17を2組設け接着固定する実施例である。FIGS. 16 and 17 are cross-sectional views for explaining an embodiment of the present invention.
6, when the convex portion 16 of the imaging optical system 6 and the concave portion 17 of the optical housing 11 are bonded and fixed, metal or stone, ceramic, or ceramic having a spherical or fine particle diameter is formed in the concave portion 17 of the optical housing 11. The glass 26 is inserted in advance, and the convex portion 16 of the imaging optical system 6 is inserted into the concave portion 17 of the housing containing the metal, stone, ceramic, or glass 26 having a spherical or fine particle diameter, and the optical position is adjusted. After that, the adhesive 15 is injected into and penetrates a metal, stone, ceramic, or glass 26 having a spherical or fine particle diameter in the concave portion 17 of the optical housing 11, and the convex portion 16 of the imaging optical system 6, the optical housing 11. Of the metal, stone, ceramic, or glass 26 of the concave portion, spherical shape or fine particle size, is fixed with the adhesive 15. That. FIG. 16A shows the image forming optical system 6.
FIG. 16B shows an enlarged view of the bonding portion in an embodiment in which one set of the convex portion 16 and the concave portion 17 of the optical housing 11 are provided. FIG. 17 shows the projection 16 of the imaging optical system 6 and the optical housing 11.
This is an embodiment in which two sets of concave portions 17 are provided and bonded and fixed.
【0035】本発明は、接着剤に細粒径の金属、石、セ
ラミック粉、ガラスなどを混ぜて、接着剤の容積を低減
化し、溶剤の収縮による内部応力による体積変化量を少
なくし、接着剤硬化時の収縮による位置ずれを少なくし
たものである。According to the present invention, a metal, stone, ceramic powder, glass or the like having a small particle diameter is mixed with an adhesive to reduce the volume of the adhesive, reduce the volume change due to internal stress due to shrinkage of the solvent, and bond the adhesive. This is to reduce the displacement caused by shrinkage during curing of the agent.
【0036】(請求項8の発明)図18は、請求項8の
発明の実施例を説明するための断面図で、結像光学系6
の凸部16、光学ハウジング11の凹部17を設け接着
固定する場合に、凸部、凹部を接着剤で固定する時、凹
部17に数ミリの層を形成するように接着剤を注入し固
化させた後、次の数ミリの層の接着剤を注入し、さらに
固化させ、部品を固定する下部から数ミリの薄い層27
を形成するように順に接着剤を硬化させ部品を固定す
る。この接着手順の接着部を拡大して図19に示す。接
着剤は化学反応して硬化するが、この反応の進み方や硬
化するときの溶剤の収縮による内部応力の発生量をコン
トロールする事は困難である。従って、一度に多くの容
量の接着剤を硬化させると、収縮による内部応力が集中
し、大きな位置ずれが発生することがある。(Embodiment 8) FIG. 18 is a cross-sectional view for explaining an embodiment of the invention according to the eighth embodiment.
When the convex portion 16 and the concave portion 17 of the optical housing 11 are provided and fixed by bonding, when the convex portion and the concave portion are fixed with an adhesive, an adhesive is injected and solidified so as to form a layer of several millimeters in the concave portion 17. After that, the next few millimeters of glue are injected and solidified, and a few millimeters of thin layer 27 from the bottom to secure the part.
The adhesive is cured in order so as to form and the parts are fixed. FIG. 19 shows an enlarged view of the bonding portion in this bonding procedure. The adhesive is cured by a chemical reaction, but it is difficult to control how the reaction proceeds and the amount of internal stress generated due to shrinkage of the solvent during curing. Therefore, when a large amount of adhesive is cured at a time, internal stress due to shrinkage is concentrated, and a large displacement may occur.
【0037】本発明は、本来接着する容積の硬化させる
接着剤を分割し、1度に発生する接着剤硬化時の収縮量
をできるだけ少なくし、硬化時の収縮反応が終わった
後、接着剤を追加して硬化させる。この繰り返しで位置
ずれの少ない高精度な接着を行なうようにしたものであ
る。According to the present invention, the adhesive to be cured is divided into a volume to be originally bonded, the amount of shrinkage at the time of curing the adhesive which is generated at one time is reduced as much as possible, and after the shrinkage reaction at the time of curing is completed, the adhesive is cured. Add and cure. By repeating this, high-precision bonding with little displacement is performed.
【0038】(請求項9の発明)図20(A)は、請求
項9の発明の実施例を説明するための断面図で、図20
(B)は、接着部の拡大図で、結像光学系6に凸部1
6、光学ハウジング11に凹部17を設けて接着固定す
る場合において、接着剤29を紫外線硬化型接着剤と
し、接着剤29を凹部17に注入し結像光学系6を調整
後、凹部17の周囲から同心円状に順に固まるように紫
外線ビームをファイバー28で照射し、外周から薄い同
心円状の層を形成するように接着剤29を硬化させ、部
品を固定する。この接着手順を拡大して図21に示す。FIG. 20A is a cross-sectional view for explaining an embodiment of the ninth aspect of the present invention.
(B) is an enlarged view of the bonding portion, and the projection 1 is formed on the imaging optical system 6.
6. In the case where the optical housing 11 is provided with the concave portion 17 and fixed by bonding, the adhesive 29 is an ultraviolet-curable adhesive, the adhesive 29 is injected into the concave portion 17 and the imaging optical system 6 is adjusted. Then, an ultraviolet beam is irradiated by the fiber 28 so as to solidify in order from concentric circles, and the adhesive 29 is cured so as to form a thin concentric layer from the outer periphery, thereby fixing the component. FIG. 21 shows this bonding procedure in an enlarged manner.
【0039】本発明は、接着剤の化学反応して硬化する
接着剤の反応する位置を、容積の大きい外周から反応を
進ませ、調整した結像光学系の凸部が最後に硬化するよ
うにコントロールすることで、溶剤の収縮による内部応
力の発生を位置ずれに影響ないよう接着を行なうもので
ある。According to the present invention, the reaction position of the adhesive which is cured by the chemical reaction of the adhesive is set such that the reaction proceeds from the outer periphery having a large volume so that the adjusted convex portion of the imaging optical system is finally cured. By controlling, the bonding is performed so that the generation of internal stress due to the contraction of the solvent does not affect the displacement.
【0040】(請求項10の発明)図22は、請求項1
0の発明の実施例を説明するための断面図で、結像光学
系6に凸部16、光学ハウジング11に凹部17を設け
接着固定する場合において、接着剤30を紫外線硬化型
接着剤とし、接着剤を凹部17に注入し、結像光学系6
を調整後、凹部17の外周より紫外線ビームをファイバ
ー28で照射して、接着剤30を硬化させる。その時、
継続的に部品の位置をモニタリングしながら硬化収縮に
よる変形を計測し、変形を矯正する位置に紫外線ビーム
の照射位置を移動し、凹部17接着剤を順次硬化させ部
品を測定位置に固定する。(Invention of Claim 10) FIG.
FIG. 4 is a cross-sectional view for explaining an embodiment of the present invention, wherein the projections 16 are formed in the imaging optical system 6 and the depressions 17 are formed in the optical housing 11, and the adhesive 30 is used as an ultraviolet-curable adhesive; An adhesive is injected into the concave portion 17 and the imaging optical system 6 is formed.
After the adjustment, the adhesive 30 is cured by irradiating an ultraviolet beam from the outer periphery of the concave portion 17 with the fiber 28. At that time,
Deformation due to curing shrinkage is measured while continuously monitoring the position of the component, the irradiation position of the ultraviolet beam is moved to a position where the deformation is corrected, the adhesive of the recess 17 is sequentially cured, and the component is fixed at the measurement position.
【0041】図22(A)に示すように、部品の位置を
モニタリングしながら凹部17の右側角をまず紫外線ビ
ームを照射し接着剤30aを硬化させ、硬化収縮による
部品の位置ずれが始まったら、図22(B)に示すよう
に、その対角にファイバー28を移動させ照射し、接着
剤30bの硬化を行なう。その後、順次凹部17の周囲
を硬化させる。あるいは、凹部17の外周の4角を対角
で硬化させ、その固化させる照射面積を硬化収縮による
変形量に応じ制御し、変形を制御するよう接着を行な
う。その後8角、外周全体と増やし、凹部17全体を順
に固まるように紫外線ビームをファイバー28で照射す
る。As shown in FIG. 22A, while monitoring the position of the component, the right side of the concave portion 17 is first irradiated with an ultraviolet beam to cure the adhesive 30a. As shown in FIG. 22 (B), the fiber 28 is moved at the diagonal and irradiated to cure the adhesive 30b. Thereafter, the periphery of the concave portion 17 is sequentially cured. Alternatively, the four corners of the outer periphery of the concave portion 17 are cured diagonally, and the irradiation area to be solidified is controlled according to the amount of deformation due to curing shrinkage, and bonding is performed to control the deformation. After that, the fiber 28 is irradiated with an ultraviolet beam so as to increase the octagon and the entire outer circumference so that the entire recess 17 is solidified in order.
【0042】本発明は、部品の位置をモニタリングしな
がら接着剤を徐々に硬化させることで、接着剤硬化時の
収縮による位置ずれができるだけ少なくなるように接着
硬化を行なうものである。According to the present invention, by gradually curing the adhesive while monitoring the position of the component, the adhesive is cured so that the displacement caused by shrinkage during curing of the adhesive is minimized.
【0043】(請求項11の発明)図23は、請求項1
1の発明の実施例を説明するための断面図で、結像光学
系6に凸部16、光学ハウジング11に凹部17を設け
接着固定する場合において、接着剤31を紫外線硬化型
接着剤とし、図23(A)に示すように、接着剤を凹部
17に5分目ほど注入し、結像光学系6を調整後、凹部
17の外周より紫外線ビームをファイバー28で照射し
て、接着剤31aを硬化させ、結像光学系6を光学ハウ
ジング11に固定させる。その後、部品の位置を測定し
て硬化収縮による変形を計測した後、図23(A)に示
すように、変形を矯正する位置にさらに、再度適度な量
の接着剤31bを凹部17に追加滴下し、紫外線ビーム
をすぐ照射し、硬化させ部品位置が矯正するように追加
接着固定する。(Invention of Claim 11) FIG.
FIG. 1 is a cross-sectional view for explaining an embodiment of the present invention. In the case where a convex portion 16 is formed on an imaging optical system 6 and a concave portion 17 is formed on an optical housing 11 and bonded and fixed, an adhesive 31 is an ultraviolet curable adhesive, As shown in FIG. 23 (A), the adhesive is injected into the concave portion 17 for about 5 minutes, and after adjusting the imaging optical system 6, an ultraviolet beam is irradiated from the outer periphery of the concave portion 17 with the fiber 28, thereby forming the adhesive 31a. Is cured to fix the imaging optical system 6 to the optical housing 11. Then, after measuring the position of the component and measuring the deformation due to the curing shrinkage, as shown in FIG. 23 (A), an appropriate amount of the adhesive 31b is again dropped on the concave portion 17 at the position where the deformation is corrected. Then, an ultraviolet beam is immediately radiated, cured, and additionally bonded and fixed so that the position of the component is corrected.
【0044】つまり、1度目の接着は部品固定のための
接着で、2度目の接着は1度目の接着で変形した位置を
矯正するための接着である。図23では、接着剤を凹部
17に5分目ほど注入し1度目の接着剤31aを硬させ
部品を固定し、部品の位置を測定後、1度目の接着で変
形した位置を矯正する位置に接着剤31bを追加滴下し
硬化させる。本発明は、一度部品を接着固定した後、部
品の位置を測定し、さらに硬化時に変形した位置を矯正
するように追加接着を行なうことで位置ずれを減少させ
ることができる。That is, the first bonding is for fixing parts, and the second bonding is for correcting a position deformed by the first bonding. In FIG. 23, the adhesive is injected into the concave portion 17 for about 5 minutes, the first adhesive 31a is hardened, the component is fixed, the position of the component is measured, and the position deformed by the first bonding is corrected. The adhesive 31b is additionally dropped and cured. According to the present invention, it is possible to reduce the displacement by measuring the position of the component after bonding and fixing the component once, and further performing additional bonding so as to correct the position deformed during curing.
【0045】[0045]
【発明の効果】請求項1の発明は、画像信号により変調
されたビーム光を一定角度反復偏向させ画像形成面に対
して主走査を行なう偏向手段と、前記ビーム光を前記画
像形成面に結像させるための光学部材と、その光学部材
と前記偏向手段とを収納するハウジングと、前記偏向手
段により偏向された変調開始直前の前記光ビームを検知
し変調開始のための同期信号を出力する同期検知装置と
を備えた光走査装置において、前記光学部材に固定用の
凸部を設け、前記ハウジングに光学部材の凸部に比較し
充分大きな凹部を設け、前記光学部材の位置の調整を行
なった後、前記光学部材の凸部と前記ハウジングの凹部
を接着剤で固定するようにしたので、光学ハウジングの
取り付け部の精度をラフにでき、部品コストを安くし、
また、成形で光学ハウジングを作る場合、成形装置の金
型の精度がラフでよく、かつ、季節による成形品の精度
ばらつきの影響を気にせずに済み、金型の精度管理を大
幅に削減できる。また、結像光学系に凸部を設け、この
凸部を接着固定するために、光学部品の光学特性を作り
込む部分への歪みの影響がほとんど発生しないように
し、また、接着面積を多く取ることができるようにし、
強い接着強度を得ることができる。According to the first aspect of the present invention, there is provided a deflecting means for repetitively deflecting a light beam modulated by an image signal at a fixed angle to perform main scanning on an image forming surface, and connecting the light beam to the image forming surface. An optical member for imaging, a housing accommodating the optical member and the deflecting means, and a synchronization for detecting the light beam immediately before the start of modulation deflected by the deflecting means and outputting a synchronization signal for starting the modulation. In an optical scanning device provided with a detection device, the optical member was provided with a fixing convex portion, the housing was provided with a sufficiently large concave portion as compared with the convex portion of the optical member, and the position of the optical member was adjusted. Later, since the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the accuracy of the mounting portion of the optical housing can be roughened, and the cost of parts can be reduced.
In addition, when making an optical housing by molding, the accuracy of the mold of the molding device may be rough, and there is no need to worry about the effects of seasonal variations in the accuracy of the molded product, and the accuracy control of the mold can be greatly reduced. . In addition, a convex portion is provided in the image forming optical system, and the convex portion is bonded and fixed, so that the influence of distortion on a portion for creating optical characteristics of the optical component is hardly generated, and a large bonding area is taken. To be able to
Strong adhesive strength can be obtained.
【0046】請求項2の発明は、請求項1の発明におい
て、前記光学部材に複数の固定用の凸部を設け、その凸
部の突起部に横方向の溝を設けたので、結像光学系に凸
部を2個設け、この凸部を接着固定する場合、結像光学
系ハウジングの膨張係数の違いによる温度による部品歪
みを、凸部の突起部に設けた横方向の溝部で吸収し、光
学部品の光学部の歪みを抑えることができる。According to a second aspect of the present invention, in the first aspect of the present invention, a plurality of fixing projections are provided on the optical member, and a horizontal groove is provided on the projection of the projection. When two projections are provided in the system and these projections are bonded and fixed, component distortion due to temperature due to a difference in expansion coefficient of the imaging optical system housing is absorbed by the lateral grooves provided in the projections of the projections. In addition, distortion of the optical part of the optical component can be suppressed.
【0047】請求項3の発明は、請求項1の発明におい
て、前記光学部材の固定用の凸部の形状と前記ハウジン
グの凹部の形状を同心状の円筒形状とし、その凸部、凹
部の突起部が入り込む形状にしたので、凸部、凹部の接
着固定する部分を同心状の円筒形状とすることで、接着
部の表面積を多くし、接着強度を強くすることができ
る。According to a third aspect of the present invention, in the first aspect of the invention, the shape of the fixing projection of the optical member and the shape of the recess of the housing are concentric cylindrical shapes, and the projection of the projection and the recess are formed. Since the portion is formed into a shape into which the portion enters, the portion to be bonded and fixed between the convex portion and the concave portion is formed in a concentric cylindrical shape, so that the surface area of the bonded portion can be increased and the bonding strength can be increased.
【0048】請求項4の発明は、請求項1の発明におい
て、前記光学部材の固定用の凸部の形状を多数の針状の
突起形状にしたので、凸部の接着固定する部分を針状の
突起形状とすることで、接着剤硬化時の収縮による位置
ずれを多数の針状の部分で分散吸収し、低減化でき、ま
た、接着部の表面積も多く、接着強度を強くすることが
できる。According to a fourth aspect of the present invention, in the first aspect of the present invention, since the shape of the fixing projection of the optical member is formed into a large number of needle-like projections, the portion of the projection to be bonded and fixed is needle-like. With the projection shape, the misalignment due to shrinkage during curing of the adhesive can be dispersed and absorbed by a large number of needle-shaped portions, and can be reduced. In addition, the surface area of the bonded portion can be increased, and the bonding strength can be increased. .
【0049】請求項5の発明は、請求項1の発明におい
て、前記光学部材の固定用の凸部の形状を多数の針状の
突起形状とし、前記ハウジングの凹部のへこんだ部分の
形状を多数の針状の突起形状とし、凸部、凹部針状の突
起形状部が入り込む形状にしたので、凸部、凹部の接着
固定する部分をお互い重なり合う針状の突起形状とする
ことで、接着剤硬化時の収縮による位置ずれをお互いの
針状の部分で吸収分散し、低減化でき、また、接着部の
表面積が非常に多く、非常に強力な接着強度を得ること
ができる。According to a fifth aspect of the present invention, in the first aspect of the invention, the shape of the fixing projection of the optical member is a large number of needle-like projections, and the shape of the concave portion of the concave portion of the housing is a large number. The shape of the needle-shaped protrusions is such that the protrusions and recesses of the needle-like protrusions are inserted into the shape. Displacement due to shrinkage at the time can be absorbed and dispersed by the needle-like portions and can be reduced, and the surface area of the bonding portion is very large, so that a very strong bonding strength can be obtained.
【0050】請求項6の発明は、請求項1の発明におい
て、前記ハウジングの凹部に粘土、もしくは砂、もしく
はセラミック粉、もしくはガラス粉を入れ、前記光学部
材を前記粘土、もしくは砂、もしくはセラミック粉、も
しくはガラス粉の入ったハウジングの凹部に挿入し、光
学的位置調整を行なった後、前記光学部材の凸部の上部
と前記ハウジングの凹部周辺を接着剤で固定するように
したので、凸部、凹部の接着固定する部分を凸部の根本
に集中させ、接着剤の容積を低減化することで、接着剤
硬化時の収縮による位置ずれを少なくすることができ
る。According to a sixth aspect of the present invention, in the first aspect of the invention, clay, sand, ceramic powder, or glass powder is placed in the recess of the housing, and the optical member is made of the clay, sand, or ceramic powder. Alternatively, after inserting into the concave portion of the housing containing the glass powder and performing optical position adjustment, the upper portion of the convex portion of the optical member and the periphery of the concave portion of the housing are fixed with an adhesive. In addition, by concentrating the portion of the concave portion to be bonded and fixed at the root of the convex portion and reducing the volume of the adhesive, it is possible to reduce the displacement due to shrinkage during curing of the adhesive.
【0051】請求項7の発明は、請求項1の発明におい
て、前記ハウジングの凹部に球形もしくは細粒径の金
属、もしくは石、もしくはセラミック、もしくはガラス
を入れ、前記光学部材を前記球形もしくは細粒径の金
属、もしくは石、もしくはセラミック、もしくはガラス
の入ったハウジングの凹部に挿入し光学的位置調整を行
なった後、前記ハウジングの凹部に接着剤を注入し浸透
させて固定するようにしたので、凸部、凹部の隙間に球
状もしくは、細井粒径の金属、もしくは石、もしくはセ
ラミック、もしくはガラスを入れ、接着剤以外の固形物
質で凸部、凹部接触支持し、全体を接着剤で固めてしま
うことで、接着剤硬化時の収縮による位置ずれを少なく
し、また、この構成は接着剤の使用量も少なく、硬化時
の収縮を発生しにくくすることができる。According to a seventh aspect of the present invention, in the first aspect of the invention, metal, stone, ceramic, or glass having a spherical or fine particle diameter is placed in the recess of the housing, and the optical member is formed into the spherical or fine particle diameter. Metal, or stone, or ceramic, or inserted into the recess of the housing containing the glass and after adjusting the optical position, so that the adhesive is injected into the recess of the housing, so that it was fixed by penetrating, Metal or stone, ceramic, or glass with a spherical or fine grain diameter is put in the gap between the convex and concave parts, and the solid and non-adhesive materials are used to support the convex and concave parts in contact, and the whole is hardened with adhesive. As a result, the displacement due to shrinkage during curing of the adhesive is reduced, and with this configuration, the amount of adhesive used is small, and shrinkage during curing hardly occurs. Rukoto can.
【0052】請求項8の発明は、請求項1の発明におい
て、前記光学部材の凸部と前記ハウジングの凹部を接着
剤で固定する時、凹部に数ミリの層を形成するように接
着剤を入れ固化させた後、次の数ミリの層の接着剤を入
れさらに固化させ、部品を固定する下部から薄い層順に
硬化させ、部品を固定するようにしたので、凸部、凹部
に数ミリの層を形成するように順に接着剤を硬化させる
ことで、1度に発生する接着剤硬化時の収縮量をできる
だけ少なくし、硬化時の収縮反応が終わった後、接着剤
を追加して硬化させることで、位置ずれの少ない高精度
な接着を行うことができる。According to an eighth aspect of the present invention, in the first aspect of the present invention, when the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the adhesive is formed so as to form a layer of several millimeters in the concave portion. After adding and solidifying, the adhesive of the next several millimeters was put in and further solidified, and the parts were fixed in order from the lower layer to fix the parts, and the parts were fixed. By curing the adhesive in order so as to form a layer, the amount of shrinkage at the time of curing the adhesive which occurs at one time is reduced as much as possible, and after the shrinkage reaction at the time of curing is completed, the adhesive is additionally cured. Thereby, high-precision bonding with little displacement can be performed.
【0053】請求項9の発明は、請求項1の発明におい
て、前記光学部材の凸部と前記ハウジングの凹部を接着
剤で固定する時、接着剤を紫外線硬化型接着剤とし、接
着剤を凹部に注入後、凹部の周囲から同心円状に順に固
まるように紫外線ビームを照射し、薄い層を形成するよ
うに接着剤を硬化させ、部品を固定するようにしたの
で、凹部の外周から薄い同心円状の層を形成するように
順に接着剤を硬化させることで、接着剤の化学反応して
硬化する接着剤の反応する位置を、容積の大きい外周か
ら反応を進ませ、調整した結像光学系の凸部が最後に硬
化するようにコントロールすることにより、部品の位置
ずれをできるだけ抑え、溶剤の収縮による内部応力の影
響を受けないように接着を行うことができる。According to a ninth aspect of the present invention, in the first aspect of the present invention, when the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the adhesive is an ultraviolet curable adhesive, and the adhesive is a concave portion. After the injection, a UV beam was irradiated so as to solidify concentrically from the periphery of the recess, the adhesive was cured so as to form a thin layer, and the parts were fixed. By curing the adhesive in order so as to form a layer of the adhesive, the reaction position of the adhesive that is cured by the chemical reaction of the adhesive is advanced from the outer periphery having a large volume, and the adjusted optical system of the imaging optical system is adjusted. By controlling the convex portion to be finally cured, the displacement of the component can be suppressed as much as possible, and the bonding can be performed without being affected by the internal stress due to the contraction of the solvent.
【0054】請求項10の発明は、請求項1の発明にお
いて、前記光学部材の凸部と前記ハウジングの凹部を接
着剤で固定する時、接着剤を紫外線硬化型接着剤とし、
接着剤を凹部に注入後、一度凹部に紫外線ビームを照射
し硬化を開始させ、継続的に部品の位置を計測しながら
硬化収縮による変形を矯正する場所に紫外線ビームの照
射位置を移動し、接着剤を硬化させ部品を測定位置に固
定するようにしたので、部品の位置をモニタリングしな
がら接着剤を硬化させることで、接着剤硬化時の収縮に
よる位置ずれを無くすことができる。According to a tenth aspect of the present invention, in the first aspect of the present invention, when the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the adhesive is an ultraviolet-curable adhesive;
After injecting the adhesive into the recess, the recess is once irradiated with an ultraviolet beam to start curing, and the position of the ultraviolet beam is moved to a location where the deformation due to curing shrinkage is corrected while continuously measuring the position of the part, and bonding is performed. Since the component is fixed at the measurement position by curing the agent, the adhesive is cured while monitoring the position of the component, thereby eliminating positional displacement due to shrinkage during curing of the adhesive.
【0055】請求項11の発明は、請求項1の発明にお
いて、前記光学部材の凸部と前記ハウジングの凹部を接
着剤で固定する時、接着剤を紫外線硬化型接着剤とし、
接着剤を凹部に注入後、紫外線ビームを照射し一度硬化
させた後、部品の位置を測定し、硬化収縮による位置ず
れを矯正する位置に再度適度な量の接着剤を滴下後、紫
外線ビームを照射し、接着剤を硬化させ部品を指定位置
に固定するようにしたので、一度部品を接着固定した
後、部品の位置を測定し、さらに硬化時に変形した位置
を矯正するように追加接着を行なうことで位置ずれを減
少することができる。According to an eleventh aspect of the present invention, in the first aspect of the invention, when the convex portion of the optical member and the concave portion of the housing are fixed with an adhesive, the adhesive is an ultraviolet-curable adhesive;
After injecting the adhesive into the recess, irradiating with an ultraviolet beam and curing once, measuring the position of the part, dropping an appropriate amount of adhesive again at the position to correct the misalignment due to curing shrinkage, and then applying the ultraviolet beam Irradiation and curing of the adhesive to fix the part at the specified position.After bonding and fixing the part once, measure the position of the part and perform additional bonding so as to correct the deformed position at the time of curing This can reduce the displacement.
【図1】 本発明による光走査装置の要部概要側面図で
ある。FIG. 1 is a schematic side view of a main part of an optical scanning device according to the present invention.
【図2】 本発明の結像光学系の接続部の構成断面図で
ある。FIG. 2 is a configuration sectional view of a connection portion of the imaging optical system of the present invention.
【図3】 本発明の結像光学系の接続部の他の構成断面
図である。FIG. 3 is a sectional view showing another configuration of a connection portion of the imaging optical system according to the present invention.
【図4】 本発明の結像光学系の接続部の他の構成断面
図である。FIG. 4 is a cross-sectional view illustrating another configuration of the connection portion of the imaging optical system according to the present invention.
【図5】 本発明の結像光学系の接続部の他の構成断面
図である。FIG. 5 is a cross-sectional view of another configuration of the connection portion of the imaging optical system of the present invention.
【図6】 請求項3の結像光学系の一例を示す側面図及
び底面図である。FIG. 6 is a side view and a bottom view showing an example of the image forming optical system according to claim 3;
【図7】 請求項3の発明の実施例の断面図である。FIG. 7 is a sectional view of an embodiment according to the third aspect of the present invention.
【図8】 請求項3の発明の他の実施例を示す断面図で
ある。FIG. 8 is a sectional view showing another embodiment of the invention of claim 3;
【図9】 請求項4の発明の結像光学系を示す図であ
る。FIG. 9 is a diagram showing an imaging optical system according to the invention of claim 4;
【図10】 請求項4の発明の実施例の断面図である。FIG. 10 is a sectional view of an embodiment of the invention according to claim 4;
【図11】 請求項4の発明の他の実施例を示す断面図
である。FIG. 11 is a sectional view showing another embodiment of the invention of claim 4.
【図12】 請求項5の発明の実施例を示す断面図であ
る。FIG. 12 is a sectional view showing an embodiment of the invention of claim 5;
【図13】 請求項5の発明の他の実施例を示す断面図
である。FIG. 13 is a sectional view showing another embodiment of the invention of claim 5;
【図14】 請求項6の発明の実施例を示す断面図であ
る。FIG. 14 is a sectional view showing an embodiment of the invention according to claim 6;
【図15】 請求項6の発明の他の実施例を示す断面図
である。FIG. 15 is a sectional view showing another embodiment of the invention of claim 6;
【図16】 請求項7の発明の実施例を示す断面図であ
る。FIG. 16 is a sectional view showing an embodiment of the invention of claim 7;
【図17】 請求項7の発明の他の実施例を示す断面図
である。FIG. 17 is a sectional view showing another embodiment of the invention of claim 7;
【図18】 請求項8の発明の実施例を示す断面図であ
る。FIG. 18 is a sectional view showing an embodiment of the invention of claim 8;
【図19】 図18の接着部の接着手順を示す拡大図で
ある。FIG. 19 is an enlarged view showing a bonding procedure of the bonding portion of FIG. 18.
【図20】 請求項9の発明の実施例を示す断面図であ
る。FIG. 20 is a sectional view showing an embodiment of the invention of claim 9;
【図21】 図20の接着部の接着手順を示す拡大図で
ある。FIG. 21 is an enlarged view showing a bonding procedure of the bonding portion of FIG. 20.
【図22】 請求項10の発明の実施例を示す断面図で
ある。FIG. 22 is a sectional view showing an embodiment of the tenth aspect of the present invention.
【図23】 請求項11の発明の実施例を示す断面図で
ある。FIG. 23 is a sectional view showing an embodiment of the present invention.
【図24】 従来の走査光学系の要部概略斜視図であ
る。FIG. 24 is a schematic perspective view of a main part of a conventional scanning optical system.
【図25】 図24の側面図である。FIG. 25 is a side view of FIG. 24.
【図26】 従来の結像光学系の取り付け部の構成図で
ある。FIG. 26 is a configuration diagram of a mounting portion of a conventional imaging optical system.
【図27】 従来の結像光学系の他の取り付け部構成図
である。FIG. 27 is a configuration diagram of another mounting portion of a conventional imaging optical system.
1…光源、2…コリメータレンズ、3…絞り、4…シリ
ンドリカルレンズ、5…光偏向器、6…結像光学系、7
…反射ミラー、8…感光体、9…レンズ、10…同期検
知装置、11…光学ハウジング、12…基準面、13…
バネ、14…ねじ、15…接着剤、16…凸部、17…
凹部、18…ロボットのハンド、19…光学特性測定セ
ンサー、20…溝、21…円筒形状凸部、22…円筒形
状凹部、23…結像光学系の針凸部、24…光学ハウジ
ングの針凹部、25…粘土もしくは砂、セラミック粉、
ガラス粉、26…球形もしくは細粒径の金属、もしくは
石、もしくはセラミック、もしくはガラス、27…薄い
層、28…ファイバー、29…接着剤、30a,30b
…接着材、31a,31b…接着剤。DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Collimator lens, 3 ... Stop, 4 ... Cylindrical lens, 5 ... Optical deflector, 6 ... Imaging optical system, 7
... Reflection mirror, 8 ... Photoconductor, 9 ... Lens, 10 ... Synchronization detection device, 11 ... Optical housing, 12 ... Reference plane, 13 ...
Spring, 14 ... screw, 15 ... adhesive, 16 ... convex, 17 ...
Concave part, 18 ... Robot hand, 19 ... Optical property measurement sensor, 20 ... Groove, 21 ... Cylindrical convex part, 22 ... Cylindrical concave part, 23 ... Needle convex part of imaging optical system, 24 ... Needle concave part of optical housing , 25 ... clay or sand, ceramic powder,
Glass powder, 26: spherical or fine metal, or stone, or ceramic, or glass, 27: thin layer, 28: fiber, 29: adhesive, 30a, 30b
... adhesives, 31a, 31b ... adhesives.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 敏之 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshiyuki Muto 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company, Ltd.
Claims (11)
定角度反復偏向させ画像形成面に対して主走査を行なう
偏向手段と、前記ビーム光を前記画像形成面に結像させ
るための光学部材と、該光学部材と前記偏向手段とを収
納するハウジングと、前記偏向手段により偏向された変
調開始直前の前記光ビームを検知し変調開始のための同
期信号を出力する同期検知装置とを備えた光走査装置に
おいて、前記光学部材に固定用の凸部を有し、前記ハウ
ジングに該光学部材の凸部に比較し充分大きな凹部を有
し、前記光学部材の凸部と前記ハウジングの凹部が接着
剤で固定されていることを特徴とする光走査装置。1. A deflecting means for repetitively deflecting a light beam modulated by an image signal by a predetermined angle to perform main scanning on an image forming surface, and an optical member for forming an image of the light beam on the image forming surface. A light housing comprising the optical member and the deflecting means, and a synchronization detecting device for detecting the light beam immediately before the start of modulation deflected by the deflecting means and outputting a synchronization signal for starting the modulation. In the scanning device, the optical member has a fixing convex portion, the housing has a sufficiently large concave portion as compared to the convex portion of the optical member, and the convex portion of the optical member and the concave portion of the housing are formed of an adhesive. An optical scanning device characterized by being fixed by:
し、該凸部の突起部に横方向の溝を有することを特徴と
する請求項1記載の光走査装置。2. The optical scanning device according to claim 1, wherein the optical member has a plurality of fixing projections, and the projections of the projections have lateral grooves.
記ハウジングの凹部の形状を同心状の円筒形状とし、か
つ、該凸部と凹部が入り込む形状であることを特徴とす
る請求項1記載の光走査装置。3. The method according to claim 1, wherein the shape of the fixing convex portion of the optical member and the shape of the concave portion of the housing are concentric cylindrical shapes, and the convex portion and the concave portion are formed into a shape. 2. The optical scanning device according to 1.
数の針状の突起形状であることを特徴とする請求項1記
載の光走査装置。4. The optical scanning device according to claim 1, wherein the fixing projection of the optical member has a large number of needle-like projections.
数の針状の突起形状とし、前記ハウジングの凹部のへこ
んだ部分の形状を多数の針状の突起形状とし、これら凸
部と凹部針状の突起形状部が入り込む形状であることを
特徴とする請求項1記載の光走査装置。5. The fixing member of the optical member has a large number of needle-like protrusions, and the concave portion of the housing has a large number of needle-like protrusions. 2. The optical scanning device according to claim 1, wherein the needle-shaped projection is formed into a concave shape.
砂、もしくはセラミック粉、もしくはガラス粉を入れ、
前記光学部材の凸部を前記粘土、もしくは砂、もしくは
セラミック粉、もしくはガラス粉の入ったハウジングの
凹部に挿入して光学的位置調整を行なった後、前記光学
部材の凸部の上部と前記ハウジングの凹部周辺を接着剤
で固定したことを特徴とする請求項1記載の光走査装
置。6. Putting clay, sand, ceramic powder, or glass powder into the recess of the housing,
After adjusting the optical position by inserting the convex portion of the optical member into the concave portion of the housing containing the clay, sand, ceramic powder, or glass powder, the upper portion of the convex portion of the optical member and the housing 2. The optical scanning device according to claim 1, wherein the periphery of the concave portion is fixed with an adhesive.
粒径の金属、もしくは石、もしくはセラミック、もしく
はガラスを入れ、前記光学部材の凸部を前記球形もしく
は細粒径の金属、もしくは石、もしくはセラミック、も
しくはガラスの入ったハウジングの凹部に挿入して光学
的位置調整を行なった後、前記ハウジングの凹部に接着
剤を注入し浸透させて固定したことを特徴とする請求項
1記載の光走査装置。7. A spherical or fine-grained metal, stone, ceramic, or glass is placed in the recess of the housing, and the spherical or fine-grained metal, stone, or ceramic is formed on the projection of the optical member. 2. The optical scanning device according to claim 1, wherein the optical scanning device is inserted into a concave portion of the housing containing glass, and optical position adjustment is performed. .
凹部を接着剤で固定する時、凹部に数ミリの層を形成す
るように接着剤を入れ固化させた後、次の数ミリの層の
接着剤を入れさらに固化させ、部品を固定する下部から
薄い層順に硬化させ、部品を固定することを特徴とする
請求項1記載の光走査装置。8. When fixing the convex part of the optical member and the concave part of the housing with an adhesive, the adhesive is solidified so as to form a several millimeter layer in the concave part, and then the next several millimeter layer is formed. 2. The optical scanning device according to claim 1, wherein the adhesive is further added and solidified, and the parts are fixed in the order of thin layers from the lower part for fixing the parts, thereby fixing the parts.
凹部を接着剤で固定する時、接着剤を紫外線硬化型接着
剤とし、該接着剤を凹部に注入後、凹部の周囲から同心
円状に順に固まるように紫外線ビームを照射し、薄い層
を形成するように接着剤を硬化させ、部品を固定するこ
とを特徴とする請求項1記載の光走査装置。9. When fixing the convex part of the optical member and the concave part of the housing with an adhesive, the adhesive is an ultraviolet curable adhesive, and after the adhesive is injected into the concave part, the adhesive is concentrically formed from the periphery of the concave part. 2. The optical scanning device according to claim 1, wherein an ultraviolet beam is radiated so as to solidify in order, and the adhesive is cured so as to form a thin layer, and the component is fixed.
の凹部を接着剤で固定する時、接着剤を紫外線硬化型接
着剤とし、接着剤を凹部に注入後、一度凹部に紫外線ビ
ームを照射し硬化を開始させ、継続的に部品の位置を計
測しながら硬化収縮による変形を矯正する場所に紫外線
ビームの照射位置を移動し、接着剤を硬化させ部品を測
定位置に固定することを特徴とする請求項1記載の光走
査装置。10. When fixing the convex portion of the optical member and the concave portion of the housing with an adhesive, the adhesive is an ultraviolet-curing adhesive, and after the adhesive is injected into the concave portion, the concave portion is irradiated with an ultraviolet beam once. The curing is started, the irradiation position of the ultraviolet beam is moved to a place where the deformation due to curing shrinkage is corrected while the position of the component is continuously measured, the adhesive is cured, and the component is fixed at the measurement position. The optical scanning device according to claim 1.
の凹部を接着剤で固定する時、接着剤を紫外線硬化型接
着剤とし、接着剤を凹部に注入後、紫外線ビームを照射
し一度硬化させた後、部品の位置を測定し、硬化収縮に
よる位置ずれを矯正する位置に再度適度な量の接着剤を
滴下後、紫外線ビームを照射し、接着剤を硬化させ部品
を指定位置に固定することを特徴とする請求項1記載の
光走査装置。11. When fixing the convex part of the optical member and the concave part of the housing with an adhesive, the adhesive is an ultraviolet curable adhesive, and after the adhesive is injected into the concave part, it is irradiated with an ultraviolet beam and cured once. After measuring the position of the part, apply an appropriate amount of adhesive again to the position to correct the misalignment due to curing shrinkage, irradiate with an ultraviolet beam, cure the adhesive, and fix the part at the specified position The optical scanning device according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9070625A JPH10250150A (en) | 1997-03-07 | 1997-03-07 | Optical scan apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9070625A JPH10250150A (en) | 1997-03-07 | 1997-03-07 | Optical scan apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10250150A true JPH10250150A (en) | 1998-09-22 |
Family
ID=13437000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9070625A Pending JPH10250150A (en) | 1997-03-07 | 1997-03-07 | Optical scan apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10250150A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012137751A (en) * | 2010-12-06 | 2012-07-19 | Canon Inc | Method for adjusting lens unit and lens unit adjusted by the method |
CN103209277A (en) * | 2012-01-16 | 2013-07-17 | 佳能精技股份有限公司 | Image reading apparatus and image forming apparatus |
JP2014171262A (en) * | 2012-01-16 | 2014-09-18 | Canon Finetech Inc | Image reading device and image forming apparatus |
WO2019082503A1 (en) * | 2017-10-24 | 2019-05-02 | ソニー株式会社 | Lens device and image pickup apparatus |
CN114810761A (en) * | 2021-03-26 | 2022-07-29 | 郑州思昆生物工程有限公司 | Fluorescent microscopic imaging system and installation method and bonding structure thereof |
-
1997
- 1997-03-07 JP JP9070625A patent/JPH10250150A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012137751A (en) * | 2010-12-06 | 2012-07-19 | Canon Inc | Method for adjusting lens unit and lens unit adjusted by the method |
CN103209277A (en) * | 2012-01-16 | 2013-07-17 | 佳能精技股份有限公司 | Image reading apparatus and image forming apparatus |
JP2013168918A (en) * | 2012-01-16 | 2013-08-29 | Canon Finetech Inc | Image reading device and image formation device |
US8786913B2 (en) | 2012-01-16 | 2014-07-22 | Canon Finetech Inc. | Image reading apparatus and image forming apparatus |
JP2014171262A (en) * | 2012-01-16 | 2014-09-18 | Canon Finetech Inc | Image reading device and image forming apparatus |
CN103209277B (en) * | 2012-01-16 | 2015-09-23 | 佳能精技股份有限公司 | Image read-out and image processing system |
WO2019082503A1 (en) * | 2017-10-24 | 2019-05-02 | ソニー株式会社 | Lens device and image pickup apparatus |
JPWO2019082503A1 (en) * | 2017-10-24 | 2020-11-26 | ソニー株式会社 | Lens device and imaging device |
CN114810761A (en) * | 2021-03-26 | 2022-07-29 | 郑州思昆生物工程有限公司 | Fluorescent microscopic imaging system and installation method and bonding structure thereof |
CN114810761B (en) * | 2021-03-26 | 2024-01-26 | 郑州思昆生物工程有限公司 | Fluorescence microscopic imaging system, mounting method thereof and bonding structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100299649B1 (en) | Light source device including semiconductor lasers | |
JP3281507B2 (en) | Optical scanning device | |
JPH10250150A (en) | Optical scan apparatus | |
JP2004115545A (en) | Method for position control-type bonding and joining and apparatus therefor | |
JPH09246658A (en) | Optical source device | |
JP2003098413A (en) | Light source device and its adjustment method | |
JP2008268838A (en) | Optical scanning device, image forming apparatus, mirror, housing, mirror attaching method, mirror arrangement adjusting device, and mirror arrangement adjusting method | |
JPH11340567A (en) | Light source device | |
JP5084423B2 (en) | Light source device | |
JPH07297993A (en) | Mounting method and mounting structure of solid-state image pickup element in image reader | |
JP3569493B2 (en) | Method and apparatus for forming lens surface | |
JP2002031773A (en) | Light source device and method for adjusting arrangement | |
JP3434103B2 (en) | Work fixing structure and mounting structure of solid-state imaging device in image reading device | |
JP3015120B2 (en) | How to attach a synthetic resin lens | |
JPH0872300A (en) | Light source | |
JP4420272B2 (en) | Multi-beam light source device, adjustment method thereof, optical scanning device, and image forming apparatus | |
JP2004323666A (en) | Bonding method, boding device and part bonding apparatus using the boding device | |
JP2003287604A (en) | Method for manufacturing optical lens and method for manufacturing optical fiber connector | |
JP2001166106A (en) | Method and device for production of resin joined optical device | |
JPH0884217A (en) | Mounting structure for solid-state image pickup element in image reader | |
JPH04311915A (en) | Synthetic resin lens fixing mechanism | |
JP2006059934A (en) | Light source device and image forming device | |
JP2009156958A (en) | Light source unit, laser scanner, image forming apparatus, and light source unit assembling method | |
JP4806248B2 (en) | Semiconductor laser unit device and laser device | |
JPH10284803A (en) | Light source device |