JPH10245662A - Production of substrate for superconducting tape conductor - Google Patents

Production of substrate for superconducting tape conductor

Info

Publication number
JPH10245662A
JPH10245662A JP9050771A JP5077197A JPH10245662A JP H10245662 A JPH10245662 A JP H10245662A JP 9050771 A JP9050771 A JP 9050771A JP 5077197 A JP5077197 A JP 5077197A JP H10245662 A JPH10245662 A JP H10245662A
Authority
JP
Japan
Prior art keywords
base material
rolling
nickel alloy
substrate
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9050771A
Other languages
Japanese (ja)
Inventor
Kazunori Onabe
和憲 尾鍋
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP9050771A priority Critical patent/JPH10245662A/en
Publication of JPH10245662A publication Critical patent/JPH10245662A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To smoothen the surface of a substrate to such an extent as to be used as a substrate for a conductor by specifying the working degree in one time rolling and the total working degree, furthermore annealing an nickel alloy base metal at a specified temp. before the rolling and rolling the base metal for plural times. SOLUTION: A nickel alloy base metal contg. chromium, molybdenum, iron or the like is rolled for plural times and is worked into a substrate for a superconducting tape conductor. The working degree in one time is regulated to <=20%, and the total working degree is regulated to <=60%. At this time, before the rolling process, the nickel alloy base metal is annealed at 1000 to 1050 deg.C. Furthermore, it is preferable that, before the final rolling process, the process of polishing the surface of the nickel alloy base metal by abrasives is executed for one or more time, to furthermore improve the smoothness of the surface. The grain size of the abrasives is preferably regulated to <=28μm (#600). Moreover, the smoothness of the surface of the tape-shaped substrate made of the nickel alloy after the final rolling may be required to Rmax=0.2μm or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導電力ケーブ
ル、超電導マグネット、超電導エネルギー貯蔵装置、超
電導発電装置、医療用MRI装置、超電導電流リードな
どの分野への応用開発が進められている酸化物超電導テ
ープ導体の基材として用いられる、超電導テープ導体用
基材の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to oxide superconductivity which is being developed for applications in fields such as superconducting power cables, superconducting magnets, superconducting energy storage devices, superconducting power generators, medical MRI devices, and superconducting current leads. The present invention relates to a method for producing a base material for a superconducting tape conductor used as a base material for a tape conductor.

【0002】[0002]

【従来の技術】従来の酸化物系超電導線材の製造方法と
しては、酸化物系超電導粉末または熱処理によって酸化
物系超電導体となる粉末を円柱状にプレスし、これを銀
管中に挿入し、伸線・圧延工程と熱処理工程を行って線
材化するパウダーインチューブ法(PIT法)の他に、
化学気相成長法(CVD法)、物理的気相堆積法(PV
D法)などの蒸着法により金属テープなどの基材上に、
連続的に酸化物系超電導薄膜を形成させる成膜法が知ら
れている。
2. Description of the Related Art As a conventional method of manufacturing an oxide-based superconducting wire, an oxide-based superconducting powder or a powder that becomes an oxide-based superconductor by heat treatment is pressed into a columnar shape, and this is inserted into a silver tube. In addition to the powder-in-tube method (PIT method), which performs wire drawing and rolling processes and heat treatment processes to make wires,
Chemical vapor deposition (CVD), physical vapor deposition (PV
D method) on a base material such as a metal tape by an evaporation method.
A film formation method for continuously forming an oxide-based superconducting thin film is known.

【0003】この金属テープ基材には、高強度、耐酸化
性、耐熱性などが要求されるが、さらに酸化物材料に近
い熱膨張係数を持っていることが望ましい。これまでに
見いだされた金属テープ基材の有力候補の一つに、クロ
ム、モリブデン、鉄などを成分として含むニッケル合金
がある。
[0003] The metal tape base material is required to have high strength, oxidation resistance, heat resistance and the like, but it is desirable that the metal tape base material has a thermal expansion coefficient close to that of an oxide material. One of the promising candidates for a metal tape base material found so far is a nickel alloy containing chromium, molybdenum, iron or the like as a component.

【0004】ところで、超電導テープ導体用基材におい
て最も重要なのは、テープ表面の平滑性である。酸化物
超電導薄膜の超電導特性は、結晶の配向度に大きく依存
しており、基材表面に凹凸が存在すると、それに応じて
結晶の配向が乱れてしまい、特性が大きく低下すること
が知られている。金属テープ基材表面の平滑性を改善す
る技術として、単結晶基板で採用されている物理的ある
いは光学的研磨を挙げることができる。物理的研磨と
は、エメリ紙、ダイヤモンド粉末、アルミナ粉末などの
研磨材を用いて基材表面を直接磨く方法であり、光学的
研磨とは、レーザー光などの作用により基材表面を平滑
にする方法である。あるいは、ロール圧延によって金属
テープ基材の表面を平滑にする方法も知られている。
[0004] The most important factor in the substrate for a superconducting tape conductor is the smoothness of the tape surface. It is known that the superconducting properties of an oxide superconducting thin film greatly depend on the degree of crystal orientation, and if there are irregularities on the surface of the base material, the orientation of the crystals is disturbed accordingly, and the properties are greatly reduced. I have. As a technique for improving the smoothness of the surface of the metal tape substrate, there is physical or optical polishing employed for a single crystal substrate. Physical polishing is a method of directly polishing the surface of a base material using an abrasive such as emery paper, diamond powder, or alumina powder. Optical polishing is a method of smoothing the surface of a base material by the action of laser light or the like. Is the way. Alternatively, a method of smoothing the surface of a metal tape base material by roll rolling is also known.

【0005】しかし、物理的あるいは光学的研磨により
製造されるテープ状基材は、特に長尺のものにおいては
生産性を上げることが困難で、コストも高くなるなどの
問題がある。一方、ロール圧延によるテープ状基材製造
では、ニッケル合金母材を使用する場合は、その硬度が
高く、通常のロール圧延ではテープ材への加工は困難で
あり、特に表面が平滑なテープ材を製造することは難し
い。通常の圧延手段でニッケル合金母材を加工していく
と、加工度がおよそ30%以上になるとニッケル合金母
材の硬度が非常に高くなり、これ以上薄板化することが
できなくなる問題がある。
However, a tape-shaped substrate manufactured by physical or optical polishing has a problem that it is difficult to increase the productivity, especially when the substrate is long, and the cost is increased. On the other hand, in the production of a tape-shaped base material by roll rolling, when a nickel alloy base material is used, its hardness is high, and processing into a tape material by ordinary roll rolling is difficult. It is difficult to manufacture. When the nickel alloy base material is processed by ordinary rolling means, the hardness of the nickel alloy base material becomes extremely high when the degree of processing is about 30% or more, and there is a problem that it is not possible to further reduce the thickness.

【0006】[0006]

【発明が解決しようとする課題】上記の点に鑑み、本発
明は、ニッケル合金母材から超電導テープ導体用基材と
して用いることのできる程度に表面を平滑にしたニッケ
ル合金製のテープ状基材を製造する方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention relates to a tape base made of nickel alloy having a surface smoothed from a nickel alloy base material to such an extent that it can be used as a base for a superconducting tape conductor. An object of the present invention is to provide a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記の課題は、ニッケル
合金母材を複数回圧延することでテープ状基材とする超
電導テープ導体用基材の製造方法において、ニッケル合
金母材の1回の圧延での加工度を20%以下とし、圧延
工程の前にニッケル合金母材を1000〜1050℃で
焼き鈍し、さらにニッケル合金母材のトータルの加工度
を60%以下とすることによって解決することができ
る。また、最終圧延工程の前に、ニッケル合金母材の表
面を、28μm以下の粒度を持つ研磨材で研磨する工程
を1回以上行うことが好ましい。上記手段を用いて、最
終圧延後のニッケル合金製テープ状基材表面の平滑度
を、Rmax=0.2μm以下にすることで、超電導テー
プ導体用基材に適したテープ状基材を得る。
An object of the present invention is to provide a method for manufacturing a base material for a superconducting tape conductor, which is used as a tape-shaped base material by rolling a nickel alloy base material a plurality of times. This problem can be solved by setting the workability in rolling to 20% or less, annealing the nickel alloy base material at 1000 to 1050 ° C. before the rolling step, and setting the total workability of the nickel alloy base material to 60% or less. it can. Before the final rolling step, it is preferable to perform one or more steps of polishing the surface of the nickel alloy base material with an abrasive having a particle size of 28 μm or less. By using the above means to make the smoothness of the surface of the nickel alloy tape-like base material after the final rolling Rmax = 0.2 μm or less, a tape-like base material suitable for a base material for a superconducting tape conductor is obtained.

【0008】[0008]

【発明の実施の形態】以下、本発明について、さらに詳
細に説明する。本発明の要旨は、ニッケル合金母材を超
電導テープ導体用基材に加工するにあたり、以下の加工
条件に従ってニッケル合金母材の加工を行うことにあ
る。すなわち、一回の加工度を20%以下とした圧延を
複数回行うことでテープ状基材を得るが、圧延工程の前
に、ニッケル合金母材を1000〜1050℃で焼き鈍
す工程を行い、さらにニッケル合金母材のトータルの加
工度を60%以下とすることでニッケル合金母材からテ
ープ状基材を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The gist of the present invention is to process a nickel alloy base material according to the following processing conditions when processing a nickel alloy base material into a base material for a superconducting tape conductor. That is, a tape-shaped base material is obtained by performing rolling at a single working degree of 20% or less a plurality of times. Before the rolling step, a step of annealing the nickel alloy base material at 1000 to 1050 ° C. is performed. Further, by setting the total workability of the nickel alloy base material to 60% or less, a tape-shaped base material can be obtained from the nickel alloy base material.

【0009】ニッケル合金の特に好ましい例として、ハ
ステロイ(Haynes Stellite社商品名)を挙げることが
できる。このハステロイは、含有する元素の種類や量の
違いにより、ハステロイA、ハステロイC、ハステロイ
Dなどいくつかの種類に分けられている。ハステロイ
A、ハステロイC、ハステロイDの3種類について、そ
れぞれが含有する元素の種類および比率を表1に示す。
本発明においては、いずれの種類のハステロイであって
も、超電導テープ導体用基材の母材として好適に使用す
ることができる。種々のハステロイが含有する元素とそ
の比率は、Cが0〜0.15%、Siが1.0〜10.
0%、Mnが1.0〜2.0%、Crが1.0〜23.
0%、Coが0〜2.5%、Moが0〜30%、Wが0
〜5.0%、Alが0〜2.0%、Feが0〜20.0
%、Cuが0〜3.0%の範囲にあり、残部はNiであ
る。
As a particularly preferred example of the nickel alloy, Hastelloy (trade name of Haynes Stellite) can be mentioned. This Hastelloy is classified into several types, such as Hastelloy A, Hastelloy C, and Hastelloy D, depending on the types and amounts of the contained elements. Table 1 shows the types and ratios of the elements contained in Hastelloy A, Hastelloy C, and Hastelloy D.
In the present invention, any type of Hastelloy can be suitably used as a base material of a substrate for a superconducting tape conductor. Various elements contained in Hastelloy and their ratios are as follows: C is 0 to 0.15%, and Si is 1.0 to 10%.
0%, Mn is 1.0 to 2.0%, and Cr is 1.0 to 23.
0%, Co is 0 to 2.5%, Mo is 0 to 30%, W is 0
~ 5.0%, Al is 0 ~ 2.0%, Fe is 0 ~ 20.0
%, Cu is in the range of 0 to 3.0%, and the balance is Ni.

【0010】[0010]

【表1】 [Table 1]

【0011】ニッケル合金母材を超電導テープ導体用基
材に加工する場合に使用するロールは、鋳鉄ロールや鋼
ロールなどのようないわゆる通常ロールでも差し支えな
いが、硬さが70〜100Hs程度、ヤング率が215
00kg/mm2程度の鍛鋼ロールや、硬さが120H
s程度、ヤング率が66000kg/mm2程度のタン
グステンカーバイド焼結ロールなどのいわゆる超硬ロー
ルを使用することで、テープ基材表面の平滑度をさらに
向上させることができる。圧延工程で使用するロールを
すべて超硬ロールにする必要はないが、特に最終圧延工
程においては、超硬ロールを使用することが好ましい。
また、最終圧延工程に使用する超硬ロールは、その表面
の凹凸が0.1μm以下になるように研磨されているこ
とが好ましい。
The roll used when processing the nickel alloy base material into the base material for the superconducting tape conductor may be a so-called normal roll such as a cast iron roll or a steel roll, but has a hardness of about 70 to 100 Hs and a Young's roll. Rate is 215
Forged steel roll of about 00 kg / mm 2 or hardness of 120H
By using a so-called cemented carbide roll such as a tungsten carbide sintered roll having a Young's modulus of about 66000 kg / mm 2 and about s, the smoothness of the tape substrate surface can be further improved. It is not necessary that all the rolls used in the rolling step are superhard rolls, but it is particularly preferable to use superhard rolls in the final rolling step.
Further, it is preferable that the cemented carbide roll used in the final rolling step is polished so that the unevenness on the surface is 0.1 μm or less.

【0012】圧延工程において好適に使用される圧延機
としては、図1に示すような上下一対の駆動ロール5、
5を備えた二重圧延機1、図2に示すような二重圧延機
の上方にさらに駆動ロール5を設けた三重圧延機2、図
3に示すような上下一対の駆動ロール5、5の上下にさ
らにロール6、6を設けた四重圧延機3などを例示する
ことができる。ここでの圧延条件は、温度が室温〜30
0℃、圧下率が5〜20%、圧延速度が1〜10m/分
程度である。
The rolling mill preferably used in the rolling process includes a pair of upper and lower drive rolls 5 as shown in FIG.
2, a triple rolling mill 2 further provided with a driving roll 5 above the double rolling mill as shown in FIG. 2, and a pair of upper and lower driving rolls 5 and 5 as shown in FIG. For example, a quadruple rolling mill 3 provided with rolls 6 on the upper and lower sides can be exemplified. The rolling conditions here are such that the temperature is between room temperature and 30
0 ° C., the reduction ratio is 5 to 20%, and the rolling speed is about 1 to 10 m / min.

【0013】圧延工程の前に行われる焼き鈍し工程にお
いては、所望の焼き鈍し温度を得ることのできる加熱装
置を用いて基材の焼き鈍しを行えばよい。加熱装置の例
としては、バッチ式電気炉、連続焼成炉などを挙げるこ
とができる。特に基材がテープ状になっている場合は、
例えば図4に示すように供給ボビン11から巻き取りボ
ビン12の間の任意の位置に加熱装置13を設け、テー
プ状基材を巻き取りボビン12がゆっくりと巻き取る間
に、加熱装置13がテープ状基材を加熱することで焼き
鈍しを行うことができる。この時、巻き取りボビン12
の回転数を変化させることで、焼き鈍し時間を調整する
ことができる。
[0013] In the annealing step performed before the rolling step, the base material may be annealed using a heating device capable of obtaining a desired annealing temperature. Examples of the heating device include a batch type electric furnace and a continuous firing furnace. Especially when the base material is in a tape shape,
For example, as shown in FIG. 4, a heating device 13 is provided at an arbitrary position between the supply bobbin 11 and the winding bobbin 12, and while the winding bobbin 12 slowly winds the tape-shaped base material, the heating device 13 Annealing can be performed by heating the substrate. At this time, the winding bobbin 12
The annealing time can be adjusted by changing the number of revolutions.

【0014】本発明において、ニッケル合金母材の焼き
鈍し温度は、1000〜1050℃であることが好まし
い。1000℃以下では十分に軟化せず、加工性が改善
されない。1050℃以上では、金属結晶の再結晶によ
り母材表面の平滑度が著しく低下する。
In the present invention, the annealing temperature of the nickel alloy base material is preferably 1000 to 1050 ° C. If the temperature is lower than 1000 ° C., it does not soften sufficiently, and the workability is not improved. When the temperature is 1050 ° C. or higher, the smoothness of the surface of the base material is significantly reduced due to recrystallization of the metal crystal.

【0015】本発明においては、残油成分が超電導材料
に混入すると特性が劣化するため、製造途中に基材の脱
脂工程を一回以上行うことが好ましい。基材の脱脂は、
アセトンなどの脱脂剤を布などに染み込ませ、基材表面
の脂分を直接拭き取ることで行うことができる。特に基
材がテープ状になっている場合は、例えば図5に示すよ
うに四重圧延機3から巻き取りボビン12の間の任意の
位置に脱脂剤を含んだ拭き取り部材14、14を設け、
テープ状基材の両面を直接拭くことで基材の脱脂を行う
ことができる。
In the present invention, if the residual oil component is mixed into the superconducting material, the properties are deteriorated. Therefore, it is preferable to perform the degreasing step of the base material at least once during the production. Degreasing the substrate
This can be performed by impregnating a cloth or the like with a degreaser such as acetone and directly wiping off the grease on the surface of the base material. In particular, when the base material is in a tape shape, for example, as shown in FIG. 5, wiping members 14, 14 containing a degreasing agent are provided at arbitrary positions between the winding bobbins 12 from the quadruple rolling mill 3,
The base material can be degreased by directly wiping both sides of the tape-shaped base material.

【0016】本発明においては、圧延によるニッケル合
金母剤の表面平滑化に加え、物理的研磨を併用すること
により、さらに表面の平滑度を向上させることができ
る。すなわち、最終圧延工程の前に、ニッケル合金母材
の表面を研磨材で研磨する工程を1回以上行うことによ
り、圧延工程のみを行って得られた基材よりもさらに表
面の平滑度の向上した基材を得ることができる。
In the present invention, the surface smoothness can be further improved by using physical polishing together with the surface smoothing of the nickel alloy base material by rolling. That is, before the final rolling step, the step of polishing the surface of the nickel alloy base material with an abrasive is performed one or more times, so that the smoothness of the surface is further improved as compared with the base material obtained by performing only the rolling step. The obtained base material can be obtained.

【0017】この研磨工程で用いる研磨材の粒度は、2
8μm(#600)以下であることが好ましく、10〜
28μm(#1600〜#600)の範囲にあることが
さらに好ましい。粒度10μm(#1600)未満の研
磨材を用いても、表面平滑度の顕著な向上は認められな
い。粒度が28μm(#600)を越える研磨材は、表
面の平滑度を逆に悪化させてしまう傾向にあるので好ま
しくない。
The particle size of the abrasive used in this polishing step is 2
8 μm (# 600) or less.
More preferably, it is in the range of 28 μm (# 1600 to # 600). Even if an abrasive having a particle size of less than 10 μm (# 1600) is used, no remarkable improvement in surface smoothness is observed. An abrasive having a particle size of more than 28 μm (# 600) is not preferred because it tends to deteriorate the surface smoothness.

【0018】以上説明した通り、本発明の超電導テープ
導体用基材の製造方法においては、最終圧延後のニッケ
ル合金製テープ状基材表面の平滑度を、Rmax=0.2
μm以下にすることができ、超電導テープ導体用基材と
して優れたニッケル合金製テープ状基材を得ることがで
きる。
As described above, in the method for producing a substrate for a superconducting tape conductor according to the present invention, the smoothness of the surface of the nickel alloy tape-like substrate after the final rolling is determined by Rmax = 0.2
μm or less, and a nickel alloy tape-shaped substrate excellent as a substrate for a superconducting tape conductor can be obtained.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例のみに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

【0020】(実施例1)表2に示した工程に従って、
ハステロイ母材(C−276)を超電導テープ導体用基
材に加工した。すなわち、通常ロールによる圧延を2
回、超硬ロールによる圧延を2回、計4回の圧延を行
い、1回の圧延での加工度を20%とすることで、トー
タルの加工度を59%とした。
Example 1 According to the steps shown in Table 2,
The Hastelloy base material (C-276) was processed into a substrate for a superconducting tape conductor. In other words, rolling by a normal roll is 2
The rolling was performed twice, that is, twice with a carbide roll, and the rolling was performed a total of four times, and the total degree of processing was 59% by setting the degree of processing in one rolling to 20%.

【0021】[0021]

【表2】 [Table 2]

【0022】(実施例2)表3に示した工程に従って、
ハステロイ母材(C−276)を超電導テープ導体用基
材に加工した。すなわち、通常ロールによる圧延を2
回、超硬ロールによる圧延を2回、計4回の圧延を行
い、1回の圧延での加工度を20%とすることで、トー
タルの加工度を59%とした。また、2回目と3回目の
圧延工程の間に、#600(研磨材28μm以下相当)
のエメリ紙を用いて、ハステロイ母材の表面を研磨し
た。研磨後、アセトンを用いてハステロイ母材表面を洗
浄した。
Example 2 In accordance with the steps shown in Table 3,
The Hastelloy base material (C-276) was processed into a substrate for a superconducting tape conductor. In other words, rolling by a normal roll is 2
The rolling was performed twice, that is, twice with a carbide roll, and the rolling was performed a total of four times, and the total degree of processing was 59% by setting the degree of processing in one rolling to 20%. Also, between the second and third rolling steps, # 600 (corresponding to an abrasive of 28 μm or less)
The surface of the Hastelloy base material was polished using Emery paper. After polishing, the surface of the Hastelloy base material was washed with acetone.

【0023】[0023]

【表3】 [Table 3]

【0024】(比較例1)表2に示した工程において2
回行っている超硬ロール圧延を、通常ロール圧延に変え
て、ハステロイ母材を超電導テープ導体用基材に加工し
た。すなわち、通常ロールによる圧延を4回行い、1回
の圧延での加工度を20%とすることで、トータルの加
工度を59%とした。
Comparative Example 1 In the process shown in Table 2, 2
The rotating super hard roll was changed to normal roll rolling, and the Hastelloy base material was processed into a superconducting tape conductor base material. That is, the rolling by the normal roll was performed four times, and the working ratio in one rolling was set to 20%, so that the total working ratio was set to 59%.

【0025】上記実施例1、2、比較例1で得られたハ
ステロイ製テープ状基材の表面の平滑性を測定した。結
果を表4に示す。実施例1の加工方法ではRmax=0.
2μmのテープ状基材が得られた。実施例2では、Rma
x=0.1μmと、さらに平滑度の向上したテープ状基
材が得られた。ところが、比較例1で得られたテープ状
基材はRmax=1.2μmと、平滑度においては不十分
なものであった。
The smoothness of the surface of the Hastelloy tape base material obtained in Examples 1 and 2 and Comparative Example 1 was measured. Table 4 shows the results. In the processing method of the first embodiment, Rmax = 0.
A 2 μm tape-shaped substrate was obtained. In the second embodiment, Rma
When x = 0.1 μm, a tape-like substrate with further improved smoothness was obtained. However, the tape-shaped substrate obtained in Comparative Example 1 had an Rmax of 1.2 μm, which was insufficient in smoothness.

【0026】[0026]

【表4】 [Table 4]

【0027】次に、上記実施例1、2、比較例1で得ら
れたハステロイ製テープ状基材を用いて、Y−Ba−C
u−O系超電導テープ線材の作成を行い、超電導特性の
測定を行った。まず、ハステロイ製テープ状基材の表面
に多結晶中間薄膜を形成するため、図6に示したような
構成のイオンビームアシストスパッタリング装置を使用
した。すなわち、テープ状基材21が巻かれた基材送出
ボビン22を成膜処理容器23内に配置し、基材送出ボ
ビン22からテープ状基材21を基材ホルダ24上に連
続的に送り出し、多結晶中間層形成後のテープ状基材2
1を基材巻取ボビン25で巻き取れるようにセットし
た。ここで、ターゲット26としてはYSZ(イットリ
ア安定化ジルコニア)製のものを用いた。そして、この
イオンビームアシストスパッタリング装置の成膜処理容
器23内部をクライオポンプ27およびロータリーポン
プ28で真空引きして3.0×10-4Torrに減圧
し、また、テープ状基材を負に帯電させた。
Next, using the Hastelloy tape base materials obtained in Examples 1 and 2 and Comparative Example 1, Y-Ba-C
A uO-based superconducting tape wire was prepared, and the superconducting properties were measured. First, in order to form a polycrystalline intermediate thin film on the surface of a Hastelloy tape-shaped base material, an ion beam assisted sputtering apparatus having a configuration as shown in FIG. 6 was used. That is, the substrate-feeding bobbin 22 around which the tape-shaped substrate 21 is wound is disposed in the film-forming processing container 23, and the tape-shaped substrate 21 is continuously fed from the substrate-delivery bobbin 22 onto the substrate holder 24, Tape-shaped substrate 2 after formation of polycrystalline intermediate layer
1 was set so that it could be wound by the substrate winding bobbin 25. Here, a target made of YSZ (yttria-stabilized zirconia) was used. Then, the inside of the film formation processing container 23 of this ion beam assisted sputtering apparatus is evacuated to 3.0 × 10 −4 Torr by evacuating with a cryopump 27 and a rotary pump 28, and the tape base material is negatively charged. I let it.

【0028】さらに、スパッタ電圧1200V、スパッ
タ電流240mAのアルゴンイオンと酸素イオンの混合
イオンビームを第一のフィラメント型イオンソース29
から発生させる際、フィラメントとアノード間に印加す
るイオン化電圧値を50Vとし、一方、アシスト電圧2
00V、アシスト電流100mAのアルゴンイオンと酸
素イオンの混合イオンビームを第二のフィラメント型イ
オンソース30から発生させる際、フィラメントとアノ
ード間に印加するイオン化電圧値を50Vとし、基材の
成膜面上にYSZの粒子を堆積させると同時にイオンビ
ームを照射して成膜処理することで、YSZ配向制御多
結晶中間層を形成した。ここでの第二のフィラメント型
イオンソース30から発生させる混合イオンビームの入
射角度は55度に設定した。
Further, a mixed ion beam of argon ions and oxygen ions having a sputtering voltage of 1200 V and a sputtering current of 240 mA is applied to the first filament type ion source 29.
When the ionization voltage is generated from the filament, the ionization voltage applied between the filament and the anode is set to 50 V, while the assist voltage 2
When a mixed ion beam of argon ions and oxygen ions of 00 V and an assist current of 100 mA is generated from the second filament type ion source 30, the ionization voltage applied between the filament and the anode is set to 50 V, and the ionization voltage is applied on the film forming surface of the substrate. The YSZ orientation control polycrystalline intermediate layer was formed by depositing YSZ particles and simultaneously performing ion deposition and ion irradiation to form a film. Here, the incident angle of the mixed ion beam generated from the second filament type ion source 30 was set to 55 degrees.

【0029】次いで、上記実施例1、2、比較例1で得
られたハステロイ製テープ状基材のそれぞれに超電導層
を形成し、各超電導テープ導体における超電導特性の測
定を行った。結果を表5に示す。臨界温度Tcは、いず
れの超電導テープ導体でも約90Kと変わらなかった
が、臨界電流密度Jcは、実施例1のテープ状基材より
製造した超電導テープ導体では20万A/cm2、実施
例2のテープ状基材より製造した超電導テープ導体では
60万A/cm2と高い値を示したが、比較例1のテー
プ状基材より製造した超電導テープ導体では5万A/c
2と、大きな差が見られた。
Next, a superconducting layer was formed on each of the Hastelloy tape-shaped substrates obtained in Examples 1 and 2 and Comparative Example 1, and the superconducting properties of each superconducting tape conductor were measured. Table 5 shows the results. Although the critical temperature Tc was not changed to about 90 K in any of the superconducting tape conductors, the critical current density Jc was 200,000 A / cm 2 for the superconducting tape conductor manufactured from the tape-like substrate of Example 1, and Example 2 The superconducting tape conductor manufactured from the tape-shaped base material of Comparative Example 1 showed a high value of 600,000 A / cm 2 , while the superconducting tape conductor manufactured from the tape-shaped base material of Comparative Example 1 showed 50,000 A / c.
and m 2, a large difference was observed.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【発明の効果】上述のごとく、本発明の超電導テープ導
体用基材の製造方法は、ニッケル合金母材を複数回圧延
することでテープ状基材とするものであって、ニッケル
合金母材の1回の圧延での加工度を20%以下とし、圧
延工程の前にニッケル合金母材を1000〜1050℃
で焼き鈍し、さらにニッケル合金母材のトータルの加工
度を60%以下とすることで、ニッケル合金製の超電導
テープ導体用基材を得ることができる。少なくとも最終
圧延工程において超硬ロールを用いることにより、圧延
後のニッケル合金製の超電導テープ導体用基材の表面平
滑度を向上させることができる。
As described above, the method for producing a substrate for a superconducting tape conductor of the present invention comprises rolling a nickel alloy base material a plurality of times to form a tape-shaped base material. The working ratio in one rolling is set to 20% or less, and the nickel alloy base material is heated to 1000 to 1050 ° C. before the rolling process.
By setting the total workability of the nickel alloy base material to 60% or less, a base material for a superconducting tape conductor made of a nickel alloy can be obtained. By using a carbide roll at least in the final rolling step, the surface smoothness of the nickel alloy superconducting tape conductor base material after rolling can be improved.

【0032】上記製造方法において、最終圧延工程の前
に、ニッケル合金母材の表面を、28μm以下の粒度を
持つ研磨材で研磨する工程を1回以上行う工程を加える
ことで、ニッケル合金製の超電導テープ導体用基材の表
面平滑度をさらに向上させることができる。
In the above manufacturing method, a step of polishing the surface of the nickel alloy base material with an abrasive having a grain size of 28 μm or less one or more times before the final rolling step is added. The surface smoothness of the substrate for a superconducting tape conductor can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の超電導テープ導体用基材の製造方法
において、圧延工程にて好適に使用される圧延機の一例
を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an example of a rolling mill suitably used in a rolling step in a method for producing a substrate for a superconducting tape conductor of the present invention.

【図2】 本発明の超電導テープ導体用基材の製造方法
において、圧延工程にて好適に使用される圧延機の一例
を示す概略構成図。
FIG. 2 is a schematic configuration diagram showing an example of a rolling mill suitably used in a rolling step in the method for producing a substrate for a superconducting tape conductor of the present invention.

【図3】 本発明の超電導テープ導体用基材の製造方法
において、圧延工程にて好適に使用される圧延機の一例
を示す概略構成図。
FIG. 3 is a schematic configuration diagram showing an example of a rolling mill suitably used in a rolling step in the method for producing a substrate for a superconducting tape conductor of the present invention.

【図4】 本発明の超電導テープ導体用基材の製造方法
において、焼き鈍し工程にて好適に使用される焼き鈍し
装置の一例を示す概略構成図。
FIG. 4 is a schematic configuration diagram showing an example of an annealing apparatus suitably used in an annealing step in the method for manufacturing a superconducting tape conductor base material of the present invention.

【図5】 本発明の超電導テープ導体用基材の製造方法
において、脱脂工程にて好適に使用される脱脂装置の一
例を示す概略構成図。
FIG. 5 is a schematic configuration diagram showing an example of a degreasing apparatus suitably used in a degreasing step in the method for producing a substrate for a superconducting tape conductor of the present invention.

【図6】 配向制御多結晶中間層の成膜に好適に使用さ
れるイオンビームアシストスパッタリング装置の一例を
示す概略構成図。
FIG. 6 is a schematic configuration diagram showing an example of an ion beam assisted sputtering apparatus suitably used for forming an orientation control polycrystalline intermediate layer.

【符号の説明】[Explanation of symbols]

1…二重圧延機、2…三重圧延機、3…四重圧延機、4
…基材、5…駆動ロール、6…ロール、11…供給ボビ
ン、12…巻き取りボビン、13…加熱装置、14…拭
き取り部材
DESCRIPTION OF SYMBOLS 1 ... Double rolling mill, 2 ... Triple rolling mill, 3 ... Quadrupling rolling mill, 4
... Base material, 5 ... Drive roll, 6 ... Roll, 11 ... Supply bobbin, 12 ... Winding bobbin, 13 ... Heating device, 14 ... Wiping member

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 691 C22F 1/00 691B 694 694A H01B 12/06 ZAA H01B 12/06 ZAA 13/00 565 13/00 565D ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identifications FI C22F 1/00 691 C22F 1/00 691B 694 694A H01B 12/06 ZAA H01B 12/06 ZAA 13/00 565 13/00 565D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 クロム、モリブデン、鉄などを成分とし
て含むニッケル合金母材を複数回圧延することでテープ
状基材とする超電導テープ導体用基材の製造方法におい
て、ニッケル合金母材の1回の圧延での加工度を20%
以下とし、圧延工程の前にニッケル合金母材を1000
〜1050℃で焼き鈍し、さらにニッケル合金母材のト
ータルの加工度を60%以下とすることを特徴とする超
電導テープ導体用基材の製造方法。
1. A method for manufacturing a base material for a superconducting tape conductor in which a nickel alloy base material containing chromium, molybdenum, iron or the like as a component is rolled a plurality of times to form a tape-shaped base material, 20% reduction in rolling
Before the rolling step, the nickel alloy base material is 1000
A method for producing a substrate for a superconducting tape conductor, comprising annealing at a temperature of from 10 to 50 ° C. and further reducing the total workability of a nickel alloy base material to 60% or less.
【請求項2】 最終圧延工程の前に、ニッケル合金母材
の表面を、28μm以下の粒度を持つ研磨材で研磨する
工程を1回以上行うことを特徴とする請求項1記載の超
電導テープ導体用基材の製造方法。
2. The superconducting tape conductor according to claim 1, wherein a step of polishing the surface of the nickel alloy base material with an abrasive having a grain size of 28 μm or less is performed at least once before the final rolling step. Method of manufacturing base material.
【請求項3】 最終圧延後のニッケル合金製テープ状基
材表面の平滑度を、Rmax=0.2μm以下にすること
を特徴とする請求項1または2に記載の超電導テープ導
体用基材の製造方法。
3. The superconducting tape conductor substrate according to claim 1, wherein the smoothness of the surface of the nickel alloy tape-shaped substrate after the final rolling is set to Rmax = 0.2 μm or less. Production method.
JP9050771A 1997-03-05 1997-03-05 Production of substrate for superconducting tape conductor Pending JPH10245662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9050771A JPH10245662A (en) 1997-03-05 1997-03-05 Production of substrate for superconducting tape conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9050771A JPH10245662A (en) 1997-03-05 1997-03-05 Production of substrate for superconducting tape conductor

Publications (1)

Publication Number Publication Date
JPH10245662A true JPH10245662A (en) 1998-09-14

Family

ID=12868103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9050771A Pending JPH10245662A (en) 1997-03-05 1997-03-05 Production of substrate for superconducting tape conductor

Country Status (1)

Country Link
JP (1) JPH10245662A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2011249105A (en) * 2010-05-26 2011-12-08 Furukawa Electric Co Ltd:The Method for manufacturing substrate for oxide superconductive wire material, and method for manufacturing oxide superconductive wire material
JP2011249026A (en) * 2010-05-24 2011-12-08 Furukawa Electric Co Ltd:The Method for manufacturing substrate for oxide superconductive wire material
JP2012241234A (en) * 2011-05-19 2012-12-10 Fujikura Ltd Method for manufacturing substrate for superconducting wire rod
CN106816228A (en) * 2016-12-16 2017-06-09 上海超导科技股份有限公司 Preparation method of the second-generation high-temperature superconductor without textured metal strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2011249026A (en) * 2010-05-24 2011-12-08 Furukawa Electric Co Ltd:The Method for manufacturing substrate for oxide superconductive wire material
JP2011249105A (en) * 2010-05-26 2011-12-08 Furukawa Electric Co Ltd:The Method for manufacturing substrate for oxide superconductive wire material, and method for manufacturing oxide superconductive wire material
JP2012241234A (en) * 2011-05-19 2012-12-10 Fujikura Ltd Method for manufacturing substrate for superconducting wire rod
CN106816228A (en) * 2016-12-16 2017-06-09 上海超导科技股份有限公司 Preparation method of the second-generation high-temperature superconductor without textured metal strip

Similar Documents

Publication Publication Date Title
JP5074083B2 (en) Clad-oriented metal substrate for epitaxial thin film formation and manufacturing method thereof
EP3041003B1 (en) Substrate for superconducting conductor
EP2031606B1 (en) Superconducting thin film material and method for producing the same
US9002424B2 (en) Superconducting film-forming substrate, superconducting wire, and superconducting wire manufacturing method
JP2007115561A (en) Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP4741326B2 (en) Oxide superconducting conductor and manufacturing method thereof
JPS5913036A (en) Production of nb3sn superconductive wire rod using cu-4a group element alloy
JP2005501738A (en) Method of manufacturing a metal strip
JPH10245662A (en) Production of substrate for superconducting tape conductor
EP3042978B1 (en) Layered substrate for epitaxial growth and process for producing same
JP4739015B2 (en) Method for producing metal substrate for oxide superconductor, method for producing oxide superconductor
JPS63224112A (en) Superconducting wire and its manufacture
JP2563315B2 (en) Superconductor wire and method of manufacturing the same
JP3629527B2 (en) Manufacturing method of Nb3Al compound-based superconducting wire and superconducting wire obtained by the method
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
JPH0668727A (en) Manufacture of superconducting wire
JPH05250931A (en) Oxide superconductive conductor
JP2000109320A (en) Metallic substrate for oxide superconductor and its production
US20090203529A1 (en) Superconducting material
JP2012049086A (en) Oxide superconductive thin film wire rod, metal substrate for oxide superconductive thin film wire rod, and method of manufacturing the same
RU2481674C1 (en) Method to manufacture substrate for high-temperature thin-film superconductors and substrate
US20230082193A1 (en) Substrate for epitaxial growth and method for producing same
JPH11329118A (en) Oxide superconducting composite material and its manufacture
Adam et al. Research and development efforts relative to superconducting materials. Final report.[Nb/sub 3/Sn tapes]
JPH0668726A (en) Manufacture of superconducting wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405