JPH10242941A - Optical wavelength multiplex transmission device - Google Patents

Optical wavelength multiplex transmission device

Info

Publication number
JPH10242941A
JPH10242941A JP9039560A JP3956097A JPH10242941A JP H10242941 A JPH10242941 A JP H10242941A JP 9039560 A JP9039560 A JP 9039560A JP 3956097 A JP3956097 A JP 3956097A JP H10242941 A JPH10242941 A JP H10242941A
Authority
JP
Japan
Prior art keywords
optical
signal light
wavelength
transmission
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9039560A
Other languages
Japanese (ja)
Other versions
JP3533307B2 (en
Inventor
Hideki Maeda
英樹 前田
Makoto Murakami
誠 村上
Akira Naga
明 那賀
Norio Okawa
典男 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03956097A priority Critical patent/JP3533307B2/en
Publication of JPH10242941A publication Critical patent/JPH10242941A/en
Application granted granted Critical
Publication of JP3533307B2 publication Critical patent/JP3533307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the deterioration of a transmission characteristic owing to mutual phase modulation to be minimum by setting a pulse occultation rate at every wavelength to be the RZ(return to zero) intensity modulation signal of a specified value in the signal system of signal light generated in respective optical transmitters. SOLUTION: A light wavelength multiplex transmission terminal station 10 is provided with the two optical transmitters 11a and 11b generating the signal light of the mutually different wavelengths. The signal light beams of the respective wavelengths outputted from the optical transmitters 11a and 11b are multiplexed in a multiplexer 12 and are transmitted to a light transmission line 20. The signal light is the RZ intensity modulation signal whose pulse occupation rate γ is 0.6<γ<1.0. The optical transmission line 20 is constituted of a transmission line optical fiber 21 transmitting wavelength multiplex signal light, an optical amplifier 22 and a diffusive compensation medium 23. In a light wavelength multiplex reception terminal 30, transmitted wavelength multiplex signal light is multiplexed into the signal light beams of the respective wavelength in a multiplexed 31 and the multiplexed signal light is diffusively compensated for the respective wavelengths in a reception diffusive compensation medium 32. The signal light beams of the respective wavelengths which are diffusively compensated are received in optical receivers 33a and 33b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長多重信号光を
伝送する光波長多重伝送装置に関する。特に、光波長多
重伝送に特有な光ファイバの非線形効果(四光波混合、
相互位相変調)と波長分散による伝送特性劣化の抑圧に
対して最適化する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength division multiplex transmission apparatus for transmitting wavelength division multiplexed signal light. In particular, nonlinear effects of optical fibers (four-wave mixing,
The present invention relates to a technique for optimizing the suppression of transmission characteristic degradation due to cross-phase modulation and chromatic dispersion.

【0002】[0002]

【従来の技術】光波長多重伝送方式では、信号光間のク
ロストークによる伝送特性劣化が問題になっている。こ
のクロストークの主因は、伝送路光ファイバ中で起こる
四光波混合、相互位相変調などの非線形光学現象であ
る。これらの現象は、伝送路光ファイバ中を波長の異な
る複数の光信号が伝搬するとき、光信号間に相互作用が
起こり生じる。この相互作用により、それぞれの波長差
に応じた光信号成分が生成される現象が四光波混合であ
り、光信号の位相変調が生じる現象が相互位相変調であ
る。
2. Description of the Related Art In an optical wavelength division multiplexing transmission system, there is a problem of deterioration of transmission characteristics due to crosstalk between signal lights. The main cause of this crosstalk is nonlinear optical phenomena such as four-wave mixing and cross-phase modulation that occur in the transmission line optical fiber. These phenomena occur when a plurality of optical signals having different wavelengths propagate in the transmission line optical fiber, and interaction occurs between the optical signals. The phenomenon that an optical signal component corresponding to each wavelength difference is generated by this interaction is four-wave mixing, and the phenomenon that phase modulation of an optical signal occurs is cross-phase modulation.

【0003】四光波混合を抑圧するには、伝送路光ファ
イバの波長分散値を大きく設定するとともに、一定距離
ごとに伝送路光ファイバと逆の波長分散値をもつ分散補
償器を配置する方法が知られている(「分散マネジメン
トを用いた10Gbit/s/chWDM伝送システムの検
討」,信学技報,OCS96−57)。また、相互位相変調
を抑圧するには、信号形式をRZ強度変調信号とする方
法が知られている。例えば、文献(「RZ符号を用いた
5Gb/s 4波多重4500km伝送実験」,1996年電子情報
通信学会総合大会B−1139)には、信号形式をパルス占
有率0.6 のRZ強度変調信号を用いて伝送実験を行った
例が示されている。
In order to suppress four-wave mixing, a method of setting a large chromatic dispersion value of a transmission line optical fiber and arranging a dispersion compensator having a chromatic dispersion value opposite to that of the transmission line optical fiber at every fixed distance is used. It is known (“Study of 10 Gbit / s / ch WDM transmission system using distributed management”, IEICE Technical Report, OCS96-57). Further, in order to suppress the cross phase modulation, a method is known in which the signal format is an RZ intensity modulation signal. For example, a reference (“5 Gb / s 4-wave multiplex 4500 km transmission experiment using RZ code”, 1996 IEICE General Conference B-1139) uses an RZ intensity modulated signal having a pulse occupancy of 0.6 as a signal format. An example in which a transmission experiment was performed is shown.

【0004】[0004]

【発明が解決しようとする課題】ところで、平均信号光
電力が同一の条件では、パルス占有率を小さくすると信
号光電力のピーク値が大きくなり、各波長ごとの光ファ
イバ非線形効果(自己位相変調)が顕著になる。さら
に、パルス占有率減少に伴い分散による影響が大きくな
るため、実際に上記の文献にある信号形式のパルス占有
率が最適か否かは不明であった。
When the average signal light power is the same, the peak value of the signal light power increases as the pulse occupancy decreases, and the optical fiber nonlinear effect (self-phase modulation) for each wavelength. Becomes noticeable. Furthermore, since the influence of dispersion increases as the pulse occupancy decreases, it was unclear whether the pulse occupancy of the signal format described in the above document is actually optimal.

【0005】本発明は、波長分散値の大きな伝送路光フ
ァイバ中に分散補償器を配置して四光波混合を抑圧した
構成において、相互位相変調による伝送特性劣化を最小
限に抑えることができる光波長多重伝送装置を提供する
ことを目的する。
According to the present invention, in a configuration in which a dispersion compensator is arranged in a transmission line optical fiber having a large chromatic dispersion value to suppress four-wave mixing, deterioration of transmission characteristics due to cross-phase modulation can be minimized. An object of the present invention is to provide a wavelength division multiplex transmission device.

【0006】[0006]

【課題を解決するための手段】光波長多重伝送装置は、
光送信手段、光伝送手段、光受信手段から構成される。
光送信手段は、互いに異なる波長の信号光を発生する複
数の光送信器と、各光送信器から出力される信号光を合
波した波長多重信号光を光伝送手段に送出する合波器と
を含む。光伝送手段は、伝送路光ファイバと、その伝送
路光ファイバの波長分散を補償する分散補償手段とを含
む。光受信手段は、光伝送手段から入力される波長多重
信号光を各波長の信号光に分波する分波器と、各波長の
信号光を受信する複数の光受信器とを含む。
SUMMARY OF THE INVENTION An optical wavelength division multiplex transmission apparatus comprises:
It comprises an optical transmitting means, an optical transmitting means, and an optical receiving means.
The optical transmitting unit includes a plurality of optical transmitters that generate signal lights having different wavelengths from each other, and a multiplexer that sends the wavelength multiplexed signal light obtained by multiplexing the signal lights output from the respective optical transmitters to the optical transmitting unit. including. The optical transmission unit includes a transmission line optical fiber and a dispersion compensating unit that compensates for chromatic dispersion of the transmission line optical fiber. The optical receiving means includes a demultiplexer that splits the wavelength multiplexed signal light input from the optical transmission means into signal lights of each wavelength, and a plurality of optical receivers that receive the signal lights of each wavelength.

【0007】なお、伝送路光ファイバの波長分散を補償
する分散補償手段は、光送信手段と光受信手段の間に周
期的に挿入する。その際、伝送路光ファイバの前後どち
らに挿入されてもよい。以上の構成において、本発明の
波長多重伝送装置では、各光送信器で発生する信号光の
信号形式は、波長ごとのパルス占有率rが 0.6<r<1.
0 のRZ強度変調信号とする。
[0007] The dispersion compensating means for compensating for the chromatic dispersion of the transmission line optical fiber is periodically inserted between the optical transmitting means and the optical receiving means. At this time, it may be inserted either before or after the transmission path optical fiber. In the above configuration, in the wavelength division multiplexing transmission apparatus of the present invention, the signal format of the signal light generated in each optical transmitter is such that the pulse occupancy r for each wavelength is 0.6 <r <1.
It is assumed that the RZ intensity modulation signal is 0.

【0008】波長分散値の大きな伝送路光ファイバと分
散補償手段を用いた光波長多重伝送装置で光波長多重伝
送を行うと、各チャネル間の群速度差に起因するパルス
の相対的な時間差が分散補償ごとに減少し、伝送路光フ
ァイバ中での相互位相変調による信号光間のクロストー
クにより伝送特性劣化が大きくなる。そこで、各波長ご
とにパルス占有率rを 0.6<r<1.0 の範囲で最適化し
たRZ強度変調信号を用いる。これにより、各波長が同
時に発光している確率を減少させ、光波長多重伝送時の
クロストークによる伝送特性劣化を抑圧することができ
る。なお、光波長多重数を変化させた場合においても、
このパルス占有率の範囲内に最適値が存在する。
When optical wavelength multiplex transmission is performed by an optical wavelength multiplex transmission apparatus using a transmission line optical fiber having a large chromatic dispersion value and a dispersion compensating means, the relative time difference between pulses caused by the group velocity difference between the channels becomes large. It decreases with each dispersion compensation, and the deterioration of transmission characteristics increases due to crosstalk between signal lights due to cross-phase modulation in the transmission line optical fiber. Therefore, an RZ intensity modulated signal in which the pulse occupation ratio r is optimized in the range of 0.6 <r <1.0 for each wavelength is used. As a result, it is possible to reduce the probability that each wavelength emits light at the same time, and to suppress deterioration in transmission characteristics due to crosstalk during optical wavelength multiplex transmission. Note that even when the number of optical wavelength multiplexes is changed,
There is an optimum value within the range of the pulse occupancy.

【0009】なお、伝送路光ファイバとして正分散(異
常分散)のものを用いた場合には、信号光にスペクトル
広がりが生じてクロストークの原因となり、伝送特性が
劣化する。このため、伝送路光ファイバの波長分散値D
は、負であることがよい。さらに、波長分散値DをD≦
−1ps/nm/kmとすることにより、四光波混合に
よる伝送特性劣化を抑圧することができる(請求項
2)。
When a positive dispersion (abnormal dispersion) is used as the transmission line optical fiber, the spectrum spreads in the signal light to cause crosstalk, and the transmission characteristics deteriorate. Therefore, the chromatic dispersion value D of the transmission line optical fiber is
May be negative. Further, the chromatic dispersion value D is given by D ≦
By setting it to -1 ps / nm / km, it is possible to suppress deterioration of transmission characteristics due to four-wave mixing (claim 2).

【0010】光伝送手段には、波長多重信号光を増幅す
る光増幅器を挿入してもよい(請求項3)。光受信手段
には、分波器で分波された各波長の信号光をそれぞれ分
散補償する分散補償手段を含めてもよい(請求項4)。
An optical amplifier for amplifying the wavelength multiplexed signal light may be inserted in the optical transmission means. The optical receiver may include a dispersion compensator for dispersion-compensating the signal light of each wavelength demultiplexed by the demultiplexer.

【0011】[0011]

【発明の実施の形態】図1は、本発明の光波長多重伝送
装置の実施形態を示す。ここでは、2波長多重の場合の
構成例を示す。図1に示す装置は、光波長多重送信端局
10と、光伝送路20と、光波長多重受信端局30とを
備える。
FIG. 1 shows an embodiment of an optical wavelength division multiplexing transmission apparatus according to the present invention. Here, a configuration example in the case of two-wavelength multiplexing is shown. The apparatus shown in FIG. 1 includes an optical wavelength multiplexing transmitting terminal station 10, an optical transmission line 20, and an optical wavelength multiplexing receiving terminal station 30.

【0012】光波長多重送信端局10は、互いに異なる
波長の信号光を発生する2個の光送信器11a,11b
と、光送信器11a,11bから出力される各波長の信
号光を合波して光伝送路20に送出する合波器12とを
備える。この信号光は、パルス占有率rが 0.6<r<1.
0 のRZ強度変調信号である。光伝送路20は、波長多
重信号光を伝送する伝送路光ファイバ21と、この伝送
路光ファイバ21に伝送される波長多重信号光を増幅す
る光増幅器22と、この伝送路光ファイバ21に挿入さ
れこの伝送路光ファイバ21の波長分散を補償する分散
補償媒質23とにより構成される。
The optical wavelength multiplexing transmitting terminal 10 has two optical transmitters 11a and 11b for generating signal lights having different wavelengths.
And a multiplexer 12 for multiplexing the signal lights of the respective wavelengths output from the optical transmitters 11a and 11b and transmitting the multiplexed signal light to the optical transmission line 20. This signal light has a pulse occupation ratio r of 0.6 <r <1.
0 RZ intensity modulated signal. The optical transmission line 20 includes a transmission line optical fiber 21 for transmitting the wavelength-division multiplexed signal light, an optical amplifier 22 for amplifying the wavelength-division multiplexed signal light transmitted to the transmission line optical fiber 21, and the optical transmission line 20. And a dispersion compensating medium 23 for compensating the chromatic dispersion of the transmission line optical fiber 21.

【0013】光波長多重受信端局30は、伝送された波
長多重信号光を各波長の信号光に分波する分波器31
と、分波された信号光を各波長ごとに分散補償する受信
用分散補償媒質32と、分散補償された各波長の信号光
を受信する光受信器33a,33bとを備える。分散補
償媒質23および受信用分散補償媒質32としては、例
えば分散補償光ファイバまたは光ファイバグレーティン
グを用いる。
The optical wavelength division multiplexing receiving terminal 30 is a demultiplexer 31 for demultiplexing the transmitted wavelength division multiplexed signal light into signal light of each wavelength.
A dispersion compensating medium 32 for dispersion-compensating the demultiplexed signal light for each wavelength, and optical receivers 33a and 33b for receiving the dispersion-compensated signal light of each wavelength. As the dispersion compensation medium 23 and the reception dispersion compensation medium 32, for example, a dispersion compensation optical fiber or an optical fiber grating is used.

【0014】図2および図3は、光送信器のパルス占有
率と光受信器における受信波形のアイ開口劣化(最悪チ
ャネル)との関係を計算機シミュレーションにより求め
た結果を示す。なお、条件は、光増幅器中継間隔50k
m、光増幅器出力9dBm/chとしている。この光増幅器
出力は、相互位相変調による伝送特性劣化が顕著になる
光増幅器出力である。
FIGS. 2 and 3 show the results obtained by computer simulation of the relationship between the pulse occupancy of the optical transmitter and the eye opening deterioration (worst channel) of the received waveform in the optical receiver. The condition is that the optical amplifier repeat interval is 50k.
m, and the output of the optical amplifier is 9 dBm / ch. This output of the optical amplifier is an output of the optical amplifier in which transmission characteristic deterioration due to cross-phase modulation becomes remarkable.

【0015】図2は、光伝送路および受信端で分散補償
を行わない場合の結果である。光送信器11a,11b
のビットレートをそれぞれ10Gbit/s (総ビットレート
20Gbit/s )とし、パルス占有率を 0.2から1.0 まで変
化させ、伝送距離 100kmおよび 200kmにおけるアイ
開口劣化である。この結果から、分散補償を行わない場
合には、パルス占有率を小さくするほど、アイ開口劣化
が大きくなることがわかる。これは、相互位相変調抑圧
による効果よりも、パルス占有率減少に伴う自己位相変
調および波長分散による影響が大きくなるためである。
FIG. 2 shows the result when dispersion compensation is not performed in the optical transmission line and the receiving end. Optical transmitters 11a and 11b
The bit rate of each is 10 Gbit / s (total bit rate
20 Gbit / s), the pulse occupancy was changed from 0.2 to 1.0, and the eye opening was deteriorated at transmission distances of 100 km and 200 km. From this result, it can be seen that, when the dispersion compensation is not performed, the eye opening deterioration becomes larger as the pulse occupancy is made smaller. This is because the influence of the self-phase modulation and the chromatic dispersion due to the decrease in the pulse occupancy is greater than the effect of the cross-phase modulation suppression.

【0016】図3は、光伝送路および受信端で分散補償
を行った場合の結果である。分散補償間隔は、 100km
としている。光送信器11a,11bのビットレートを
それぞれ10Gbit/s (総ビットレート20Gbit/s)とし、
パルス占有率を 0.2から1.0まで変化させ、伝送距離 20
0km、 500kmおよび1000kmにおけるアイ開口劣化
である。この結果から、分散補償を行う場合には、パル
ス占有率rが 0.6<r<1.0 のときにアイ開口劣化が減
少していることがわかる。また、その傾向は、伝送距離
の増加と共に顕著になっていることがわかる。
FIG. 3 shows the result when dispersion compensation is performed in the optical transmission line and the receiving end. The dispersion compensation interval is 100km
And The bit rates of the optical transmitters 11a and 11b are each 10 Gbit / s (total bit rate 20 Gbit / s),
Change the pulse occupancy from 0.2 to 1.0 and set the transmission distance to 20
Eye opening deterioration at 0 km, 500 km, and 1000 km. From this result, it can be seen that when dispersion compensation is performed, the eye opening deterioration is reduced when the pulse occupation ratio r is 0.6 <r <1.0. In addition, it can be seen that the tendency becomes remarkable as the transmission distance increases.

【0017】[0017]

【発明の効果】以上説明したように、本発明では、分散
補償を用いた光波長多重伝送装置において、光送信器の
信号形式をパルス占有率rが 0.6<r<1.0 のRZ強度
変調信号とすることにより、相互位相変調による伝送特
性劣化を最小限に抑えることができる。また、伝送路光
ファイバの波長分散値を負分散(D≦−1ps/nm/
km)に設定することにより、信号光のスペクトル広が
りおよび四光波混合による伝送特性劣化を抑圧すること
ができ、長距離伝送が可能な光波長多重伝送装置を実現
することができる。
As described above, according to the present invention, in an optical wavelength division multiplexing transmission apparatus using dispersion compensation, the signal format of an optical transmitter is changed to an RZ intensity modulated signal having a pulse occupation ratio r of 0.6 <r <1.0. By doing so, it is possible to minimize the deterioration of transmission characteristics due to cross-phase modulation. Further, the chromatic dispersion value of the transmission line optical fiber is set to a negative dispersion (D ≦ −1 ps / nm /
km), it is possible to suppress the spread of signal light spectrum and deterioration of transmission characteristics due to four-wave mixing, and to realize an optical wavelength multiplex transmission apparatus capable of long-distance transmission.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】分散補償なしのシミュレーション結果を示す
図。
FIG. 2 is a diagram showing a simulation result without dispersion compensation.

【図3】分散補償ありのシミュレーション結果を示す
図。
FIG. 3 is a diagram showing a simulation result with dispersion compensation;

【符号の説明】[Explanation of symbols]

10 光波長多重送信端局 11 光送信器 12 合波器 20 光伝送路 21 伝送路光ファイバ 22 光増幅器 23 分散補償媒質 30 光波長多重受信端局 31 分波器 32 受信用分散補償媒質 33 光受信器 Reference Signs List 10 optical wavelength multiplexing transmitting terminal 11 optical transmitter 12 multiplexer 20 optical transmission line 21 transmission line optical fiber 22 optical amplifier 23 dispersion compensating medium 30 optical wavelength multiplexing receiving terminal 31 demultiplexer 32 receiving dispersion compensating medium 33 light Receiver

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大川 典男 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Norio Okawa, Inventor, Nippon Telegraph and Telephone Corporation, 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 伝送路光ファイバと、その伝送路光ファ
イバの波長分散を補償する分散補償手段とを含む光伝送
手段と、 互いに異なる波長の信号光を発生する複数の光送信器
と、各光送信器から出力される信号光を合波した波長多
重信号光を前記光伝送手段に送出する合波器とを含む光
送信手段と、 前記光伝送手段から入力される波長多重信号光を各波長
の信号光に分波する分波器と、各波長の信号光を受信す
る複数の光受信器とを含む光受信手段とを備えた波長多
重伝送装置において、 前記各光送信器で発生する信号光の信号形式は、波長ご
とのパルス占有率rが0.6<r<1.0 のRZ(リターン
・トゥ・ゼロ)強度変調信号とすることを特徴とする光
波長多重伝送装置。
An optical transmission means including a transmission line optical fiber, a dispersion compensating means for compensating chromatic dispersion of the transmission line optical fiber, a plurality of optical transmitters for generating signal lights having mutually different wavelengths, An optical transmitting unit including a multiplexer for transmitting the wavelength multiplexed signal light obtained by multiplexing the signal light output from the optical transmitter to the optical transmission unit; and a wavelength multiplexed signal light input from the optical transmission unit. A wavelength division multiplexing transmission apparatus comprising: a demultiplexer for demultiplexing a signal light of a wavelength; and a plurality of optical receivers for receiving the signal light of each wavelength. An optical wavelength division multiplexing transmission apparatus characterized in that the signal format of the signal light is an RZ (return-to-zero) intensity modulation signal in which the pulse occupation ratio r for each wavelength is 0.6 <r <1.0.
【請求項2】 伝送路光ファイバの波長分散値Dが、D
≦−1ps/nm/kmであることを特徴とする請求項
1に記載の光波長多重伝送装置。
2. The chromatic dispersion value D of the transmission line optical fiber is D
2. The optical wavelength division multiplex transmission apparatus according to claim 1, wherein ≤-1 ps / nm / km.
【請求項3】 光伝送手段に波長多重信号光を増幅する
光増幅器が挿入された構成である請求項1または請求項
2に記載の光波長多重伝送装置。
3. The optical wavelength multiplex transmission apparatus according to claim 1, wherein an optical amplifier for amplifying the wavelength multiplexed signal light is inserted in the optical transmission means.
【請求項4】 光受信手段は、分波器で分波された各波
長の信号光をそれぞれ分散補償する分散補償手段を含む
請求項1から請求項3のいずれかに記載の光波長多重伝
送装置。
4. The optical wavelength multiplex transmission according to claim 1, wherein the optical receiving means includes a dispersion compensating means for dispersion-compensating the signal lights of the respective wavelengths demultiplexed by the demultiplexer. apparatus.
JP03956097A 1997-02-24 1997-02-24 Optical WDM transmission equipment Expired - Fee Related JP3533307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03956097A JP3533307B2 (en) 1997-02-24 1997-02-24 Optical WDM transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03956097A JP3533307B2 (en) 1997-02-24 1997-02-24 Optical WDM transmission equipment

Publications (2)

Publication Number Publication Date
JPH10242941A true JPH10242941A (en) 1998-09-11
JP3533307B2 JP3533307B2 (en) 2004-05-31

Family

ID=12556468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03956097A Expired - Fee Related JP3533307B2 (en) 1997-02-24 1997-02-24 Optical WDM transmission equipment

Country Status (1)

Country Link
JP (1) JP3533307B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236297A (en) * 1999-02-16 2000-08-29 Fujitsu Ltd Method and system for optical transmission applied with dispersion compensation
JP2000312181A (en) * 1999-03-31 2000-11-07 Alcatel Polarization dispersion compensating system and method for optical transmission system
JP2005311721A (en) * 2004-04-21 2005-11-04 Fujitsu Ltd Dispersion compensated amount setting method, receiving terminal and wavelength multiplexed optical transmission system
JP2008532391A (en) * 2005-02-28 2008-08-14 オプティウム オーストラリア ピーティーワイ リミテッド Optical communication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236297A (en) * 1999-02-16 2000-08-29 Fujitsu Ltd Method and system for optical transmission applied with dispersion compensation
JP2000312181A (en) * 1999-03-31 2000-11-07 Alcatel Polarization dispersion compensating system and method for optical transmission system
JP4669103B2 (en) * 1999-03-31 2011-04-13 アルカテル−ルーセント Polarization dispersion compensating apparatus and method in optical transmission system
JP2005311721A (en) * 2004-04-21 2005-11-04 Fujitsu Ltd Dispersion compensated amount setting method, receiving terminal and wavelength multiplexed optical transmission system
JP4491268B2 (en) * 2004-04-21 2010-06-30 富士通株式会社 Dispersion compensation setting method, receiving terminal station and wavelength division multiplexing optical transmission system
JP2008532391A (en) * 2005-02-28 2008-08-14 オプティウム オーストラリア ピーティーワイ リミテッド Optical communication system
JP4765050B2 (en) * 2005-02-28 2011-09-07 フィニサー コーポレイション Optical communication system

Also Published As

Publication number Publication date
JP3533307B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
US6141127A (en) High capacity chirped-pulse wavelength-division multiplexed communication method and apparatus
US6366728B1 (en) Composite optical fiber transmission line method
CA2198503C (en) Dispersion-tolerant 10 gb/s optical transceiver
US6876818B1 (en) Method and system for transmitting signals with spectrally enriched optical pulses
US20030007216A1 (en) Long haul transmission in a dispersion managed optical communication system
US6626591B1 (en) Method of reducing intensity distortion induced by cross phase modulation in a WDM optical fiber transmission system
Bigo et al. Investigation of cross-phase modulation limitation over various types of fiber infrastructures
JP3464424B2 (en) Chromatic dispersion compensation method and optical transmission system
US7239440B2 (en) Wavelength conversion apparatus
US5978122A (en) Noise suppression method for wavelength division multiplexing transmission system
US20010010587A1 (en) Method and apparatus for transmitting a wavelength division multiplexed (wdm) signal through an optical transmission line to reduce the effects of stimulated brillouin scattering (sbs)
JPH11103286A (en) Wavelength multiplexed light transmitting device
Chraplyvy et al. Terabit/second transmission experiments
KR20040028491A (en) Method for reduction of non-linear intra-channel distortions
Suzuki et al. 20 Gbit/s-based soliton WDM transmission over transoceanic distances using periodic compensation of dispersion and its slope
Aisawa et al. A 1580-nm band WDM transmission technology employing optical duobinary coding
JP3533307B2 (en) Optical WDM transmission equipment
EP1241809A1 (en) Optical transmission system using dispersion compensating optical transmission line
US7756423B2 (en) Wavelength division multiplexing optical transmission apparatus, wavelength division multiplexing optical transmission system and wavelength division multiplexing optical transmission method
JP3523998B2 (en) Optical transmission system
KR100533600B1 (en) Wavelength division multiplexed metro optical communication apparatus
JP3595119B2 (en) Optical WDM transmission equipment
JP3529983B2 (en) Optical amplification repeater transmission system
JP2003060574A (en) Optical transmitter system, wavelength division multiplexer and method for dispersion compensation of wavelength division multiplexing transmission system
JP2000357992A (en) Optical transmission line and optical transmission system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees