JPH10242607A - Metal base board and its manufacture - Google Patents

Metal base board and its manufacture

Info

Publication number
JPH10242607A
JPH10242607A JP4017997A JP4017997A JPH10242607A JP H10242607 A JPH10242607 A JP H10242607A JP 4017997 A JP4017997 A JP 4017997A JP 4017997 A JP4017997 A JP 4017997A JP H10242607 A JPH10242607 A JP H10242607A
Authority
JP
Japan
Prior art keywords
adhesive material
insulating adhesive
copper foil
volume
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4017997A
Other languages
Japanese (ja)
Other versions
JP3820668B2 (en
Inventor
Teiichi Inada
禎一 稲田
Hiroyuki Kuritani
弘之 栗谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP04017997A priority Critical patent/JP3820668B2/en
Publication of JPH10242607A publication Critical patent/JPH10242607A/en
Application granted granted Critical
Publication of JP3820668B2 publication Critical patent/JP3820668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a metal base board having high adhesive properties and processibility by forming of insulating adhesive material having high relative dielectric constant and low dielectric loss tangent. SOLUTION: In the metal base board in which insulating adhesive material with a copper foil obtained by disposing the material on the foil is laminated on a metal plate, the adhesive material containing 40 to 80vol.% of inorganic filler having relative dielectric constant of 50 or more is used. And, the adhesive material is constituted by at least two layers or more of the material so that the adhesive material containing 50 to 80vol.% of inorganic filler is used for a first layer in contact with the foil and the adhesive material containing 40 to 50vol.% of the filler is used for an outermost layer of a second layer without contact with the foil in such a manner that the first layer becomes curing degree of B or C stage and the second layer becomes curing degree of A or B stage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘電率の高い絶縁接
着材料をもちいた金属ベース基板及びその製造方法に関
する。
The present invention relates to a metal base substrate using an insulating adhesive material having a high dielectric constant and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、高密度化、及
び使用周波数の高周波化が図られており、これらに対応
して、高周波ノイズの低減や配線板の小型化をはかるこ
とを目的として絶縁接着材料を高誘電率化する要求があ
る。比誘電率の高い積層基板を得る方法として、例え
ば、特開昭55−57212号公報、特開昭61−13
6281号公報、特開平3−221448号公報などの
ように絶縁層に高誘電体を含有させる方法があった。
2. Description of the Related Art In recent years, electronic equipment has been reduced in size and density, and the operating frequency has been increased. In response to these, the object is to reduce high-frequency noise and reduce the size of wiring boards. There is a demand for increasing the dielectric constant of the insulating adhesive material. As a method for obtaining a laminated substrate having a high relative dielectric constant, for example, JP-A-55-57212, JP-A-61-13
No. 6,281, Japanese Unexamined Patent Publication No. 3-221448, etc., have included a method of including a high dielectric substance in an insulating layer.

【0003】[0003]

【発明が解決しようとする課題】これらは、何れもガラ
ス布に絶縁材料を含浸させる工程が必要であり、積層板
とする加熱加圧工程で金属箔との接着性や積層板の板厚
精度向上のため絶縁材料に流動性が必要である。しかし
ながら、高誘電体を多量に含んだ絶縁材料は流動性が低
いため、高誘電体を多量に含ませることできず、比誘電
率を十分大きくすることは出来なかった。高誘電率の金
属ベース基板を製造することは、プリント回路学会第8
回学術講演大会要旨集117頁中に「高誘電率銅ベース
基板」と題して記載されているが、比誘電率が26程度
であり、配線板の小型化、高周波ノイズの低減に十分な
ものではなかった。また周波数が500MHz以上で
は、誘電正接(tanδ)が大きくなり、500MHz以
上での使用には十分でないという問題点があった。高誘
電体として高誘電率の無機フィラーがあり、絶縁材料に
高誘電率の無機フィラーを含有せしめ誘電率を高くする
ことは良く知られていることであるが、絶縁材料に無機
フィラーを高充填した場合、絶縁材料の溶融粘度が上昇
し、流動性が悪く金属板との接着性の低下、可撓性の低
下、絶縁層中にボイドが残るなど、多くの問題点が発生
し実用されるに至っていない。また、従来、高誘電率の
無機粉体を焼結した高誘電率のセラミック基板がある
が、外形加工等に対する加工性が十分とは言えなかっ
た。
All of these require a step of impregnating the glass cloth with an insulating material, and the adhesiveness to the metal foil and the accuracy of the thickness of the laminate in the heating and pressing step of forming the laminate. Fluidity is necessary for the insulating material for improvement. However, an insulating material containing a large amount of a high dielectric has a low fluidity, so that a large amount of a high dielectric cannot be contained, and the relative dielectric constant cannot be sufficiently increased. Producing a high dielectric constant metal-based substrate is described in Printed Circuit Society No. 8
The abstract of the 110th Annual Meeting of the JSCE is described as "High Dielectric Constant Copper Base Board" on page 117, but has a relative dielectric constant of about 26, which is sufficient for reducing the size of wiring boards and reducing high-frequency noise. Was not. When the frequency is 500 MHz or more, the dielectric loss tangent (tan δ) becomes large, and there is a problem that the use at 500 MHz or more is not sufficient. It is well known that there is a high dielectric constant inorganic filler as a high dielectric substance, and it is well known that an insulating material contains a high dielectric constant inorganic filler to increase the dielectric constant. In such a case, the melt viscosity of the insulating material increases, the fluidity is poor, the adhesiveness to the metal plate is reduced, the flexibility is reduced, voids remain in the insulating layer, and many problems occur, so that it is put into practical use. Has not been reached. Conventionally, there is a ceramic substrate having a high dielectric constant obtained by sintering an inorganic powder having a high dielectric constant. However, the workability with respect to external processing or the like has not been sufficient.

【0004】[0004]

【課題を解決するための手段】本発明はかかる状況に鑑
みなされたもので、比誘電率が高く、誘電正接が低く、
金属との接着性に優れ、加工性が良好な金属ベース基板
を得ることを課題とした。この課題を解決するため、本
発明者等は鋭意検討した結果、絶縁接着材料の各層のフ
ィラー含有量、樹脂成分、硬化度を選定することによ
り、高誘電率の金属ベース基板を得ることができた。本
発明は、銅箔に絶縁接着材料を配置してなる銅箔付き絶
縁接着材料を金属板上に積層した金属ベース基板におい
て、絶縁接着材料中に比誘電率が50以上の無機フィラ
ーを40体積%から80体積%含有することを特徴とす
る金属ベース基板である。そして、銅箔上に少なくとも
2層に分けて作製した絶縁接着材料層のうち、銅箔に接
する絶縁接着材料層には比誘電率が50以上の無機フィ
ラーを50体積%から80体積%含有し、銅箔に接しな
い最外層の絶縁接着材料層には比誘電率が50以上の無
機フィラーを絶縁接着材料中に40体積%から50体積%
含有する金属ベース基板であり、少なくとも最外層の絶
縁接着材料層に、分子量が500以下のエポキシ樹脂を
少なくとも20体積%以上含む金属ベース基板であると
好ましいものである。また、本発明は、比誘電率50以
上の無機フィラーが40体積%から80体積%となるよ
うに含有する絶縁接着材料ワニスを銅箔に塗布、乾燥し
銅箔付き絶縁接着材料を作製し、金属板と積層して成形
することを特徴とする金属ベース基板の製造方法であ
る。さらに、比誘電率50以上の無機フィラーが50体
積%から80体積%となるように含有する絶縁接着材料
ワニスを銅箔に塗布、乾燥した後、さらに、その上に比
誘電率50以上の無機フィラーが40体積%から50体
積%となるように含有する絶縁接着材料ワニスを銅箔に
塗布し、銅箔に接する側の絶縁接着材料層の硬化度がB
またはCステージであり、銅箔に接しない最外層の絶縁
接着材料層がAまたはBステージとなるように乾燥した
銅箔付き絶縁接着材料を作製し、金属板と積層して成形
する金属ベース基板の製造方法であり、銅箔に接しない
最外層となる絶縁接着材料ワニスに、分子量が500以
下のエポキシ樹脂を少なくとも20体積%となるように
含むワニスを用いる金属ベース基板の製造方法である。
The present invention has been made in view of such circumstances, and has a high relative dielectric constant, a low dielectric loss tangent,
It is an object of the present invention to obtain a metal base substrate having excellent adhesion to metal and good workability. In order to solve this problem, the present inventors have conducted intensive studies, and as a result, by selecting the filler content, the resin component, and the degree of curing of each layer of the insulating adhesive material, a metal base substrate having a high dielectric constant can be obtained. Was. The present invention relates to a metal base substrate in which an insulating adhesive material with a copper foil obtained by arranging an insulating adhesive material on a copper foil is laminated on a metal plate. % Of the metal base substrate. Then, among the insulating adhesive material layers formed in at least two layers on the copper foil, the insulating adhesive material layer in contact with the copper foil contains an inorganic filler having a relative dielectric constant of 50 or more from 50% by volume to 80% by volume. The outermost insulating adhesive material layer not in contact with the copper foil contains an inorganic filler having a relative dielectric constant of 50 or more in the insulating adhesive material by 40% by volume to 50% by volume.
Preferably, the metal base substrate contains at least 20% by volume or more of an epoxy resin having a molecular weight of 500 or less in at least the outermost insulating adhesive material layer. In addition, the present invention applies an insulating adhesive material varnish containing an inorganic filler having a relative dielectric constant of 50 or more so as to be 40% by volume to 80% by volume on a copper foil, and then dried to produce an insulating adhesive material with a copper foil. A method for manufacturing a metal base substrate, characterized by laminating and forming a metal plate. Further, an insulating adhesive material varnish containing an inorganic filler having a relative dielectric constant of 50 or more so as to be 50% by volume to 80% by volume is applied to a copper foil, dried, and then further coated with an inorganic filler having a relative dielectric constant of 50 or more. An insulating adhesive material varnish containing the filler in an amount of 40% by volume to 50% by volume is applied to the copper foil, and the degree of curing of the insulating adhesive material layer on the side in contact with the copper foil is B.
Or a metal base substrate which is a C-stage, which is made by drying an insulating adhesive material with a copper foil so that the outermost insulating adhesive material layer not in contact with the copper foil is at the A or B stage, and is laminated with a metal plate and molded. And a method of manufacturing a metal base substrate using a varnish containing an epoxy resin having a molecular weight of 500 or less to be at least 20% by volume as an outermost insulating adhesive varnish not in contact with the copper foil.

【0005】[0005]

【発明の実施の形態】本発明の絶縁接着材料は、主とし
て樹脂成分と無機フィラーとからなる。樹脂成分として
しては、エポキシ樹脂系、ポリイミド樹脂系、フェノー
ル樹脂系などを使用することができ、これには、電気絶
縁性の良い高分子物質である可撓性付与成分を配合する
ことが好ましく、例えば、アクリルゴム、NBR、エポ
キシ変性アクリルゴム、エポキシ化ポリブタジエン、フ
ェノキシ樹脂などがある。また銅箔と絶縁接着材料との
接着性を向上させるためカップリング剤を使用すること
が好ましい。カップリング剤としては、シランカップリ
ング剤が好ましく、γ−グリシドキシプロピルトリメト
キシシラン、γ−メルカプトプロピルトリメトキシシラ
ン、γ−アミノプロピルトリエトキシシラン、γ−ウレ
イドプロピルトリエトキシシラン、N−β−アミノエチ
ル−γ−アミノプロピルトリメトキシシラン等が挙げら
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The insulating adhesive material of the present invention mainly comprises a resin component and an inorganic filler. As the resin component, an epoxy resin type, a polyimide resin type, a phenol resin type, or the like can be used. To this, a flexibility-imparting component which is a polymer substance having good electric insulation can be added. Preferred are, for example, acrylic rubber, NBR, epoxy-modified acrylic rubber, epoxidized polybutadiene, phenoxy resin and the like. Further, it is preferable to use a coupling agent in order to improve the adhesiveness between the copper foil and the insulating adhesive material. As the coupling agent, a silane coupling agent is preferable, and γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, N-β -Aminoethyl-γ-aminopropyltrimethoxysilane and the like.

【0006】最外層の絶縁接着材料層には、成形時の流
動性を向上させるために、分子量500以下の低分子量
エポキシ樹脂を20体積%以上含有することが好まし
い。このようなエポキシ樹脂としては、一分子中にエポ
キシ基を2個以上有したビスフェノールA型またはビス
フェノールF型液状樹脂が挙げられ、油化シェルエポキ
シ株式会社から、エピコート807、エピコート82
7、エピコート828という商品名で市販されている。
また、ダウケミカル日本株式会社からは、D.E.R.
330、D.E.R.331、D.E.R.361とい
う商品名で市販されている。さらに、東都化成株式会社
から、YD128、YDF170という商品名で市販さ
れている。エポキシ樹脂の硬化剤としては特に制限する
ものではないが、ワニスライフの長い潜在性の高いもの
が望ましい。この例としては、3級アミン、酸無水物、
イミダゾール化合物、ポリフェノール樹脂、マスクイソ
シアネートなどの1種以上を使用することができる。ま
た、不純物イオンが原因となる、吸湿時の絶縁抵抗の低
下を防止するために、イオン吸着無機物質を添加するこ
とが好ましい。
[0006] The outermost insulating adhesive material layer preferably contains 20% by volume or more of a low molecular weight epoxy resin having a molecular weight of 500 or less in order to improve fluidity during molding. Examples of such an epoxy resin include a bisphenol A type or a bisphenol F type liquid resin having two or more epoxy groups in one molecule.
7, marketed under the trade name Epicoat 828.
In addition, Dow Chemical Japan Co., Ltd. E. FIG. R.
330, D.I. E. FIG. R. 331; E. FIG. R. 361. Further, they are commercially available from Toto Kasei Co., Ltd. under the trade names of YD128 and YDF170. The curing agent for the epoxy resin is not particularly limited, but a curing agent having a long varnish life and a high potential is desirable. Examples of this are tertiary amines, acid anhydrides,
One or more of imidazole compounds, polyphenol resins, masked isocyanates and the like can be used. Further, in order to prevent a decrease in insulation resistance at the time of moisture absorption due to impurity ions, it is preferable to add an ion-adsorbing inorganic substance.

【0007】比誘電率が50以上の無機フィラーとして
は以下にあげるものがあり、これらのうち1種または2
種以上を組み合わせて用いることができる。すなわち、
二酸化チタン、チタン酸バリウム、チタン酸カルシウ
ム、チタン酸ストロンチウム、チタン酸鉛、ジルコン酸
バリウム、ジルコン酸カルシウム、スズ酸バリウム、ス
ズ酸カルシウム等の粉末がある。また無機フィラーとし
てセラミックコンデンサー用原料を焼成し粉砕した粉末
で、その比誘電率が300以上であるものを用いること
で、更に高誘電率の基板を得ることができる。無機フィ
ラーの形状、粒径については特に制限するものではない
が、球状のフィラーを用いると成形時の絶縁接着材料の
流動性が向上し、破砕状、繊維状のものを用いると、機
械的強度が向上する。このような無機フィラーの配合量
は絶縁接着材料の内の40体積%から80体積%である
ことが必要である。この理由としては、配合量40体積
%未満では誘電率を高くする効果が少なく、80体積%
を超えると絶縁接着材料の流動性が低下し、ボイドの発
生により耐電圧が低下するためである。
The following are examples of inorganic fillers having a relative dielectric constant of 50 or more.
More than one species can be used in combination. That is,
There are powders of titanium dioxide, barium titanate, calcium titanate, strontium titanate, lead titanate, barium zirconate, calcium zirconate, barium stannate, calcium stannate and the like. Further, by using a powder obtained by firing and pulverizing a ceramic capacitor raw material as the inorganic filler and having a relative dielectric constant of 300 or more, a substrate having a higher dielectric constant can be obtained. The shape and particle size of the inorganic filler are not particularly limited, but the use of a spherical filler improves the fluidity of the insulating adhesive material at the time of molding, and the use of a crushed or fibrous material provides mechanical strength. Is improved. It is necessary that the amount of such an inorganic filler is from 40% by volume to 80% by volume of the insulating adhesive material. The reason for this is that if the blending amount is less than 40% by volume, the effect of increasing the dielectric constant is small, and 80% by volume.
If the ratio exceeds, the fluidity of the insulating adhesive material is reduced, and the withstand voltage is reduced due to generation of voids.

【0008】次に銅箔付き絶縁接着材料の層構成につい
て、銅箔上に絶縁接着材料ワニスを第1層として塗工
し、これを硬化度がBまたはCステージに加熱硬化する
ことにより、流動性を小さくする。さらに絶縁接着材料
の上に第2層を塗工し、これを硬化度がAまたはBステ
ージに加熱する。このような2層構成にすることにより
絶縁接着材料のボイド、クレータ、異物混入などの塗膜
欠陥による絶縁信頼性の低下の防止する。2層構成につ
いて説明したが、同様の操作を繰り返し3層構成以上に
してもさしつかえない。この場合、銅箔に接しない最外
層の絶縁接着材料は、硬化度がAまたはBステージにす
る。硬化度が、A,B,Cステージとは、接着剤の硬化
の程度を示し、Aステージはほぼ未硬化でゲル化してい
ない状態であり、全硬化発熱量の0から20%の発熱を
終えた状態である。Bステージは若干硬化、ゲル化が進
んだ状態であり全硬化発熱量の20から60%の発熱を
終えた状態である。Cステージはかなり硬化が進み、ゲ
ル化した状態であり、全硬化発熱量の60から100%
の発熱を終えた状態である。2層構成の絶縁接着材料の
場合、銅箔上に設ける第1層目の絶縁接着材料ワニスに
は、比誘電率が50以上の無機フィラーを50体積%か
ら80体積%となるように含有させ、塗布、乾燥させた
場合の無機フィラーが50体積%から80体積%となる
ようにする。第1層目の絶縁接着材料は、第2層目の絶
縁接着材料がその上に塗布、乾燥されるので、それを見
越した塗工、乾燥条件とする。そして、さらに、この上
に比誘電率が50以上の無機フィラーを40体積%から
50体積%となるように含有させた絶縁接着材料ワニス
を塗布、乾燥し、硬化度がBまたはCステージとなるよ
うにさせる。3層構成以上の場合は、銅箔と接しない最
外層の絶縁接着層には、無機フィラーを40体積%から
50体積%となるようにする。
Next, regarding the layer structure of the insulating adhesive material with copper foil, an insulating adhesive material varnish is applied as a first layer on the copper foil, and this is heated and cured to a B or C stage to obtain a fluidized material. To reduce the nature. Further, a second layer is applied on the insulating adhesive material, and this is heated to the A or B stage having a curing degree. With such a two-layer structure, a decrease in insulation reliability due to coating film defects such as voids, craters, and foreign matter in the insulating adhesive material is prevented. Although a two-layer structure has been described, the same operation may be repeated to form a three-layer structure or more. In this case, the outermost insulating adhesive material not in contact with the copper foil has a degree of curing of A or B stage. A, B, and C stages indicate the degree of curing of the adhesive, and the A stage is in a state of being almost uncured and not gelling, and has finished generating 0 to 20% of the total curing calorific value. It is in a state where it is. The B stage is in a state in which curing and gelation have progressed slightly, and a state in which heat generation of 20 to 60% of the total curing calorific value has been completed. The C stage is considerably hardened and gelled, and 60 to 100% of the total curing heat generation
This is the state in which heat generation has been completed. In the case of a two-layer insulating adhesive material, the first-layer insulating adhesive material varnish provided on the copper foil contains an inorganic filler having a relative dielectric constant of 50 or more so as to be 50% by volume to 80% by volume. The amount of the inorganic filler when applied and dried is adjusted to 50% by volume to 80% by volume. The first layer of the insulating adhesive material is applied and dried on the second layer of the insulating adhesive material, so that the application and drying conditions are anticipated. Further, an insulating adhesive material varnish containing an inorganic filler having a relative dielectric constant of 50 or more so as to be 40% by volume to 50% by volume is further applied thereon and dried, and the degree of curing becomes the B or C stage. So that In the case of a three-layer structure or more, the outermost insulating adhesive layer not in contact with the copper foil is made to have an inorganic filler content of 40% by volume to 50% by volume.

【0009】絶縁接着材料ワニスを銅箔に塗工する方法
としてはバーコータ、リップコータ、ロールコータなど
があり、クレータ、ボイドなどの欠陥が少なく、塗工の
際の厚みを均一に塗工できるものであれば制限されな
い。本発明の金属ベース基板は、それを用いて多層配線
板とすることもできる。多層配線板の製造方法は、以下
のようにして行うことができる。銅箔付き絶縁接着材料
と金属板を加圧加熱一体化することにより金属ベース基
板を得る。これには、プレス、真空プレス、ホットロー
ルラミネータ、真空ラミネータなどを用いることが出来
る。得られた金属ベース基板は、常法により回路加工、
外形加工等を行い、金属ベース配線基板とする。この金
属配線基板の銅箔配線層の上にさらに、銅箔付き絶縁接
着材料を積層し加圧加熱一体化して、多層配線板とす
る。この場合、金属ベース基板の上に積層する銅箔付き
絶縁接着材料としては、無機フィラーを含まない銅箔付
き絶縁接着材料を積層してもよいし、ガラス基材のプリ
プレグや接着フィルムを介して積層しても良い。以下本
発明を実施例に基づいて具体的に説明する。
As a method for applying the insulating adhesive material varnish to the copper foil, there are a bar coater, a lip coater, a roll coater, etc., which have few defects such as craters and voids and can uniformly apply the thickness at the time of coating. If there is, it is not restricted. The metal base substrate of the present invention can be used as a multilayer wiring board. The method for manufacturing the multilayer wiring board can be performed as follows. A metal base substrate is obtained by pressure-heating and integrating the insulating adhesive material with copper foil and the metal plate. For this, a press, a vacuum press, a hot roll laminator, a vacuum laminator, or the like can be used. The obtained metal base substrate is processed by a usual method,
Outer shape processing is performed to obtain a metal-based wiring board. An insulating adhesive material with a copper foil is further laminated on the copper foil wiring layer of the metal wiring board and integrated under pressure and heat to form a multilayer wiring board. In this case, as the insulating adhesive material with copper foil to be laminated on the metal base substrate, an insulating adhesive material with copper foil containing no inorganic filler may be laminated, or via a prepreg or an adhesive film of a glass base material. They may be stacked. Hereinafter, the present invention will be specifically described based on examples.

【0010】[0010]

【実施例】【Example】

(実験例1) (1) 厚み35μmの銅箔を用い、この上に絶縁接着
材料の第1層として乾燥後の厚みが35μmになるよう
に表1に示す絶縁接着材料ワニスAを塗工し、150℃
で10分間乾燥し、さらに、この上に絶縁接着材料の第
2層として乾燥後の厚みが第1層、第2層合わせて70
μmになるように表1の絶縁接着材料ワニスBを塗工
し、110℃で10分間乾燥して銅箔付き絶縁接着材料
を作製した。 (2)上記の銅箔付き絶縁接着材料と表面を研磨処理し
た板厚2mmのアルミ板を積層し、170℃,30kg
f/cm2、60分間加熱加圧成形して、金属ベース基
板を作製した。 (3)金属ベース基板の銅箔を常法によりエッチング処
理し、金属ベース配線基板を得た。
(Experimental Example 1) (1) A copper foil having a thickness of 35 μm was used, and an insulating adhesive material varnish A shown in Table 1 was applied thereon as a first layer of the insulating adhesive material so that the thickness after drying was 35 μm. , 150 ° C
For 10 minutes, and the thickness after drying as a second layer of the insulating adhesive material is 70
The insulating adhesive material varnish B shown in Table 1 was applied to a thickness of μm, and dried at 110 ° C. for 10 minutes to produce an insulating adhesive material with a copper foil. (2) Laminate the above-mentioned insulating adhesive material with copper foil and an aluminum plate having a surface thickness of 2 mm, which has been polished, and 170 ° C., 30 kg
Heat and pressure molding was performed at f / cm 2 for 60 minutes to produce a metal base substrate. (3) The copper foil of the metal base substrate was subjected to an etching treatment by a conventional method to obtain a metal base wiring substrate.

【0011】(実験例2)厚み35μmの銅箔を用い、
この上に絶縁接着材料の第1層として乾燥後の厚みが1
8μmになるように表1に示す絶縁接着材料ワニスCを
塗工し、150℃で10分間乾燥し、さらに、この上に
絶縁接着材料の第2層として乾燥後の厚みが第1層、第
2層合わせて35μmになるように表1の絶縁接着材料
ワニスAを塗工し、150℃で10分間乾燥して銅箔付
き絶縁接着材料を作製した。そして、さらに、この上に
絶縁接着層の第3層として乾燥後の厚みが第1層から第
3層合わせて70μmになるように表1の絶縁接着材料
ワニスBを塗工し、110℃で10分間乾燥して銅箔付
き絶縁接着材料を作製した。この銅箔付き絶縁接着材料
を使用すること以外は、実施例1と同様にして、金属ベ
ース基板そして、金属ベース配線基板を得た。
(Experimental Example 2) Using a copper foil having a thickness of 35 μm,
On this, a first layer of an insulating adhesive material having a thickness after drying of 1
The insulating adhesive material varnish C shown in Table 1 was applied so as to have a thickness of 8 μm, dried at 150 ° C. for 10 minutes, and further dried thereon as a second layer of the insulating adhesive material having a first layer and a second layer. Insulating adhesive material varnish A of Table 1 was applied so that the total thickness of the two layers became 35 μm, and dried at 150 ° C. for 10 minutes to produce an insulating adhesive material with a copper foil. Further, a varnish B of the insulating adhesive material shown in Table 1 is further applied thereon as a third layer of the insulating adhesive layer so that the thickness after drying becomes 70 μm in total from the first layer to the third layer. After drying for 10 minutes, an insulating adhesive material with a copper foil was prepared. A metal base substrate and a metal base wiring board were obtained in the same manner as in Example 1 except that this insulating adhesive material with a copper foil was used.

【0012】(実験例3)厚み35μmの銅箔を使用
し、銅箔の上に乾燥後の厚みが70μmになるように表
1の絶縁接着材料ワニスAを塗工し、110℃で10分
間乾燥し、銅箔付き絶縁接着材料を作製するした。この
銅箔付き絶縁接着材料を使用すること以外は、実施例1
と同様にして、金属ベース基板そして、金属ベース配線
基板を得た。
(Experimental Example 3) Using a copper foil having a thickness of 35 μm, apply an insulating adhesive material varnish A shown in Table 1 on the copper foil so that the thickness after drying becomes 70 μm, and then apply the coating at 110 ° C. for 10 minutes. After drying, an insulating adhesive material with a copper foil was prepared. Example 1 was repeated except that this insulating adhesive material with copper foil was used.
In the same manner as in the above, a metal base substrate and a metal base wiring substrate were obtained.

【0013】(実験例4)厚み35μmの銅箔を使用
し、銅箔の上に乾燥後の厚みが70μmになるように表
1の絶縁接着材料ワニスBを塗工し、110℃で10分
間乾燥し、銅箔付き絶縁接着材料を作製した。この銅箔
付き絶縁接着材料を使用すること以外は、実施例1と同
様にして、金属ベース基板そして、金属ベース配線基板
を得た。
(Experimental Example 4) Using a copper foil having a thickness of 35 μm, an insulating adhesive material varnish B shown in Table 1 was applied on the copper foil so that the thickness after drying became 70 μm, and the coating was performed at 110 ° C. for 10 minutes. It dried and the insulating adhesive material with a copper foil was produced. A metal base substrate and a metal base wiring board were obtained in the same manner as in Example 1 except that this insulating adhesive material with a copper foil was used.

【0014】(実験例5)厚み35μmの銅箔を使用
し、絶縁接着材料の第1層として銅箔の上に、乾燥後の
厚みが35μmになるように表1の絶縁接着材料ワニス
Aを塗工し、150℃で10分間乾燥し、さらに、この
上に絶縁接着材料の第2層として、乾燥後の厚みが第1
層、第2層合わせて70μmになるように表1の絶縁接
着材料ワニスAを塗工し、150℃で10分間乾燥し、
第1層、第2層ともに硬化度をCステージとした銅箔付
き絶縁接着材料を作製した。この銅箔付き絶縁接着材料
を使用すること以外は、実施例1と同様にして、金属ベ
ース基板そして、金属ベース配線基板を得た。
(Experimental Example 5) Using a copper foil having a thickness of 35 μm, the insulating adhesive material varnish A shown in Table 1 was coated on the copper foil as the first layer of the insulating adhesive material so that the thickness after drying was 35 μm. Coating, drying at 150 ° C. for 10 minutes, and further, as a second layer of an insulating adhesive material,
The insulating adhesive material varnish A of Table 1 is applied so that the total thickness of the layers and the second layer is 70 μm, and dried at 150 ° C. for 10 minutes.
An insulating adhesive material with a copper foil having a degree of curing of C for both the first and second layers was produced. A metal base substrate and a metal base wiring board were obtained in the same manner as in Example 1 except that this insulating adhesive material with a copper foil was used.

【0015】比誘電率と誘電正接の測定は、JIS C
6481に準拠し、LCRメータ(モデル4274
A、ヒューレットパッカード製)及びトリプレート構造
直線線路共振器法により室温(25℃)で行った。耐電
圧は、絶縁接着材料をはさむ銅箔とアルミニウム板の間
の耐電圧を測定した。金属ベース基板の銅箔を直径20
mmの銅箔が残るようにエッチングで除去し、耐電圧計
を用いて測定した。そして、耐電圧不良率は、2KV未
満の耐電圧を示した試験数/評価した試験片の数とし
た。絶縁接着材料とアルミニウム板の密着性は、260
℃のはんだ浴中に3分間浸漬した際に、剥離が見られた
ものを不良、剥離がないものを良好とした。
The measurement of the relative dielectric constant and the dielectric loss tangent are based on JIS C
6481, LCR meter (Model 4274)
A, manufactured by Hewlett-Packard) and a triplate structure straight line resonator method at room temperature (25 ° C.). As for the withstand voltage, the withstand voltage between the copper foil sandwiching the insulating adhesive material and the aluminum plate was measured. Copper foil of metal base substrate with diameter 20
The copper foil of mm was removed by etching so as to remain, and the measurement was performed using a withstand voltage meter. The withstand voltage failure rate was defined as the number of tests showing a withstand voltage of less than 2 KV / the number of test pieces evaluated. The adhesion between the insulating adhesive material and the aluminum plate is 260
When immersed in a solder bath at 3 ° C. for 3 minutes, those with peeling were evaluated as poor, and those without peeling were evaluated as good.

【0016】実験例1〜5で作製した金属ベース基板の
試験結果を表2に示した。実験例1及び2は比誘電率が
大きくまた耐電圧、絶縁接着材料とアルミニウム板との
密着性も良好である。実験例3は比誘電率は大きいが、
絶縁接着材料とアルミニウム板の密着性が不良であり、
実験例4は、絶縁接着材料とアルミニウム板との密着性
を向上させるため、無機フィラーの配合量を低くした結
果、比誘電率が低い。実験例5は絶縁接着材料の硬化度
が好ましい範囲からはずれた場合であり、耐電圧、絶縁
接着材料とアルミニウム板との密着性も不良である。
Table 2 shows the test results of the metal base substrates manufactured in Experimental Examples 1 to 5. Experimental Examples 1 and 2 have a large relative dielectric constant, good withstand voltage, and good adhesion between the insulating adhesive material and the aluminum plate. Experimental Example 3 has a large relative dielectric constant,
The adhesion between the insulating adhesive material and the aluminum plate is poor,
In Experimental Example 4, the relative dielectric constant was low as a result of reducing the amount of the inorganic filler to improve the adhesion between the insulating adhesive material and the aluminum plate. In Experimental Example 5, the degree of curing of the insulating adhesive material was out of the preferred range, and the withstand voltage and the adhesion between the insulating adhesive material and the aluminum plate were also poor.

【0017】[0017]

【表1】 ―――――――――――――――――――――――――――――――――― 項 目 品 名 ワニスA ワニスB ワニスC ―――――――――――――――――――――――――――――――――― エホ゜キシ樹脂 エヒ゜コート828 60 60 0 エヒ゜コート1007 0 0 60 可とう化剤 フェノキシ樹脂 40 40 40 硬化剤 フェノールノホ゛ラック 30 30 15 硬化促進剤 2PZ-CN 0.5 0.5 0.5 シランカッフ゜ A187 2 0 2 リンク゛剤 無機フィラー チタン酸ハ゛リウム 800 450 450 チタン酸ハ゛リウムの体積% 55.6 41.7 44.6 ―――――――――――――――――――――――――――――――――――エヒ゜コート 828:ビスフェノールA型エポキシ樹脂(エポキ
シ当量=190、油化シェルエポキシ株式会社製商品
名)エヒ゜コート 1007:ビスフェノールA型エポキシ樹脂(エポキ
シ当量=2000、油化シェルエポキシ株式会社製商品
名)フェノキシ 樹脂:YP−50(東都化成株式会社商品名)フェノールノホ゛ラック :LF−2882(大日本インキ株式会社
商品名、水酸基当量=118)チタン 酸ハ゛リウム:富士チタン工業株式会社製、粒径1.4μ
m、比誘電率=1150
[Table 1] ―――――――――――――――――――――――――――――――― Item Item Varnish A Varnish B Varnish C ―― ―――――――――――――――――――――――――――――― Epoxy resin Ehcoat 828 60 60 0 Ehcoat 1007 0 0 60 Flexible agent Phenoxy resin 40 40 40 Curing agent Phenol novolak 30 30 15 Curing accelerator 2PZ-CN 0.5 0.5 0.5 Silane cuff A187 202 Linking agent Inorganic filler Perium titanate 800 450 450 Volume% of valium titanate 55.6 41.7 44.6 ――――――――――――――――――――――――――――――――――― Echicoat 828: Bisphenol A type epoxy resin (epoxy equivalent = 190, oil Shell Epoxy Co., Ltd. ) Ehjicoat 1007: bisphenol A type epoxy resin (epoxy equivalent = 2000, trade name of Yuka Shell Epoxy Co., Ltd.) phenoxy resin: YP-50 (trade name of Toto Kasei Co., Ltd.) phenol novolak: LF-2882 (Dainippon Ink Inc. Company brand name, hydroxyl equivalent = 118) potassium titanate: manufactured by Fuji Titanium Industry Co., Ltd., particle size 1.4 μm
m, relative permittivity = 1150

【0018】[0018]

【表2】 ――――――――――――――――――――――――――――――――――― 項 目 単位 実験例1 実験例2 実験例3 実験例4 実験例5 ――――――――――――――――――――――――――――――――――― 比誘電率 ― 54 45 65 36 65 誘電正接 1MHz 0.001 0.001 0.002 0.003 0.002 誘電正接 100MHz 0.002 0.002 0.022 0.013 0.011 誘電正接 1000MHz 0.004 0.004 0.032 0.020 0.023 耐電圧 kV 5.6 6.6 4.5 6.1 4.0 耐電圧不良 % 0.1 0.1 2.4 0.1 1.2 率 アルミ板-絶縁 ― 良好 良好 不良 良好 不良 層間の密着 (層間で (層間で 性 剥離) 剥離) ―――――――――――――――――――――――――――――――――――[Table 2] ――――――――――――――――――――――――――――――――― Item Unit Experimental example 1 Experimental example 2 Experimental example 3 Experiment 4 Experiment 5 ――――――――――――――――――――――――――――――――― Relative permittivity ― 54 45 65 36 65 Dielectric loss tangent 1MHz 0.001 0.001 0.002 0.003 0.002 Dielectric loss tangent 100MHz 0.002 0.002 0.022 0.013 0.011 Dielectric loss tangent 1000MHz 0.004 0.004 0.032 0.020 0.023 Withstand voltage kV 5.6 6.6 4.5 6.1 4.0 Withstand voltage failure% 0.1 0.1 2.4 0.1 1.2 Ratio Aluminum plate-Insulation-Good Good Poor Good Poor Adhesion between layers (peeling between layers (peeling between layers) peeling) ――――――――――――――――――――――――――――――――― -

【0019】[0019]

【発明の効果】本発明の金属ベース基板を使用し、金属
ベース配線基板を形成した場合、絶縁接着材料が高誘電
率で基板自体が大きな静電容量を有しているため、配線
形成によりバイパスコンデンサー機能を付与することが
でき、新たにコンデンサを設けなくてもデジタル回路に
おいて電源ラインに混入する高周波ノイズを除去するこ
とができ、小型化や高密度化に寄与する。また本発明で
は、また熱伝導率の大きい金属板を必須の構成として使
用しており、金属板のため放熱性に優れ、局所的な温度
上昇が少なく、基板全域にわたり温度の均一化が図れ
る。このため、特性の温度依存性の大きい部品を使用し
た場合でも、温度上昇による特性の不安定化を解消でき
る。比誘電率は、温度による変化がおおきく、特に比誘
電率の高いものでは顕著であったが、金属板の熱伝導に
よる温度均一性により、温度による比誘電率の変化が少
なくなり、電子機器を安定して作動させることができ
る。比誘電率の大きい金属ベース基板は、ADコンバー
タ、ハイブリッドIC等に使用すると、電源ラインに混
入する高周波ノイズを除去でき、また、ICの温度上昇
を抑制することもできる。また、無線送受信機等に使用
される高周波回路用途に使用すると、インピーダンスを
マッチングさせるための回路パターンの幅を狭くする作
用があり、回路全体の小型化を図ることができる。そし
て、基板全域にわたり温度の均一化が図れるため、特性
が安定する。
When the metal base substrate of the present invention is used to form a metal base wiring substrate, the insulating adhesive material has a high dielectric constant and the substrate itself has a large capacitance. A capacitor function can be provided, and high-frequency noise mixed into a power supply line can be removed in a digital circuit without newly providing a capacitor, contributing to miniaturization and high density. Further, in the present invention, a metal plate having a high thermal conductivity is used as an essential component. The metal plate has excellent heat radiation properties, has a small local temperature rise, and can achieve a uniform temperature over the entire substrate. For this reason, even when a component having a large temperature dependence of the characteristic is used, the instability of the characteristic due to the temperature rise can be resolved. The relative permittivity varies greatly with temperature, and was particularly remarkable in those having a high relative permittivity.However, the change in relative permittivity due to temperature decreases due to temperature uniformity due to the heat conduction of the metal plate, and the It can be operated stably. When a metal base substrate having a large relative dielectric constant is used for an AD converter, a hybrid IC, or the like, high-frequency noise mixed into a power supply line can be removed and an increase in the temperature of the IC can be suppressed. Further, when used for a high-frequency circuit used in a wireless transceiver or the like, the width of a circuit pattern for matching impedance is reduced, and the size of the entire circuit can be reduced. Further, since the temperature can be made uniform over the entire area of the substrate, the characteristics are stabilized.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 銅箔に絶縁接着材料を配置してなる銅箔
付き絶縁接着材料を金属板上に積層した金属ベース基板
において、絶縁接着材料中に比誘電率が50以上の無機
フィラーを40体積%から80体積%含有することを特
徴とする金属ベース基板。
1. A metal base substrate in which an insulating adhesive material with a copper foil in which an insulating adhesive material is arranged on a copper foil is laminated on a metal plate, wherein an inorganic filler having a relative dielectric constant of 50 or more is added to the insulating adhesive material. A metal base substrate containing from about 80% by volume to about 80% by volume.
【請求項2】 銅箔上に少なくとも2層に分けて作製し
た絶縁接着材料層のうち、銅箔に接する絶縁接着材料層
には比誘電率が50以上の無機フィラーを50体積%か
ら80体積%含有し、銅箔に接しない最外層の絶縁接着
材料層には比誘電率が50以上の無機フィラーを絶縁接
着材料中に40体積%から50体積%含有することを特徴
とする金属ベース基板。
2. An insulating adhesive material layer formed in at least two layers on a copper foil, wherein the insulating adhesive material layer in contact with the copper foil contains an inorganic filler having a relative dielectric constant of 50 or more from 50% by volume to 80% by volume. %, Wherein the outermost insulating adhesive material layer not in contact with the copper foil contains an inorganic filler having a relative dielectric constant of 50 or more in the insulating adhesive material by 40% by volume to 50% by volume. .
【請求項3】 少なくとも最外層の絶縁接着材料層に、
分子量が500以下のエポキシ樹脂を少なくとも20体
積%以上含むことを特徴とする請求項1または請求項2
に記載の金属ベース基板。
3. The method according to claim 1, wherein at least the outermost insulating adhesive material layer comprises:
3. An epoxy resin having a molecular weight of 500 or less at least 20% by volume or more.
A metal-based substrate according to claim 1.
【請求項4】 比誘電率50以上の無機フィラーが40
体積%から80体積%となるように含有する絶縁接着材
料ワニスを銅箔に塗布、乾燥し銅箔付き絶縁接着材料を
作製し、金属板と積層して成形することを特徴とする金
属ベース基板の製造方法。
4. An inorganic filler having a relative dielectric constant of 50 or more is 40 or more.
A metal base substrate characterized in that an insulating adhesive material varnish containing from 80% by volume to 80% by volume is applied to copper foil, dried to produce an insulating adhesive material with copper foil, laminated with a metal plate and molded. Manufacturing method.
【請求項5】 比誘電率50以上の無機フィラーが50
体積%から80体積%となるように含有する絶縁接着材
料ワニスを銅箔に塗布、乾燥した後、さらに、その上に
比誘電率50以上の無機フィラーが40体積%から50
体積%となるように含有する絶縁接着材料ワニスを塗布
し、銅箔に接する側の絶縁接着材料層の硬化度がBまた
はCステージであり、銅箔に接しない最外層の絶縁接着
材料層がAまたはBステージとなるように乾燥した銅箔
付き絶縁接着材料シートを作製し、金属板と積層して成
形することを特徴とする金属ベース基板の製造方法。
5. An inorganic filler having a relative dielectric constant of 50 or more is 50 or more.
After coating and drying an insulating adhesive material varnish contained so as to have a volume percentage of 80 to 80% by volume, an inorganic filler having a relative dielectric constant of 50 or more is further coated on the copper foil.
The insulating adhesive material varnish contained so as to have a volume% is applied, and the degree of curing of the insulating adhesive material layer on the side in contact with the copper foil is B or C stage, and the outermost insulating adhesive material layer not in contact with the copper foil is A method for producing a metal base substrate, comprising: preparing an insulating adhesive material sheet with a copper foil which is dried so as to form an A or B stage; and laminating and forming the sheet with a metal plate.
【請求項6】 請求項5に記載の金属ベース基板の製造
方法において、銅箔に接しない最外層となる絶縁接着材
料ワニスに、分子量が500以下のエポキシ樹脂を少な
くとも20体積%となるように含むワニスを用いること
を特徴とする金属ベース基板の製造方法。
6. The method for manufacturing a metal-based substrate according to claim 5, wherein an epoxy resin having a molecular weight of 500 or less is at least 20% by volume in an insulating adhesive varnish serving as an outermost layer not in contact with the copper foil. A method for producing a metal-based substrate, characterized by using a varnish containing the same.
JP04017997A 1997-02-25 1997-02-25 Metal base substrate and manufacturing method thereof Expired - Fee Related JP3820668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04017997A JP3820668B2 (en) 1997-02-25 1997-02-25 Metal base substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04017997A JP3820668B2 (en) 1997-02-25 1997-02-25 Metal base substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10242607A true JPH10242607A (en) 1998-09-11
JP3820668B2 JP3820668B2 (en) 2006-09-13

Family

ID=12573564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04017997A Expired - Fee Related JP3820668B2 (en) 1997-02-25 1997-02-25 Metal base substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3820668B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570099B1 (en) 1999-11-09 2003-05-27 Matsushita Electric Industrial Co., Ltd. Thermal conductive substrate and the method for manufacturing the same
JP2006045388A (en) * 2004-08-05 2006-02-16 Kaneka Corp Insulating adhesive sheet and its application
WO2006112478A1 (en) * 2005-04-19 2006-10-26 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board, led, and led light source unit
CN110655875A (en) * 2018-06-28 2020-01-07 昆山雅森电子材料科技有限公司 High-frequency high-speed bonding sheet with high Dk and low Df characteristics and preparation method thereof
WO2021112134A1 (en) * 2019-12-04 2021-06-10 東洋紡株式会社 Low-dielectric layered product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570099B1 (en) 1999-11-09 2003-05-27 Matsushita Electric Industrial Co., Ltd. Thermal conductive substrate and the method for manufacturing the same
JP2006045388A (en) * 2004-08-05 2006-02-16 Kaneka Corp Insulating adhesive sheet and its application
WO2006112478A1 (en) * 2005-04-19 2006-10-26 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board, led, and led light source unit
CN110655875A (en) * 2018-06-28 2020-01-07 昆山雅森电子材料科技有限公司 High-frequency high-speed bonding sheet with high Dk and low Df characteristics and preparation method thereof
WO2021112134A1 (en) * 2019-12-04 2021-06-10 東洋紡株式会社 Low-dielectric layered product

Also Published As

Publication number Publication date
JP3820668B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP5016005B2 (en) Capacitor having an epoxy derivative layer cured with aminophenylfluorene
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
JPH0621593A (en) Manufacture of printed circuit board
JP2002241473A (en) Thermosetting epoxy resin composition and its molding and multilayer printed wiring board
JP3553351B2 (en) Prepreg and substrate
US6565977B2 (en) Insulating film having improved adhesive strength and board having the insulating film
JP3820668B2 (en) Metal base substrate and manufacturing method thereof
JP2002309200A (en) Adhesive film
WO2004081952A1 (en) Polymer composite high-dielectric-constant material, multilayer printed circuit board and module board
JPS61154096A (en) Manufacture of multilayer printed wiring board
JPH03239390A (en) Metal cored board and manufacture thereof
JPH0823165A (en) Manufacture of metal cored wiring board using copper foil with insulating bonding agent
JPH1135916A (en) Layer insulation adhesive for multilayer printed wiring board
JP2012158681A (en) Epoxy resin composition
JPH07154068A (en) Adhesive sheet and production thereof, metal based wiring board employing adhesive sheet and production thereof
JP3876679B2 (en) Resin composition and use thereof
JP2003105205A (en) High dielectric constant composite material, high dielectric constant film, laminate board with metal foil and print circuit board
JP2000277922A (en) Multilayer printed interconnection board and manufacture thereof
JPH06120657A (en) Production of metal base board
JPH0967555A (en) Interlayer insulation adhesive for multilayered printed circuit board
JP3001400B2 (en) High frequency printed wiring board and method of manufacturing the same
JPH07133359A (en) High-permittivity prepreg
JP2006123232A (en) Copper foil with resin layer containing dielectric filler and printed circuit board obtained by using the copper foil with resin layer containing dielectric filler
JPH07297509A (en) Metallic base substrate and its manufacture
JPH1174641A (en) Multilayer wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees