JPH10241938A - High-frequency soft magnetic film - Google Patents

High-frequency soft magnetic film

Info

Publication number
JPH10241938A
JPH10241938A JP7881697A JP7881697A JPH10241938A JP H10241938 A JPH10241938 A JP H10241938A JP 7881697 A JP7881697 A JP 7881697A JP 7881697 A JP7881697 A JP 7881697A JP H10241938 A JPH10241938 A JP H10241938A
Authority
JP
Japan
Prior art keywords
film
soft magnetic
elements selected
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7881697A
Other languages
Japanese (ja)
Other versions
JP3810881B2 (en
Inventor
Shigehiro Onuma
繁弘 大沼
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Original Assignee
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elect & Magn Alloys Res Inst, Research Institute for Electromagnetic Materials filed Critical Elect & Magn Alloys Res Inst
Priority to JP07881697A priority Critical patent/JP3810881B2/en
Publication of JPH10241938A publication Critical patent/JPH10241938A/en
Application granted granted Critical
Publication of JP3810881B2 publication Critical patent/JP3810881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To form two or more kinds of microstructures having different nano- scale compositions by adding Ni or Pt at the time of forming a film of an alloy composed of Co, an oxide, etc., by sputtering in an oxygen atmosphere or a nitrogen atmosphere. SOLUTION: In the composition expressed by a formula, Co100- X- Y- Z- WMXRYLZQW (atomic %), M, R, L, and Q respectively represent one or tow kinds of element selected out of Ni and Pt, one or two kinds of elements selected out of Fe and Ru, one or two or more kinds of elements selected from among Be, B, Mg, A, Si, Ca, Y, Dy, Gd, Hf, Ti, and Zr, and one or two kinds of elements selected out of N and Q and X, Y, Z, and W are respectively set at 10<X<50, 0<=Y<20, 10<Z<20, 10<W<30, and 30<X+Y+Z+W<70. Therefore, a high-frequency soft magnetic film composed of two or more kinds of microstructures and having an anisotropic magnetic field of >=100 Oe and an electric specific resistance of >=400μΩ.cm is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高周波域で優れた軟磁性
を示し、かつ電気比抵抗、飽和磁化および異方性磁界が
大きな磁性膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic film exhibiting excellent soft magnetism in a high frequency range and having a large electric resistivity, a large saturation magnetization and a large anisotropic magnetic field.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い、動作周
波数が高まる傾向にある。しかし、トランス、インダク
タあるいは磁気ヘッド等に用いられている既知の磁性材
料には、高周波域まで特性を充分に維持できるものがな
く、これらの部品の高周波域での使用には制限が多かっ
た。一般に、1MHz以上の高周波域になると磁性材料
自体を流れる渦電流による大きな損失が発生する。金属
系の磁性材料は電気抵抗が小さいために、この渦電流が
大きくなり、高周波域で使用することが困難であった。
一方、フェライトおよびガーネットなどの酸化物系磁性
材料は、材料自体の電気抵抗が非常に高いために、渦電
流による損失はほとんど発生しない。しかし、透磁率の
大きな材料が得られにくく、かつその飽和磁化が小さい
ために自然共鳴周波数が低く、高周波域での使用には制
限が多かった。
2. Description of the Related Art In recent years, as electronic devices have become smaller, the operating frequency tends to increase. However, there is no known magnetic material used for a transformer, an inductor, a magnetic head, or the like that can sufficiently maintain characteristics up to a high frequency range, and the use of these components in a high frequency range is often limited. Generally, when the frequency is higher than 1 MHz, a large loss occurs due to eddy current flowing through the magnetic material itself. Since the magnetic resistance of the metal-based magnetic material is low, the eddy current increases, and it has been difficult to use the magnetic material in a high frequency range.
On the other hand, oxide-based magnetic materials such as ferrite and garnet have very high electrical resistance, so that little loss due to eddy currents occurs. However, it is difficult to obtain a material having a high magnetic permeability, and its saturation magnetization is small, so that its natural resonance frequency is low, and its use in a high frequency range is often limited.

【0003】飽和磁化が大きく、かつ高周波特性の良好
な磁性材料に対する期待は大きく、これまでに金属系磁
性材料の電気抵抗を高くする方法がいくつか提案されて
いる。例えば、金属とセラミックスとの同時スパッタリ
ングすることにより、セラミックスが分散した非晶質合
金膜を得る方法が、特開昭60−152651号広報に
より提案され、さらにJ.Appl.Phys.63
(8),15Appril1988にFe−BC系分散
膜が、J.Appl.Phys.67(9),1May
1990にCo.4Fe.4B.2−SiO系分散膜
が、高い電気比抵抗と軟磁気特性とを両立するものとし
て示されている。また、厚い単層膜では良好な軟磁気特
性を示さないCo.95Fe.05−BN系分散膜を
0.1μm以下の磁性層とすることで軟磁気特性が得ら
れ、この薄い膜を非磁性中間層を挟んで積層することに
より、厚い膜でも軟磁気特性が得られることを特開平4
−142710号広報に示されている。
There is great expectation for magnetic materials having high saturation magnetization and good high-frequency characteristics, and several methods have been proposed to increase the electrical resistance of metallic magnetic materials. For example, a method of obtaining an amorphous alloy film in which ceramics are dispersed by simultaneous sputtering of a metal and ceramics has been proposed in Japanese Patent Application Laid-Open No. 60-152651. Appl. Phys. 63
(8), Fe-BC-based dispersion film is disclosed in Appl. Phys. 67 (9), 1 May
In 1990, Co. 4Fe. 4B. 2-SiO 2 dispersion film is shown as having both high electrical resistivity and the soft magnetic properties. In addition, Co., which does not show good soft magnetic characteristics with a thick single-layer film, is used. 95 Fe. Soft magnetic characteristics can be obtained by making the 05-BN-based dispersion film a magnetic layer of 0.1 μm or less, and soft magnetic characteristics can be obtained even with a thick film by laminating this thin film with a non-magnetic intermediate layer interposed therebetween. This is disclosed in
-142710 public information.

【0004】[0004]

【発明が解決しようとする課題】磁性材料の高周波損失
は、渦電流損失と自然共鳴損失とに大別される。渦電流
損失は励磁により磁性体内部に電流が誘起されることが
原因であるため、磁性体の電気比抵抗を大きくしたり、
磁性体を薄くしたりして電流が流れにくくすることによ
り抑制できる。共鳴損失は、磁性体の電子(スピン)の
歳差運動が励磁界と共鳴することが原因であり、その共
鳴周波数は飽和磁束密度と異方性磁界に比例する。実際
の磁性材料では、異方性磁界はその大きさ、方向とも
に、ある範囲に分布している。これが低い値から高い値
まで幅広く分布していると、低周波領域から損失が発生
する。この異方性の分布は異方性分散と呼ばれており、
高磁歪材料等では加工時に残留した応力分布により増大
することが知られている。これらのことから、高周波域
で使用する磁性材料を設計するためには、以下のことを
考慮する必要がある。
The high frequency loss of the magnetic material is roughly classified into eddy current loss and natural resonance loss. Since the eddy current loss is caused by the induction of a current inside the magnetic material by excitation, the electric resistivity of the magnetic material may be increased,
This can be suppressed by reducing the thickness of the magnetic material so that current does not easily flow. The resonance loss is caused by the precession of electrons (spins) of a magnetic material resonating with an excitation magnetic field, and the resonance frequency is proportional to the saturation magnetic flux density and the anisotropic magnetic field. In an actual magnetic material, the magnitude and direction of the anisotropic magnetic field are distributed in a certain range. If this is widely distributed from a low value to a high value, a loss occurs from a low frequency region. This anisotropic distribution is called anisotropic dispersion,
It is known that high magnetostrictive materials and the like increase due to the distribution of residual stress during processing. From these facts, it is necessary to consider the following in order to design a magnetic material used in a high frequency range.

【0006】(1)飽和磁束密度が大きいこと。 (2)電気比抵抗が大きいこと。 (3)磁気異方性が大きく、分散が小さいこと。 (4)磁歪が小さいこと。(1) A high saturation magnetic flux density. (2) The electrical resistivity is large. (3) Large magnetic anisotropy and small dispersion. (4) Magnetostriction is small.

【0007】近年、磁性体の電気比抵抗を大きくする目
的で、金属とセラミックスとを同時にスパッタした非晶
質分散膜が盛んに検討されている。合金系としては、こ
れまでにFe基とFeの多いCoFe基が多く検討され
てきた。これらの膜は、非晶質相になると、10−5
上の大きな磁歪を持ち、かつ異方性磁界が小さく、高周
波軟磁性材料として必ずしも適切な材料であるとは言え
なかった。Co系膜は磁歪が小さく、異方性磁界が付与
されやすい等の特徴を有しているが、膜面に垂直な磁気
異方性が発生しやすい等の問題点があり、この系の研究
は極めて少なかった。
In recent years, for the purpose of increasing the electric resistivity of a magnetic material, an amorphous dispersion film obtained by simultaneously sputtering metal and ceramic has been actively studied. Many Fe-based and CoFe-based alloys have been studied as alloys. When these films become amorphous, they have a large magnetostriction of 10 −5 or more and a small anisotropic magnetic field, and thus cannot be said to be necessarily suitable as high-frequency soft magnetic materials. Co-based films have characteristics such as low magnetostriction and easy application of an anisotropic magnetic field, but have the problem that magnetic anisotropy perpendicular to the film surface is likely to occur. Was extremely small.

【0008】ごく最近、Co系膜において、酸化物の生
成熱が大きなNを含むCo−Al−O膜が500μΩc
m以上の電気比抵抗、10kG以上の飽和磁化そして7
0Oeの異方性磁界を有する軟磁性膜であることが見い
だされ、例えばJounalof Alloys an
d Compounds222(1995)167−1
72に開示されている。しかし、得られる膜の保磁力が
少し大きく、かつ異方性磁界の分散がかなり大きいな
ど、改善すべき点がいくつかある。また、2種類以上の
結晶相から成るグラニュラー組織を有するCo基合金薄
膜において、Pdを添加するとHkが大きくなり、かつ
軟磁気特性が改善することが特願平5−224438号
に報告されている。すなわち、得られた膜は、軟磁性と
ともに高電気抵抗、そしてその中の1部は200Oe以
上の大きなHkを有するものも示されている。しかし、
そのような特性を得るための添加元素はPdのみに限定
されており、経済的観点からも、安価な合金薄膜が要望
されている。
More recently, in a Co-based film, a Co-Al-O film containing N, which has a large heat of forming an oxide, has a thickness of 500 μΩc.
m or more, electric resistivity of 10 kG or more and 7
It has been found that the film is a soft magnetic film having an anisotropic magnetic field of 0 Oe.
d Compounds 222 (1995) 167-1
72. However, there are several points to be improved, such as the coercive force of the obtained film is slightly large and the dispersion of the anisotropic magnetic field is considerably large. It is also reported in Japanese Patent Application No. 5-224438 that adding Pd to a Co-based alloy thin film having a granular structure composed of two or more crystal phases increases Hk and improves soft magnetic properties. . That is, the obtained film is shown to have high electric resistance as well as soft magnetism, and that one of them has a large Hk of 200 Oe or more. But,
The additive element for obtaining such properties is limited to only Pd, and an economical viewpoint demands an inexpensive alloy thin film.

【0009】本発明は上記の点を鑑みてなされたもの
で、高周波域で優れた軟磁気特性を有する電気比抵抗の
大きな磁性薄膜を提供することを目的とする。
The present invention has been made in view of the above points, and has as its object to provide a magnetic thin film having excellent soft magnetic characteristics in a high frequency range and a large electric resistivity.

【0010】[0010]

【課題を解決するための手段および作用】本発明者ら
は、上記の事情を鑑みて鋭意努力した結果、Coと酸化
物もしくは窒化物の生成熱が大きな元素からなる合金を
酸素および窒素雰囲気中でスパッタ成膜するときに、N
iもしくはPtを添加すると、ナノスケールの組成の異
なる2種類以上の微細構造を持ち、かつ異方性磁界が1
00Oe以上で、電気比抵抗が400μΩcm以上を有
し、高周波域で優れた軟磁気特性を示す膜が得られるこ
とを見いだし、本発明に到達した。本発明の磁性膜は、
Niのような安価な元素の添加でもCo−Al−O膜の
高電気抵抗や軟磁性を損なうことなしに、100Oe以
上の大きな異方性磁界が得られるなど、高周波用軟磁性
材料として優れた特性を示す。
The present inventors have made intensive efforts in view of the above circumstances, and as a result, have found that an alloy composed of an element having a large heat of formation of Co and an oxide or a nitride can be obtained in an oxygen and nitrogen atmosphere. When forming a film by sputtering,
When i or Pt is added, it has two or more types of microstructures having different nanoscale compositions and an anisotropic magnetic field of 1
The present inventors have found that a film having an electric resistivity of not less than 00 Oe and an electric resistivity of not less than 400 μΩcm and exhibiting excellent soft magnetic properties in a high frequency range can be obtained. The magnetic film of the present invention,
Excellent as a high frequency soft magnetic material, such as a large anisotropic magnetic field of 100 Oe or more can be obtained without addition of inexpensive elements such as Ni without impairing the high electric resistance and soft magnetism of the Co-Al-O film. Show characteristics.

【0011】本発明の特徴とするところは次の通りであ
る。第一の発明は、一般式Co100−X−Y−Z−W
MXRYLZQW(原子%)で表される組成において、
MはNi,Ptから選択される1種または2種の元素で
あり、RはFe,Ruから選択される1種または2種の
元素であり、LはBe,B,Mg,Al,Si,Ca,
Y,Dy,Gd,Hf,Ti,Zrから選択される1種
または2種以上の元素であり、QはN,Oから選択され
る1種または2種の元素であり、その原子比率が 10<X<50 0Y<20 10<Z<20 10<W<30 30<X+Y+Z+W<70 であり、2種類以上の微細構造からなり、かつ異方性磁
界が100Oe以上で、電気比抵抗が400μΩcm以
上であることを特徴とする高周波軟磁性膜。
The features of the present invention are as follows. The first invention has a general formula Co100-XYZW
In a composition represented by MXRYLZQW (atomic%),
M is one or two elements selected from Ni and Pt, R is one or two elements selected from Fe and Ru, and L is Be, B, Mg, Al, Si, Ca,
One or two or more elements selected from Y, Dy, Gd, Hf, Ti, and Zr, Q is one or two elements selected from N and O, and the atomic ratio thereof is 10 <X <500 < Y <2010 <Z <2010 <W <3030 <X + Y + Z + W <70, consisting of two or more types of microstructures, an anisotropic magnetic field of 100 Oe or more, and an electrical resistivity of A high-frequency soft magnetic film having a thickness of 400 μΩcm or more.

【0012】第2の発明は、一般式Co100−X−Y
−Z−WNiXRYLZQW(原子%)で表される組成
において、RはFe,Ruから選択される1種または2
種以上の元素であり、LはBe,B,Mg,Al,S
i,Ca,Y,Dy,Gd,Hf,Ti,Zrから選択
される1種または2種以上の元素であり、QはN,Oか
ら選択される1種または2種の元素であり、その原子比
率が 10<X<50 0Y<20 10<Z<20 10<W<30 30<X+Y+Z+W<70 であり、2種類以上の微細構造からなり、かつ異方性磁
界が100Oe以上で、電気比抵抗が400μΩcm以
上であることを特徴とする請求項1記載の高周波軟磁性
膜。
The second invention is based on the general formula Co100-XY
In the composition represented by -Z-WNiXRYLZQW (atomic%), R is one or two selected from Fe and Ru.
L is Be, B, Mg, Al, S
i is one or more elements selected from i, Ca, Y, Dy, Gd, Hf, Ti, and Zr, and Q is one or two elements selected from N and O. The atomic ratio is 10 <X <500 < Y <2010 <Z <2010 <W <3030 <X + Y + Z + W <70, is composed of two or more kinds of fine structures, and has an anisotropic magnetic field of 100 Oe or more. 2. The high frequency soft magnetic film according to claim 1, wherein the electrical resistivity is 400 [mu] [Omega] cm or more.

【0013】第3の発明は、一般式Co100−X−Y
−Z−WPtXRYLZQW(原子%)で表される組成
において、RはFe,Ruから選択される1種または2
種以上の元素であり、LはBe,B,Mg,Al,S
i,Ca,Y,Dy,Gd,Hf,Ti,Zrから選択
される1種または2種以上の元素であり、QはN,Oか
ら選択される1種または2種の元素であり、その原子比
率が 5<X<20 0Y<20 10<Z<20 10<W<30 30<X+Y+Z+W<60 であり、2種類以上の微細構造からなり、かつ異方性磁
界が100Oe以上で、電気比抵抗が400μΩcm血
以上であることを特徴とする請求項1記載の高周波軟磁
性膜。
A third aspect of the present invention relates to the general formula Co100-XY
In the composition represented by -Z-WPtXRYLZQW (atomic%), R is one or two selected from Fe and Ru.
L is Be, B, Mg, Al, S
i is one or more elements selected from i, Ca, Y, Dy, Gd, Hf, Ti, and Zr, and Q is one or two elements selected from N and O. an atomic ratio of 5 <X <20 0 <Y <20 10 <Z <20 10 <W <30 30 <X + Y + Z + W <60, at 2 consists or more microstructures, and anisotropic magnetic field than 100 Oe, 2. The high-frequency soft magnetic film according to claim 1, wherein the electrical resistivity is 400 μΩcm or more.

【0014】第4の発明は、請求項1ないし3のいずれ
か1項に記載の高周波軟磁性膜において8%未満のPd
を含むことを特徴とする高周波軟磁性膜
According to a fourth aspect of the present invention, there is provided a high-frequency soft magnetic film according to any one of the first to third aspects, wherein Pd of less than 8%.
High frequency soft magnetic film characterized by containing

【0015】第5の発明は、請求項1ないし4のいずれ
か1項に記載の高周波軟磁性膜を用いた磁気デバイス。
A fifth invention is a magnetic device using the high-frequency soft magnetic film according to any one of claims 1 to 4.

【0016】[0016]

【作用】本発明の磁性膜が高電気抵抗と軟磁気特性とを
併せ持つためには、膜はナノサイズの磁性微粒子とそれ
を取り囲む薄いセラミックス膜の粒界の2種類以上の微
細構造からなるグラニュラー構造をとっていることが必
要である。ただし粒界が厚すぎると粒子は孤立し、超常
磁性体になり、その結果、膜は非磁性膜になってしま
う。一方、粒界が薄すぎると強磁性体になるが、電気抵
抗値が小さくなってしまう。高電気抵抗と軟磁気特性と
を同時に発現させるためにはセラミックスを形成するL
元素とQ元素との濃度がそれぞれ10<Z<20、10
<W<30(原子%)の範囲にあることが必要である。
In order for the magnetic film of the present invention to have both high electric resistance and soft magnetic characteristics, the film must be composed of two or more types of microstructures consisting of nano-sized magnetic fine particles and a grain boundary of a thin ceramic film surrounding it. It is necessary to have a structure. However, if the grain boundaries are too thick, the particles become isolated and become superparamagnetic, and as a result, the film becomes a non-magnetic film. On the other hand, if the grain boundaries are too thin, they will be ferromagnetic, but their electrical resistance will be small. In order to simultaneously exhibit high electric resistance and soft magnetic properties, it is necessary to use ceramic forming L
The concentrations of the element and the Q element are respectively 10 <Z <20, 10
<W <30 (atomic%).

【0017】実際に、磁気デバイスを作製するときに必
要とされる膜厚は1〜2μmであり、また動作周波数は
100MHz以上の高周波帯域であることが想定され
る。この場合、膜の電気比抵抗が400μΩcm以下で
は高周波帯域での渦電流損失の存在が無視できないほど
の大きさになるため、電気比抵抗が400μΩcm以上
であることが望ましい。
Actually, it is assumed that the film thickness required when manufacturing a magnetic device is 1 to 2 μm, and the operating frequency is a high frequency band of 100 MHz or more. In this case, if the electric resistivity of the film is 400 μΩcm or less, the existence of eddy current loss in a high frequency band becomes so large that it cannot be ignored.

【0018】また本発明の膜は、高電気抵抗と軟磁気特
性の他に、100Oe以上の異方性磁界を有することが
その特徴である。これは膜の構造がfccで、その粒径
が50〜70Åのときに実現する。そのような構造はN
iでは10%以上、Ptでは5%以上含まないと得られ
ない。ただし、40%以上のPtを含む膜では、飽和磁
束密度が著しく小さくなるばかりでなく、Hkも小さく
なるためにPt元素濃度は40%以下が望ましい。また
磁性元素であるNiを含む膜では50%までは比較的大
きな磁化が得られるが、50%を越えるとかなり小さく
なるため50%以下が望ましい。またNiやPtの置換
は他のfcc化を促進させる元素と一緒に行っても同様
の効果が得られる。特に、Fe,Ruはその濃度が20
%以内であれば他の特性を劣化させることなしに、Bs
を増大させ、さらなる優れた軟磁性を示す。
The film of the present invention is characterized by having an anisotropic magnetic field of 100 Oe or more in addition to high electric resistance and soft magnetic characteristics. This is realized when the structure of the film is fcc and the particle size is 50-70 °. Such a structure is N
If i does not contain 10% or more and Pt does not contain 5% or more, it cannot be obtained. However, in a film containing 40% or more of Pt, the Pt element concentration is preferably 40% or less because not only the saturation magnetic flux density is remarkably reduced but also Hk is reduced. In the case of a film containing Ni, which is a magnetic element, relatively large magnetization can be obtained up to 50%, but if it exceeds 50%, the magnetization becomes considerably small. Similar effects can be obtained by replacing Ni or Pt with another element that promotes fcc conversion. In particular, Fe and Ru have a concentration of 20.
%, Bs without deteriorating other characteristics.
And further excellent soft magnetism is shown.

【0019】[0019]

【実施例】以下に、従来のナノグラニュラー構造膜など
との比較を加えながら、本発明の実施例を説明する。
Embodiments of the present invention will be described below with reference to comparison with a conventional nano-granular structure film.

【0020】本発明を具体的実施例を用いてさらに詳し
く説明する。
The present invention will be described in more detail with reference to specific examples.

【実施例−1】RFマグネトロンスパッタ装置を用いて
(Co.7Ni.3)85Al15(原子%)ターゲッ
トをAr+O混合ガス雰囲気中での反応スパッタ法に
よりCo−Ni−Al−O薄膜を作製した。成膜条件は
以下に設定した。
To prepare a Co-Ni-Al-O thin film Example -1] RF magnetron sputtering apparatus using a (Co.7Ni.3) 85Al15 (atomic%) reaction sputtering of a target in Ar + O 2 mixed gas atmosphere . The film forming conditions were set as follows.

【0021】 スパッタ圧力 5x10−3Torr 投入電力 200W 基板温度 20℃ 基板 Corning#7059 (厚さ0.5mm) 膜厚 2.0〜3.0μm 酸素流量比 0.0〜2.0% 印加磁界 130Oe(一対の永久磁石)Sputtering pressure 5 × 10 −3 Torr Input power 200 W Substrate temperature 20 ° C. Substrate Corning # 7059 (thickness 0.5 mm) Film thickness 2.0-3.0 μm Oxygen flow rate 0.0-2.0% Applied magnetic field 130 Oe (A pair of permanent magnets)

【0022】得られた試料はX線回折装置により組織を
同定した。結果を図1に示す。Arのみで成膜した膜に
はfcc構造の(111)に相当すると思われるシャー
プなピークが観察される。スパッタガス中に酸素が入る
と、そのピークは著しくブロードになり、膜を構成して
いる結晶粒が著しく小さくなっていることを示してい
る。このピークの半値巾からScherrerの式を用
いて求めた軟磁性を示す25〜30at.%Oの膜の粒
径の大きさは約40Åである。この膜を電子顕微鏡で観
察した結果、膜は平均粒径が約40Åのクラスターと厚
さが約10Å以下の粒界からなるネットワーク状の組
織、すなわち、グラニュラー構造になっていることを確
認した。
The tissue of the obtained sample was identified by an X-ray diffractometer. The results are shown in FIG. A sharp peak which is considered to correspond to (111) of the fcc structure is observed in the film formed only with Ar. When oxygen is introduced into the sputtering gas, the peak becomes extremely broad, indicating that the crystal grains constituting the film are extremely small. The soft magnetism obtained from the half width of this peak by using Scherrer's equation is 25 to 30 at. The% O film has a particle size of about 40 °. As a result of observing the film with an electron microscope, it was confirmed that the film had a network-like structure composed of clusters having an average particle size of about 40 ° and grain boundaries having a thickness of about 10 ° or less, that is, a granular structure.

【0023】次に、得られた膜の直流磁気特性を、試料
振動型磁力計により測定した。結果を図2に示す。図中
の2つのデータは、成膜時の磁界の印加方向に平行
(‖)、垂直(⊥)に励磁して測定した結果を表してい
る。試料は、成膜時に印加した磁界方向と平行な一軸磁
気異方性を有しており、その異方性磁界の大きさは約1
40Oeと非常に大きいものであった。また、垂直方向
の履歴曲線(B−Hヒステリシスループ)の結果から明
らかなように、ループの直進性が良く、膜の異方性分散
はそれほど大きくないことが推察される。この膜の保磁
力(Hc)は垂直、平行共に小さく、得られる膜は軟磁
性膜であることを示している。飽和磁束密度(Bs)も
9.2kGと十分に大きかった。直流4端子法により測
定したこの膜の電気比抵抗(ρ)は、553μΩcmと
大きな値を示した。
Next, the DC magnetic properties of the obtained film were measured by a sample vibration magnetometer. The results are shown in FIG. The two data in the figure represent the results obtained by exciting (parallel (‖)) and perpendicular (⊥) the excitation direction of the magnetic field during film formation. The sample has a uniaxial magnetic anisotropy parallel to the direction of the magnetic field applied at the time of film formation.
It was very large at 40 Oe. Further, as is apparent from the results of the vertical hysteresis curve (BH hysteresis loop), it is inferred that the straightness of the loop is good and the anisotropic dispersion of the film is not so large. The coercive force (Hc) of this film is small both vertically and in parallel, indicating that the obtained film is a soft magnetic film. The saturation magnetic flux density (Bs) was also 9.2 kG, which was sufficiently large. The electrical resistivity (ρ) of this film measured by the DC four-terminal method showed a large value of 553 μΩcm.

【0024】[0024]

【実施例−2】実施例−1と同一条件で、Ni濃度のみ
を0〜50%まで変化させたターゲットを用いてCo−
Ni−Al−O膜を作製した。直流磁気特性から求めた
HkとHcとの結果を図3に示す。Niの増加とともに
Hkが増大し、50at.%NiではHk=160Oe
が実現する。一方、HcはNi量が変化してもほとんど
変化しない。その他、ρの大きさもNi量に対して変化
しない。このように本発明の膜が大きなBsとHkを有
し、かつ大きなρをも有しているために、膜は良好な透
磁率の周波数特性を示すものと推察できる。
[Embodiment 2] Under the same conditions as in Embodiment 1, Co-
A Ni-Al-O film was produced. FIG. 3 shows the results of Hk and Hc obtained from the DC magnetic characteristics. Hk increases with an increase in Ni, and 50 at. Hk = 160Oe in% Ni
Is realized. On the other hand, Hc hardly changes even if the amount of Ni changes. In addition, the magnitude of ρ does not change with respect to the amount of Ni. As described above, since the film of the present invention has a large Bs and Hk and also has a large ρ, it can be inferred that the film exhibits good frequency characteristics of magnetic permeability.

【0025】次に、これらの膜の飽和磁歪常数を光梃子
型の飽和磁歪測定装置により100Oeの磁場下で測定
した。なお、膜のヤング率は実測することが非常に困難
であったため、その値としてCoSiB薄帯の9×10
kg/mmを採用し計算した。その結果、いずれの
膜の飽和磁歪も−2x10−6の以内に入っており、十
分に小さいものであることを確認した。
Next, the saturation magnetostriction constants of these films were measured under a magnetic field of 100 Oe by an optical lever type saturation magnetostriction measuring device. Since it was very difficult to actually measure the Young's modulus of the film, its value was 9 × 10
The calculation was performed by adopting 3 kg / mm 2 . As a result, it was confirmed that the saturation magnetostriction of each film was within −2 × 10 −6 and was sufficiently small.

【0026】[0026]

【実施例−3】Co85Al15(原子%)円盤上に、
5×5mmのPt板を被覆率が約14%となるように設
置した複合ターゲットを、(Ar+O)中で高周波ス
パッタリングすることによりCo−Al−Pt−O膜を
作製した。その他の成膜条件は実施例−1と同様にし
た。得られた試料はX線回折により、(111)面に配
向した非常に微細なfccCo相を含んでいることが確
認された。その直流磁気特性を図3に示す。試料は成膜
時に印加した磁界方向と平行な一軸磁気異方性を有して
おり、その異方性磁界は約270Oeと非常に大きいも
のであった。また、B−Hループの直進性が良いことか
ら異方性分散はそれほど大きくないことがわかる。この
膜の保磁力(Hc)は特に、垂直方向のHcが0.3O
eと非常に小さく、かつその飽和磁束密度(Bs)も
8.5kGと十分に大きく、ρも436μΩcmと大き
な値を示した。
Example 3 On a Co85Al15 (atomic%) disk,
5 composite target × 5 mm Pt plate coverage is established to be about 14%, to prepare a Co-Al-Pt-O film by RF sputtering in (Ar + O 2). Other film forming conditions were the same as in Example 1. X-ray diffraction confirmed that the obtained sample contained a very fine fccCo phase oriented to the (111) plane. FIG. 3 shows the DC magnetic characteristics. The sample had uniaxial magnetic anisotropy parallel to the direction of the magnetic field applied during film formation, and the anisotropic magnetic field was as large as about 270 Oe. Further, it can be seen that the anisotropic dispersion is not so large because the straightness of the BH loop is good. In particular, the coercive force (Hc) of this film is such that Hc in the vertical direction is 0.3 O
e, the saturation magnetic flux density (Bs) was 8.5 kG, which was sufficiently large, and ρ was also a large value, 436 μΩcm.

【0027】このような大きなHkを示す膜を得るため
の成膜条件を明らかにするために、詳細な成膜条件の検
討を行った。最も影響を及ぼす成膜条件であるスパッタ
ガス圧と酸素流量比とHkとの関係を図5に示す。大き
なHkを示す膜の成膜条件は5mTorr,1.2%O
付近に存在し、その値はHk>250Oeである。ま
たこの値はガス圧が高いほど低酸素流量比側で、またガ
ス圧が低い場合は高酸素濃度側で見いだすことが出来
た。
In order to clarify film forming conditions for obtaining such a film having a large Hk, detailed film forming conditions were examined. FIG. 5 shows the relationship between the sputtering gas pressure, the oxygen flow rate ratio, and Hk, which are the most influential deposition conditions. The conditions for forming a film exhibiting a large Hk are 5 mTorr, 1.2% O
2 and its value is Hk> 250 Oe. This value could be found on the lower oxygen flow rate side as the gas pressure was higher, and on the higher oxygen concentration side when the gas pressure was low.

【0028】Ni,Ptの置換効果を明らかにするため
に、Ni,Pt量を系統的に変化させたターゲットを用
いてCo−Al−(Ni or Ft)−O膜を作製し
た。Co−Al−(Pd or Pt)−O膜はCo8
5Al15(原子%)円盤上に、5x5mmのPt板や
Pd板を設置した複合ターゲットを、(Ar+O)中
で高周波スパッタリングすることにより作製した。また
Co−Al−Ni−O膜は(Co−Ni)85Al15
合金ターゲットを(Ar+O)中で高周波スパッタリ
ングすることにより作製した。その他の成膜条件は実施
例−1と同様である。X線回折により、得られた試料は
いずれも(111)面に配向した非常に微細なfcc−
Co相の粒子からなっていることが確認された。図6
は、得られた膜の直流磁気特性から求めたHkをNiお
よびpt濃度で整理した結果である。比較例としてCo
−Pd−Al−O膜の結果をも図中に併記した。Hkは
NiやPtなどのNi属原子の濃度の増加と共に単調に
増加し、ある特定の濃度でブロードな最大値を示した後
に減少する傾向を示す。増加する傾向はPtが最も大き
く、Pd,Niの順で小さくなる。
In order to clarify the effect of replacing Ni and Pt, a Co—Al— (Ni or Ft) —O film was prepared using a target in which the amounts of Ni and Pt were systematically changed. Co-Al- (Pd or Pt) -O film is Co8
A composite target in which a 5 × 5 mm Pt plate or a Pd plate was placed on a 5Al15 (atomic%) disk was produced by high-frequency sputtering in (Ar + O 2 ). The Co-Al-Ni-O film is (Co-Ni) 85Al15
The alloy target was produced by high frequency sputtering in (Ar + O 2 ). Other film forming conditions are the same as those in Example-1. By X-ray diffraction, each of the obtained samples had a very fine fcc-
It was confirmed that the particles consisted of Co phase particles. FIG.
Is a result of arranging Hk obtained from the DC magnetic characteristics of the obtained film by Ni and pt concentrations. Co as a comparative example
The results for the -Pd-Al-O film are also shown in the figure. Hk tends to increase monotonically with an increase in the concentration of Ni-base atoms such as Ni and Pt, and then show a broad maximum at a certain concentration and then decrease. The increasing tendency is greatest for Pt, and decreases in the order of Pd and Ni.

【0029】大きなHkの原因を明らかにする目的で得
られた膜の構造をX線回折法により検討した(図7)。
基本となるCo−Al−O膜と比較例としてのCoPd
−Al−Oの測定結果をも併記した。Co−Al−O膜
には2θ=45゜付近にfcc−Coとhcp−Coと
が混合したブロードなピークが観察され、膜がfcc−
Coとhcp−Coを主とする微細な粒子からなってい
ることを示唆している。Ni置換量の増加と共にピーク
はfcc相が顕著になり始め、50%Niの膜ではほと
んどがfcc相となる。Pt,Pdを含む膜の構造もf
cc相であることを示している。また、Hkの大きなC
o−Pt−Al−O,Co−Pd−Al−Oでは、Co
−Al−Oと比較すると明らかなようにピークの半値巾
は狭く、すなわち粒径は大きい(50〜70Å)。この
ことから、大きなHkを示す高電気抵抗軟磁性膜は、N
iやPtを添加することによって達成されるが、その要
因の1つは、膜を構成する結晶粒子の粒径が50〜70
Åであることと、その構造がfccになっていることが
挙げられる。
The structure of the film obtained for the purpose of clarifying the cause of the large Hk was examined by an X-ray diffraction method (FIG. 7).
Basic Co-Al-O film and CoPd as a comparative example
The measurement results of -Al-O are also shown. In the Co-Al-O film, a broad peak in which fcc-Co and hcp-Co were mixed was observed around 2θ = 45 °, and the film was found to have fcc-Co.
This suggests that the particles consist of fine particles mainly composed of Co and hcp-Co. As the Ni substitution amount increases, the peak of the fcc phase starts to become remarkable, and most of the 50% Ni film becomes the fcc phase. The structure of the film containing Pt and Pd is also f
It shows that it is a cc phase. Also, C with large Hk
In o-Pt-Al-O and Co-Pd-Al-O, Co
As apparent from comparison with -Al-O, the half width of the peak is narrow, that is, the particle size is large (50 to 70 °). From this, the high electric resistance soft magnetic film showing large Hk is
This is achieved by adding i or Pt. One of the factors is that the particle size of the crystal grains constituting the film is 50 to 70.
And that the structure is fcc.

【0030】[0030]

【表1】 [Table 1]

【0031】表1はこれまでとほぼ同様の方法で作製し
た本発明の請求範囲の薄膜の代表例の測定結果を、B
s,ρ,Hk,Hcで整理したものである。また、比較
例としてNi属元素が入らない膜の結果を示す。Ni属
元素の入らない膜のHkは高々80Oeであるのに対し
てNi属元素を含む膜のHkはいずれも100Oe以上
の大きな値を示す。このように、Ni属元素を添加する
ことは軟磁性を促進し、異方性磁界が大きくするうえで
非常に有効であることが確認された。
Table 1 shows the measurement results of typical examples of the thin film according to the present invention, which were produced by a method substantially similar to that described above.
It is arranged by s, ρ, Hk, Hc. As a comparative example, a result of a film containing no Ni element is shown. Hk of the film containing no Ni group element is at most 80 Oe, whereas Hk of the film containing the Ni group element shows a large value of 100 Oe or more. As described above, it has been confirmed that the addition of the Ni group element is very effective in promoting soft magnetism and increasing the anisotropic magnetic field.

【0032】表1に記載した膜を始めとする本発明で得
られた、大きな異方性磁界を有する高電気抵抗軟磁性膜
を異方性磁界と電気比抵抗で整理した結果を図−8に示
す。比較例としてCo系非晶質軟磁性膜、Co−O基高
電気抵抗軟磁性膜の代表例としてCo−Fe−Al−O
膜、そしてFe−O高電気抵抗軟磁性膜の代表例として
Fe−(Hf,Y,Dy)−O膜の結果を併記してい
る。図から明らかなように、Co系非晶質軟磁性膜は3
0Oe前後の異方性磁界と約120μΩcmの電気比抵
抗を示す。一方、Fe−O高電気抵抗軟磁性膜は大きな
電気比抵抗を示すが、異方性磁界は小さい。また、従来
の高周波軟磁性膜中、最も優れた特性を示すCo−O基
高電気抵抗軟磁性膜でも異方性磁界の大きさは高々80
Oeである。それに対して、本発明膜はいずれも400
μΩcm以上の高い電気比抵抗と100Oe以上の大き
な異方性磁界を併せもっており、本発明膜が極めて優れ
た高周波軟磁気特性を示すことを示唆している。
FIG. 8 shows the results obtained by rearranging the high electric resistance soft magnetic films having a large anisotropic magnetic field obtained by the present invention including the films shown in Table 1 by anisotropic magnetic field and electric resistivity. Shown in As a comparative example, Co-Fe-Al-O is a typical example of a Co-based amorphous soft magnetic film and a Co-O-based high electric resistance soft magnetic film.
The results of the Fe— (Hf, Y, Dy) —O film are also shown as typical examples of the film and the Fe—O high electric resistance soft magnetic film. As is clear from the figure, the Co-based amorphous soft magnetic film
It shows an anisotropic magnetic field around 0 Oe and an electrical resistivity of about 120 μΩcm. On the other hand, the Fe—O high electric resistance soft magnetic film shows a large electric resistivity, but has a small anisotropic magnetic field. Further, even in a conventional high-frequency soft magnetic film, the magnitude of the anisotropic magnetic field is at most 80 even in a Co—O-based high electric resistance soft magnetic film exhibiting the best characteristics.
Oe. In contrast, the films of the present invention were all 400
The film has both a high electrical resistivity of μΩcm or more and a large anisotropic magnetic field of 100 Oe or more, suggesting that the film of the present invention exhibits extremely excellent high-frequency soft magnetic characteristics.

【0033】既に述べたように、高周波帯域での透磁率
の劣化をもたらす自然共鳴周波数(fr)はHKとBs
との積に比例する。図9には本発明膜のHkとBsと共
鳴周波数との関係を示す。比較例として従来のCo基ア
モルファス膜、グラニュラー構造を有するCo−O系軟
磁性膜の結果をも示す。優れた高周波軟磁性材料として
良く知られているCo基アモルファス膜のfrは1.2
GHz付近に存在する。一方、Ni属元素で置換されて
いないCo−O系グラニュラー軟磁性膜のそれは2.0
〜3.0GHzに存在している。これに対して、本発明
膜のfrは、それよりもさらに高く、特に、Co−Al
−Pt−O膜にはfrが4GHzを越える膜も存在す
る。
As described above, the natural resonance frequency (fr) that causes the deterioration of the magnetic permeability in the high frequency band is HK and Bs
Is proportional to the product of FIG. 9 shows the relationship between Hk, Bs, and the resonance frequency of the film of the present invention. As comparative examples, results of a conventional Co-based amorphous film and a Co—O-based soft magnetic film having a granular structure are also shown. The fr of a Co-based amorphous film well known as an excellent high-frequency soft magnetic material is 1.2
It exists near GHz. On the other hand, that of the Co—O-based granular soft magnetic film not substituted with the Ni group element is 2.0%.
It exists at ~ 3.0 GHz. On the other hand, the fr of the film of the present invention is higher than that, especially, Co-Al
The -Pt-O film includes a film whose fr exceeds 4 GHz.

【0034】[0034]

【発明の効果】以上述べたように、本発明によれば良好
な一軸磁気異方性を有し、電気抵抗が大きく、飽和磁歪
常数が小さく、高周波特性の優れた軟磁性薄膜材料を提
供することが出来る。本発明の薄膜に磁界中熱処理を施
すことにより、その異方性磁界を100Oe以上からほ
ぼ0Oeまで幅広く制御することが出来る。さらに、飽
和磁歪常数は10−6台以下と小さいために、加工歪み
などの影響をあまり配慮しないで小さい素子を作製でき
る。さらに本発明の薄膜の異方性磁界の大きさは、従来
広く行われていたような磁界中熱処理などにより制御で
きる外に、スパッタ中の基板近傍の永久磁石の大きさを
制御することによってもコントロールすることが出来
る。そのため、本発明の磁性薄膜においては、高周波域
で使用する際に、必要なだけの大きさの異方性磁界を分
散の少ない状態で得ることが出来る。また多層膜にする
必要もないことから、特別な工程や装置を必要としない
ため、その工業的意義は大きい。
As described above, according to the present invention, a soft magnetic thin film material having good uniaxial magnetic anisotropy, high electric resistance, small saturation magnetostriction constant, and excellent high frequency characteristics is provided. I can do it. By subjecting the thin film of the present invention to heat treatment in a magnetic field, its anisotropic magnetic field can be controlled widely from 100 Oe or more to almost 0 Oe. Furthermore, since the saturation magnetostriction constant is as small as 10 −6 or less, a small element can be manufactured without giving much consideration to the influence of processing strain and the like. Further, the magnitude of the anisotropic magnetic field of the thin film of the present invention can be controlled by heat treatment in a magnetic field, which has been widely performed in the past, and also by controlling the size of the permanent magnet near the substrate during sputtering. You can control. Therefore, in the magnetic thin film of the present invention, when used in a high frequency range, an anisotropic magnetic field having a necessary magnitude can be obtained with little dispersion. Further, since there is no need to form a multilayer film, no special process or device is required, and therefore, its industrial significance is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸素濃度を変えて作製したCo−Ni−Al−
O膜のX線回折図形。
FIG. 1 shows Co—Ni—Al— fabricated by changing the oxygen concentration.
X-ray diffraction pattern of O film.

【図2】coの30%をNiで置換したターゲットを用
いて作製したグラニュラー構造を有するCo−Ni−A
l−O膜のB−Hヒステリシスループ。
FIG. 2 shows a Co-Ni-A having a granular structure manufactured using a target in which 30% of co is replaced with Ni.
B-H hysteresis loop of the l-O film.

【図3】Co−Ni−Al−O膜のNi濃度と異方性磁
界と保磁力の大きさとの関係。
FIG. 3 shows the relationship between the Ni concentration of the Co—Ni—Al—O film, the anisotropic magnetic field, and the magnitude of the coercive force.

【図4】複合ターゲット法により作製したグラニュラー
構造を有するCo−Pt−Al−O膜のB−Hヒステリ
シスループ。
FIG. 4 is a BH hysteresis loop of a Co—Pt—Al—O film having a granular structure manufactured by a composite target method.

【図5】Co−Pt−Al−O膜のHkの大きさと成膜
条件(スパッタガス圧と酸素ガスの流量比)との関係を
示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between the magnitude of Hk of the Co—Pt—Al—O film and film forming conditions (sputter gas pressure and oxygen gas flow ratio).

【図6】Co−TM−Al−O膜(TM:Ni,Pt,
Pd)におけるTM濃度とHkとの関係を示す特性図。
FIG. 6 shows a Co-TM-Al-O film (TM: Ni, Pt,
FIG. 4 is a characteristic diagram showing the relationship between TM concentration and Hk in Pd).

【図7】Co−Al−O,Co−Ni−Al−O,Co
−Pt−Al−O,Co−Pd−Al−O膜のX線回折
図形。
FIG. 7: Co—Al—O, Co—Ni—Al—O, Co
-X-ray diffraction pattern of -Pt-Al-O, Co-Pd-Al-O film.

【図8】本発明膜と比較例との異方性磁界と電気比抵抗
との関係を示す特性図。
FIG. 8 is a characteristic diagram showing a relationship between an anisotropic magnetic field and electric resistivity of the film of the present invention and a comparative example.

【図9】代表的な本発明膜と比較例との自然共鳴周波数
とHkとBsとの関係を示す特性図。
FIG. 9 is a characteristic diagram showing a relationship between a natural resonance frequency, Hk, and Bs of a typical film of the present invention and a comparative example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一般式Co100−X−Y−Z−WMXR
YUQW(原子%)で表される組成において、MはN
i,Ptから選択される1種または2種の元素であり、
RはFe,Ruから選択される1種または2種の元素で
あり、LはBe,B,Mg,Al,Si,Ca,Y,D
y,Gd,Hf,Ti,Zrから選択される1種または
2種以上の元素であり、QはN,Oから選択される1種
または2種の元素であり、その原子比率が 10<X<50 0Y<20 10<Z<20 10<W<30 30<X+Y+Z+W<70 であり、2種類以上の微細構造からなり、かつ異方性磁
界が100Oe以上で、電気比抵抗が400μΩcm以
上であることを特徴とする高周波軟磁性膜。
1. A compound of the general formula Co100-XYZ-WMXR
In the composition represented by YUQW (atomic%), M is N
one or two elements selected from i and Pt;
R is one or two elements selected from Fe and Ru, and L is Be, B, Mg, Al, Si, Ca, Y, D
one or two or more elements selected from y, Gd, Hf, Ti, and Zr, and Q is one or two elements selected from N and O, and the atomic ratio thereof is 10 <X <50 0 < Y <20 10 <Z <20 10 <W <30 30 <X + Y + Z + W <70, consisting of two or more kinds of microstructures, an anisotropic magnetic field of 100 Oe or more, and an electric resistivity of 400 μΩcm or more A high frequency soft magnetic film characterized by the following.
【請求項2】一般式Co100−X−Y−Z−WNiX
RYLZQW(原子%)で表される組成において、Rは
Fc,Ruから選択される1種または2種以上の元素で
あり、LはBe,B,Mg,Al,Si,Ca,Y,D
y,Gd,Hf,Ti,Zrから選択される1種または
2種以上の元素であり、QはN,Oから選択される1種
または2種の元素であり、その原子比率が 10<X<50 0Y<20 10<Z<20 10<W<30 30<X+Y+Z+W<70 であり、2種類以上の微細構造からなり、かつ異方性磁
界が100Oe以上で、電気比抵抗が400μΩcm以
上であることを特徴とする請求項1記載の高周波軟磁性
膜。
2. A compound of the general formula Co100-XYZ-WNiX
In the composition represented by RYLZQW (atomic%), R is one or more elements selected from Fc and Ru, and L is Be, B, Mg, Al, Si, Ca, Y, D
one or two or more elements selected from y, Gd, Hf, Ti, and Zr, and Q is one or two elements selected from N and O, and the atomic ratio thereof is 10 <X <50 0 < Y <20 10 <Z <20 10 <W <30 30 <X + Y + Z + W <70, consisting of two or more kinds of microstructures, an anisotropic magnetic field of 100 Oe or more, and an electric resistivity of 400 μΩcm or more The high-frequency soft magnetic film according to claim 1, wherein
【請求項3】一般式Co100−X−Y−Z−WPtX
RYLZQW(原子%)で表される組成において、Rは
Fe,Ruから選択される1種または2種以上の元素で
あり、LはBe,B,Mg,Al,Si,Ca,Y,D
y,Gd,Hf,Ti,Zrから選択される1種または
2種以上の元素であり、QはN,Oから選択される1種
または2種の元素であり、その原子比率が 5<X<20 0Y<20 10<Z<20 10<W<30 30<X+Y+Z+W<60 であり、2種類以上の微細構造からなり、かつ異方性磁
界が100Oe以上で、電気比抵抗が400μΩcm以
上であることを特徴とする請求項1記載の高周波軟磁性
膜。
3. The general formula Co100-XYZ-WPtX
In the composition represented by RYLZQW (atomic%), R is one or more elements selected from Fe and Ru, and L is Be, B, Mg, Al, Si, Ca, Y, D
y is one or more elements selected from Gd, Hf, Ti, and Zr, and Q is one or two elements selected from N and O, and the atomic ratio is 5 <X <20 0 < Y <20 10 <Z <20 10 <W <30 30 <X + Y + Z + W <60, consisting of two or more kinds of microstructures, an anisotropic magnetic field of 100 Oe or more, and an electric resistivity of 400 μΩcm or more The high-frequency soft magnetic film according to claim 1, wherein
【請求項4】請求項1ないし3のいずれか1項に記載の
高周波軟磁性膜において8%未満のPdを含むことを特
徴とする高周波軟磁性膜
4. The high-frequency soft magnetic film according to claim 1, wherein the high-frequency soft magnetic film contains less than 8% of Pd.
【請求項5】請求項1ないし4のいずれか1項に記載の
高周波軟磁性膜を用いた磁気デバイス。
5. A magnetic device using the high-frequency soft magnetic film according to claim 1.
JP07881697A 1997-02-21 1997-02-21 High frequency soft magnetic film Expired - Lifetime JP3810881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07881697A JP3810881B2 (en) 1997-02-21 1997-02-21 High frequency soft magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07881697A JP3810881B2 (en) 1997-02-21 1997-02-21 High frequency soft magnetic film

Publications (2)

Publication Number Publication Date
JPH10241938A true JPH10241938A (en) 1998-09-11
JP3810881B2 JP3810881B2 (en) 2006-08-16

Family

ID=13672376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07881697A Expired - Lifetime JP3810881B2 (en) 1997-02-21 1997-02-21 High frequency soft magnetic film

Country Status (1)

Country Link
JP (1) JP3810881B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394331B1 (en) * 1999-03-15 2003-08-06 가부시끼가이샤 도시바 A magnetic thin film and magnetic cell
WO2004059668A1 (en) * 2002-12-26 2004-07-15 Tdk Corporation Magnetic thin film or composite magnetic thin film for high frequency and magnetic device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394331B1 (en) * 1999-03-15 2003-08-06 가부시끼가이샤 도시바 A magnetic thin film and magnetic cell
WO2004059668A1 (en) * 2002-12-26 2004-07-15 Tdk Corporation Magnetic thin film or composite magnetic thin film for high frequency and magnetic device including the same

Also Published As

Publication number Publication date
JP3810881B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP3411626B2 (en) Magnetic multilayer film, magnetoresistive effect element, and method of manufacturing the same
JPH07268610A (en) Soft magnetic alloy thin film
JP6618298B2 (en) Ultra-high frequency ferromagnetic thin film and manufacturing method thereof
Hasegawa et al. Structural and soft magnetic properties of nanocrystalline (Fe, Co, Ni)-Ta-C films with high thermal stability
JPH08273930A (en) Thin-film magnetic element and its manufacture
Ohnuma et al. Metal–insulator type nano-granular soft magnetic thin films investigations on mechanism and applications
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
WO1992009714A1 (en) Iron-base soft magnetic alloy
JP2002260921A (en) FeCoNiN-BASED SOFT MAGNETIC THIN FILM ALLOY COMPOSITION
JP3810881B2 (en) High frequency soft magnetic film
JPH10270246A (en) Magnetic thin film
JP2554444B2 (en) Uniaxial magnetic anisotropic thin film
JP3956061B2 (en) Uniaxial magnetic anisotropic film
US6036825A (en) Magnetic film forming method
KR0177922B1 (en) Soft magnetic thin film
JP2704157B2 (en) Magnetic parts
JPH1092639A (en) Magneto-resistive film having high electric resistance
JPH10189322A (en) Magnetic thin film
JP3075332B2 (en) High electrical resistivity magnetic thin film
JP4630882B2 (en) Uniaxial magnetic anisotropic film
JP2554445B2 (en) Magnetic thin film and method of manufacturing the same
KR19990080976A (en) Iron-based soft magnetic thin film alloy and its manufacturing method
JP2001220656A (en) Ion-zirconium-boron-silver soft magnetic material and method for deposition of thin film
JP2638739B2 (en) Magnetic thin film and method of manufacturing the same
JP3056401B2 (en) Soft magnetic alloy film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term