JP2001220656A - Ion-zirconium-boron-silver soft magnetic material and method for deposition of thin film - Google Patents

Ion-zirconium-boron-silver soft magnetic material and method for deposition of thin film

Info

Publication number
JP2001220656A
JP2001220656A JP2000372768A JP2000372768A JP2001220656A JP 2001220656 A JP2001220656 A JP 2001220656A JP 2000372768 A JP2000372768 A JP 2000372768A JP 2000372768 A JP2000372768 A JP 2000372768A JP 2001220656 A JP2001220656 A JP 2001220656A
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
film
heat treatment
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000372768A
Other languages
Japanese (ja)
Inventor
Zaisei So
在成 宋
Fukuki Bin
馥基 閔
Kenshoku Kin
賢植 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Electrotechnology Research Institute KERI
Original Assignee
Korea Electrotechnology Research Institute KERI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Electrotechnology Research Institute KERI filed Critical Korea Electrotechnology Research Institute KERI
Publication of JP2001220656A publication Critical patent/JP2001220656A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/138Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic material as a magnetic core material combining characteristics of high magnetic permeability, low loss and high saturation magnetization in the MHz region and a method for deposition of a soft magnetic thin film. SOLUTION: An Fe86.7Zr3.3B4Ag6 amorphous thin film, in which Ag is added to an Fe-Zr-B composition constituting a crystal phase, is deposited by the DC magnetron sputtering method using an Fe-Zr-B alloy target and a small piece of Ag. Then vacuum heat treatment is carried out in a uniaxial magnetic field at about 400 deg.C for 1 h, followed by cooking using a fan.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はMHz高周波帯域で
適用可能な磁心材料としての鉄−ジルコニウム−ホウ素
−銀(FeZrBAg)系軟磁性材料及び軟磁性薄膜の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-zirconium-boron-silver (FeZrBAg) -based soft magnetic material as a magnetic core material applicable in a high frequency band of MHz and a method of manufacturing a soft magnetic thin film.

【0002】[0002]

【従来の技術】一般に,軟磁性材料はその使用目的によ
ってバルク,細線,薄帯,薄膜の形態で製造されてお
り,非晶質構造を有した軟磁性材料は主に細線,薄帯,
薄膜の構造を有している。これらすべては非晶質相を形
成する組成領域で非晶質相で製造して用いたり,結晶化
温度以上の高温で熱処理して用いる。
2. Description of the Related Art Generally, soft magnetic materials are manufactured in the form of bulk, thin wire, thin ribbon, or thin film depending on the purpose of use. Soft magnetic materials having an amorphous structure are mainly made of thin wires, thin ribbons,
It has a thin film structure. All of them are manufactured and used in an amorphous phase in a composition region where an amorphous phase is formed, or are used after being heat-treated at a temperature higher than a crystallization temperature.

【0003】いままで研究された非晶質軟磁性薄膜は,
Fe−系とCo−系に大別される。一般にFe−系の場
合,高い飽和磁化の長所はあるが,高周波で透磁率が低
くて磁気変形が大きく,高周波特性,熱的安全性が悪
く,損失が大きいという短所がある。Co−系の場合,
高周波領域で透磁率が大きくて,保磁力が小さい長所が
あるが,飽和磁化が小さい短所がある。さらにこれら材
料の形態は厚さが10μm以上の薄帯形態で,応用用途
はkHz領域における磁心材料である。
The amorphous soft magnetic thin films studied so far are:
They are roughly classified into Fe-based and Co-based. In general, Fe-based alloys have the advantage of high saturation magnetization, but have the disadvantages of low magnetic permeability at high frequencies, large magnetic deformation, poor high-frequency characteristics, thermal safety, and large loss. In the case of Co-system,
It has the advantage of high magnetic permeability and low coercive force in the high frequency range, but has the disadvantage of low saturation magnetization. Further, these materials are in the form of a ribbon having a thickness of 10 μm or more, and the application is a magnetic core material in the kHz range.

【0004】一方,既に研究されたFeZrBCuやF
eZrBAg組成の軟磁性材料の場合,まず非晶質相を
形成するFeZrB組成を基礎としてCuやAgを1a
t%程度添加させ,液体急冷法を利用して厚さが10μ
m以上の薄帯に作る。その後,FeZrBCuの場合は
600℃以上の温度で,FeZrBAgの場合は400
℃で熱処理して微細な結晶粒を析出させることで軟磁気
特性が向上すると報告した。しかしこれら軟磁性薄帯は
kHz領域で応用しようとすることが目的であり,MH
z周波数領域における特性は非常に悪い。
On the other hand, FeZrBCu and F
In the case of a soft magnetic material having an eZrBAg composition, first, Cu or Ag is added to 1a based on the FeZrB composition forming an amorphous phase.
about 10% by using the liquid quenching method.
Make a ribbon of m or more. Thereafter, at a temperature of 600 ° C. or higher for FeZrBCu, 400 ° C. for FeZrBAg.
It was reported that soft magnetic properties were improved by precipitating fine crystal grains by heat treatment at ℃. However, the purpose of these soft magnetic ribbons is to apply in the kHz range.
The characteristics in the z frequency domain are very poor.

【0005】また,MHz領域での応用を目標とする軟
磁性薄膜はFe−M−X(M=Zr,Hf,Nb,T
a,Al,X=N,O,C),Co−M−X(M=N
b,Hf,Ta,Al,X=O,N,Zr,Pd)で微
細な結晶粒を形成した超微細結晶粒薄膜と,高抵抗薄膜
は500℃以上の高温で熱処理を行なうが,MHz領域
で高透磁率,低損失,高飽和磁化の特性を同時に満足す
る薄膜はまだ報告されていない。
A soft magnetic thin film intended for application in the MHz region is Fe-MX (M = Zr, Hf, Nb, Tb).
a, Al, X = N, O, C), Co-MX (M = N
b, Hf, Ta, Al, X = O, N, Zr, Pd) An ultra-fine crystal grain thin film in which fine crystal grains are formed and a high-resistance thin film are heat-treated at a high temperature of 500 ° C. or more. No thin film that simultaneously satisfies the characteristics of high permeability, low loss, and high saturation magnetization has been reported.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記のような
従来の問題点を解決するためになされたものであり,本
発明の目的は,MHz領域で高透磁率,低損失,高飽和
磁化の特性を同時に満足する磁心材料としての軟磁性材
料及び軟磁性薄膜製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a high permeability, low loss, and high saturation magnetization in the MHz range. It is an object of the present invention to provide a soft magnetic material as a magnetic core material and a method for producing a soft magnetic thin film, which simultaneously satisfy the above characteristics.

【0007】[0007]

【課題を解決するための手段】上記のような目的を達成
するため,本発明による高周波素子用軟磁性材料は,F
αZrβγAgδ(α=80〜95at%,β=2
〜10at%,γ=2〜10at%,δ=5〜10at
%)の組成である。
In order to achieve the above object, a soft magnetic material for a high-frequency device according to the present invention comprises:
e α Zr β B γ Ag δ (α = 80 to 95 at%, β = 2
〜1010 at%, γ = 2 to 10 at%, δ = 5 to 10 at
%).

【0008】また,本発明によれば基板上にFeZrB
合金ターゲットとAg小片を利用して製膜する第1の段
階と,形成されたFeZrBAg膜を熱処理する第2の
段階と,熱処理されたFeZrBAg膜を常温まで冷却
する第3の段階とを含む軟磁性薄膜の製造方法が提供さ
れる。
Further, according to the present invention, FeZrB
A softening step including a first step of forming a film using an alloy target and Ag pieces, a second step of heat-treating the formed FeZrBAg film, and a third step of cooling the heat-treated FeZrBAg film to room temperature. A method for manufacturing a magnetic thin film is provided.

【0009】製膜時の条件は,初期真空度10−6to
rr以下,製膜時電流50〜300mA,製膜時圧力1
〜10mtorrが望ましく,製膜時は,基板を25℃
以下に冷却する。
The conditions at the time of film formation are as follows: the initial degree of vacuum is 10 −6 to
rr or less, film forming current 50 to 300 mA, film forming pressure 1
-10 mtorr is desirable.
Cool below.

【0010】また,第2の段階は,結晶化温度±50℃
の範囲で行われ,その条件は,真空度が10−6tor
r以下,磁場は0.5〜2.0kOeで印加,10℃/
minの昇温速度で結晶化温度±50℃の結晶化温度範
囲での等温熱処理が好ましい。
In the second step, the crystallization temperature is ± 50 ° C.
The condition is that the degree of vacuum is 10 −6 torr.
r, the magnetic field is applied at 0.5 to 2.0 kOe, 10 ° C /
An isothermal heat treatment in a crystallization temperature range of ± 50 ° C. at a heating rate of min.

【0011】かかる構成によれば,例えばFe86.7
Zr3.3Ag薄膜を高透磁率,低損失,高飽和
磁化特性を同時に満足させることができる。
According to such a configuration, for example, Fe 86.7
The Zr 3.3 B 4 Ag 6 thin film can simultaneously satisfy high magnetic permeability, low loss, and high saturation magnetization characteristics.

【0012】[0012]

【発明の実施の形態】以下に添付図面を参照しながら,
本発明にかかる鉄−ジルコニウム−ホウ素−銀系軟磁性
材料及び薄膜の製造方法の好適な実施の形態について詳
細に説明する。なお,本明細書及び図面において,実質
的に同一の機能構成を有する構成要素については,同一
の符号を付することにより重複説明を省略する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
Preferred embodiments of the iron-zirconium-boron-silver soft magnetic material and the method for producing a thin film according to the present invention will be described in detail. In the specification and the drawings, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.

【0013】本実施の形態においては,まずFe−Zr
−Bの3成分系でFe92Zr3. 4.2組成の基
本組成に,Ag小片を利用して直流(DC)マグネトロ
ンスパッタリング法でFe86.7Zr3.3Ag
薄膜を製造する。
In this embodiment, first, Fe-Zr
-B ternary system Fe 92 Zr 3. Fe 86.7 Zr 3.3 B 4 Ag was added to the basic composition of 8 B 4.2 composition by direct current (DC) magnetron sputtering using Ag pieces.
6. Produce a thin film.

【0014】基本組成であるFe92Zr3.8
4.2組成は非晶質が形成されていない組成で,この組
成に対する研究は報告されていない。本発明ではFe
92Zr .84.2組成にAgを添加して,最終的
にFe86.7Zr3.3Ag 薄膜を製造する。
The basic composition Fe92Zr3.8B
4.2The composition is a composition in which amorphous is not formed.
No studies on adulthood have been reported. In the present invention, Fe
92Zr3 . 8B4.2Add Ag to the composition
To Fe86.7Zr3.3B4Ag 6Produce a thin film.

【0015】薄膜製造時非晶質相を得るために基板を例
えば20℃に水冷し,スパッタリング時間を調節して例
えば0.5μm厚さに製造する。製造された薄膜の残留
応力を取り除いて,微細な結晶粒を析出させ,異方性磁
界を制御するために炉内部を真空にした後,印加磁場例
えば1.5kOe,300〜700℃温度範囲内で例え
ば1時間一軸磁場中で熱処理を行う。
In order to obtain an amorphous phase at the time of producing a thin film, the substrate is water-cooled to, for example, 20 ° C., and a sputtering time is adjusted to produce a 0.5 μm thick film. After removing the residual stress of the manufactured thin film to precipitate fine crystal grains and evacuating the inside of the furnace in order to control the anisotropic magnetic field, an applied magnetic field of, for example, 1.5 kOe, in a temperature range of 300 to 700 ° C. , For example, for one hour in a uniaxial magnetic field.

【0016】Fe86.7Zr3.3Ag薄膜の
特性は振動試料型磁力計(vibrating sam
ple magnetometer:VSM)を利用し
て印加磁場50Oeと5kOeとで保磁力(H)と飽
和磁化(4πM)を各々測定した。異方性磁界
(H)はVSMで測定したM−H磁気履歴曲線から求
めた。
The characteristics of the Fe 86.7 Zr 3.3 B 4 Ag 6 thin film were determined by using a vibrating sample magnetometer.
Using a ple magnetometer (VSM), the coercive force (H c ) and the saturation magnetization (4πM s ) were measured at an applied magnetic field of 50 Oe and 5 kOe, respectively. Anisotropy field (H k) was determined from M-H magnetic hysteresis curve measured by VSM.

【0017】電気抵抗率は4端子法で真空中から昇温速
度を0.5℃/minとして700℃まで測定した。透
磁率は1ターンコイル(turn coil)方式の測
定治具(Iwadzu Co.)とネットワーク分析機
(network analyzer)(HP8752
C)を利用して磁場を0.2mOe印加して1MHz〜
1,000MHzの周波数範囲で測定した。
The electric resistivity was measured from the vacuum to 700 ° C. at a rate of 0.5 ° C./min from the vacuum by a four-terminal method. The magnetic permeability is measured by a one-turn coil type measuring jig (Iwadzu Co.) and a network analyzer (HP8752).
C) by applying a magnetic field of 0.2 mOe to 1 MHz to
It was measured in the frequency range of 1,000 MHz.

【0018】またX線回折分析機(x−ray dif
fractometer)を利用して薄膜の結晶構造分
析と格子定数を求め,シェーレル式を利用して熱処理温
度による結晶粒の大きさの変化を求める。
An X-ray diffraction analyzer (x-ray diff)
A crystal structure analysis and a lattice constant of the thin film are obtained by using a fractometer, and a change in crystal grain size depending on a heat treatment temperature is obtained by using a Scherrel equation.

【0019】本実施の形態において,基本組成であるF
92Zr3.84.2薄膜をDCマグネトロンスパ
ッタリング法で製造する場合,製膜した状態で結晶粒の
大きさが14.4nm大きさの結晶粒が析出され,保磁
力は2.059Oe,飽和磁化は1.082T,透磁率
は758で,優秀な軟磁気特性を示さなかった。
In the present embodiment, the basic composition F
When e 92 Zr 3.8 B 4.2 thin film is manufactured by DC magnetron sputtering, crystal grains having a size of 14.4 nm are deposited in the formed state, and the coercive force is 2.059 Oe. The saturation magnetization was 1.082 T and the magnetic permeability was 758, and did not show excellent soft magnetic characteristics.

【0020】しかし400℃で1時間熱処理した場合,
結晶粒の大きさは14.42nm,保磁力は1.183
Oe,飽和磁化は1.750T,透磁率は2,072で
軟磁気特性が向上した。
However, when heat-treated at 400 ° C. for 1 hour,
The crystal grain size is 14.42 nm and the coercive force is 1.183
Oe, the saturation magnetization was 1.750 T, and the magnetic permeability was 2,072, and the soft magnetic characteristics were improved.

【0021】また,基本組成であるFe92Zr3.8
4.2組成にAgを添加したFe 86.7Zr3.3
Ag薄膜の場合,製膜した状態で非晶質相をして
いるが,これはAg添加が非晶質形成能を向上させるた
めである。Fe86.7Zr 3.3Ag薄膜の製
膜した状態では保磁力が0.6Oe,飽和磁化が1.4
T,透磁率が1000(50MHz,0.2mOe),
損失が9.218W/cc(1MHz)で,Agが添加
されていないFe92Zr3.84.2薄膜より特性
が向上した。
The basic composition of Fe92Zr3.8
B4.2Fe with Ag added to the composition 86.7Zr3.3
B4Ag6In the case of a thin film, the amorphous phase
However, this is because the addition of Ag improves the ability to form an amorphous phase.
It is. Fe86.7Zr 3.3B4Ag6Production of thin film
In the film-formed state, the coercive force is 0.6 Oe and the saturation magnetization is 1.4.
T, permeability is 1000 (50MHz, 0.2mOe),
Loss is 9.218W / cc (1MHz), Ag is added
Not Fe92Zr3.8B4.2More characteristic than thin film
Improved.

【0022】製膜した非晶質Fe86.7Zr3.3
Ag薄膜を一軸磁場中で熱処理した場合,結晶化温
度付近で格子定数が0.28775nmである7.2n
m大きさの結晶粒が生成され,これによって保磁力が
0.825Oe,飽和磁化が1.7T,電気抵抗率が1
40μΩcm,透磁率が7800(50MHz,0.2
mOe),損失が1.4W/ccとなった。すなわち,
製膜直後の状態より透磁率は7.8倍,飽和磁化は1.
2倍増加し,損失は6.6倍減少した。
Film-formed amorphous Fe 86.7 Zr 3.3 B
When a 4 Ag 6 thin film is heat-treated in a uniaxial magnetic field, 7.2 n having a lattice constant of 0.28775 nm near the crystallization temperature is used.
Crystal grains having a size of m are generated, so that the coercive force is 0.825 Oe, the saturation magnetization is 1.7 T, and the electric resistivity is 1
40 μΩcm, permeability 7800 (50 MHz, 0.2
mOe), and the loss was 1.4 W / cc. That is,
The magnetic permeability is 7.8 times higher and the saturation magnetization is 1.
It increased by a factor of 2 and the loss decreased by a factor of 6.6.

【0023】したがって,基本組成であるFe92Zr
3.84.2組成に6at%のAg添加と,結晶化温
度付近(すなわち,結晶化温度±50℃)で一軸磁場中
熱処理をする場合Fe86.7Zr3.3Ag
膜を高透磁率,低損失,高飽和磁化特性を同時に満足さ
せる作用をする。
Therefore, the basic composition of Fe 92 Zr
3.8 B 4.2 Addition of 6 at% of Ag to the composition and heat treatment in a uniaxial magnetic field near the crystallization temperature (that is, crystallization temperature ± 50 ° C.) Fe 86.7 Zr 3.3 B 4 Ag 6 It acts to simultaneously satisfy the high permeability, low loss, and high saturation magnetization characteristics of the thin film.

【0024】以下,本実施の形態にかかる,スパッタリ
ング法で製造したFe86.7Zr 3.3Ag
膜の特性を,例を挙げて説明する。まず,FeZrBA
g非晶質薄膜を製造するためにDCマグネトロンスパッ
タリング装置を利用した。
Hereinafter, the sputtering according to the present embodiment will be described.
Fe produced by the plating method86.7Zr 3.3B4Ag6Thin
The characteristics of the film will be described with an example. First, FeZrBA
g DC magnetron sputtering to produce amorphous thin films.
A tarling device was used.

【0025】さらにターゲット上にAg小片を装着し
て,FeZrBAg薄膜を複合ターゲット方式で,背向
されたシリコンウエハ(Si−wafer)上に0.5
μmの厚さに製膜した。
Further, a small piece of Ag was mounted on the target, and a FeZrBAg thin film was formed on a silicon wafer (Si-wafer) facing back by a composite target method.
A film was formed to a thickness of μm.

【0026】初期真空度は3×10−6torr以下で
あり,Ar流量は13sccm,製膜時の電流は50m
Aから300mAの範囲の中で本実施の形態においては
100mA,製膜時の圧力は1から10mtorr範囲
で同じく4mtorrに固定した条件で薄膜を製造し
た。
The initial degree of vacuum is 3 × 10 −6 torr or less, the Ar flow rate is 13 sccm, and the current during film formation is 50 m.
A thin film was manufactured under the conditions of 100 mA in this embodiment within the range of A to 300 mA, the pressure during film formation was fixed at 4 mtorr in the range of 1 to 10 mtorr.

【0027】本実施の形態においてはFeZrBAg非
晶質薄膜を得るために,製膜時基板(Si−wafe
r)を約25℃以下に保つという条件が望ましいので,
20℃に水冷した。表1に,本発明で用いたFeZrB
Ag薄膜の製膜条件を示した。本実施の形態で製膜した
薄膜の組成はFe86.7Zr3.3Ag(以
下,FeZrBAgで表記)だった。
In this embodiment, in order to obtain an FeZrBAg amorphous thin film, a substrate (Si-wafer) at the time of film formation is used.
r) should be kept below about 25 ° C.
Water cooled to 20 ° C. Table 1 shows the FeZrB used in the present invention.
The conditions for forming the Ag thin film are shown. The composition of the thin film formed in this embodiment was Fe 86.7 Zr 3.3 B 4 Ag 6 (hereinafter, referred to as FeZrBAg).

【0028】[0028]

【表1】 [Table 1]

【0029】製膜したFeZrBAg薄膜の異方性を印
加するために真空磁場中熱処理装置を利用する。真空度
を10−6torr以下にした後,磁場は0.5kOe
〜2.0kOe範囲の1.5kOeで印加し,10℃/
minの昇温速度で300〜700℃の温度範囲で1時
間一軸磁場中熱処理(uniaxial fielda
nnealing:UFA)を行なった後,ファン(f
an)を利用して常温まで冷却させた。
In order to apply the anisotropy of the formed FeZrBAg thin film, a heat treatment apparatus in a vacuum magnetic field is used. After reducing the degree of vacuum to 10 −6 torr or less, the magnetic field is 0.5 kOe.
Apply at 1.5 kOe in the range of
heat treatment in a uniaxial magnetic field in a temperature range of 300 to 700 ° C. for 1 hour at a heating rate of 300 min. (uniaxial field)
nealing (UFA), and then the fan (f
An) was used to cool to room temperature.

【0030】製膜した薄膜の厚さは,表面段差測定機
(α−step)と走査電子顕微鏡(scanning
electron microscope:SEM)
を利用して測定した。磁気的特性は振動試料型磁力計
(vibrating sample magneto
meter:VSM)を利用して印加磁場50Oeと5
kOeとで保磁力(H)と飽和磁化(4πM)を各
々測定した。
The thickness of the formed thin film is measured by a surface step measuring device (α-step) and a scanning electron microscope (scanning).
electron microscope (SEM)
Was measured using The magnetic properties are determined by a vibrating sample magnetometer.
meter: VSM) and applied magnetic fields of 50 Oe and 5
The coercive force (H c ) and the saturation magnetization (4πM s ) were measured with kOe.

【0031】異方性磁界(H)は,VSMで測定した
M−H磁気履歴曲線から求めた。電気抵抗率は4端子法
で,真空中で昇温速度を0.5℃/minとして700
℃まで測定した。
The anisotropic magnetic field (H k ) was determined from an MH magnetic hysteresis curve measured by VSM. The electric resistivity is 700 by a four-terminal method at a heating rate of 0.5 ° C./min in vacuum.
Measured to ° C.

【0032】透磁率は1ターンコイル方式の測定治具と
ネットワーク分析機とを利用し,磁場を0.2mOe印
加して1MHz〜1,000MHzの周波数範囲で測定
した。またX線回折分析機(XRD)を利用して薄膜の
結晶構造分析と格子定数を求め,シェーレル(Sche
rrer)式を利用して熱処理温度による結晶粒の大き
さ変化を求めた。
The magnetic permeability was measured in a frequency range of 1 MHz to 1,000 MHz by applying a magnetic field of 0.2 mOe using a one-turn coil type measuring jig and a network analyzer. The crystal structure of the thin film was analyzed using an X-ray diffraction analyzer (XRD) and the lattice constant was determined.
The change in the size of the crystal grains according to the heat treatment temperature was determined using the equation (rrr).

【0033】図1は,製膜したFeZrBAg薄膜の温
度による電気抵抗率変化を示したグラフである。図1の
ように,FeZrBAgは製膜した状態で電気抵抗率が
約150μΩcmで典型的な非晶質構造を有することを
類推できる。約400℃までは約140μΩcmの値を
維持し,それ以上の温度では抵抗率が減少し始めて約6
00℃では約80μΩcmの値を示す。このような電気
抵抗率の変化挙動から約400℃で結晶化が起き始める
ことが分かる。
FIG. 1 is a graph showing a change in electrical resistivity with temperature of a formed FeZrBAg thin film. As shown in FIG. 1, it can be inferred that FeZrBAg has a typical amorphous structure with an electrical resistivity of about 150 μΩcm in a film-formed state. A value of about 140 μΩcm is maintained up to about 400 ° C., and at a temperature higher than about 140 μΩcm, the resistivity starts to decrease and becomes about
It shows a value of about 80 μΩcm at 00 ° C. It can be seen from this change in the electrical resistivity that crystallization starts to occur at about 400 ° C.

【0034】熱処理温度によるFeZrBAg薄膜の結
晶構造変化を調べるためにXRD分析したグラフを図2
に示した。図2のように,FeZrBAgは製膜した状
態で非晶質相であり,熱処理温度が高まることによって
約400℃で結晶化が起き始める。これは図1のよう
に,約400℃で電気抵抗率が減少し始める結果とよく
一致することが分かる。
FIG. 2 is a graph obtained by XRD analysis to examine the crystal structure change of the FeZrBAg thin film depending on the heat treatment temperature.
It was shown to. As shown in FIG. 2, FeZrBAg is an amorphous phase in a film-formed state, and crystallization starts to occur at about 400 ° C. as the heat treatment temperature increases. This agrees well with the result that the electrical resistivity starts to decrease at about 400 ° C. as shown in FIG.

【0035】また約500℃ではbcc α−Fe結晶
相が生成され,約600℃までbcc α−Fe結晶相
以外に他の結晶相は生成されなかったが,700℃では
α−Fe,Fe(Zr,B)系化合物及び基板と反応
して生成されたFeSi結晶相が混在していることが分
かる。
At about 500 ° C., a bcc α-Fe crystal phase was formed, and no other crystal phase other than the bcc α-Fe crystal phase was formed until about 600 ° C., but at 700 ° C., α-Fe, Fe 3 It can be seen that the (Zr, B) -based compound and the FeSi crystal phase generated by the reaction with the substrate are mixed.

【0036】図3は,本実施の形態にかかるFeZrB
Ag薄膜のXRDピークからシェーレル式を利用して求
めた結晶粒の大きさとα−Feの格子定数を求めた結果
である。
FIG. 3 shows the FeZrB according to the present embodiment.
It is the result of having calculated | required the magnitude | size of the crystal grain and lattice constant of (alpha) -Fe calculated | required using the Scherrell formula from the XRD peak of Ag thin film.

【0037】400℃では生成されたbcc α−Fe
結晶粒の大きさは7.2nmであり,格子定数が0.2
8775nmで純粋なbcc α−Fe(0.2866
4nm)よりすこし大きい。これは生成されたbcc
α−Fe結晶相はZrやB原子を含有していることを意
味する。
At 400 ° C., the formed bcc α-Fe
The size of the crystal grains is 7.2 nm and the lattice constant is 0.2
Pure bcc α-Fe at 8775 nm (0.2866
4 nm). This is the generated bcc
The α-Fe crystal phase means containing Zr and B atoms.

【0038】熱処理温度が高まることによって結晶粒の
大きさは増加して,格子定数は減少する。600℃では
結晶粒の大きさが14.2nmであり,格子定数0.2
8550nmで純粋なbcc α−Feの格子定数より
小さい。これは約600℃でbcc α−Feが他の相
に分解され始めることが分かる。
As the heat treatment temperature increases, the size of the crystal grains increases, and the lattice constant decreases. At 600 ° C., the crystal grain size is 14.2 nm and the lattice constant is 0.2
Less than the lattice constant of pure bcc α-Fe at 8550 nm. This indicates that at about 600 ° C., bcc α-Fe starts to decompose into other phases.

【0039】鈴木(Suzuki)などは,FeZrB
Cu軟磁性合金の場合,500℃でbcc α−Feが
生成され始めて,650℃まで単相のbcc α−Fe
のみ生成されると報告した。しかし,本実施の形態にお
いてはFeZrBAg非晶質薄膜は結晶化が約400℃
で起き始めるので,Fe元素と非固溶元素であるAgが
bcc α−Fe結晶析出を促進させることが分かる。
Suzuki et al., FeZrB
In the case of a Cu soft magnetic alloy, bcc α-Fe begins to be formed at 500 ° C., and a single-phase bcc α-Fe
Only reported to be produced. However, in the present embodiment, the crystallization of the FeZrBAg amorphous thin film is about 400 ° C.
Therefore, it can be seen that Ag, which is an Fe element and an insoluble element, promotes bcc α-Fe crystal precipitation.

【0040】またFeZrBCu合金では550℃〜6
50℃温度範囲で結晶粒の大きさは17nm〜20nm
程度であるが,本実施の形態では600℃で結晶粒の大
きさが14.2nmでFeZrBCu薄膜よりさらに微
細な結晶粒を有することが分かる。これはFeZrBに
Agを添加する場合bcc α−Feの結晶生成が促進
され結晶粒が微細になることを意味する。
In the case of the FeZrBCu alloy, 550 ° C.
The crystal grain size is 17 nm to 20 nm in the temperature range of 50 ° C.
In this embodiment, the size of the crystal grains is 14.2 nm at 600 ° C., which is smaller than that of the FeZrBCu thin film. This means that when Ag is added to FeZrB, the crystal formation of bcc α-Fe is promoted and the crystal grains become fine.

【0041】以上の結果から,FeZrBAg薄膜は熱
処理温度の増加によって結晶構造が単相の非晶質→非晶
質+bcc α−Fe cluster(クラスター)
→bcc α−Fe nanocrystalline
(ナノ結晶質)→bcc α−Fe crystall
ine(結晶質)→bcc α−Fe+Fe(Zr,
B)+FeSiに変化することが分かる。
From the above results, the FeZrBAg thin film has a single-phase amorphous → amorphous + bcc α-Fe cluster (cluster) due to an increase in the heat treatment temperature.
→ bcc α-Fe nanocrystalline
(Nanocrystalline) → bcc α-Fe crystal
ine (crystalline) → bcc α-Fe + Fe 3 (Zr,
B) It turns out that it changes into + FeSi.

【0042】図4は,熱処理温度によるFeZrBAg
非晶質薄膜の飽和磁化と保磁力の変化を示したものであ
る。飽和磁化の場合,製膜した薄膜状態で1.4T以上
の高い値を示し,熱処理温度が高まることによって飽和
磁化は増加し,400℃で1.7Tの値を有し,500
℃まで1.67Tの一定値を維持する。約600℃でF
eZrBAg薄膜は図3の結果からbcc α−Fe結
晶相の分解が起き始めるので,飽和磁化は減少して1.
5Tの値を有する。
FIG. 4 shows that FeZrBAg according to the heat treatment temperature.
FIG. 4 shows changes in saturation magnetization and coercive force of an amorphous thin film. In the case of saturation magnetization, the film shows a high value of 1.4 T or more in a thin film state, and the saturation magnetization increases with an increase in the heat treatment temperature, and has a value of 1.7 T at 400 ° C.
Maintain a constant value of 1.67 T up to ° C. F at about 600 ° C
The eZrBAg thin film starts to decompose the bcc α-Fe crystal phase from the result of FIG.
It has a value of 5T.

【0043】全体的に,熱処理をすることによって製膜
した状態より飽和磁化が増加したが,これはbcc α
−Fe結晶生成によりスピン相互作用が単相の非晶質よ
り強く起きることを意味する。FeZrBAg薄膜の保
磁力の場合,製膜した状態で0.6Oeの非常に低い値
を有し,熱処理温度が高まることによって保磁力は増加
して400℃で0.825Oeの値を有する。
As a whole, the heat treatment increased the saturation magnetization from the state of film formation, but this was due to bcc α
This means that spin interaction occurs more strongly than single-phase amorphous due to -Fe crystal formation. The coercive force of the FeZrBAg thin film has a very low value of 0.6 Oe in the as-formed state, and the coercive force increases as the heat treatment temperature increases, and has a value of 0.825 Oe at 400 ° C.

【0044】500℃で保磁力が再び減少する理由はα
−Feのナノ結晶粒(nanocrystallin
e)が生成されたためだと考えられ,600℃では結晶
粒成長とα−Fe結晶の分解によって保磁力が急激に増
加する。以上の結果で熱処理温度約400℃で飽和磁化
が最も高く,かつ保磁力が小さくて優秀な軟磁気特性を
示すことが期待される。
The reason that the coercive force decreases again at 500 ° C. is α
-Fe nanocrystals (nanocrystallin)
This is considered to be due to the formation of e). At 600 ° C., the coercive force rapidly increases due to crystal grain growth and decomposition of the α-Fe crystal. From the above results, it is expected that the saturation magnetization is the highest at a heat treatment temperature of about 400 ° C., the coercive force is small, and excellent soft magnetic characteristics are exhibited.

【0045】図5は,50MHzで測定したFeZrB
Ag薄膜の透磁率の変化を示した図である。図5に示す
ように熱処理温度が高まることによって透磁率が増加
し,300〜500℃までは透磁率が4000以上の高
い値を有する。特に400℃で一軸磁場中熱処理した場
合透磁率が7800で,いままで報告されたFeZrB
Cu薄膜(3200,1MHz),FeHfC薄膜(5
250,1MHz),CoZrRe薄膜(5000,1
0MHz)等より高い値を有する。
FIG. 5 shows FeZrB measured at 50 MHz.
FIG. 5 is a diagram showing a change in magnetic permeability of an Ag thin film. As shown in FIG. 5, as the heat treatment temperature is increased, the magnetic permeability increases. From 300 to 500 ° C., the magnetic permeability has a high value of 4000 or more. In particular, when heat-treated in a uniaxial magnetic field at 400 ° C, the magnetic permeability is 7800, and FeZrB
Cu thin film (3200, 1 MHz), FeHfC thin film (5
250, 1 MHz), CoZrRe thin film (5000, 1
0 MHz).

【0046】ヘルチェル(Herzer)は,結晶粒の
大きさが35nm以下である超微細結晶粒合金の場合,
透磁率は飽和磁化の2乗に比例して,結晶粒の大きさの
6乗に反比例すると報告した。したがって本実施の形態
のようにFeZrBAg薄膜を400℃で熱処理した場
合,50MHzで7800の非常に高い透磁率を示した
ことは,結晶粒の大きさが7.2nm程度に非常に微細
で飽和磁化が1.7Tと非常に高く,また非晶質相+α
−Fe cluster構造によって結晶磁気異方性が
小さく,保磁力が小さいためだと考えられる。
Herzer states that in the case of an ultrafine grained alloy having a grain size of 35 nm or less,
He reported that the permeability was proportional to the square of the saturation magnetization and inversely proportional to the sixth power of the crystal grain size. Therefore, when the FeZrBAg thin film was heat-treated at 400 ° C. as in the present embodiment, it showed a very high magnetic permeability of 7800 at 50 MHz, which means that the crystal grain size was very fine to about 7.2 nm and the saturation magnetization was high. Is as high as 1.7 T, and amorphous phase + α
This is probably because the -Fe cluster structure has a small crystal magnetic anisotropy and a small coercive force.

【0047】図6は,軟磁気特性が最も優秀な熱処理条
件である400℃で1時間,一軸磁場中熱処理したFe
ZrBAg薄膜の透磁率−周波数依存性を示した図であ
る。図6のように,透磁率は7500以上の高い値を有
して100MHzまではその値が一定に維持されるが,
200MHzで共鳴が起きて急激に減少する。これは先
に示した結果のように,400℃で7.2nm程度の微
細なα−Fe クラスター生成により磁区が微細化され
て高周波でスピン回転がよく起きるためだと考えられ,
これによって透磁率は100MHzまで優秀な高周波特
性を示す。
FIG. 6 shows that Fe was heat-treated in a uniaxial magnetic field at 400 ° C. for 1 hour, which is a heat treatment condition having the best soft magnetic properties.
FIG. 4 is a diagram showing the magnetic permeability-frequency dependence of a ZrBAg thin film. As shown in FIG. 6, the magnetic permeability has a high value of 7500 or more and is kept constant up to 100 MHz.
Resonance occurs at 200 MHz and sharply decreases. This is thought to be because, as shown in the above results, the formation of fine α-Fe clusters of about 7.2 nm at 400 ° C. makes the magnetic domains finer and spin rotation often occurs at high frequencies.
Thereby, the magnetic permeability shows excellent high-frequency characteristics up to 100 MHz.

【0048】以上の結果でFe86.7Zr3.3
Ag非晶質薄膜を400℃で一軸磁場中熱処理した場
合,最も優秀な軟磁気特性を示した。したがって図7に
400℃で一軸磁場中熱処理を行なったFeZrBAg
薄膜の損失の周波数変化依存性を示した。比較のために
最近高周波特性が優秀であると報告された高抵抗軟磁性
FeAlO薄膜とMn−Znフェライトの損失値を示し
た。
From the above results, Fe 86.7 Zr 3.3 B 4
When the Ag 6 amorphous thin film was heat-treated in a uniaxial magnetic field at 400 ° C., it exhibited the best soft magnetic properties. Therefore, FIG. 7 shows that FeZrBAg heat-treated in a uniaxial magnetic field at 400 ° C.
Frequency dependence of the loss of the thin film is shown. For comparison, the loss values of a high-resistance soft magnetic FeAlO thin film and Mn-Zn ferrite, which were recently reported to have excellent high-frequency characteristics, are shown.

【0049】本発明で製造したFeZrBAg軟磁性薄
膜は,全体的に損失がかなり低い値を示し,1MHzで
は損失が1.4W/ccで高抵抗FeAlO薄膜の損失
と比較して1/10程度で非常に低く,Mn−Znフェ
ライトよりも低い特性を示す。
The FeZrBAg soft magnetic thin film produced by the present invention has a very low loss as a whole, and at 1 MHz, the loss is 1.4 W / cc, which is about 1/10 of the loss of the high-resistance FeAlO thin film. It is very low and shows lower characteristics than Mn-Zn ferrite.

【0050】以上のように,本発明にかかる鉄−ジルコ
ニウム−ホウ素−銀系軟磁性材料及び薄膜の製造方法に
よれば,MHz帯域において高透磁率,低損失,高飽和
磁化の特性を同時に満足する難磁性材料が提供できる。
As described above, according to the iron-zirconium-boron-silver-based soft magnetic material and the method for producing a thin film according to the present invention, the characteristics of high permeability, low loss and high saturation magnetization in the MHz band are simultaneously satisfied. A hard magnetic material can be provided.

【0051】以上,添付図面を参照しながら本発明にか
かる鉄−ジルコニウム−ホウ素−銀系軟磁性材料及び薄
膜の製造方法の好適な実施形態について説明したが,本
発明はかかる例に限定されない。当業者であれば,特許
請求の範囲に記載された技術的思想の範疇内において各
種の変更例または修正例に想到し得ることは明らかであ
り,それらについても当然に本発明の技術的範囲に属す
るものと了解される。
The preferred embodiments of the iron-zirconium-boron-silver-based soft magnetic material and the method for producing a thin film according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is clear that a person skilled in the art can conceive various changes or modifications within the scope of the technical idea described in the claims, and those modifications naturally fall within the technical scope of the present invention. It is understood to belong.

【0052】[0052]

【発明の効果】以上詳細に説明したように,本発明にか
かる高周波素子用軟磁性材料及び軟磁性薄膜製造方法に
よると,基本組成であるFe92Zr3.84.2
膜は結晶相をしているが,6at%のAg添加で非晶質
相を製造でき,基板上に製膜したFe86.7Zr
3.3Ag非晶質薄膜を一軸磁場中で熱処理する
場合,400℃で格子定数が0.28775nmである
7.2nm大きさの結晶粒が生成される。
As described above in detail, according to the method of manufacturing a soft magnetic material for a high frequency device and the method of manufacturing a soft magnetic thin film according to the present invention, the Fe 92 Zr 3.8 B 4.2 thin film having the basic composition has a crystalline phase. However, an amorphous phase can be manufactured by adding 6 at% of Ag, and Fe 86.7 Zr formed on a substrate is formed.
When a 3.3 B 4 Ag 6 amorphous thin film is heat-treated in a uniaxial magnetic field, crystal grains having a lattice constant of 0.28775 nm and a size of 7.2 nm are generated at 400 ° C.

【0053】これによって保磁力が0.825Oe,飽
和磁化が1.7T,電気抵抗率が140μΩcm,透磁
率が7800(50MHz,0.2mOe),損失が
1.4W/cc(1MHz,0.1T)で,製膜直後の
状態より透磁率は7.8倍,飽和磁化は1.2倍増加
し,損失は6.6倍減少した。
Thus, the coercive force is 0.825 Oe, the saturation magnetization is 1.7 T, the electric resistivity is 140 μΩcm, the magnetic permeability is 7800 (50 MHz, 0.2 mOe), and the loss is 1.4 W / cc (1 MHz, 0.1 T). ), The magnetic permeability increased 7.8 times, the saturation magnetization increased 1.2 times, and the loss decreased 6.6 times from the state immediately after the film formation.

【0054】このような特性は既存の軟磁性薄膜より優
秀な特性を示すため高周波(MHz)用薄膜磁気素子の
磁心で応用が可能であり,特に薄膜インダクタの磁心材
料として応用する場合,MHz帯域で既存の軟磁性薄膜
より高いインダクタンスを得ることができる効果があ
る。
Since these characteristics are superior to those of existing soft magnetic thin films, they can be applied to the magnetic core of a high-frequency (MHz) thin-film magnetic element. Thus, there is an effect that an inductance higher than that of the existing soft magnetic thin film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱処理温度によるFe86.7Zr3.3
Ag軟磁性薄膜の電気抵抗率の変化を示したグラフで
ある。
FIG. 1 shows Fe 86.7 Zr 3.3 B 4 depending on the heat treatment temperature.
4 is a graph showing a change in electric resistivity of an Ag 6 soft magnetic thin film.

【図2】熱処理温度によるFe86.7Zr3.3
Ag軟磁性薄膜のXRD回折パターンの変化を示した
グラフである。
FIG. 2 shows Fe 86.7 Zr 3.3 B 4 depending on the heat treatment temperature.
4 is a graph showing a change in an XRD diffraction pattern of an Ag 6 soft magnetic thin film.

【図3】熱処理温度によるFe86.7Zr3.3
Ag軟磁性薄膜の格子定数と結晶粒の大きさの変化を
示したグラフである。
FIG. 3 shows Fe 86.7 Zr 3.3 B 4 depending on the heat treatment temperature.
4 is a graph showing changes in lattice constant and crystal grain size of an Ag 6 soft magnetic thin film.

【図4】熱処理温度によるFe86.7Zr3.3
Ag軟磁性薄膜の飽和磁化と保磁力の変化を示したグ
ラフである。
FIG. 4 shows Fe 86.7 Zr 3.3 B 4 depending on the heat treatment temperature.
4 is a graph showing changes in saturation magnetization and coercive force of an Ag 6 soft magnetic thin film.

【図5】熱処理温度によるFe86.7Zr3.3
Ag軟磁性薄膜の透磁率の変化を示したグラフであ
る。
FIG. 5 shows Fe 86.7 Zr 3.3 B 4 depending on the heat treatment temperature.
4 is a graph showing a change in magnetic permeability of an Ag 6 soft magnetic thin film.

【図6】400℃で一軸磁場熱処理したFe86.7
3.3Ag軟磁性薄膜の周波数による透磁率変
化を示したグラフである。
FIG. 6 shows Fe 86.7 Z subjected to uniaxial magnetic field heat treatment at 400 ° C.
It is a graph showing a change in the magnetic permeability according to the frequency of the r 3.3 B 4 Ag 6 soft magnetic thin film.

【図7】400℃で一軸磁場熱処理したFe86.7
3.3Ag軟磁性薄膜の周波数による損失変化
を示したグラフである。
FIG. 7 shows Fe 86.7 Z heat-treated at 400 ° C. in a uniaxial magnetic field.
is a graph showing the loss variation due to the frequency of the r 3.3 B 4 Ag 6 soft magnetic thin film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/14 H01F 10/14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 10/14 H01F 10/14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 FeαZrβγAgδ(α=80〜9
5at%,β=2〜10at%,γ=2〜10at%,
δ=5〜10at%)組成を有する鉄−ジルコニウム−
ホウ素−銀系軟磁性材料。
1. The method of claim 1, wherein Fe α Zr β B γ Ag δ (α = 80-9
5 at%, β = 2 to 10 at%, γ = 2 to 10 at%,
δ = 5 to 10 at%) iron-zirconium-
Boron-silver soft magnetic material.
【請求項2】 直流マグネトロンスパッタリング法を用
いて基板上にFeZrB合金ターゲットとAg小片を利
用して製膜する第1の段階と,前記製膜したFeZrB
Ag膜を熱処理する第2の段階と,前記熱処理されたF
eZrBAg膜を常温まで冷却する第3の段階とを含む
軟磁性薄膜の製造方法。
2. A first step of forming a film on a substrate by using a FeZrB alloy target and a small piece of Ag using a direct current magnetron sputtering method;
A second step of heat-treating the Ag film;
a third step of cooling the eZrBAg film to room temperature.
【請求項3】 前記製膜時の条件は,初期真空度10
−6torr以下,製膜時電流50〜300mA,製膜
時圧力1〜10mtorrであることを特徴とする請求
項2に記載の軟磁性薄膜の製造方法。
3. The conditions for the film formation are as follows:
The method for producing a soft magnetic thin film according to claim 2, wherein the film forming current is 50 to 300 mA, and the film forming pressure is 1 to 10 mtorr.
【請求項4】 前記製膜時,前記基板を25℃以下に冷
却することを特徴とする請求項2または3に記載の軟磁
性薄膜の製造方法。
4. The method according to claim 2, wherein the substrate is cooled to 25 ° C. or less during the film formation.
【請求項5】 前記第2の段階は,結晶化温度±50℃
の範囲で磁場中熱処理することを特徴とする請求項2に
記載の軟磁性薄膜の製造方法。
5. The method according to claim 1, wherein the second step is performed at a crystallization temperature of ± 50 ° C.
3. The method for producing a soft magnetic thin film according to claim 2, wherein the heat treatment is performed in a magnetic field in the range described above.
【請求項6】 前記磁場中熱処理条件は,真空度が10
−6torr以下,磁場は0.5〜2.0kOeで印
加,10℃/minの昇温速度で結晶化温度±50℃の
結晶化温度範囲で等温熱処理することを特徴とする請求
項5に記載の軟磁性薄膜の製造方法。
6. The condition for heat treatment in a magnetic field is as follows:
6. An isothermal heat treatment in a crystallization temperature range of ± 50 ° C. at a heating rate of 10 ° C./min with a magnetic field of 0.5 to 2.0 kOe applied at −6 torr or less. 3. The method for producing a soft magnetic thin film according to item 1.
JP2000372768A 2000-01-07 2000-12-07 Ion-zirconium-boron-silver soft magnetic material and method for deposition of thin film Pending JP2001220656A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2000-0000548A KR100473620B1 (en) 2000-01-07 2000-01-07 Soft magnetic material of FeZrBAg system and a method for fabricating a soft magnetic thin film
KR2000P548 2000-01-07

Publications (1)

Publication Number Publication Date
JP2001220656A true JP2001220656A (en) 2001-08-14

Family

ID=19636853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372768A Pending JP2001220656A (en) 2000-01-07 2000-12-07 Ion-zirconium-boron-silver soft magnetic material and method for deposition of thin film

Country Status (2)

Country Link
JP (1) JP2001220656A (en)
KR (1) KR100473620B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046140A1 (en) * 2013-09-27 2015-04-02 日立金属株式会社 METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY, AND METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY MAGNETIC CORE
CN108624852A (en) * 2017-03-15 2018-10-09 南京理工大学 A kind of ferrozirconium amorphous multilayer film of high-curie temperature and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487611B1 (en) * 2002-07-24 2005-05-24 (주) 아모센스 Method for manufacturing thin type magnetic field sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009414B1 (en) * 1994-08-16 1997-06-13 재단법인 한국전기연구소 Soft magnetic material & processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046140A1 (en) * 2013-09-27 2015-04-02 日立金属株式会社 METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY, AND METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY MAGNETIC CORE
CN105593382A (en) * 2013-09-27 2016-05-18 日立金属株式会社 Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core
JP6024831B2 (en) * 2013-09-27 2016-11-16 日立金属株式会社 Method for producing Fe-based nanocrystalline alloy and method for producing Fe-based nanocrystalline alloy magnetic core
CN108624852A (en) * 2017-03-15 2018-10-09 南京理工大学 A kind of ferrozirconium amorphous multilayer film of high-curie temperature and preparation method thereof

Also Published As

Publication number Publication date
KR100473620B1 (en) 2005-03-07
KR20010068574A (en) 2001-07-23

Similar Documents

Publication Publication Date Title
CN1157489C (en) Co-base magnetic alloy and magnetic part made of the alloy
US5896078A (en) Soft magnetic alloy thin film and plane-type magnetic device
TWI707957B (en) Soft magnetic alloy and magnetic parts
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
TWI685576B (en) Soft magnetic alloy and magnetic parts
JPH044393B2 (en)
TWI685004B (en) Soft magnetic alloy and magnetic parts
TW201932619A (en) Soft magnetic alloy and magnetic device
TW202020187A (en) Soft magnetic alloy and magnetic device
JP2018123363A (en) Soft magnetic alloy and magnetic component
JP2019123894A (en) Soft magnetic alloy and magnetic component
TW201925493A (en) Soft magnetic alloy and magnetic component
JP2001220656A (en) Ion-zirconium-boron-silver soft magnetic material and method for deposition of thin film
JP2994318B2 (en) Fe-based amorphous soft magnetic material and method for producing the same
JP2704157B2 (en) Magnetic parts
JP3810881B2 (en) High frequency soft magnetic film
JPH08153614A (en) Magnetic core
JP2019123929A (en) Soft magnetic alloy and magnetic component
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JPH09115729A (en) Ultramicrocrystal magnetic film and its manufacture
JP2554445B2 (en) Magnetic thin film and method of manufacturing the same
JP3850623B2 (en) Method for producing soft magnetic alloy having fine crystal structure
KR0153174B1 (en) Fe-al based feeble magnetic alloy having high magnetic permeability
JP2000160241A (en) PRODUCTION OF Fe BASE SOFT MAGNETIC ALLOY
JP2001316724A (en) Method for manufacturing high frequency core

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410