JPH10241680A - Carbon material composition for lithium ion secondary battery - Google Patents

Carbon material composition for lithium ion secondary battery

Info

Publication number
JPH10241680A
JPH10241680A JP9038982A JP3898297A JPH10241680A JP H10241680 A JPH10241680 A JP H10241680A JP 9038982 A JP9038982 A JP 9038982A JP 3898297 A JP3898297 A JP 3898297A JP H10241680 A JPH10241680 A JP H10241680A
Authority
JP
Japan
Prior art keywords
weight
parts
resin
carbon material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9038982A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsuo
芳大 松尾
Tatsuro Sasaki
龍朗 佐々木
Yasuhide Sawada
泰秀 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Durez Co Ltd
Original Assignee
Sumitomo Durez Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Durez Co Ltd filed Critical Sumitomo Durez Co Ltd
Priority to JP9038982A priority Critical patent/JPH10241680A/en
Publication of JPH10241680A publication Critical patent/JPH10241680A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cycle property through high energy density, and enhance safety by using carbon material by carbonizing resin having such structure as a hydroxyl group in phenol resin is esterified for the negative electrode of a lithium ion secondary battery. SOLUTION: A formaldehyde aqueous solution and oxalic acid as a catalyst is added to phenol, so as to react to obtain phenol resin. Benzoic acid is mixed with the phenol so as to esterify. Hexamethylenetetramine is added to the obtained resin, and the same is pulverized and mixed, and is cured under the conditions of about 200 deg.C, for three hours. An obtained cured substance is pulverized, so that its particle size is made to be about 37μm or less. The temperature of the obtained cured substance is raised at the temperature rising speed of about 10 deg.C/minute in an argon atmosphere, and carbonizing treatment is conducted in conditions of about 1000 deg.C, and three hours so as to obtain negative electrode material. The mixture for cell containing obtained carbide of about 90 parts by weight and tetrafluoroethylene, as a binder, of about 10 parts by weight is compression molded, so as to form a negative electrode pellet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭素材料を負極材量
に用いるリチウムイオン二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery using a carbon material for a negative electrode material.

【0002】[0002]

【従来の技術】近年、電子技術の発達にはめざましいも
のがある。その中で、電子機器の小型化、軽量化が要求
項目として挙げられる。それに伴い移動用電源としての
電池に対しても益々小型、軽量かつ高エネルギー密度で
あることが求められるようになっている。従来、一般的
に使用される二次電池としては鉛電池、Ni−Cd電池
等の水溶液系二次電池が主流である。しかし、これらの
水溶液系二次電池はサイクル性には問題がないものの、
電池重量やエネルギー密度の点で充分に満足できるもの
とは言えない。
2. Description of the Related Art In recent years, the development of electronic technology has been remarkable. Among them, downsizing and weight reduction of electronic devices are mentioned as required items. Along with this, there is an increasing demand for smaller, lighter, and higher energy densities of batteries as mobile power supplies. Conventionally, aqueous secondary batteries such as lead batteries and Ni-Cd batteries have been mainly used as secondary batteries that are generally used. However, although these aqueous secondary batteries have no problem in cyclability,
It cannot be said that the battery weight and the energy density are sufficiently satisfactory.

【0003】また、リチウムあるいはリチウム合金を負
極材として用いるリチウム金属二次電池は高エネルギー
密度を有し、自己放電も少なく、軽量という特長を有す
るものである。しかしながら、この二次電池は充放電サ
イクルが進行するのに伴って充電時に負極状にリチウム
がデンドライト状に析出し、最終的には正極に到達して
内部ショートをする可能性が高く、実用化が困難である
とされている。
Further, a lithium metal secondary battery using lithium or a lithium alloy as a negative electrode material has features of high energy density, low self-discharge, and light weight. However, this secondary battery has a high possibility that lithium will be deposited in the form of a negative electrode in the form of a dendrite during charging as the charge / discharge cycle progresses, and will eventually reach the positive electrode and cause an internal short circuit. Is said to be difficult.

【0004】そこで、更に負極材料として炭素材料を使
用した非水電解液二次電池が提案されている。これは炭
素材料の層間にリチウムがインターカレーション/デイ
ンターカレーションされることを利用するものであり、
充放電サイクルが進行しても負極上にデンドライト状リ
チウムが析出するといった現象は認められず、高エネル
ギー密度を有し、軽量であると共に優れた充放電サイク
ル特性を示す。
Therefore, a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode material has been proposed. This utilizes the fact that lithium is intercalated / deintercalated between carbon material layers,
Even when the charge / discharge cycle proceeds, no phenomenon such as precipitation of dendritic lithium on the negative electrode is observed, and the battery has a high energy density, is lightweight, and has excellent charge / discharge cycle characteristics.

【0005】上記に示したリチウムイオン二次電池用負
極材用炭素材としては、特開平5−74457号公報記
載の黒鉛を使用しているものが挙げられる。黒鉛は、サ
イクル性が非常によいことが特徴として挙げられるが、
理論充放電容量が372mAh/gであるため、これ以
上の充放電容量は望めないという欠点がある。また、黒
鉛材料以外では、特開平5−28996号公報、7−7
3868号公報に示されるピッチコークスを使用した負
極材が挙げられる。この材料は易黒鉛化炭素材である
が、焼成温度が2000℃を超える領域では黒鉛化が進
行する。黒鉛になってしまうと充放電容量が決定されて
しまう。また黒鉛化される前の温度域(1000〜18
00℃)においては充放電容量の高い炭素材が得られて
いる。しかしながら、サイクル性が乏しく、タールピッ
チは不純物を多く含んでおり、電池特性に悪影響を及ぼ
す。
As the carbon material for a negative electrode material for a lithium ion secondary battery described above, there is a carbon material using graphite described in Japanese Patent Application Laid-Open No. Hei 5-74457. Graphite is characterized by its very good cyclability,
Since the theoretical charge / discharge capacity is 372 mAh / g, there is a disadvantage that a charge / discharge capacity higher than this cannot be expected. In addition, other than the graphite material, JP-A-5-28996, 7-7
A negative electrode material using pitch coke disclosed in Japanese Patent No. 3868 is exemplified. This material is a graphitizable carbon material, but in the region where the firing temperature exceeds 2000 ° C., graphitization proceeds. When it becomes graphite, the charge / discharge capacity is determined. The temperature range before graphitization (1000 to 18)
(00 ° C.), a carbon material having a high charge / discharge capacity is obtained. However, the cyclability is poor, and the tar pitch contains many impurities, which adversely affects battery characteristics.

【0006】また、熱処理温度が500℃〜700℃程
度の低温で処理された炭素負極は、次世代の高容量型炭
素負極の有力候補の一つである。可逆容量で850mA
h/gと、重量あたりの容量で黒鉛をこえる。また、低
温処理であるため、エネルギーメリットも高い。しかし
ながら、電位が高く、充放電での電位のヒステリシスが
大きいのが難点である。
A carbon anode treated at a low temperature of about 500 ° C. to 700 ° C. is one of the promising candidates for the next generation high capacity carbon anode. 850mA reversible capacity
Exceeds graphite in terms of h / g and capacity per weight. Further, since the treatment is performed at a low temperature, the energy merit is also high. However, the drawback is that the potential is high and the hysteresis of the potential during charge and discharge is large.

【0007】炭素以外のリチウムイオン負極材として注
目されているのが特開平5−166536号公報に示さ
れる金属酸化物及び特開平6−290782号公報に示
される窒素化合物である。しかしながら、金属酸化物で
は充放電容量8Ah/gと非常に大容量ではあるが、瞬
間放電量が非常に高いことからその制御が困難であると
されている。また、酸化スズや五酸化ニオブ、金属窒素
化合物等はリチウムイオンのインターカレーション能が
非常に高い材料として注目を集めている。しかしなが
ら、この充放電容量が非常に高いため、瞬時に大容量の
電流が流れるため実用上危険である。それを制御するた
めの何らかの手段が必要となってくる。
Attention has been paid to lithium ion negative electrode materials other than carbon, such as metal oxides disclosed in JP-A-5-166536 and nitrogen compounds disclosed in JP-A-6-290782. However, although the metal oxide has a very large charge / discharge capacity of 8 Ah / g, its control is difficult because the instantaneous discharge amount is very high. In addition, tin oxide, niobium pentoxide, metal nitrogen compounds and the like have attracted attention as materials having extremely high lithium ion intercalation ability. However, since the charge / discharge capacity is extremely high, a large-capacity current flows instantaneously, which is practically dangerous. Some means of controlling it will be needed.

【0008】炭素材料の充放電容量を上げ、かつ金属酸
化物の充放電容量を下げる目的で炭素材料と金属化合物
の混合が行われている。これは金属酸化物を炭素材とブ
レンドすることにより見かけの放電量を下げる主旨であ
る。しかしながら、このような手法で炭素材料とブレン
ドするだけではミクロレベルでの制御が見込めず、所望
の特性を有する炭素材料を得ることはできない。
[0008] In order to increase the charge / discharge capacity of a carbon material and decrease the charge / discharge capacity of a metal oxide, a mixture of a carbon material and a metal compound is used. This is intended to reduce the apparent discharge amount by blending the metal oxide with the carbon material. However, simply blending with a carbon material using such a technique cannot control at a micro level, and cannot obtain a carbon material having desired characteristics.

【0009】[0009]

【発明が解決しようとする課題】本発明は、高エネルギ
ー密度でサイクル性がよく且つ安全性の高いリチウムイ
オン二次電池電極材を提供することを目的とする。この
目的を達成するために、本発明者は鋭意研究を行った結
果、フェノール樹脂中の水酸基がエステル化された構造
をもった樹脂を炭化して得られた炭素材を負極材に用い
ることにより、高エネルギー密度でサイクル性が良く、
かつ安全性の高いリチウムイオン二次電池負極材が得ら
れることを見いだした。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium ion secondary battery electrode material having a high energy density, good cycleability and high safety. In order to achieve this object, the present inventor has conducted intensive studies, and as a result of using a carbon material obtained by carbonizing a resin having a structure in which hydroxyl groups in a phenol resin are esterified, as a negative electrode material. , High energy density and good cycle characteristics,
It has been found that a highly safe lithium ion secondary battery negative electrode material can be obtained.

【0010】[0010]

【問題を解決するための手段】本発明は、炭素材組成物
中の炭化物がフェノール樹脂中の水酸基をエステル化し
たエステル化フェノール樹脂を原料とし、これを炭化し
たものであることを特徴とするリチウムイオン二次電池
用炭素材組成物、に関するものである。
Means for Solving the Problems The present invention is characterized in that the carbonized material in the carbon material composition is obtained by carbonizing the esterified phenolic resin obtained by esterifying the hydroxyl group in the phenolic resin. The present invention relates to a carbon material composition for a lithium ion secondary battery.

【0011】フェノール樹脂は、炭化中において、フェ
ノール性水酸基同士のエーテル化、又はフェノール性水
酸基とフェノール樹脂の側鎖の水素との間で重合が起こ
る。一般的に、エーテル結合が形成されると結晶性が低
く、一方、炭素−炭素結合が形成される脱水反応では結
晶性が高い方向となり、これらの反応がランダムに起こ
るため全体的にフェノール樹脂は低結晶性炭素材とな
る。しかしながら、この脱水縮合反応より形成される炭
素−炭素結合は、ミクロの視点で考えると、炭素過程で
の部分的な結晶化を促進し、充放電容量を低くする原因
となっている。
The phenolic resin undergoes etherification between phenolic hydroxyl groups or polymerization between the phenolic hydroxyl group and hydrogen in the side chain of the phenolic resin during carbonization. Generally, the crystallinity is low when an ether bond is formed, while the crystallinity tends to be high in a dehydration reaction in which a carbon-carbon bond is formed. It becomes a low crystalline carbon material. However, the carbon-carbon bond formed by the dehydration-condensation reaction promotes partial crystallization in the carbon process from a micro viewpoint, and causes a reduction in charge / discharge capacity.

【0012】つまりフェノール樹脂の水酸基をエステル
化させることにより、炭化時に水の生成を伴う芳香族間
の縮合反応が起こるのを防止する。このことにより、エ
ステル部分の炭化水素基が立体障害となるため熱処理温
度を高くしても部分的な結晶化が抑制される。そのた
め、リチウムイオンの充放電量が、黒鉛の理論容量であ
る372mAh/gに限定されることなく、より高い充
放電容量を発現することが可能となる事が確認された。
That is, by esterifying the hydroxyl group of the phenol resin, it is possible to prevent a condensation reaction between aromatics accompanied by generation of water during carbonization. As a result, the hydrocarbon group in the ester portion acts as a steric hindrance, so that partial crystallization is suppressed even when the heat treatment temperature is increased. Therefore, it has been confirmed that the charge / discharge amount of lithium ions is not limited to 372 mAh / g, which is the theoretical capacity of graphite, and a higher charge / discharge capacity can be achieved.

【0013】本発明で使用される、エステル化する際の
カルボキシル類としては安息香酸、フタル酸、イソフタ
ル酸、テレフタル酸、サリチル酸、ナフタレンジカルボ
ン酸、ナフトエ酸、トルイル酸等の芳香族カルボン酸
類、酢酸、蟻酸、プロピオン酸、アジピン酸、マレイン
酸、マロン酸、コハク酸、酒石酸等の脂肪族カルボン酸
類及びこれらの無水物等であり、これらに限定されたも
のではない。これらを単独、あるいは2種類以上併用し
ても良い。
The carboxyls used in the present invention for esterification include aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, naphthalenedicarboxylic acid, naphthoic acid and toluic acid, and acetic acid. And aliphatic carboxylic acids such as formic acid, propionic acid, adipic acid, maleic acid, malonic acid, succinic acid and tartaric acid, and anhydrides thereof, but not limited thereto. These may be used alone or in combination of two or more.

【0014】フェノール樹脂のフェノール類は、例え
ば、フェノール、オルソクレゾール、メタクレゾール、
パラクレゾール、3,5−キシレノール、2,5−キシレ
ノール、3,4−キシレノール、2,6−キシレノール、
2,4−キシレノール、2,3−キシレノール、ビスフェ
ノールA、ビスフェノールF、ビフェノール、パラター
シャリーブチルフェノール、パラオクチルフェノール、
カテコール、レゾルシン、ハイドロキノン、ナフトー
ル、メラミン等でありこれに限定されたものではない。
これらを単独、あるいは2種類以上併用しても良い。ア
ルデヒド類としては、ホルムアルデヒド、パラホルムア
ルデヒド、アセトアルデヒド、フルフラール、ベンズア
ルデヒド等が使用でき、単独もしくは2種類以上使用し
ても良い。
The phenols of the phenolic resin include, for example, phenol, orthocresol, metacresol,
Paracresol, 3,5-xylenol, 2,5-xylenol, 3,4-xylenol, 2,6-xylenol,
2,4-xylenol, 2,3-xylenol, bisphenol A, bisphenol F, biphenol, para-tert-butylphenol, paraoctylphenol,
Catechol, resorcin, hydroquinone, naphthol, melamine, etc., but not limited thereto.
These may be used alone or in combination of two or more. As the aldehydes, formaldehyde, paraformaldehyde, acetaldehyde, furfural, benzaldehyde and the like can be used, and they may be used alone or in combination of two or more.

【0015】樹脂合成で使用される反応触媒としては、
塩酸、硫酸、蟻酸、酢酸、蓚酸、パラトルエンスルホン
酸等の酸、及び、水酸化カリウム、水酸化ナトリウム、
水酸化リチウム、水酸化バリウム等の塩基性触媒が使用
できる。また、反応を進行させる目的でベンゼンスルホ
ン酸等の界面活性剤を使用しても良い。
[0015] The reaction catalyst used in the resin synthesis includes:
Acids such as hydrochloric acid, sulfuric acid, formic acid, acetic acid, oxalic acid, paratoluenesulfonic acid, and potassium hydroxide, sodium hydroxide,
Basic catalysts such as lithium hydroxide and barium hydroxide can be used. Further, a surfactant such as benzenesulfonic acid may be used for the purpose of promoting the reaction.

【0016】得られたフェノール樹脂の硬化方法として
は、ホルムアルデヒド、アセトアルデヒド、ヘキサメチ
レンテトラミン、エポキシ樹脂又はパラトルエンスルホ
ン酸等の酸、さらにはイソシアネート基を有する化合物
等を添加し、加熱又は常温で硬化させることもできる。
As a method for curing the obtained phenol resin, an acid such as formaldehyde, acetaldehyde, hexamethylenetetramine, epoxy resin or paratoluenesulfonic acid, and a compound having an isocyanate group are added, and the mixture is cured by heating or at room temperature. It can also be done.

【0017】上記の方法で得られた硬化物を、窒素、ヘ
リウム、アルゴン等の不活性ガス雰囲気下、又はコーク
ス中での一酸化炭素雰囲気下で焼成したものとする。焼
成温度は500℃以上、好ましくは800℃以上で、特
に限定されるものではない。
The cured product obtained by the above method shall be fired in an atmosphere of an inert gas such as nitrogen, helium, argon or the like, or in a carbon monoxide atmosphere in coke. The firing temperature is 500 ° C. or higher, preferably 800 ° C. or higher, and is not particularly limited.

【0018】本発明で用いられる熱硬化性樹脂を芳香族
炭化水素、金属等に変性したものを用いても差し支えな
い。また、本発明において、焼成前、黒鉛、ピッチ及び
炭素材料となり得る材料等を加え焼成したり、焼成後、
黒鉛、ピッチ及び炭素材料となり得る材料の炭化物を混
合し使用しても差し支えない。
The thermosetting resin used in the present invention may be modified with aromatic hydrocarbon, metal or the like. Further, in the present invention, before firing, graphite, pitch and a material that can be a carbon material or the like is added and fired, or after firing,
A mixture of graphite, pitch, and a carbide of a material that can be a carbon material may be used.

【0019】[0019]

【実施例】以下、本発明を実施例により説明する。しか
し、本発明は実施例により限定されるものではない。ま
た、実施例、比較例で示される「部」及び「%」は全て
「重量部」及び「重量%」とする。
The present invention will be described below with reference to examples. However, the present invention is not limited by the examples. Further, “parts” and “%” shown in Examples and Comparative Examples are all “parts by weight” and “% by weight”.

【0020】実施例1 攪拌機及び冷却器つき反応釜に、フェノール100重量
部、37%ホルムアルデヒド水溶液60重量部、触媒と
してシュウ酸を1重量部加えて反応を行い、フェノール
樹脂A96重量部を得た。このフェノール樹脂A100
重量部に安息香酸を100重量部配合してエステル化を
行った。得られた樹脂100重量部にヘキサメチレンテ
トラミン10重量部を加えて粉砕混合し、200℃、3
時間の硬化条件でアセトン抽出率が10%以下になるま
で硬化を行った。このようにして得られた硬化物を粉砕
し、粒度37μm以下にした。得られた硬化物をアルゴ
ン雰囲気下にて10℃/分の昇温速度で昇温し1000
℃3時間炭化処理を行いリチウムイオン二次電池用負極
材とした。
Example 1 A reaction vessel equipped with a stirrer and a condenser was added with 100 parts by weight of phenol, 60 parts by weight of a 37% formaldehyde aqueous solution, and 1 part by weight of oxalic acid as a catalyst, and reacted to obtain 96 parts by weight of phenol resin A. . This phenolic resin A100
100 parts by weight of benzoic acid was added to 100 parts by weight to perform esterification. To 100 parts by weight of the obtained resin, 10 parts by weight of hexamethylenetetramine was added and pulverized and mixed.
The curing was carried out under the curing conditions of time until the acetone extraction rate became 10% or less. The cured product thus obtained was pulverized to a particle size of 37 μm or less. The obtained cured product was heated at a rate of 10 ° C./min in an argon atmosphere to 1000
C. for 3 hours to obtain a negative electrode material for a lithium ion secondary battery.

【0021】上記の方法で得られた炭化物90重量部、
結合剤としてテトラフルオロエチレン10重量部を含む合
剤を、厚さ20mmに圧縮成型して負極ペレットを得
た。正極材料は、Li0.5Co0.50.52.5を84重量
部、導電剤としてアセチレンブラック10重量部、結合
材としてテトラフルオロエチレン6重量部の混合比で用
いた。これらを混合した合剤を乾燥後、圧縮成型して正
極ペレット(20mmf)を調製した。電解質として1
MのLiBF4 を用い、さらにセパレーターとして微孔
性のポリプロピレンを使用し、その電解液を含浸させて
用いた。
90 parts by weight of the carbide obtained by the above method,
A mixture containing 10 parts by weight of tetrafluoroethylene as a binder was compression-molded to a thickness of 20 mm to obtain negative electrode pellets. The cathode material used was a mixture of 84 parts by weight of Li 0.5 Co 0.5 V 0.5 O 2.5 , 10 parts by weight of acetylene black as a conductive agent, and 6 parts by weight of tetrafluoroethylene as a binder. The mixture obtained by mixing these was dried and compression-molded to prepare a positive electrode pellet (20 mmf). 1 as electrolyte
M LiBF 4 was used, and microporous polypropylene was used as a separator. The separator was impregnated with the electrolyte.

【0022】このようにして得られた電池を用いて、上
限電圧4.2V、電流1Aの条件で定電流充電を2.5
時間行った後、抵抗5Ω、終止電流2.75Vの条件で
定抵抗の放電を行い、その充放電サイクルを繰り返し実
施した。
Using the battery obtained in this manner, constant-current charging was performed for 2.5 V under the conditions of an upper limit voltage of 4.2 V and a current of 1 A.
After the time, a constant resistance discharge was performed under the conditions of a resistance of 5Ω and a termination current of 2.75 V, and the charge / discharge cycle was repeatedly performed.

【0023】実施例2 フェノール樹脂Aにフタル酸を100重量部配合しエス
テル化を行った。得られた樹脂100重量部にヘキサメ
チレンテトラミン10重量部を加え粉砕混合した以外は
実施例1と同様の方法で評価を行った。
Example 2 100 parts by weight of phthalic acid was mixed with phenolic resin A and esterified. Evaluation was carried out in the same manner as in Example 1 except that 10 parts by weight of hexamethylenetetramine was added to 100 parts by weight of the obtained resin and pulverized and mixed.

【0024】実施例3 フェノール樹脂Aにプロピオン酸を100重量部配合し
エステル化を行った。得られた樹脂100重量部にヘキ
サメチレンテトラミン10重量部を加え粉砕混合した以
外は実施例1と同様の方法で評価を行った。
Example 3 100 parts by weight of propionic acid was mixed with phenolic resin A and esterified. Evaluation was carried out in the same manner as in Example 1 except that 10 parts by weight of hexamethylenetetramine was added to 100 parts by weight of the obtained resin and pulverized and mixed.

【0025】実施例4 攪拌機及び冷却器つき反応釜に、メタクレゾール100
重量部、37%ホルムアルデヒド52重量部、触媒とし
てシュウ酸を1重量部加え反応を行いフェノール樹脂9
2重量部を得た。このフェノール樹脂Bに安息香酸を1
00重量部配合しエステル化を行った。得られた樹脂1
00重量部にヘキサメチレンテトラミン10重量部を加
え粉砕混合した。以下実施例1と同様の方法で評価を行
った。
Example 4 Meta-cresol 100 was placed in a reactor equipped with a stirrer and a condenser.
Parts by weight, 37% formaldehyde (52 parts by weight), and oxalic acid (1 part by weight) as a catalyst, and the reaction was carried out.
2 parts by weight were obtained. Benzoic acid is added to this phenol resin B
00 parts by weight were mixed and esterification was performed. Obtained resin 1
To 00 parts by weight, 10 parts by weight of hexamethylenetetramine was added and pulverized and mixed. Thereafter, evaluation was performed in the same manner as in Example 1.

【0026】実施例5 フェノール樹脂Bにフタル酸を100重量部配合しエス
テル化を行った。得られた樹脂100重量部にヘキサメ
チレンテトラミン10重量部を加え粉砕混合した。以下
実施例1と同様の方法で評価を行った。
Example 5 Phenol resin B was mixed with 100 parts by weight of phthalic acid and esterified. To 100 parts by weight of the obtained resin, 10 parts by weight of hexamethylenetetramine was added and pulverized and mixed. Thereafter, evaluation was performed in the same manner as in Example 1.

【0027】実施例6 フェノール樹脂Aにナフトエ酸を100重量部配合しエ
ステル化を行った以外は実施例1と同様の方法で評価を
行った。
Example 6 Evaluation was conducted in the same manner as in Example 1 except that 100 parts by weight of naphthoic acid was added to phenol resin A and esterification was performed.

【0028】実施例7 攪拌機及び冷却器つき反応釜に、ビスフェノールA10
0重量部、ホルムアルデヒド80重量部、触媒としてシ
ュウ酸を1重量部加え反応を行った。この熱硬化性樹脂
にフタル酸を100重量部配合しエステル化を行った。
得られた樹脂100重量部にヘキサメチレンテトラミン
10重量部を加え粉砕混合した。以下実施例1と同様の
方法で評価を行った。
Example 7 Bisphenol A10 was placed in a reactor equipped with a stirrer and a cooler.
0 parts by weight, 80 parts by weight of formaldehyde, and 1 part by weight of oxalic acid as a catalyst were reacted. 100 parts by weight of phthalic acid was mixed with the thermosetting resin and esterified.
To 100 parts by weight of the obtained resin, 10 parts by weight of hexamethylenetetramine was added and pulverized and mixed. Thereafter, evaluation was performed in the same manner as in Example 1.

【0029】実施例8 フェノール樹脂Bに無水マレイン酸を100重量部配合
しエステル化を行った以外は実施例1と同様の方法で評
価を行った。
Example 8 Evaluation was performed in the same manner as in Example 1 except that 100 parts by weight of maleic anhydride was added to phenol resin B and esterification was performed.

【0030】実施例9 フェノール樹脂Bにナフタレンジカルボン酸を100重
量部配合しエステル化を行った以外は実施例1と同様の
方法で評価を行った。
Example 9 Evaluation was performed in the same manner as in Example 1 except that 100 parts by weight of naphthalenedicarboxylic acid was added to phenol resin B and esterification was performed.

【0031】実施例10 攪拌機及び冷却器つき反応釜に、フェノール100重量
部、37%ホルムアルデヒド水溶液137重量部、触媒
として水酸化ナトリウムを1重量部配合し反応を行い、
フェノール樹脂Cを得た。このフェノール樹脂Cに無水
酢酸を100重量部配合しエステル化を行った。得られ
た樹脂を200℃3時間の硬化条件で、アセトン抽出率
が10%以下になるまで硬化を行った以外は実施例1と
同様の方法で評価を行った。
Example 10 In a reaction vessel equipped with a stirrer and a condenser, 100 parts by weight of phenol, 137 parts by weight of a 37% formaldehyde aqueous solution, and 1 part by weight of sodium hydroxide as a catalyst were mixed and reacted.
Phenol resin C was obtained. 100 parts by weight of acetic anhydride was blended with the phenol resin C to perform esterification. Evaluation was performed in the same manner as in Example 1 except that the obtained resin was cured under the curing conditions of 200 ° C. for 3 hours until the acetone extraction ratio became 10% or less.

【0032】実施例11 フェノール樹脂Cに無水マレイン酸を100重量部配合
しエステル化を行った以外は実施例1と同様の方法で評
価を行った。
Example 11 Evaluation was performed in the same manner as in Example 1 except that 100 parts by weight of maleic anhydride was added to phenol resin C and esterification was performed.

【0033】比較例1 フェノール樹脂A100重量部、ヘキサメチレンテトラ
ミン10重量部を加え粉砕混合し、200℃3時間の硬
化条件でアセトン抽出率が10%以下になるまで硬化さ
せた。以降は実施例1と同様の方法で行った。
Comparative Example 1 100 parts by weight of phenolic resin A and 10 parts by weight of hexamethylenetetramine were added, pulverized and mixed, and cured under a curing condition of 200 ° C. for 3 hours until the acetone extraction ratio became 10% or less. Thereafter, the same procedure as in Example 1 was performed.

【0034】比較例2 フェノール樹脂Cを200℃3時間の硬化条件でアセト
ン抽出率が10%以下になるまで硬化を行った以外は実
施例1と同様の方法で行った。
Comparative Example 2 A phenol resin C was cured in the same manner as in Example 1 except that the phenol resin C was cured under the conditions of 200 ° C. for 3 hours until the acetone extraction ratio became 10% or less.

【0035】[0035]

【表1】 表1から分かるように、負極材用の炭素骨格として官能
基を有する熱硬化性樹脂の炭化物が単純骨格のフェノー
ル樹脂炭化物と比較して高い充放電特性値を示した。
[Table 1] As can be seen from Table 1, the carbide of the thermosetting resin having a functional group as the carbon skeleton for the negative electrode material exhibited higher charge / discharge characteristic values than the phenol resin carbide having a simple skeleton.

【0036】[0036]

【発明の効果】以上の説明から分かるように、本発明で
得られた炭素材は高エネルギー密度で安全性が高い炭素
材であるためリチウムイオン二次電池電極用炭素材に好
適である。
As can be seen from the above description, the carbon material obtained by the present invention is a carbon material having high energy density and high safety, and is therefore suitable for a carbon material for a lithium ion secondary battery electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素材組成物中の炭化物がフェノール樹
脂中の水酸基をエステル化したエステル化フェノール樹
脂を原料とし、これを炭化したものであることを特徴と
するリチウムイオン二次電池用炭素材組成物。
1. A carbon material for a lithium ion secondary battery, wherein a carbonized material in a carbon material composition is obtained by carbonizing an esterified phenolic resin obtained by esterifying a hydroxyl group in a phenolic resin. Composition.
JP9038982A 1997-02-24 1997-02-24 Carbon material composition for lithium ion secondary battery Pending JPH10241680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9038982A JPH10241680A (en) 1997-02-24 1997-02-24 Carbon material composition for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9038982A JPH10241680A (en) 1997-02-24 1997-02-24 Carbon material composition for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH10241680A true JPH10241680A (en) 1998-09-11

Family

ID=12540366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9038982A Pending JPH10241680A (en) 1997-02-24 1997-02-24 Carbon material composition for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH10241680A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096781A (en) * 2004-09-28 2006-04-13 Sumitomo Bakelite Co Ltd Phenolic resin composition for carbon material, carbon material and its manufacturing method
JP2008047456A (en) * 2006-08-18 2008-02-28 Sumitomo Bakelite Co Ltd Carbon material and its manufacturing method, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
WO2012165317A1 (en) * 2011-05-27 2012-12-06 Dic株式会社 Active ester resin, method for producing same, thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
JP2013051213A (en) * 2012-11-27 2013-03-14 Sumitomo Bakelite Co Ltd Carbon material and method for producing the same, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP2014109015A (en) * 2012-12-04 2014-06-12 Dic Corp Active ester resin, curable resin composition, cured product thereof, and printed wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096781A (en) * 2004-09-28 2006-04-13 Sumitomo Bakelite Co Ltd Phenolic resin composition for carbon material, carbon material and its manufacturing method
JP2008047456A (en) * 2006-08-18 2008-02-28 Sumitomo Bakelite Co Ltd Carbon material and its manufacturing method, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
WO2012165317A1 (en) * 2011-05-27 2012-12-06 Dic株式会社 Active ester resin, method for producing same, thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
JP5152445B2 (en) * 2011-05-27 2013-02-27 Dic株式会社 Active ester resin, production method thereof, thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
TWI417313B (en) * 2011-05-27 2013-12-01 Dainippon Ink & Chemicals Active ester resin and method for menufacturing the same, hot curable resin composition, semiconductor sealing material, pre-preg, circuit substrate, build-up film, and cured article
US8791214B2 (en) 2011-05-27 2014-07-29 Dic Corporation Active ester resin, method for producing the same, thermosetting resin composition, cured product of the thermosetting resin composition, semiconductor encapsulating material, pre-preg, circuit board, and build-up film
JP2013051213A (en) * 2012-11-27 2013-03-14 Sumitomo Bakelite Co Ltd Carbon material and method for producing the same, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP2014109015A (en) * 2012-12-04 2014-06-12 Dic Corp Active ester resin, curable resin composition, cured product thereof, and printed wiring board

Similar Documents

Publication Publication Date Title
EP0418514B1 (en) Carbonaceous material and a non-aqueous electrochemical cell using the same
TWI243498B (en) Composite graphite particles and production method thereof, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this
JP2002260658A (en) Carbonaceous material and lithium secondary battery
JP2010519682A (en) Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JPH10241680A (en) Carbon material composition for lithium ion secondary battery
JP3091944B2 (en) Method for producing carbon particles for negative electrode of lithium ion secondary battery
CN113273004B (en) Method for producing carbonaceous-coated graphite particles
JP3289231B2 (en) Negative electrode for lithium ion secondary battery
JP3091949B2 (en) Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles
JP2009231113A (en) Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP3835713B2 (en) Carbon material
JPH11354120A (en) Electrode material composition for lithium-ion secondary battery
JPH11343109A (en) Carbon material and its production, negative pole for lithium secondary battery and lithium secondary battery
JP3091943B2 (en) Method for producing carbon particles for negative electrode of non-aqueous secondary battery and carbon particles obtained by the method
JP3565392B2 (en) Electrode materials for lithium ion secondary batteries
JPH06187991A (en) Manufacture of negative electrode material and lithium secondary battery
JPH06187972A (en) Manufacture of negative electrode material, and lithium secondary battery
JP2004356092A (en) Battery
JP2002362913A (en) Method for producing graphite powder
JP2000251885A (en) Negative electrode material for nonaqueous electrolyte secondary battery, and secondary battery using the material
JP3002112B2 (en) Organic electrolyte battery
JPH11130414A (en) Carbon material
JP4254947B2 (en) Carbon material, method for producing the same, and secondary battery using the carbon material as a negative electrode active material
JP3002111B2 (en) Organic electrolyte battery