JPH10239502A - Antireflection material - Google Patents

Antireflection material

Info

Publication number
JPH10239502A
JPH10239502A JP9054026A JP5402697A JPH10239502A JP H10239502 A JPH10239502 A JP H10239502A JP 9054026 A JP9054026 A JP 9054026A JP 5402697 A JP5402697 A JP 5402697A JP H10239502 A JPH10239502 A JP H10239502A
Authority
JP
Japan
Prior art keywords
resin
parts
layer
ionizing radiation
resin layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9054026A
Other languages
Japanese (ja)
Inventor
Yuji Suzuki
裕二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oike and Co Ltd
Original Assignee
Oike and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oike and Co Ltd filed Critical Oike and Co Ltd
Priority to JP9054026A priority Critical patent/JPH10239502A/en
Publication of JPH10239502A publication Critical patent/JPH10239502A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture an antireflection material, particularly an antireflection film, excellent in antireflection effect, scratch resistance and transparency, at a low cost, by forming a plurality of resin layers on base material, and specifying the refractive indexes of the adjacent resin layers out of the resin layers. SOLUTION: Two or more resin layers are formed on the base material formed of an organic polymer film with high transparency such as cellulose triacetate, and the refractive indexes of two adjacent layers out of these resin layers are made different by 0.01 or more. It is desirable that resin containing fine grain of silica or the like is used for one layer out of the resin layers. When the resin layers formed on the base material are resin layers A-D in order from the base material side, for instance, the resin layer B is made lower in the refractive index than the resin layer A, the resin layer C is made higher in the refractive index than the resin layer B, and the resin layer D is made lower in the refractive index than the resin layer C so that the refractive indexes of the adjacent resin layers are different by 0.01 or more. Reflection can thereby be suppressed efficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射防止材に関し
て、特にフラットパネルディスプレイ、ディスプレイ画
面が透視できる若しくは、ペン入力タイプのタッチパネ
ル等の表面基材に適した反射防止フィルム等の反射防止
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-reflective material, and more particularly to an anti-reflective material such as an anti-reflective film or the like suitable for a surface substrate such as a flat panel display or a touch panel of a pen input type. .

【0002】[0002]

【従来の技術】近年のCRTや、フラットパネルディス
プレイ画面への、外光の映り込み、空気層との界面で生
じる反射光が非常に問題となり画面を見難いものにして
いた。このため基材表面に、外光の反射防止のために、
(1)単層、または、多層の無機蒸着層を形成し反射防
止をする方法や、(2)シリカ等の微粒子を含有した、
マットコーティングを施す方法等が知られている。
(1)の方法については、反射防止性能としては十分で
あるが、製造工程が複雑であり、またコストも非常に高
く耐スクラッチ性も劣る。基材上にハードコート層を形
成し、その後無機蒸着層を形成すれば耐スクラッチ性は
向上はするが、十分ではない。(2)の方法についてバ
インダーとしてハードコート樹脂を使用すれば耐スクラ
ッチ性のある膜を形成することが出来るが、十分な反射
防止性能を付与するためには、微粒子を多量に添加しな
ければならない。従って反射防止性能が次第に向上する
に従い、透過性が低下していく。
2. Description of the Related Art Reflection of external light on a CRT or a flat panel display screen in recent years and reflected light generated at an interface with an air layer have become extremely problematic, making the screen difficult to see. For this reason, on the surface of the substrate, to prevent reflection of external light,
(1) a method of forming a single-layer or multilayer inorganic vapor-deposited layer to prevent reflection, or (2) containing fine particles such as silica,
A method of applying a mat coating and the like are known.
The method (1) is sufficient in antireflection performance, but the manufacturing process is complicated, the cost is very high, and the scratch resistance is inferior. If a hard coat layer is formed on a base material and then an inorganic vapor deposition layer is formed, the scratch resistance is improved, but is not sufficient. In the method (2), if a hard coat resin is used as a binder, a film having scratch resistance can be formed. However, in order to impart sufficient antireflection performance, a large amount of fine particles must be added. . Therefore, as the antireflection performance gradually increases, the transmittance decreases.

【0003】[0003]

【発明が解決しようとする課題】従って本発明は、反射
防止効果、耐スクラッチ性、透明性に優れた反射防止
材、特に反射防止フィルムを低コストで提供することを
目的とするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an anti-reflection material having excellent anti-reflection effect, scratch resistance and transparency, especially an anti-reflection film at low cost.

【0004】[0004]

【課題を解決するための手段】従来技術の問題を解決せ
んとする本発明は、基材上に、少なくとも2層以上の樹
脂層を形成し、その樹脂層のうち、少なくとも隣接する
2層の樹脂層の屈折率が0.01以上異なることを特徴
とするものである。特に、樹脂層のうち、1層に微粒子
を含有させたものを用いると、防眩性と、反射防止性を
兼ね備えた反射防止材が得られ、さらに、樹脂層とし
て、ハードコート樹脂層を用いることにより、耐スクラ
ッチ性に優れた反射防止材が得られる。
According to the present invention, which solves the problems of the prior art, at least two or more resin layers are formed on a substrate, and at least two adjacent resin layers among the resin layers are formed. The resin layer is characterized in that the refractive index differs by 0.01 or more. In particular, when a resin layer containing fine particles in one layer is used, an antireflection material having both antiglare properties and antireflection properties can be obtained, and a hard coat resin layer is used as the resin layer. As a result, an antireflection material having excellent scratch resistance can be obtained.

【0005】[0005]

【発明の実施態様】本発明に用いる基材としては、特に
は制限はなく、ガラスや有機高分子フイルムの様に透明
性に優れたものであればよい。加工適性や用途的に考え
れば、高い透明性を有する有機高分子フィルムを使用す
ることが好ましく、例えば三酢酸セルロース、アセテー
ト等のセルロース系樹脂や、ポリエチレンテレフタレー
ト、ポリエチレンナフタレート等のポリエステル系樹脂
や、ポリメチルメタクレート等のアクリル系樹脂や、ポ
リカーボネート樹脂類等の、有機高分子フィルムを使用
することが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The substrate used in the present invention is not particularly limited, and may be any one having excellent transparency such as glass or organic polymer film. From the viewpoint of processability and application, it is preferable to use an organic polymer film having high transparency, for example, cellulose triacetate, a cellulose resin such as acetate, polyethylene terephthalate, a polyester resin such as polyethylene naphthalate, or the like. It is preferable to use an organic polymer film such as an acrylic resin such as polymethyl methacrylate or a polycarbonate resin.

【0006】本発明に於ける樹脂層は、透明性に優れた
樹脂からのものであれば特に制限されるものではない。
基材上に形成される樹脂層を、例えば基材側から順に
樹脂層(A)樹脂層(B)樹脂層(C)樹脂層(D)と
すると、樹脂層(B)は樹脂層(A)より屈折率が低
く、樹脂層(C)は樹脂層(B)より屈折率が高く、樹
脂層(D)は樹脂層(C)より屈折率が低くすると、効
率的に反射をおさえることが出来る。これらの屈折率の
高い、低いの表現で、屈折率が0.01以上の差がある
場合において本発明の効果が顕著となる。さらに、樹脂
層のうち少なくとも1層をシリカ等の微粒子を含有する
樹脂から形成したものであってもよい。
The resin layer in the present invention is not particularly limited as long as it is made of a resin having excellent transparency.
If the resin layers formed on the base material are, for example, a resin layer (A), a resin layer (B), a resin layer (C), and a resin layer (D) in order from the base material side, the resin layer (B) is ), The resin layer (C) has a higher refractive index than the resin layer (B), and the resin layer (D) has a lower refractive index than the resin layer (C). I can do it. The effects of the present invention are remarkable when there is a difference of 0.01 or more in the expression of the high and low refractive indexes. Further, at least one of the resin layers may be formed of a resin containing fine particles such as silica.

【0007】基材(フィルム)上に形成されるこれらの
樹脂層は、用途的に考えれば、ガラス基板上で硬化した
場合に、鉛筆硬度がH以上のハードコート樹脂層である
ことが望ましい。このようなハードコート樹脂層を形成
するハードコート樹脂としては、主として熱硬化型樹
脂、若しくは電離放射線型樹脂が挙げられる。中でも作
業環境性、生産性の点で電離放射線型樹脂が好ましい。
電離放射線硬化型樹脂は、少なくとも電子線若しくは紫
外線照射により硬化される樹脂を含有する塗料から形成
される。具体的には、光重合性プレポリマー、光重合性
モノマー、光重合開始剤を含有し、さらに必要に応じて
増感剤、非反応性樹脂、レベリング剤等の添加剤、溶剤
を含有するものである。光重合性プレポリマーは、その
構造、分子量が、電離放射線型硬化型塗料の硬化に関係
し、硬度、屈折率、耐クラック性等の特性を定めるもの
である。光重合性ポリマーは骨格中に導入されたアクリ
ロイル基が電離放射線照射されることにより、ラジカル
重合するタイプが一般的である。ラジカル重合により硬
化するものは硬化速度が速く、樹脂設計の自由度も大き
いため、特に好ましい。
[0007] These resin layers formed on the substrate (film) are preferably hard coat resin layers having a pencil hardness of H or more when cured on a glass substrate, from the viewpoint of application. As a hard coat resin for forming such a hard coat resin layer, a thermosetting resin or an ionizing radiation type resin is mainly used. Among them, ionizing radiation type resins are preferred in view of work environment and productivity.
The ionizing radiation-curable resin is formed from a paint containing a resin that is cured at least by irradiation with an electron beam or ultraviolet rays. Specifically, it contains a photopolymerizable prepolymer, a photopolymerizable monomer, and a photopolymerization initiator, and further contains, if necessary, additives such as a sensitizer, a non-reactive resin, and a leveling agent, and a solvent. It is. The structure and molecular weight of the photopolymerizable prepolymer relate to the curing of the ionizing radiation-type curable paint, and determine properties such as hardness, refractive index, and crack resistance. The photopolymerizable polymer generally undergoes radical polymerization when an acryloyl group introduced into the skeleton is irradiated with ionizing radiation. Those cured by radical polymerization are particularly preferred because they have a high curing rate and a high degree of freedom in resin design.

【0008】光重合性プレポリマーとしては、アクリロ
イル基を有するアクリル系プレポリマーが、特に好まし
く、1分子中に2個以上のアクリロイル基を有し、3次
元網目構造となるものである。アクリル系プレポリマー
としては、ウレタンアクリレート、メラミンアクリレー
ト、ポリエステルアクリレート等が使用できる。光重合
性モノマーは、高粘度の光重合性プレポリマーを希釈
し、粘度を低下させ、作業性を向上させるため、また、
架橋剤として塗膜強度を付与するために使用される。ま
た、光重合性モノマーの混合量が多くなると塗膜は必要
以上に硬くなるため、所望の硬度、あるいは所望の可と
う性が得られるよう、混合割合は選択するとよい。例え
ば、本発明の反射防止フィルムを曲げる用途に使用する
場合は、可とう性に優れた、熱硬化性、熱可塑性アクリ
ル樹脂、エポキシ樹脂等の非反応性樹脂を混合すること
により、硬度を調節することが出来る。このようなハー
ドコート樹脂から形成されるハードコート層の屈折率を
調整するにはいくつかの方法が考えられる。高屈折率に
調製する場合には、(1)一般的な光重合性ポリマー、
光重合性モノマーの中から、分子中に環状構造を持つな
ど、構造的に比較的屈折率の高いものを使用する(2)
硫黄化合物等の高屈折化合物を共重合、付加重合等によ
り光重合性プレポリマーや、光重合性モノマーに導入、
またはアクリル化したものを使用する(3)硫黄化合物
等の高屈折材料を、非反応性樹脂として使用する、等の
方法がある。
[0008] As the photopolymerizable prepolymer, an acrylic prepolymer having an acryloyl group is particularly preferable, which has a three-dimensional network structure having two or more acryloyl groups in one molecule. As the acrylic prepolymer, urethane acrylate, melamine acrylate, polyester acrylate, and the like can be used. The photopolymerizable monomer dilutes a high-viscosity photopolymerizable prepolymer, reduces the viscosity, and improves workability.
It is used as a cross-linking agent to impart coating strength. Further, the coating film becomes harder than necessary when the mixing amount of the photopolymerizable monomer increases, so that the mixing ratio is preferably selected so as to obtain a desired hardness or a desired flexibility. For example, when used for bending the antireflection film of the present invention, the hardness is adjusted by mixing a non-reactive resin such as a thermosetting resin, a thermoplastic acrylic resin, or an epoxy resin, which is excellent in flexibility. You can do it. There are several methods for adjusting the refractive index of the hard coat layer formed from such a hard coat resin. When adjusting to a high refractive index, (1) a general photopolymerizable polymer,
Use a photopolymerizable monomer having a relatively high refractive index structurally, such as having a cyclic structure in the molecule (2)
Copolymerization of high refractive compounds such as sulfur compounds, photopolymerizable prepolymers by addition polymerization, etc., and introduction into photopolymerizable monomers,
Alternatively, there is a method of (3) using a high refractive material such as a sulfur compound as a non-reactive resin.

【0009】低屈折率に調製する場合には、(4)一般
的な光重合性ポリマー、光重合性モノマーの中から、構
造的に比較的低屈折率のものを使用する(5)フッ素化
合物や珪素化合物、硼素系化合物等の低屈折材料を、共
重合、付加重合等により、光重合性プレポリマー、光重
合性モノマーに導入したもの、またはアクリル化したも
のを使用する(6)フッ素化合物や珪素化合物、硼素化
合物等の低屈折材料を、非反応性樹脂として使用する、
等の方法がある。また、前記したように、隣接する2層
の樹脂層の屈折率の差が、0.010より少なければ、
反射率が0.5%程度以下しか低下せず、実質的に反射
防止効果が期待できない場合が多い。これらの方法によ
り、硬度、屈折率等を考慮しながら、ハードコート樹脂
を設計する。
In order to adjust the refractive index to a low value, (4) use a structurally relatively low-refractive index from general photopolymerizable polymers and photopolymerizable monomers. (5) Fluorine compound (6) Fluorine compounds which are obtained by introducing a low-refractive material such as a silicon compound or a boron compound into a photopolymerizable prepolymer or a photopolymerizable monomer by copolymerization or addition polymerization, or acrylated. Or a silicon compound, a low refractive material such as a boron compound, as a non-reactive resin,
And so on. Further, as described above, if the difference between the refractive indices of the two adjacent resin layers is less than 0.010,
In many cases, the reflectance is reduced by only about 0.5% or less, and substantially no antireflection effect can be expected. By these methods, the hard coat resin is designed in consideration of the hardness, the refractive index, and the like.

【0010】形成される樹脂層の膜厚としては、特には
制限はないが、耐スクラッチ性から考えると、樹脂層の
うち1層は、好ましくは、1μm〜30μm、さらに好
ましくは2μm〜5μmに設定される。その他の樹脂層
は反射率の最低値が、λ=380nm〜780nmとな
る膜厚に設定することが好ましい。電離放射線型樹脂を
用いた場合の樹脂層の形成方法としては、電離放射線型
塗料を、通常の塗布方法、例えば、バー、ブレード、ス
ピン、スプレー等のコーティングで行うことができる。
電離放射線硬化塗料に電子線あるいは紫外線を照射して
硬化する場合、酸素の存在及び塗膜の厚さが、硬化と密
接に関係する。電離放射線が照射されて発生したラジカ
ルは酸素を補足するため、硬化を抑制してしまう。この
ため、塗膜の厚さが薄いと、塗膜体積に占める表面積が
大きくなり、空気中の酸素により硬化阻害を受けやす
い。このような硬化阻害を防止するため、N2ガス等の
不活性ガス下で照射を行うと良い。
The thickness of the formed resin layer is not particularly limited. However, considering the scratch resistance, one of the resin layers preferably has a thickness of 1 μm to 30 μm, more preferably 2 μm to 5 μm. Is set. The other resin layers are preferably set to have a film thickness such that the minimum value of the reflectance is λ = 380 nm to 780 nm. As a method for forming the resin layer when using an ionizing radiation type resin, an ionizing radiation type paint can be applied by a usual application method, for example, coating with a bar, blade, spin, spray or the like.
When an ionizing radiation-curable paint is cured by irradiation with an electron beam or ultraviolet rays, the presence of oxygen and the thickness of the coating film are closely related to the curing. Radicals generated by irradiation with ionizing radiation supplement oxygen, thereby suppressing curing. Therefore, when the thickness of the coating film is small, the surface area occupying the volume of the coating film becomes large, and the coating is easily affected by curing in air. In order to prevent such curing inhibition, irradiation is preferably performed under an inert gas such as N2 gas.

【0011】また、多層に電離放射線硬化樹脂層を積層
するには、各層間の密着がポイントとなる。そこで、本
発明では、電離放射線樹脂をメイヤーバーで塗布し、電
離放射線照射による硬化を、半硬化の状態で止め、次の
層を塗布し、この層も同様に半硬化で止め、これを繰り
返して、最終的に電離放射線照射により完全に硬化させ
る方法とった。この方法で硬化させると、樹脂を各層間
で強力に密着させることができる。本発明において、反
射防止効果としては後記する反射率が3%以下、好まし
くは2.5%以下のものであり、透過率としてはおなじ
く85%以上好ましくは88%以上のものである。かか
る反射防止効果と透過率を有する反射防止材が本発明に
よって経済的に、生産性よくえることができる。
In order to laminate ionizing radiation-curable resin layers in multiple layers, the point of adhesion between the layers is important. Therefore, in the present invention, the ionizing radiation resin is applied with a Mayer bar, the curing by irradiation with ionizing radiation is stopped in a semi-cured state, the next layer is applied, and this layer is similarly stopped in a semi-cured state, and this is repeated. Finally, a method of completely curing by irradiation with ionizing radiation was adopted. When cured by this method, the resin can be strongly adhered between the layers. In the present invention, the anti-reflection effect has a reflectance of 3% or less, preferably 2.5% or less, and the transmittance is approximately 85% or more, preferably 88% or more. An antireflection material having such an antireflection effect and transmittance can be obtained economically and with good productivity by the present invention.

【0012】[0012]

【実施例】以下、実施例により本発明を更に詳しく説明
するが、これら実施例に限定されるものではない。(以
下、部は重量部を示す。) **実施例1 厚さ188μmのポリエステルフィルム上に、ビスフェ
ノールA型アクリレート70部、硫黄含有アクリレート
30部、ベンゾフェノン系光開始剤3部、アミン系増感
剤3部からなり、硬化後の屈折率が1.560となる電
離放射線硬化型樹脂塗料(A)106部に、溶剤200
部を添加したものをメイヤーバーにて塗布し、溶剤を乾
燥除去後、電離放射線を0.2〜0.5秒照射し、半硬
化させタックをとり、厚さが4μmの第1層目を形成す
る。その後、シリコン系アクリレート100部、ベンゾ
フェノン系光開始剤3部、アミン系増感剤3部からな
り、硬化後の屈折率が1.470となる電離放射線硬化
樹脂塗料(B)106部に、溶剤3000部を添加した
ものをメイヤーバーにて塗布し、溶剤を乾燥除去後、電
離放射線を1〜2秒照射し、完全に硬化させ、0.09
μmの第2層を形成した。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. (Hereinafter, parts are parts by weight.) ** Example 1 70 parts of bisphenol A type acrylate, 30 parts of sulfur-containing acrylate, 3 parts of benzophenone-based photoinitiator, 3 parts of amine-based sensitization on a 188 μm-thick polyester film. 106 parts of the ionizing radiation-curable resin coating material (A) having a refractive index of 1.560 after curing was added to a solvent 200 parts
Is applied with a Meyer bar, and the solvent is dried and removed, and then irradiated with ionizing radiation for 0.2 to 0.5 seconds, semi-cured and tacked, and the first layer having a thickness of 4 μm is formed. Form. Then, 100 parts of a silicon-based acrylate, 3 parts of a benzophenone-based photoinitiator, and 3 parts of an amine-based sensitizer, and 106 parts of an ionizing radiation-curable resin paint (B) having a refractive index of 1.470 after curing are added to a solvent. The resin containing 3000 parts was applied using a Meyer bar, and after drying and removing the solvent, ionizing radiation was applied for 1 to 2 seconds to completely cure the resin.
A second layer of μm was formed.

【0013】**実施例2 厚さ188μmのポリエステルフィルム上に、電離放射
線硬化型樹脂塗料(A)106部に溶剤200部を添加
したものをメイヤーバーにて塗布し、溶剤を乾燥除去
後、電離放射線を0.2〜0.5秒照射し、半硬化させ
タックをとり、厚さが4μmの第1層目を形成する。そ
の後、電離放射線硬化樹脂塗料(B)106部に、溶剤
3000部を添加したものをメイヤーバーにて塗布し、
溶剤を乾燥除去後、電離放射線を0.2〜0.5秒照射
し、半硬化させタックをとり、0.09μmの第2層を
形成する。その後、電離放射線硬化型樹脂塗料(A)1
06部に溶剤3000部を添加したものをメイヤーバー
にて塗布し、溶剤を乾燥除去後、電離放射線を0.2〜
0.5秒照射し、半硬化させタックをとり、0.09μ
mの第3層目を形成する。その後、シリコン系アクリレ
ート70部、フッ素系シリコンアクリレート30部、ベ
ンゾフェノン系光開始剤3部、アミン系増感剤3部から
なり、硬化後の屈折率が1.45となる電離放射線硬化
樹脂塗料(C)106部に、溶剤3000部を添加した
ものをメイヤーバーにて塗布し、溶剤を乾燥除去後、電
離放射線を1〜2秒照射し、完全に硬化させ、0.09
μmの第4層目を形成した。
** Example 2 On a 188 μm-thick polyester film, 106 parts of an ionizing radiation-curable resin paint (A) to which 200 parts of a solvent had been added was applied using a Meyer bar. The film is irradiated with ionizing radiation for 0.2 to 0.5 seconds, semi-cured and tacked to form a first layer having a thickness of 4 μm. After that, 106 parts of the ionizing radiation-curable resin paint (B) to which 3000 parts of a solvent had been added was applied using a Mayer bar,
After the solvent is removed by drying, the film is irradiated with ionizing radiation for 0.2 to 0.5 seconds, semi-cured and tacked to form a second layer of 0.09 μm. After that, ionizing radiation-curable resin paint (A) 1
A solution obtained by adding 3,000 parts of a solvent to 06 parts of the mixture was applied by a Meyer bar, and after the solvent was removed by drying, ionizing radiation was applied to 0.2 to 0.2 parts.
Irradiate for 0.5 seconds, semi-cured and removed tack, 0.09μ
The third layer of m is formed. Thereafter, an ionizing radiation-curable resin coating material comprising 70 parts of a silicon-based acrylate, 30 parts of a fluorine-based silicon acrylate, 3 parts of a benzophenone-based photoinitiator, and 3 parts of an amine-based sensitizer, and having a refractive index of 1.45 after curing ( C) 106 parts of a solution obtained by adding 3000 parts of a solvent was applied by a Meyer bar, and after drying and removing the solvent, ionizing radiation was applied for 1 to 2 seconds to completely cure the mixture, thereby obtaining 0.09%
A fourth layer of μm was formed.

【0014】**実施例3 厚さ188μmのポリエステルフィルム上に、電離放射
線硬化型樹脂塗料(A)106部に、平均粒径4.5μ
mのシリカ0.5部を添加してなる電離放射線硬化型樹
脂塗料(D)106.5部に溶剤200部を添加したも
のをメイヤーバーにて塗布し、溶剤を乾燥除去後、電離
放射線を0.2〜0.5秒照射し、半硬化させタックを
とり、厚さが4μmの第1層目を形成する。その後、電
離放射線硬化樹脂塗料(B)106部に、溶剤3000
部を添加したものをメイヤーバーにて塗布し、溶剤を乾
燥除去後、電離放射線を1〜2秒照射し、完全に硬化さ
せ、0.09μmの第2層目を形成した。
** Example 3 On a polyester film having a thickness of 188 μm, 106 parts of an ionizing radiation-curable resin coating material (A) was coated with an average particle size of 4.5 μm.
106.5 parts of an ionizing radiation-curable resin coating (D) obtained by adding 0.5 part of silica having a m of 200 m and 200 parts of a solvent are applied by a Meyer bar, and after removing the solvent by drying, ionizing radiation is applied. Irradiate for 0.2 to 0.5 seconds, semi-curing and take tack to form a first layer having a thickness of 4 μm. Then, a solvent 3000 was added to 106 parts of the ionizing radiation-curable resin paint (B).
The resulting mixture was applied with a Meyer bar, the solvent was removed by drying, and then ionizing radiation was applied for 1 to 2 seconds to completely cure the resin, thereby forming a second layer having a thickness of 0.09 μm.

【0015】**比較例1 厚さ188μmのポリエステルフィルム上に、電離放射
線硬化型樹脂塗料(A)106部、に溶剤200部を添
加したものをメイヤーバーにて塗布し、溶剤を乾燥除去
後、電離放射線を1〜2秒照射し、完全に硬化させ、厚
さが4μmハードコート層を形成した。
** Comparative Example 1 On a polyester film having a thickness of 188 μm, a coating obtained by adding 200 parts of a solvent to 106 parts of an ionizing radiation-curable resin coating (A) was applied by a Mayer bar, and the solvent was dried and removed. Irradiated with ionizing radiation for 1 to 2 seconds and completely cured to form a 4 μm thick hard coat layer.

【0016】**比較例2 厚さ188μmのポリエステルフィルム上に、電離放射
線硬化型樹脂塗料(A)106部に、溶剤200部を添
加したものをメイヤーバーにて塗布し、溶剤を乾燥除去
後、電離放射線を0.2〜0.5秒照射し、半硬化させ
タックをとり、厚さが4μmの第1層目を形成する。そ
の後、電離放射線硬化型樹脂塗料(A)106部に、溶
剤3000部を添加したものをメイヤーバーにて塗布
し、溶剤を乾燥除去後、電離放射線を、1〜2秒照射
し、完全に硬化させ、0.09μmの第2層目を形成す
る。
** Comparative Example 2 On a polyester film having a thickness of 188 μm, a coating obtained by adding 200 parts of a solvent to 106 parts of an ionizing radiation-curable resin paint (A) was applied using a Mayer bar, and the solvent was dried and removed. Irradiate with ionizing radiation for 0.2 to 0.5 seconds, semi-harden and remove the tack to form a first layer having a thickness of 4 μm. Thereafter, a coating obtained by adding 3000 parts of a solvent to 106 parts of the ionizing radiation-curable resin paint (A) is applied using a Meyer bar, and after drying and removing the solvent, irradiation with ionizing radiation is performed for 1 to 2 seconds to completely cure the resin. Then, a second layer of 0.09 μm is formed.

【0017】**比較例3 厚さ188μmのポリエステルフィルム上に、電離放射
線硬化型樹脂塗料(A)106部に、溶剤200部を添
加したものをメイヤーバーにて塗布し、溶剤を乾燥除去
後、電離放射線を0.2〜0.5秒照射し、半硬化させ
タックをとり、厚さが4μmの第1層目を形成する。そ
の後、ビスフェノールA型アクリレート80部、硫黄含
有アクリレート20部、ベンゾフェノン系光開始剤3
部、アミン系増感剤3部からなり、硬化後の屈折率が
1.551となる電離放射線硬化型樹脂塗料(E)10
6部に、溶剤3000部を添加したものをメイヤーバー
にて塗布し、溶剤を乾燥除去後、電離放射線を、1〜2
秒照射し、完全に硬化させ、0.09μmの第2層目を
形成する。
** Comparative Example 3 On a polyester film having a thickness of 188 μm, a coating obtained by adding 200 parts of a solvent to 106 parts of an ionizing radiation-curable resin paint (A) was applied using a Mayer bar, and the solvent was dried and removed. Irradiate with ionizing radiation for 0.2 to 0.5 seconds, semi-harden and remove the tack to form a first layer having a thickness of 4 μm. Thereafter, 80 parts of bisphenol A type acrylate, 20 parts of sulfur-containing acrylate, and benzophenone-based photoinitiator 3
Parts of an ionizing radiation-curable resin paint (E) 10 having a refractive index of 1.551 after curing.
Six parts, to which 3000 parts of a solvent were added, was applied using a Meyer bar, and after the solvent was removed by drying, ionizing radiation was applied to 1-2 parts.
Irradiate for 2 seconds and cure completely to form a second layer of 0.09 μm.

【0018】**比較例4 厚さ188μmのポリエステルフィルム上に、電離放射
線硬化型樹脂塗料(D)106.5部に、溶剤200部
を添加したものをメイヤーバーにて塗布し、溶剤を乾燥
除去後、電離放射線を1〜2秒照射し、完全に硬化さ
せ、厚さが4μmのハードコート層を形成する。
** Comparative Example 4 On a polyester film having a thickness of 188 μm, a coating obtained by adding 200 parts of a solvent to 106.5 parts of an ionizing radiation-curable resin paint (D) was applied using a Mayer bar, and the solvent was dried. After the removal, the film is irradiated with ionizing radiation for 1 to 2 seconds to be completely cured, and a hard coat layer having a thickness of 4 μm is formed.

【0019】**比較例5 厚さ188μmのポリエステルフィルム上に、電離放射
線硬化型樹脂塗料(A)106部に平均粒径4.5μm
のシリカ6部を添加してなる電離放射線硬化型樹脂塗料
(F)112部に溶剤を200部を添加したものをメイ
ヤーバーにて塗布し、溶剤を乾燥除去後、電離放射線を
1〜2秒照射し、完全に硬化させ、厚さが4μmのハー
ドコート層を形成した。
** Comparative Example 5 On a polyester film having a thickness of 188 μm, 106 parts of an ionizing radiation-curable resin coating material (A) was coated with an average particle size of 4.5 μm.
A solution obtained by adding 200 parts of a solvent to 112 parts of an ionizing radiation-curable resin paint (F) obtained by adding 6 parts of silica is applied by a Meyer bar, and after removing the solvent by drying, ionizing radiation is applied for 1 to 2 seconds. Irradiation and complete curing resulted in the formation of a hard coat layer having a thickness of 4 μm.

【0020】実施例1、2、3及び比較例1、2、3、
4、5で得られたハードコートフィルムについて、以下
の評価を行いその結果を表1に示した。 (1)透過率 分光光度計UV−3100PC(島津製作所)を用い5
50nmの光線透過率を測定した。単位は%である。 (2)反射率 分光光度計UV−3100PC(島津製作所)を用い5
50nmの光線反射率を測定した。単位は%である。 (3)鉛筆硬度 JIS k5400に準じて測定した。 (4)耐スチールウール性 スチールウール#0000にてコート面を擦り、傷の付
き具合を判定する A:傷が付かない B:やや傷が付く C:傷が付
Examples 1, 2, 3 and Comparative Examples 1, 2, 3,
The hard coat films obtained in 4 and 5 were evaluated as follows, and the results are shown in Table 1. (1) transmittance 5 using a spectrophotometer UV-3100PC (Shimadzu Corporation)
The light transmittance at 50 nm was measured. The unit is%. (2) Reflectance 5 using spectrophotometer UV-3100PC (Shimadzu Corporation)
The light reflectance at 50 nm was measured. The unit is%. (3) Pencil hardness Measured according to JIS k5400. (4) Steel wool resistance The coated surface is rubbed with steel wool # 0000 to judge the degree of scratching A: No scratching B: Slightly scratched C: Scratched

【0021】 [0021]

【0022】[0022]

【発明の効果】以上の実施例からも明らかなように、本
発明により作製された反射防止フィルムは、反射防止機
能の役目を果たし、かつ透明性、耐スクラッチ性に優れ
たものである。
As is clear from the above examples, the antireflection film produced according to the present invention plays a role of an antireflection function, and is excellent in transparency and scratch resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材上に、少なくとも2層以上の樹脂層
を形成し、その樹脂層のうち、少なくとも隣接する2層
の樹脂層の屈折率が少なくとも0.010以上異なるこ
とを特徴とする反射防止材。
1. A method according to claim 1, wherein at least two or more resin layers are formed on the base material, and at least two adjacent resin layers of the resin layers differ in refractive index by at least 0.010 or more. Anti-reflective material.
【請求項2】 樹脂層のうち少なくとも1層に、シリカ
等の微粒子を含有することを特徴とする、請求項1記載
の反射防止材。
2. The antireflection material according to claim 1, wherein at least one of the resin layers contains fine particles such as silica.
【請求項3】 樹脂層が、熱硬化性樹脂、あるいは電離
放射線硬化性樹脂から形成されるハードコート性樹脂層
であることを特徴とする、請求項1、請求項2記載の反
射防止材。
3. The anti-reflection material according to claim 1, wherein the resin layer is a hard coat resin layer formed of a thermosetting resin or an ionizing radiation-curable resin.
【請求項4】 基材が、有機高分子フイルムである請求
項1、請求項2、請求項3記載の反射防止材。
4. The antireflection material according to claim 1, wherein the substrate is an organic polymer film.
JP9054026A 1997-02-21 1997-02-21 Antireflection material Pending JPH10239502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9054026A JPH10239502A (en) 1997-02-21 1997-02-21 Antireflection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9054026A JPH10239502A (en) 1997-02-21 1997-02-21 Antireflection material

Publications (1)

Publication Number Publication Date
JPH10239502A true JPH10239502A (en) 1998-09-11

Family

ID=12959084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9054026A Pending JPH10239502A (en) 1997-02-21 1997-02-21 Antireflection material

Country Status (1)

Country Link
JP (1) JPH10239502A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022461A1 (en) * 1998-10-14 2000-04-20 Tomoegawa Paper Co., Ltd. Antireflection material and polarizing film using the same
JP2002236205A (en) * 2000-12-06 2002-08-23 Nitto Denko Corp Resin sheet, method for manufacturing the same, and liquid crystal display device
JP2002333508A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Method for producing antireflection material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022461A1 (en) * 1998-10-14 2000-04-20 Tomoegawa Paper Co., Ltd. Antireflection material and polarizing film using the same
US6777070B1 (en) 1998-10-14 2004-08-17 Tomoegawa Paper Co., Ltd. Antireflection material and polarizing film using the same
JP2002236205A (en) * 2000-12-06 2002-08-23 Nitto Denko Corp Resin sheet, method for manufacturing the same, and liquid crystal display device
JP2002333508A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Method for producing antireflection material

Similar Documents

Publication Publication Date Title
JP3314965B2 (en) Scratch-resistant antiglare film, polarizing plate and method for producing the same
TWI301096B (en) Anti glare hard coat film
KR101189198B1 (en) Method for manufacturing anti-reflective coating film
JP4746863B2 (en) Anti-glare hard coat layer forming material and anti-glare hard coat film
KR20090044089A (en) Hardcoating composition
JP3694153B2 (en) Anti-glare hard coat film
US8256909B2 (en) Antiglare film having particles for use in a display and a method for manufacturing the antiglare film
JP2008012675A (en) Optical laminate and its manufacturing method
JP3456664B2 (en) Low refractive index anti-reflection film, anti-reflection film and method for producing the same
KR102030210B1 (en) Display element front-face film, and display element provided with surface member
JP2003240906A (en) Antireflection body and method for manufacturing the same
TWI635358B (en) Hard coating film and display element with surface member
JP2001194504A (en) Antireflection hard coated film or sheet
JP2000015734A (en) Hard-coat film or sheet for forming inorganic membrane, and hard-coat film or sheet fitted with functional inorganic membrane
JP3453219B2 (en) Transparent hard coat film
KR101205477B1 (en) Composition for anti-reflective coating and anti-reflective coating film using the same
WO2020203062A1 (en) Layered film for molding
JP3471217B2 (en) Transparent conductive film
JPH10239502A (en) Antireflection material
JP2008120011A (en) Hard coat film
KR20050050591A (en) Antiglare film
JP2010164823A (en) Antireflection laminate
JP4479198B2 (en) Antireflection film
JP2004309898A (en) Antireflection film
JP2008087279A (en) Hard coat film or sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829