JPH10235730A - Manufacture of biaxially oriented polyamide film - Google Patents
Manufacture of biaxially oriented polyamide filmInfo
- Publication number
- JPH10235730A JPH10235730A JP4330097A JP4330097A JPH10235730A JP H10235730 A JPH10235730 A JP H10235730A JP 4330097 A JP4330097 A JP 4330097A JP 4330097 A JP4330097 A JP 4330097A JP H10235730 A JPH10235730 A JP H10235730A
- Authority
- JP
- Japan
- Prior art keywords
- film
- temperature
- polyamide film
- heat treatment
- relaxation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、テンター式同時二
軸延伸法を用いてボーイング量が小さく、フィルムの全
方向に均一な熱収縮率を有する二軸延伸ポリアミドフィ
ルムの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a biaxially stretched polyamide film having a small bowing amount and a uniform heat shrinkage in all directions of the film using a tenter type simultaneous biaxial stretching method. .
【0002】[0002]
【従来の技術】二軸延伸ポリアミドフィルムは機械的特
性、光学的特性、ガスバリヤー性、耐衝撃性、耐ピンホ
ール性に優れているため、主に包装材料として幅広く使
用されている。二軸延伸ポリアミドフィルムをテンター
式延伸法で製造する場合、延伸部と熱処理部との境界部
分においてフィルムに生じる応力によってボーイング現
象が発生する。すなわち、テンター式延伸方法により二
軸延伸フィルムを製造する場合、フィルムは予熱部、延
伸部、熱処理部、リラックス部、冷却部を通過していく
が、延伸部の終端近辺、つまり設定延伸倍率に到達する
位置において延伸応力が最大となる。この時、テンター
内では、フィルムの両端部はクリップで把持されている
ため、応力の低いフィルム中央部分が延伸部終端に引き
寄せられるという現象が発生する。そして、フィルム中
央部分は、延伸部の後ろの工程の熱処理部から延伸部に
向かって引き寄せられるため、延伸機内に入る前のフィ
ルムの進行方向に直角に描いた直線が延伸機より出てき
たときにフィルムの中央部がフィルムの進行方向と逆の
方向に突き出た円弧を描くボーイング現象が発生する。
この現象により、フィルムの進行方向と直角な方向は、
フィルム端部ほど斜め方向に延伸されることになる。こ
のようなフィルムを熱水や蒸気中におくと、カール現象
を起こすため、ボイル殺菌用途やレトルト殺菌用途のよ
うな包装用途に用いた場合には製袋性に問題が生じる。2. Description of the Related Art Biaxially stretched polyamide films are widely used mainly as packaging materials because of their excellent mechanical properties, optical properties, gas barrier properties, impact resistance and pinhole resistance. When a biaxially stretched polyamide film is manufactured by a tenter type stretching method, a bowing phenomenon occurs due to a stress generated in the film at a boundary portion between a stretched portion and a heat-treated portion. That is, when a biaxially stretched film is manufactured by a tenter stretching method, the film passes through a preheating section, a stretching section, a heat treatment section, a relaxation section, and a cooling section. The stretching stress is maximized at the position where it reaches. At this time, in the tenter, since both ends of the film are gripped by clips, a phenomenon occurs in which the central portion of the film having low stress is drawn to the end of the stretched portion. And since the film central part is drawn toward the stretching part from the heat treatment part in the process after the stretching part, when a straight line drawn at right angles to the traveling direction of the film before entering the stretching machine comes out of the stretching machine. In this case, a bowing phenomenon occurs in which the central portion of the film draws an arc protruding in the direction opposite to the traveling direction of the film.
Due to this phenomenon, the direction perpendicular to the film traveling direction is
The film ends are stretched in an oblique direction toward the end. When such a film is placed in hot water or steam, it causes a curl phenomenon. Therefore, when the film is used for packaging such as boil sterilization and retort sterilization, there is a problem in bag making.
【0003】ボーイングを小さくするためには、延伸時
のフイルム温度を高くして延伸応力をできるだけ低く
し、かつ熱処理温度をできるだけ低くすることが望まし
いが、延伸温度を高くしすぎるとフィルムの強度が低下
し、熱処理温度を低くすると寸法安定性が低下するとい
う問題を有していた。In order to reduce bowing, it is desirable to raise the film temperature during stretching to lower the stretching stress as much as possible and to lower the heat treatment temperature as much as possible. However, if the stretching temperature is too high, the strength of the film is reduced. If the heat treatment temperature is lowered, the dimensional stability is lowered.
【0004】[0004]
【発明が解決しようとする課題】本発明は、寸法安定性
に優れ、かつ、製袋時のカールの原因となるボーイング
を低減することができる二軸延伸ポリアミドフィルムの
製造方法を提供しようとするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a biaxially stretched polyamide film which has excellent dimensional stability and can reduce bowing which causes curling during bag making. Things.
【0005】[0005]
【課題を解決するための手段】本発明者らは、このよう
な問題を解決するために鋭意検討した結果、熱処理部か
らリラックス部にかけて温度勾配をつけ、リラックス部
で最高温度となるようにすることにより、ボーイング量
を低減できることを見出し本発明に到達した。Means for Solving the Problems The inventors of the present invention have made intensive studies to solve such a problem, and as a result, a temperature gradient is provided from the heat treatment section to the relaxation section so that the maximum temperature is obtained in the relaxation section. As a result, the inventors have found that the bowing amount can be reduced, and have reached the present invention.
【0006】すなわち、本発明の要旨は、テンター式同
時二軸延伸方法により、延伸、熱処理、熱弛緩(リラッ
クス)の各工程を経て、二軸延伸ポリアミドフィルムを
製造する方法において、熱処理工程からリラックス工程
にかけて徐々に昇温し、リラックス工程で最高温度とな
るように温度勾配をつけることを特徴とする二軸延伸ポ
リアミドフィルムの製造方法にある。That is, the gist of the present invention is to provide a method of manufacturing a biaxially stretched polyamide film through stretching, heat treatment, and thermal relaxation (relaxation) by a tenter-type simultaneous biaxial stretching method. In the method for producing a biaxially stretched polyamide film, the temperature is gradually raised during the step, and a temperature gradient is applied so as to reach the maximum temperature in the relaxing step.
【0007】[0007]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明におけるポリアミドとしては、ナイロン6、ナイ
ロン66及びこれらを主体とするポリアミドなどが使用
できるが、コストパフォーマンスの点で特にナイロン6
が好ましい。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
As the polyamide in the present invention, nylon 6, nylon 66 and polyamides mainly composed of these can be used.
Is preferred.
【0008】ポリアミドには公知の添加剤、たとえば安
定剤、酸化防止剤、充填剤、滑剤、帯電防止剤、ブロッ
キング防止剤、着色剤などを含有させてもよい。The polyamide may contain known additives such as a stabilizer, an antioxidant, a filler, a lubricant, an antistatic agent, an antiblocking agent and a coloring agent.
【0009】本発明の方法を実施するに当たっては、ま
ず、ポリアミドを常法によってTダイ法で製膜して実質
的に無定形の未延伸フイルムを得る。次いで、この未延
伸フイルムに吸湿処理を施した後、予熱部で短時間予熱
処理し、引き続いて、縦方向(MD)、横方向(TD)
に同時二軸延伸し、さらに熱処理、リラックス処理、冷
却処理を行うことによって二軸延伸ポリアミドフィルム
を得る。In carrying out the method of the present invention, first, a polyamide is formed into a film by a T-die method by a conventional method to obtain a substantially amorphous unstretched film. Next, the unstretched film is subjected to a moisture absorption treatment, and then subjected to a short-time pre-heat treatment in a preheating section, and subsequently, a longitudinal direction (MD) and a transverse direction (TD).
And then heat-treated, relaxed, and cooled to obtain a biaxially stretched polyamide film.
【0010】本発明において、熱処理部は2ゾーン以
上、好ましくは、3ゾーン以上有することが好ましい。
この理由は、熱処理を多段階で行うことにより、延伸部
から熱処理部にかけてのフィルム内部の応力分布が均一
化され、ボーイングが低減されるからである。In the present invention, the heat treatment section preferably has two or more zones, preferably three or more zones.
The reason for this is that by performing the heat treatment in multiple stages, the stress distribution inside the film from the stretched portion to the heat-treated portion is made uniform, and bowing is reduced.
【0011】本発明においては、熱処理部からリラック
ス部にかけて徐々に温度を高くする温度勾配をつけ、リ
ラックス部で最高温度となるようにすることにより、ボ
ーイングを低減することができる。リラックス部直前の
熱処理部とリラックス部の温度は同じであってもよい
が、リラックス部の温度が処理部の温度より低いと、ボ
ーイングの低減効果が減少し、また、熱収縮率の全方向
的なバランスを付与することが困難となる。In the present invention, bowing can be reduced by providing a temperature gradient that gradually raises the temperature from the heat treatment section to the relaxation section, so that the maximum temperature is reached in the relaxation section. The temperature of the heat treatment section and the temperature of the relaxation section immediately before the relaxation section may be the same, but if the temperature of the relaxation section is lower than the temperature of the processing section, the effect of reducing the bowing is reduced, and the omnidirectional heat shrinkage rate is reduced. It is difficult to provide a proper balance.
【0012】リラックス部の最高温度は、ポリアミドの
融点未満であることが必要であり、205〜 215℃の範囲
が好ましい。[0012] The maximum temperature of the relaxing portion must be lower than the melting point of the polyamide, and is preferably in the range of 205 to 215 ° C.
【0013】本発明において、二軸延伸ポリアミドフィ
ルムの厚みは、5〜 100μm、通常10〜50μm である。In the present invention, the thickness of the biaxially stretched polyamide film is 5 to 100 μm, usually 10 to 50 μm.
【0014】[0014]
【作用】本発明の方法によって得られる二軸延伸ポリア
ミドフィルムのボーイング量が小さくなる理由は明らか
ではないが、延伸応力が最大となる延伸部の終端から熱
処理、及びリラックス工程において徐々に昇温すること
により、延伸応力が分散されることによるものと思われ
る。Although the reason why the bowing amount of the biaxially stretched polyamide film obtained by the method of the present invention is small is not clear, the temperature is gradually increased in the heat treatment and the relaxation process from the end of the stretched portion where the stretching stress is maximized. This seems to be due to dispersion of the stretching stress.
【0015】[0015]
【実施例】次に、本発明を実施例によって具体的に説明
する。なお、実施例及び比較例の評価に用いた測定方法
は次の通りである。Next, the present invention will be described specifically with reference to examples. In addition, the measuring method used for evaluation of an Example and a comparative example is as follows.
【0016】1.ボーイング量 延伸機の入口でフィルムの進行方向に直角(フィルムの
幅方向)に、油性フェルトペンで直線を引く。延伸、熱
処理工程を経て、テンターより出てきたフィルムの前記
直線の中央部のMDの変形量(mm)を測定し、下記式に
よりボーイング量を算出した。 ボーイング量(%)=(フィルム中央部の変形量/フィ
ルム幅)× 1001. Boeing A straight line is drawn at right angles to the direction of film advance (the width direction of the film) at the entrance of the stretching machine using an oil-based felt pen. Through the stretching and heat treatment steps, the MD deformation (mm) at the center of the straight line of the film coming out of the tenter was measured, and the bowing amount was calculated by the following equation. Boeing amount (%) = (deformation amount at film center / film width) x 100
【0017】2.熱水収縮率 フイルムの中央部、及び、中央から両側にそれぞれ幅方
向に40%(フイルムの全幅を 100%として)離れた位置
のフィルムを、幅方向に10mm、長さ方向に 100mmの寸法
にカットし、20℃×65%RHの雰囲気中で、標線間の寸
法(L0 )を読取顕微鏡によって正確に測定した後、沸
騰水中に5分間浸漬し、沸騰水から引き上げたフイルム
を20℃、65%RHの雰囲気中に放置して平衡に達してか
ら前記標線間の寸法(L1 )を測定し、次式より求め
た。 熱水収縮率 (%) =〔(L0 −L1 )/L0 〕×1002. Hot water shrinkage The film at the center of the film and at 40% in the width direction on both sides from the center (assuming the total width of the film as 100%) is reduced to 10 mm in the width direction and 100 mm in the length direction. The film was cut, and the dimension (L 0 ) between the marked lines was accurately measured by a scanning microscope in an atmosphere of 20 ° C. × 65% RH. Then, the film was immersed in boiling water for 5 minutes, and the film pulled out of the boiling water was heated at 20 ° C. After reaching equilibrium after being left in an atmosphere of 65% RH, the dimension (L 1 ) between the marked lines was measured and determined by the following equation. Hot water shrinkage (%) = [(L 0 −L 1 ) / L 0 ] × 100
【0018】3.熱水収縮率の斜め差 20℃×65%RH雰囲気下で、フィルムの幅方向に対して
斜め45°と 135°の方向の熱水収縮率の差を測定した。
測定サンプルは、上記斜め方向に沿って、巾10mm×長さ
100mmの寸法にカットし、100 ℃熱水中で5分間ボイル
処理した後、20℃×65%RHで2時間放置して寸法を測
定し、処理前の寸法に対する収縮率を求め、各方向の収
縮率の差の絶対値を熱水収縮率斜め差とした。なお、測
定サンプルは、フィルム中央部及び中央部から幅方向に
それぞれ両側に40%離れた位置において、測定サンプル
の長さ方向の中点が前記の位置になるようにサンプリン
グした。3. Oblique Difference in Hot Water Shrinkage Rate Under a 20 ° C. × 65% RH atmosphere, the difference between the hot water shrinkage rates in the directions of 45 ° and 135 ° oblique to the width direction of the film was measured.
The measurement sample is 10mm wide x length along the above diagonal direction.
Cut to 100mm size, boiled in hot water at 100 ° C for 5 minutes, then left at 20 ° C x 65% RH for 2 hours to measure the size, calculate the shrinkage relative to the size before processing, and The absolute value of the difference in the shrinkage was defined as the oblique difference in the hot water shrinkage. The measurement sample was sampled such that the center of the measurement sample in the length direction was the above-described position at the center of the film and at a position 40% apart on both sides in the width direction from the center.
【0019】実施例1 相対粘度 3.0(25 ℃、95%濃硫酸中、1g/dl )、融点 2
20℃のナイロン6(ユニチカ社製 A1030BRF )を、90mm
φ押出機にて 260℃で、幅 630mmのTダイよりシート状
に溶融押出した後、表面温度20℃の冷却ロールに密着さ
せて急冷し、厚み 150μm の実質的に無定形で配向して
いない未延伸フィルムを得た。得られた未延伸フィルム
を50℃の温水中に浸漬し、フィルムの水分率を4%に調
整した後、195 ℃でMDに 3.0倍、TDに 3.3倍の倍率
で同時二軸延伸し、続いて第1〜3ゾーンの各温度を、
それぞれ、202 ℃、206 ℃、211 ℃として熱処理を行
い、次に、温度 212℃で2秒間リラックス処理を行い、
厚み15μm 、幅1420mmの二軸延伸ポリアミドフィルムを
得た。得られた二軸延伸ポリアミドフィルムについて、
ボーイング量、熱水収縮率、熱水収縮率の斜め差を測定
した結果を表1に示した。ボーイング量及び熱水収縮率
の斜め差が小さいフィルムが得られた。Example 1 Relative viscosity 3.0 (1 g / dl in 25 ° C., 95% concentrated sulfuric acid), melting point 2
Nylon 6 (A1030BRF manufactured by Unitika) at 20 ° C
After being extruded into a sheet from a T-die with a width of 630 mm at 260 ° C with a φ extruder, it is rapidly cooled by being in close contact with a cooling roll with a surface temperature of 20 ° C, and has a 150 µm thickness and is substantially amorphous and not oriented. An unstretched film was obtained. The obtained unstretched film was immersed in warm water at 50 ° C. to adjust the moisture content of the film to 4%, and then simultaneously biaxially stretched at 195 ° C. at a magnification of 3.0 times for MD and 3.3 times for TD. And the respective temperatures of the first to third zones
Heat treatment is performed at 202 ° C., 206 ° C., and 211 ° C., respectively, and then relaxation treatment is performed at 212 ° C. for 2 seconds.
A biaxially stretched polyamide film having a thickness of 15 μm and a width of 1420 mm was obtained. About the obtained biaxially stretched polyamide film,
Table 1 shows the results of measuring the bowing amount, the hot water shrinkage, and the oblique difference in the hot water shrinkage. A film having a small difference in the bowing amount and the hot water shrinkage was obtained.
【0020】実施例2 第1〜3ゾーンの熱処理温度を、それぞれ、202 ℃、20
8 ℃、211 ℃とし、リラックス温度を 211℃とした以外
は実施例1と同様にして二軸延伸ポリアミドフィルムを
得た。得られた二軸延伸ポリアミドフィルムについて、
ボーイング量、熱水収縮率、熱水収縮率の斜め差を測定
した結果を表1に示した。Example 2 The heat treatment temperatures of the first to third zones were 202 ° C. and 20 ° C., respectively.
A biaxially stretched polyamide film was obtained in the same manner as in Example 1 except that the temperature was 8 ° C., 211 ° C., and the relaxation temperature was 211 ° C. About the obtained biaxially stretched polyamide film,
Table 1 shows the results of measuring the bowing amount, the hot water shrinkage, and the oblique difference in the hot water shrinkage.
【0021】比較例1 第1〜3ゾーンの熱処理温度を、それぞれ、202 ℃、21
2 ℃、203 ℃とし、リラックス温度を 200℃とした以外
は実施例1と同様にして二軸延伸ポリアミドフィルムを
得た。得られた二軸延伸ポリアミドフィルムについて、
ボーイング量、熱水収縮率、熱水収縮率の斜め差を測定
した結果を表1に示した。得られた二軸延伸ポリアミド
フィルムは、ボーイング量が大きかった。Comparative Example 1 The heat treatment temperatures of the first to third zones were 202 ° C. and 21 ° C., respectively.
A biaxially stretched polyamide film was obtained in the same manner as in Example 1 except that the temperature was 2 ° C., 203 ° C., and the relaxation temperature was 200 ° C. About the obtained biaxially stretched polyamide film,
Table 1 shows the results of measuring the bowing amount, the hot water shrinkage, and the oblique difference in the hot water shrinkage. The obtained biaxially stretched polyamide film had a large bowing amount.
【0022】比較例2 第1〜3ゾーンの熱処理温度を、それぞれ、202 ℃、20
8 ℃、212 ℃とし、リラックス温度を 200℃とした以外
は実施例1と同様にして二軸延伸ポリアミドフィルムを
得た。得られた二軸延伸ポリアミドフィルムについて、
ボーイング量、熱水収縮率、熱水収縮率の斜め差を測定
した結果を表1に示した。ボーイング量は良好である
が、MDの熱収縮率がTDに比べて大きく、熱水収縮率
のバランスが悪かった。Comparative Example 2 The heat treatment temperatures of the first to third zones were 202 ° C. and 20 ° C., respectively.
A biaxially stretched polyamide film was obtained in the same manner as in Example 1 except that the temperature was 8 ° C. and 212 ° C., and the relaxation temperature was 200 ° C. About the obtained biaxially stretched polyamide film,
Table 1 shows the results of measuring the bowing amount, the hot water shrinkage, and the oblique difference in the hot water shrinkage. Although the bowing amount was good, the heat shrinkage of MD was larger than TD, and the balance of hot water shrinkage was poor.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【発明の効果】本発明によれば、機械的特性を低下させ
ることなく、製袋時のカールの原因となるボーイングを
低減でき、幅方向に均一な性能バランスを有する二軸延
伸ポリアミドフィルムを製造することが可能となる。ま
た、設備的にもコストがかからないため、その工業的価
値は大きい。According to the present invention, a biaxially stretched polyamide film having a uniform performance balance in the width direction can be produced without reducing the mechanical properties and reducing bowing which causes curling during bag making. It is possible to do. In addition, since the cost is not required in terms of equipment, its industrial value is great.
Claims (1)
伸、熱処理、熱弛緩(リラックス)の各工程を経て、二
軸延伸ポリアミドフィルムを製造する方法において、熱
処理工程からリラックス工程にかけて徐々に昇温し、リ
ラックス工程で最高温度となるように温度勾配をつける
ことを特徴とする二軸延伸ポリアミドフィルムの製造方
法。1. A method of manufacturing a biaxially stretched polyamide film through a tenter-type simultaneous biaxial stretching method through stretching, heat treatment, and thermal relaxation (relaxation) steps, wherein the temperature is gradually increased from the heat treatment step to the relaxation step. A method for producing a biaxially stretched polyamide film, wherein a temperature gradient is set so as to reach a maximum temperature in a relaxing step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4330097A JPH10235730A (en) | 1997-02-27 | 1997-02-27 | Manufacture of biaxially oriented polyamide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4330097A JPH10235730A (en) | 1997-02-27 | 1997-02-27 | Manufacture of biaxially oriented polyamide film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10235730A true JPH10235730A (en) | 1998-09-08 |
Family
ID=12659950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4330097A Pending JPH10235730A (en) | 1997-02-27 | 1997-02-27 | Manufacture of biaxially oriented polyamide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10235730A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084846A1 (en) * | 2009-01-21 | 2010-07-29 | ユニチカ株式会社 | Opaque film and opaque laminate using same |
WO2015147121A1 (en) * | 2014-03-26 | 2015-10-01 | ユニチカ株式会社 | Biaxially stretched polyamide film and method for producing same |
WO2021193439A1 (en) * | 2020-03-26 | 2021-09-30 | ユニチカ株式会社 | Polyamide 6 resin film |
WO2022210357A1 (en) * | 2021-03-31 | 2022-10-06 | ユニチカ株式会社 | Semiaromatic polyamide film and laminate obtained therefrom |
-
1997
- 1997-02-27 JP JP4330097A patent/JPH10235730A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084846A1 (en) * | 2009-01-21 | 2010-07-29 | ユニチカ株式会社 | Opaque film and opaque laminate using same |
WO2015147121A1 (en) * | 2014-03-26 | 2015-10-01 | ユニチカ株式会社 | Biaxially stretched polyamide film and method for producing same |
CN106103046A (en) * | 2014-03-26 | 2016-11-09 | 尤尼吉可株式会社 | Biaxial stretching polyamide film and manufacture method thereof |
KR20160137510A (en) * | 2014-03-26 | 2016-11-30 | 유니띠까 가부시키가이샤 | Biaxially stretched polyamide film and method for producing same |
JPWO2015147121A1 (en) * | 2014-03-26 | 2017-04-13 | ユニチカ株式会社 | Biaxially stretched polyamide film and method for producing the same |
WO2021193439A1 (en) * | 2020-03-26 | 2021-09-30 | ユニチカ株式会社 | Polyamide 6 resin film |
WO2022210357A1 (en) * | 2021-03-31 | 2022-10-06 | ユニチカ株式会社 | Semiaromatic polyamide film and laminate obtained therefrom |
JP7193198B1 (en) * | 2021-03-31 | 2022-12-20 | ユニチカ株式会社 | Semi-aromatic polyamide film and laminate obtained therefrom |
US11965072B2 (en) | 2021-03-31 | 2024-04-23 | Unitika Ltd. | Semiaromatic polyamide film and laminate obtained therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0334456B2 (en) | ||
JP3660063B2 (en) | Method for producing biaxially stretched polyamide film | |
EP0764678B1 (en) | Biaxially oriented polyamide film | |
JPH10235730A (en) | Manufacture of biaxially oriented polyamide film | |
JP2623939B2 (en) | Biaxially oriented polyamide film and method for producing the same | |
JPH0244706B2 (en) | ||
JPH01275031A (en) | Method of heat treating biaxially oriented polyester film | |
JP3852671B2 (en) | Method for producing biaxially stretched polyester film | |
WO2013137395A1 (en) | Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film | |
JPH0125695B2 (en) | ||
JP2900570B2 (en) | Biaxially oriented polyamide film and method for producing the same | |
JPH09216279A (en) | Manufacture of biaxially oriented polyamide film | |
JP3676883B2 (en) | Method for producing polyamide film, and biaxially oriented polyamide film obtained by the method | |
JP3569989B2 (en) | Method for producing biaxially oriented polyamide film | |
JPS6243857B2 (en) | ||
JP2841755B2 (en) | Polyamide film and method for producing the same | |
JPH0458373B2 (en) | ||
JP4710126B2 (en) | Method for producing biaxially stretched polyamide film | |
JP4068249B2 (en) | Method for producing biaxially stretched polyamide film | |
JPS62268629A (en) | Heat treating method for thermoplastic resin film | |
JP3822075B2 (en) | Method for producing biaxially stretched polyamide resin film | |
JP4162844B2 (en) | Method for producing biaxially stretched polyamide resin film | |
JP2013107316A (en) | Biaxially oriented polyester film excellent in secondary processability | |
JPH11348115A (en) | Production of simultaneously biarxially stretched polyamide film | |
JPH10296853A (en) | Manufacture of biaxially oriented polyamide film |