JPH10233814A - Automatic frequency control circuit - Google Patents

Automatic frequency control circuit

Info

Publication number
JPH10233814A
JPH10233814A JP9034082A JP3408297A JPH10233814A JP H10233814 A JPH10233814 A JP H10233814A JP 9034082 A JP9034082 A JP 9034082A JP 3408297 A JP3408297 A JP 3408297A JP H10233814 A JPH10233814 A JP H10233814A
Authority
JP
Japan
Prior art keywords
signal
frequency error
carrier frequency
circuit
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9034082A
Other languages
Japanese (ja)
Inventor
Takeshi Kizawa
武 鬼沢
Sei Kobayashi
聖 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9034082A priority Critical patent/JPH10233814A/en
Publication of JPH10233814A publication Critical patent/JPH10233814A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correct a frequency error of a whole packet including a packet termination part by holding the carrier frequency error detection signal value by an amount equivalent to a prescribed symbol right before no receiving signal is detected any more at the packet termination part when the carrier frequency error is corrected by means of plural symbols of a packet tip part. SOLUTION: A subtraction circuit 4 produces a phase rotation signal a5 that is proportional to the carrier frequency error of a receiving phase signal a1 on the basis of a phase angle decision signal a4 outputted from a symbol decision circuit 3. Thereafter, a carrier frequency error detection means reaching a division circuit 9 performs the integrating/averaging processing of plural symbols of a packet tip part to output the carrier frequency error signals a10. A sample hold circuit 13 holds and outputs the signals a10 in number equivalent to a prescribed number of symbols even after a receiving signal detection circuit 14 detects no signal a1 any more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディジタル無線通
信システムで用いられる受信機において、相手局から受
信する信号のキャリア周波数誤差を補正する自動周波数
制御回路に関する。特に、情報を短いデータパケットに
分割して伝送する無線パケット通信に適した自動周波数
制御回路に関する。
The present invention relates to an automatic frequency control circuit for correcting a carrier frequency error of a signal received from a partner station in a receiver used in a digital radio communication system. In particular, the present invention relates to an automatic frequency control circuit suitable for wireless packet communication in which information is divided into short data packets and transmitted.

【0002】[0002]

【従来の技術】パケット通信は、データを短いパケット
にし、情報が存在するときのみ信号を送信する方法であ
り、回線交換型の通信と比較して高効率に情報伝送が可
能である。図4は、復調回路に用いられる従来の自動周
波数制御回路の構成例を示す(参考文献:鬼沢 他,
「ベクトル平均AFCを用いたOLRM復調器の一検
討」,B-372, 1996年電子情報通信学会ソサィエティ大
会) 。
2. Description of the Related Art Packet communication is a method in which data is converted into short packets and a signal is transmitted only when information is present. Information can be transmitted with higher efficiency than circuit-switched communication. FIG. 4 shows a configuration example of a conventional automatic frequency control circuit used for a demodulation circuit (reference: Onizawa et al.,
"A study of OLRM demodulator using vector average AFC", B-372, IEICE Society Conference, 1996).

【0003】図において、遅延回路1は、受信位相信号
a1を1シンボル区間遅延させた遅延信号a2を出力す
る。減算回路2は、受信位相信号a1から遅延信号a2
を減算し、1シンボル区間の位相差分信号a3を出力す
る。シンボル判定回路3は、位相差分信号a3の雑音お
よびキャリア周波数誤差がないときの信号判定角に最も
近い位相角判定信号a4を出力する。減算回路4は、位
相差分信号a3から位相角判定信号a4を減算し、位相
差分信号a3のキャリア周波数誤差に比例した位相回転
信号a5を出力する。
In FIG. 1, a delay circuit 1 outputs a delay signal a2 obtained by delaying a reception phase signal a1 by one symbol period. The subtraction circuit 2 calculates the delay signal a2 from the reception phase signal a1.
And outputs a phase difference signal a3 for one symbol section. The symbol determination circuit 3 outputs a phase angle determination signal a4 that is closest to the signal determination angle when there is no noise and carrier frequency error in the phase difference signal a3. The subtraction circuit 4 subtracts the phase angle determination signal a4 from the phase difference signal a3, and outputs a phase rotation signal a5 proportional to the carrier frequency error of the phase difference signal a3.

【0004】乗算回路5は、この位相回転信号a5をN
倍(Nは正整数)してN倍位相回転信号a6を出力す
る。ベクトル変換回路6は、N倍位相回転信号a6のも
つ偏角に基づくベクトルの同相成分信号a7と直交成分
信号a8を生成して出力する。積分回路7−1,7−2
は、同相成分信号a7と直交成分信号a8をそれぞれm
シンボル(mは正整数)積分して平均化を行う。位相検
出回路8は、この平均化されたベクトルからベクトルが
もつ偏角(位相)を検出し、位相検出信号a9を出力す
る。除算回路9は、位相検出回路a9を1/Nに分周
し、キャリア周波数誤差信号a10を出力する。積分回
路10は、可変周波数発振手段として用いられるもので
あり、キャリア周波数誤差信号a10を積分し続けて周
波数変換用参照信号a11を出力する。
The multiplication circuit 5 converts the phase rotation signal a5 into N
It multiplies (N is a positive integer) and outputs an N-fold phase rotation signal a6. The vector conversion circuit 6 generates and outputs an in-phase component signal a7 and a quadrature component signal a8 of a vector based on the argument of the N-fold phase rotation signal a6. Integration circuits 7-1 and 7-2
Calculates the in-phase component signal a7 and the quadrature component signal a8 by m
Symbols (m is a positive integer) are integrated and averaged. The phase detection circuit 8 detects a declination (phase) of the vector from the averaged vector and outputs a phase detection signal a9. The division circuit 9 divides the frequency of the phase detection circuit a9 by 1 / N and outputs a carrier frequency error signal a10. The integration circuit 10 is used as a variable frequency oscillating means, and continuously integrates the carrier frequency error signal a10 to output a frequency conversion reference signal a11.

【0005】一方、遅延回路11は、受信位相信号a1
を遅延させた遅延受信位相信号a12を出力する。減算
回路12は、遅延受信位相信号a12から周波数変換用
参照信号a11を減算して周波数変換を行い、キャリア
周波数誤差補正信号a13を出力する。これにより、受
信位相信号a1のキャリア周波数誤差が補正される。
On the other hand, the delay circuit 11 receives the received phase signal a1
Is output as a delayed reception phase signal a12. The subtraction circuit 12 performs frequency conversion by subtracting the frequency conversion reference signal a11 from the delayed reception phase signal a12, and outputs a carrier frequency error correction signal a13. Thereby, the carrier frequency error of the received phase signal a1 is corrected.

【0006】[0006]

【発明が解決しようとする課題】従来の自動周波数制御
回路において、図5に示すようなパケット(プリアンブ
ルレスパケットを含む)のキャリア周波数誤差を補正す
る場合には、パケット先端部のmシンボルを用いてキャ
リア周波数誤差を検出することにより、受信位相信号a
1のキャリア周波数誤差の補正が可能である。このと
き、受信位相信号a1をiシンボル(iは正整数)だけ
遅延させた遅延受信位相信号a12に対してキャリア周
波数誤差の補正を行う。しかし、図5に示すように、受
信位相信号a1が入力されなくなるとキャリア周波数誤
差信号a10が立ち下がるため、遅延受信位相信号a1
2について、斜線部で示すパケット終端部のiシンボル
分についてキャリア周波数誤差の補正ができなくなる問
題があった。
In a conventional automatic frequency control circuit, when correcting a carrier frequency error of a packet (including a preambleless packet) as shown in FIG. 5, m symbols at the leading end of the packet are used. Detecting the carrier frequency error by the
One carrier frequency error can be corrected. At this time, the carrier frequency error is corrected for the delayed reception phase signal a12 obtained by delaying the reception phase signal a1 by i symbols (i is a positive integer). However, as shown in FIG. 5, when the reception phase signal a1 is not input, the carrier frequency error signal a10 falls, so that the delayed reception phase signal a1
In the case of No. 2, there was a problem that it was not possible to correct the carrier frequency error for the i symbols at the end of the packet indicated by the hatched portion.

【0007】本発明は、パケット全体に渡る安定したキ
ャリア周波数誤差の補正を可能にする自動周波数制御回
路を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic frequency control circuit which enables stable correction of a carrier frequency error over an entire packet.

【0008】[0008]

【課題を解決するための手段】従来の構成では、パケッ
トのキャリア周波数誤差を補正する際に、パケット終端
部のiシンボルに対するキャリア周波数誤差信号a10
が立ち下がり、遅延受信位相信号のキャリア周波数誤差
を正しく補正できないことが問題であった。本発明の自
動周波数制御回路は、受信信号検出手段で受信信号が検
出されなくなったときに、その時点のキャリア周波数誤
差検出手段の出力値を受信信号のiシンボルだけ保持す
る保持手段を配置する。これにより、図2に示すよう
に、受信位相信号a1をiシンボルだけ遅延させても、
キャリア周波数誤差保持信号a14のサンプルホールド
期間でパケット終端部のiシンボルについてもキャリア
周波数誤差を補正することができる。
According to the conventional configuration, when correcting the carrier frequency error of a packet, the carrier frequency error signal a10 for the i symbol at the end of the packet is corrected.
Has fallen, and the carrier frequency error of the delayed reception phase signal cannot be corrected correctly. The automatic frequency control circuit according to the present invention includes a holding unit that holds the output value of the carrier frequency error detection unit at that time only for the i symbol of the reception signal when the reception signal detection unit stops detecting the reception signal. Thereby, as shown in FIG. 2, even if the received phase signal a1 is delayed by i symbols,
The carrier frequency error can be corrected for the i symbol of the packet termination part in the sample hold period of the carrier frequency error holding signal a14.

【0009】[0009]

【発明の実施の形態】図1は、本発明の自動周波数制御
回路の実施形態を示す。図において、遅延回路1は、受
信位相信号a1を1シンボル区間遅延させた遅延信号a
2を出力する。減算回路2は、受信位相信号a1から遅
延信号a2を減算し、1シンボル区間の位相差分信号a
3を出力する。シンボル判定回路3は、位相差分信号a
3の雑音およびキャリア周波数誤差がないときの信号判
定角に最も近い位相角判定信号a4を出力する。減算回
路4は、位相差分信号a3から位相角判定信号a4を減
算し、位相差分信号a3のキャリア周波数誤差に比例し
た位相回転信号a5を出力する。
FIG. 1 shows an embodiment of an automatic frequency control circuit according to the present invention. In the figure, a delay circuit 1 is a delay signal a obtained by delaying a reception phase signal a1 by one symbol section.
2 is output. The subtraction circuit 2 subtracts the delay signal a2 from the reception phase signal a1 to obtain a phase difference signal a for one symbol period.
3 is output. The symbol determination circuit 3 calculates the phase difference signal a
3 and outputs a phase angle determination signal a4 closest to the signal determination angle when there is no carrier frequency error. The subtraction circuit 4 subtracts the phase angle determination signal a4 from the phase difference signal a3, and outputs a phase rotation signal a5 proportional to the carrier frequency error of the phase difference signal a3.

【0010】乗算回路5は、この位相回転信号a5をN
倍(Nは正整数)してN倍位相回転信号a6を出力す
る。ベクトル変換回路6は、N倍位相回転信号a6のも
つ偏角に基づくベクトルの同相成分信号a7と直交成分
信号a8を生成して出力する。積分回路7−1,7−2
は、同相成分信号a7と直交成分信号a8をそれぞれm
シンボル(mは正整数)積分して平均化を行う。位相検
出回路8は、この平均化されたベクトルからベクトルが
もつ偏角(位相)を検出し、位相検出信号a9を出力す
る。除算回路9は、位相検出回路a9を1/Nに分周
し、キャリア周波数誤差信号a10を出力する。以上の
遅延回路1から除算回路9までの構成が、請求項1に記
載のキャリア周波数誤差検出手段である。
The multiplying circuit 5 converts the phase rotation signal a5 into N
It multiplies (N is a positive integer) and outputs an N-fold phase rotation signal a6. The vector conversion circuit 6 generates and outputs an in-phase component signal a7 and a quadrature component signal a8 of a vector based on the argument of the N-fold phase rotation signal a6. Integration circuits 7-1 and 7-2
Calculates the in-phase component signal a7 and the quadrature component signal a8 by m
Symbols (m is a positive integer) are integrated and averaged. The phase detection circuit 8 detects a declination (phase) of the vector from the averaged vector and outputs a phase detection signal a9. The division circuit 9 divides the frequency of the phase detection circuit a9 by 1 / N and outputs a carrier frequency error signal a10. The configuration from the delay circuit 1 to the division circuit 9 is the carrier frequency error detection means according to the first aspect.

【0011】除算回路9から出力されるキャリア周波数
誤差信号a10は、請求項1に記載の保持手段に相当す
るサンプルホールド回路13に入力される。一方、受信
信号検出回路14は、受信位相信号a1を検出してサン
プルホールド回路13に通知する。サンプルホールド回
路13は、受信信号検出回路14で受信位相信号a1が
検出されなくなり、キャリア周波数誤差信号a10が立
ち下がるときに、キャリア周波数誤差信号a10の値を
iシンボルだけ保持し、キャリア周波数誤差保持信号a
14として出力する。
The carrier frequency error signal a10 output from the division circuit 9 is input to a sample and hold circuit 13 corresponding to the holding means according to the first aspect. On the other hand, the reception signal detection circuit 14 detects the reception phase signal a1 and notifies the sample / hold circuit 13 of the detection. The sample hold circuit 13 holds the value of the carrier frequency error signal a10 by i symbols when the reception phase signal a1 is no longer detected by the reception signal detection circuit 14 and the carrier frequency error signal a10 falls, and holds the carrier frequency error. Signal a
14 is output.

【0012】請求項1に記載の可変周波数発振手段とし
て用いられる積分回路10は、キャリア周波数誤差保持
信号a14を積分し続けて周波数変換用参照信号a11
を出力する。一方、請求項1に記載の遅延手段として用
いられる遅延回路11は、受信位相信号a1をiシンボ
ル遅延させた遅延受信位相信号a12を出力する。減算
回路12は、遅延受信位相信号a12から周波数変換用
参照信号a11を減算して周波数変換を行い、キャリア
周波数誤差補正信号a13を出力する。これにより、受
信位相信号a1のキャリア周波数誤差が補正される。
The integration circuit 10 used as the variable frequency oscillating means according to the first aspect of the present invention continuously integrates the carrier frequency error holding signal a14 and continues to integrate the frequency conversion reference signal a11.
Is output. On the other hand, the delay circuit 11 used as the delay means according to claim 1 outputs a delayed reception phase signal a12 obtained by delaying the reception phase signal a1 by i symbols. The subtraction circuit 12 performs frequency conversion by subtracting the frequency conversion reference signal a11 from the delayed reception phase signal a12, and outputs a carrier frequency error correction signal a13. Thereby, the carrier frequency error of the received phase signal a1 is corrected.

【0013】図3は、従来構成および本発明構成におけ
る符号誤り率特性のシミュレーション結果を示す。シミ
ュレーションはAWGN環境下で行った。π/4シフト
DQPSK変調方式および同期検波方式を用い、シンボ
ルレートは 192kHzのときの結果である。図より従来構
成の自動周波数制御回路では、パケット終端部でキャリ
ア周波数誤差が検出されなくなるために符号誤り率が劣
化していることがわかる。一方、本発明の自動周波数制
御回路では、キャリア周波数誤差信号を保持することに
より特性が改善していることがわかる。
FIG. 3 shows simulation results of the bit error rate characteristics in the conventional configuration and the configuration of the present invention. The simulation was performed in an AWGN environment. The results are obtained when the π / 4 shift DQPSK modulation method and the synchronous detection method are used and the symbol rate is 192 kHz. From the figure, it can be seen that in the automatic frequency control circuit having the conventional configuration, the code error rate is degraded because the carrier frequency error is no longer detected at the packet termination part. On the other hand, in the automatic frequency control circuit of the present invention, it can be seen that the characteristics are improved by holding the carrier frequency error signal.

【0014】[0014]

【発明の効果】以上説明したように、本発明の自動周波
数制御回路では、保持手段によってパケット終端部に対
応するキャリア周波数誤差信号を保持することができる
ので、パケットの全体に渡ってキャリア周波数誤差を補
正することができる。また、パケットごとのキャリア周
波数誤差の補正も可能である。
As described above, in the automatic frequency control circuit according to the present invention, the carrier frequency error signal corresponding to the packet termination part can be held by the holding means. Can be corrected. It is also possible to correct a carrier frequency error for each packet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の自動周波数制御回路の実施形態を示す
ブロック図。
FIG. 1 is a block diagram showing an embodiment of an automatic frequency control circuit according to the present invention.

【図2】サンプルホールド回路13の機能を説明する
図。
FIG. 2 is a diagram illustrating functions of a sample and hold circuit 13.

【図3】従来構成および本発明構成における符号誤り率
特性のシミュレーション結果を示す図。
FIG. 3 is a diagram showing simulation results of bit error rate characteristics in the conventional configuration and the configuration of the present invention.

【図4】従来の自動周波数制御回路の構成例を示すブロ
ック図。
FIG. 4 is a block diagram showing a configuration example of a conventional automatic frequency control circuit.

【図5】従来の自動周波数制御回路の問題点を説明する
図。
FIG. 5 is a diagram illustrating a problem of a conventional automatic frequency control circuit.

【符号の説明】[Explanation of symbols]

1 遅延回路 2 減算回路 3 シンボル判定回路 4 減算回路 5 乗算回路 6 ベクトル変換回路 7 積分回路 8 位相検出回路 9 除算回路 10 積分回路 11 遅延回路 12 減算回路 13 サンプルホールド回路 14 受信信号検出回路 REFERENCE SIGNS LIST 1 delay circuit 2 subtraction circuit 3 symbol judgment circuit 4 subtraction circuit 5 multiplication circuit 6 vector conversion circuit 7 integration circuit 8 phase detection circuit 9 division circuit 10 integration circuit 11 delay circuit 12 subtraction circuit 13 sample hold circuit 14 reception signal detection circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 受信信号を検出する受信信号検出手段
と、 前記受信信号からキャリア周波数誤差を検出するキャリ
ア周波数誤差検出手段と、 前記受信信号検出手段で受信信号が検出されなくなった
ときに、その時点の前記キャリア周波数誤差検出手段の
出力値を前記受信信号のiシンボルだけ保持する保持手
段と、 前記キャリア周波数誤差検出手段の出力および前記保持
手段の出力に応じた周波数の信号を出力する可変周波数
発振手段と、 前記受信位相信号を前記iシンボルだけ遅延させる遅延
手段と、 前記可変周波数発振手段の出力信号を用いて前記遅延手
段で遅延させた前記受信信号を周波数変換するキャリア
周波数誤差補正手段とを備えたことを特徴とする自動周
波数制御回路。
1. A reception signal detection unit for detecting a reception signal, a carrier frequency error detection unit for detecting a carrier frequency error from the reception signal, and when a reception signal is no longer detected by the reception signal detection unit, Holding means for holding the output value of the carrier frequency error detecting means at the time of i symbols of the received signal; variable frequency for outputting a signal having a frequency corresponding to the output of the carrier frequency error detecting means and the output of the holding means Oscillating means; delay means for delaying the received phase signal by the i symbol; carrier frequency error correction means for frequency-converting the received signal delayed by the delay means using an output signal of the variable frequency oscillating means; An automatic frequency control circuit comprising:
JP9034082A 1997-02-18 1997-02-18 Automatic frequency control circuit Pending JPH10233814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9034082A JPH10233814A (en) 1997-02-18 1997-02-18 Automatic frequency control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9034082A JPH10233814A (en) 1997-02-18 1997-02-18 Automatic frequency control circuit

Publications (1)

Publication Number Publication Date
JPH10233814A true JPH10233814A (en) 1998-09-02

Family

ID=12404352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9034082A Pending JPH10233814A (en) 1997-02-18 1997-02-18 Automatic frequency control circuit

Country Status (1)

Country Link
JP (1) JPH10233814A (en)

Similar Documents

Publication Publication Date Title
US7200188B2 (en) Method and apparatus for frequency offset compensation
US8155250B2 (en) Receiver with frequency offset compensation for M-state phase modulation
JP3466422B2 (en) Receiver
EP1484880A2 (en) Demodulation device and demodulation method for wireless data communication
JP3575883B2 (en) Digital demodulator
JPH09153920A (en) Digital demodulator
US6603820B1 (en) Demodulator having rotation means for frequency offset correction
JP3489493B2 (en) Symbol synchronizer and frequency hopping receiver
JPH10233814A (en) Automatic frequency control circuit
JP3006382B2 (en) Frequency offset correction device
EP1128620A1 (en) Apparatus for detecting frequency offset
JP2000232393A (en) Phase correcting device for cdma received signal
JP3660930B2 (en) Automatic frequency control signal generation circuit, reception device, base station device, wireless transmission / reception system, and frequency error detection method in wireless communication device
JP2000341354A (en) Oscillator control circuit and oscillator control method
JPH10210092A (en) Phase detection circuit
JP2003234791A (en) Symbol timing detecting method
JPH1098500A (en) Automatic frequency control method and its circuit
JPH1041991A (en) Digital demodulation circuit
JPH0823361A (en) Tdma data receiver
JP2001237906A (en) Method for automatic frequency control and afc circuit
JP2000188620A (en) Synchronous detector
KR20000062562A (en) Receiving apparatus
JPH05110613A (en) Angular modulation signal demodulating circuit
JPH11341090A (en) Synchronous detector
JPH10224416A (en) Synchronization detection demodulator