JPH10233549A - Nitride semiconductor laser diode - Google Patents

Nitride semiconductor laser diode

Info

Publication number
JPH10233549A
JPH10233549A JP9036791A JP3679197A JPH10233549A JP H10233549 A JPH10233549 A JP H10233549A JP 9036791 A JP9036791 A JP 9036791A JP 3679197 A JP3679197 A JP 3679197A JP H10233549 A JPH10233549 A JP H10233549A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
heat
electrode
layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9036791A
Other languages
Japanese (ja)
Other versions
JP3309953B2 (en
Inventor
Takao Yamada
孝夫 山田
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP03679197A priority Critical patent/JP3309953B2/en
Publication of JPH10233549A publication Critical patent/JPH10233549A/en
Application granted granted Critical
Publication of JP3309953B2 publication Critical patent/JP3309953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the heat-dissipating property of a nitride semiconductor laser diode by a method wherein, separately from a positive electrode and a negative electrode which are formed on a face which comprises a positive electrode and a negative electrode, a nitride semiconductor layer which is formed to be a shape capable of coming into contact with a heat-dissipating body is provided. SOLUTION: An n-type layer 2, an active layer 3 and a p-type layer 4 are laminated on a substrate 1, an n-ohmic electrode 11 as a negative electrode is installed on an n-type nitride semiconductor layer in a recess which is formed by an etching treatment, and a p-ohmic electrode 12 as a positive electrode is installed on a p-type nitride semiconductor layer in a protrusion which is not etched. Then, in addition to the formation of the n-ohmic electrode 11 and the p-ohmic electrode 12, a nitride semiconductor layer in the neighborhood on the left of the n-ohmic electrode 11 is not removed by an etching operation so as to be left, and a heat-dissipating part 30 which is formed to be a shape capable of coming into contact with a heat sink 40 is formed. Thereby, it is possible to obtain a nitride semiconductor laser diode whose heat-dissipating property is improved, which restrains a rise in a threshold value and whose life characteristic can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化物半導体(I
XAlYGa1-X-YN、0≦X、0≦Y、X+Y≦1)
よりなる窒化物半導体レーザダイオード(LD)に関
し、特に放熱性に優れた窒化物半導体レーザダイオード
に関する。
The present invention relates to a nitride semiconductor (I).
n X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1)
More particularly, the present invention relates to a nitride semiconductor laser diode (LD) having excellent heat dissipation.

【0002】[0002]

【従来の技術】半導体レーザダイオード(以下単に半導
体レーザという場合がある。)は、熱によってその特性
及び信頼性が著しく影響を受けるため、半導体レーザの
駆動には高電流密度によるジュール熱を放散すること
が、実用上、非常に大切である。熱の放散は、半導体レ
ーザをヒートシンクに接触させることによって行われて
いる。窒化物半導体レーザは、サファイアやスピネルの
ような絶縁性基板の上に成長されるため、正と負の電極
を窒化物半導体層側から取り出すいわゆるフリップチッ
プ形式である。例えば窒化物半導体レーザは、絶縁性基
板、n型層、活性層、及びp型層を積層してなる基本構
造を有しており、電極はp型層と活性層とがエッチング
され、エッチングにより露出したn型層と最上層のp型
層とに設けられる。このような構造の場合、窒化物半導
体レーザは露出したn型層と最上層のp型層とに段差が
生じる。このような構造を有する半導体レーザチップの
一例を図1に模式的な断面図で示すと、図1は、基板
1、n型層2(光ガイド層及び光閉じこめ層等の積層構
造を有する)、活性層3、p型層4(光りガイド層及び
光閉じこめ層等の積層構造を有する)を有し、更に窒化
物半導体層上の凹部にn−オーミック電極11(負電
極)、凸部にp−オーミック電極12(正電極)を設置
し、絶縁膜13、p−パット電極15、n−パット電極
14を形成してある。そして高電流密度によるジュール
熱は電極を有する面を、リード電極41及び42を有す
るヒートシンク40に接触させ放散される。
2. Description of the Related Art A semiconductor laser diode (hereinafter sometimes simply referred to as a "semiconductor laser") has its characteristics and reliability greatly affected by heat. Therefore, Joule heat due to a high current density is dissipated to drive the semiconductor laser. That is very important in practice. Dissipation of heat is performed by bringing a semiconductor laser into contact with a heat sink. Since the nitride semiconductor laser is grown on an insulating substrate such as sapphire or spinel, it is a so-called flip-chip type in which positive and negative electrodes are extracted from the nitride semiconductor layer side. For example, a nitride semiconductor laser has a basic structure in which an insulating substrate, an n-type layer, an active layer, and a p-type layer are stacked, and the electrodes are formed by etching the p-type layer and the active layer. It is provided on the exposed n-type layer and the uppermost p-type layer. In such a structure, the nitride semiconductor laser has a step between the exposed n-type layer and the uppermost p-type layer. FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor laser chip having such a structure. FIG. 1 shows a substrate 1 and an n-type layer 2 (having a laminated structure such as a light guide layer and a light confinement layer). , An active layer 3, a p-type layer 4 (having a laminated structure such as a light guide layer and a light confinement layer), an n-ohmic electrode 11 (negative electrode) in a concave portion on the nitride semiconductor layer, and a A p-ohmic electrode 12 (positive electrode) is provided, and an insulating film 13, a p-pat electrode 15, and an n-pat electrode 14 are formed. The Joule heat due to the high current density is dissipated by bringing the surface having the electrodes into contact with the heat sink 40 having the lead electrodes 41 and 42.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな図1の窒化物半導体レーザは、上記の如く1面2電
極のため負電極形成時に正電極を有するp側と負電極を
形成するn側との間でヒートシンクに接触する面に高低
差(段差)が生じ、フェイスダウンでヒートシンクに良
好なダイレクトボンディングができず、窒化物半導体レ
ーザの電極とヒートシンクとが十分に接触できない。そ
の結果、窒化物半導体レーザの放熱性が悪くなり、しき
い値が上昇し、寿命特性が劣化する等の問題が生じる。
そこで本発明の目的は、窒化物半導体レーザの放熱性を
向上させ、しきい値の上昇の抑制、寿命特性の向上を達
成させることである。
However, since the nitride semiconductor laser of FIG. 1 has two electrodes on one surface as described above, the p-side having the positive electrode and the n-side forming the negative electrode are formed at the time of forming the negative electrode. A height difference (step) is generated on the surface in contact with the heat sink, and good direct bonding to the heat sink cannot be performed face down, and the electrode of the nitride semiconductor laser and the heat sink cannot be sufficiently contacted. As a result, the heat dissipation of the nitride semiconductor laser deteriorates, the threshold value increases, and the lifetime characteristics deteriorate.
SUMMARY OF THE INVENTION It is an object of the present invention to improve the heat dissipation of a nitride semiconductor laser, suppress a rise in threshold voltage, and achieve an improvement in life characteristics.

【0004】[0004]

【課題を解決するための手段】即ち、本発明の目的は、
下記構成によって達成することができる。 (1) 同一面側に一対の正電極及び負電極を設けてな
る窒化物半導体レーザダイオードにおいて、正電極及び
負電極を有する面に正電極及び負電極を形成するのとは
別に、放熱体に接触可能な形状で形成された窒化物半導
体層(以下放熱部という場合がある。)を有してなるこ
とを特徴とする窒化物半導体レーザダイオード。
That is, the object of the present invention is to
This can be achieved by the following configuration. (1) In a nitride semiconductor laser diode in which a pair of positive and negative electrodes are provided on the same surface side, a radiator is provided separately from forming the positive and negative electrodes on the surface having the positive and negative electrodes. A nitride semiconductor laser diode comprising: a nitride semiconductor layer (hereinafter, sometimes referred to as a heat radiating portion) formed in a contactable shape.

【0005】更に、本発明の好ましいその他の態様
(2)及び(3)を以下に示す。 (2) 上記正電極と正電極及び負電極とは別に形成さ
れた窒化物半導体層とが高低差0〜2μm以内である前
記(1)に記載の窒化物半導体レーザダイオード。 (3) 正電極及び負電極とは別に形成された窒化物半
導体層に、負電極と電気的に接触された導電性材料が形
成され、フェイスダウンの状態で放熱体にマウントされ
ている請求項1又は2に記載の窒化物半導体レーザダイ
オード。
Further, other preferred embodiments (2) and (3) of the present invention are shown below. (2) The nitride semiconductor laser diode according to (1), wherein a height difference between the positive electrode and the nitride semiconductor layer formed separately from the positive electrode and the negative electrode is within 0 to 2 μm. (3) A conductive material electrically contacting the negative electrode is formed on the nitride semiconductor layer formed separately from the positive electrode and the negative electrode, and the conductive material is mounted on the heat radiator face down. 3. The nitride semiconductor laser diode according to 1 or 2.

【0006】[0006]

【発明の実施の形態】つまり、本発明は、正電極及び負
電極を有する面に正電極及び負電極を形成するのとは別
に、放熱体に接触可能な形状で形成された窒化物半導体
層(以下放熱部という場合がある。)を有することによ
って、窒化物半導体レーザダイオードの放熱体への接触
面積を増大し、半導体レーザの駆動において非常に問題
となる高電流密度によるジュール熱を良好に放散するこ
とができる。これによってしきい値の上昇を抑え、寿命
特性が著しく向上する。このような本発明の放熱部は、
半導体レーザの窒化物半導体層を積層後、レジストを塗
布しレジストに光を照射してエッチングする箇所を決め
る際に、所望する形状、つまり放熱体(例えばヒートシ
ンク等)に接触可能な形状となるように、放熱部となり
得る部分に露光せずエッチングすることで形成される。
このため、多数の工程を必要とする半導体レーザの製作
に特別新たな工程を必要とせず、簡易な方法で本発明の
放熱部を設けることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In other words, according to the present invention, there is provided a nitride semiconductor layer formed in a shape capable of contacting a heat radiator, separately from forming a positive electrode and a negative electrode on a surface having a positive electrode and a negative electrode. (Hereinafter, it may be referred to as a heat radiating portion.) By increasing the contact area of the nitride semiconductor laser diode with the heat radiator, the Joule heat due to a high current density, which is extremely problematic in driving the semiconductor laser, can be improved. Can be dissipated. As a result, a rise in the threshold value is suppressed, and the life characteristics are significantly improved. Such a heat radiating part of the present invention,
After laminating a nitride semiconductor layer of a semiconductor laser, when a resist is applied and the resist is irradiated with light to determine a portion to be etched, a desired shape, that is, a shape that can be brought into contact with a radiator (for example, a heat sink) is used. In addition, it is formed by etching without exposing a portion that can be a heat radiation portion.
Therefore, it is possible to provide the heat radiating portion of the present invention by a simple method without requiring a special new process for manufacturing a semiconductor laser requiring many processes.

【0007】放熱体とは、窒化物半導体レーザダイオー
ドに生じるジュール熱を吸収し放散する吸熱材料であ
り、例えばヒートシンク、サブマウント、ステムなどで
あり、熱を放散させるための熱伝導性の良い材料として
は、ダイヤモンド、BeO、CuW、AlN、cBN、
Si、SiC、GaAs、Al23等が挙げられる。特
に、放熱体がダイヤモンドであると熱伝導性が良く、更
に本発明の放熱部と組み合わせるとより良い効果が得ら
れる。また、放熱部とは、窒化物半導体レーザダイオー
ドに生じるジュール熱を放熱体に伝導させるため放熱体
に接触可能な形状で形成され、放熱体に接触し熱を放散
させるための部位であり、窒化物半導体よりなる。ここ
で、放熱部が放熱体に接触可能な形状で形成されとは、
放熱部が少なくとも放熱体に接触可能であれば良く、好
ましくは放熱部の最上層が窒化物半導体層の凹部に設け
られる負電極の上部より高く、つまり放熱部が負電極よ
りも放熱体に接触し易く形成され、更に好ましくは放熱
部の最上層と正電極が設けられている窒化物半導体層の
凸部の最上層との高低差が0〜2μmで形成され、特に
好ましくは放熱体と水平に接触できるように放熱部が形
成される。
The heat radiator is a heat absorbing material that absorbs and dissipates Joule heat generated in the nitride semiconductor laser diode, and is, for example, a heat sink, a submount, a stem, or the like, and a material having good heat conductivity for dissipating heat. As diamond, BeO, CuW, AlN, cBN,
Si, SiC, GaAs, Al 2 O 3 and the like can be mentioned. In particular, when the radiator is diamond, the thermal conductivity is good, and when combined with the radiator of the present invention, a better effect can be obtained. The heat radiating portion is formed in a shape capable of contacting the heat radiator in order to conduct the Joule heat generated in the nitride semiconductor laser diode to the heat radiator, and is a portion for contacting the heat radiator and dissipating the heat. Consisting of semiconductors. Here, that the heat radiating portion is formed in a shape capable of contacting the heat radiating body means that
It is sufficient that the heat radiating portion can contact at least the heat radiator. Preferably, the uppermost layer of the heat radiating portion is higher than the upper portion of the negative electrode provided in the concave portion of the nitride semiconductor layer, that is, the heat radiating portion contacts the heat radiator more than the negative electrode. The height difference between the uppermost layer of the heat radiating portion and the uppermost layer of the convex portion of the nitride semiconductor layer on which the positive electrode is provided is more preferably 0 to 2 μm, and is particularly preferably horizontal to the heat radiator. A heat radiating portion is formed so as to be able to contact the surface.

【0008】本発明の放熱部の設置位置は、放熱体に接
触可能な状態であればいずれでも良いが、放熱効率を高
めるため、凹部に形成された負電極及び/又は凸部に形
成された正電極に隣接させて形成するのが好ましい。こ
うすることで高電流密度によるジュール熱を蓄積し易い
電極から放熱部へ熱を効率良く伝導できる。また、放熱
部は、窒化物半導体レーザダイオード1単位の窒化物半
導体層上に2箇所以上形成されても良く、窒化物半導体
レーザダイオードの一般的に好ましいとされる大きさの
1単位内に可能なだけ形成されても良い。ここで、可能
なだけ形成しても良いとは、電極が形成されていない窒
化物半導体層を窒化物半導体レーザの性能の低下を引き
起こさない範囲で放熱部として形成することを意味す
る。また、凸部に設けられた正電極を有する窒化物半導
体層の最上層と放熱部の最上層の高さを0〜2μm以内
にすると、従来の窒化物半導体レーザダイオードのよう
に著しい段差がなくなり、窒化物半導体レーザダイオー
ドの正及び負電極を有する面を放熱体に接触させても斜
めにならず良好に接触でき、放熱性が著しく改善され
る。また、放熱部は窒化物半導体であるので熱伝導性に
優れており、この点でも放熱部が熱を放散するのに適し
ている。
The radiating portion of the present invention can be installed in any position as long as it can be in contact with the radiator. However, in order to enhance the radiating efficiency, the radiating portion is formed on the negative electrode formed in the concave portion and / or on the convex portion. Preferably, it is formed adjacent to the positive electrode. By doing so, heat can be efficiently transmitted from the electrode, which easily accumulates Joule heat due to the high current density, to the heat radiating portion. Further, the heat radiating portion may be formed at two or more places on the nitride semiconductor layer of one unit of the nitride semiconductor laser diode, and can be formed within one unit of a generally preferable size of the nitride semiconductor laser diode. Any number may be formed. Here, "may be formed as much as possible" means that a nitride semiconductor layer on which an electrode is not formed is formed as a heat radiating portion within a range that does not cause a decrease in performance of the nitride semiconductor laser. Further, when the height of the uppermost layer of the nitride semiconductor layer having the positive electrode provided on the convex portion and the uppermost layer of the heat radiating portion is within 0 to 2 μm, there is no significant step unlike the conventional nitride semiconductor laser diode. Even when the surface of the nitride semiconductor laser diode having the positive and negative electrodes is brought into contact with the heat radiator, the surface can be satisfactorily contacted without being inclined, and the heat radiation is significantly improved. Further, since the heat radiating portion is made of a nitride semiconductor, the heat radiating portion is excellent in thermal conductivity. In this respect, the heat radiating portion is suitable for dissipating heat.

【0009】本発明は、正電極及び負電極を有する同一
面の少なくとも1箇所以上に窒化物半導体層からなる放
熱部を有している窒化物半導体レーザダイオードであれ
ば良く、窒化物半導体レーザダイオードにおける放熱部
以外のその他の構成(窒化物半導体層の層構成、電極の
形状及び材質等)は特に限定されず、公知の種種の窒化
物半導体レーザダイオードの構成が適用できる。
The present invention is applicable only to a nitride semiconductor laser diode having a heat radiating portion made of a nitride semiconductor layer at at least one position on the same surface having a positive electrode and a negative electrode. Other configurations (layer configuration of the nitride semiconductor layer, shape and material of the electrodes, etc.) other than the heat radiating section in [1] are not particularly limited, and configurations of various known nitride semiconductor laser diodes can be applied.

【0010】以下、図面を用いて本発明の放熱部を有す
る窒化物半導体レーザダイオードについて具体的に説明
する。図2は、本発明の一実施態様である窒化物半導体
レーザダイオードの模式的な断面図である。図2は、基
板1上にn型層2(光ガイド層及び光閉じこめ層等の積
層構造を有する)、活性層3、p型層4(光りガイド層
及び光閉じこめ層等の積層構造を有する)を積層し、エ
ッチング処理で形成した凹部のn型窒化物半導体層上に
n−オーミック電極11(負電極)、エッチングされな
い凸部のp型窒化物半導体層にp−オーミック電極12
(正電極)を各々設置し、p−オーミック電極12を有
するp型窒化物半導体層の面上及び図2に示す様に窒化
物半導体層の側面から露出しているn型層上に絶縁膜1
3を形成し、p側のp−オーミック電極12上にp−パ
ット電極15を形成し、n側のn−オーミック電極11
上からn−オーミック電極11に隣接しエッチングで除
去されない窒化物半導体層の放熱部30にn−パット電
極14を図2のように形成し、p−パット電極15とリ
ード電極42、及びn−パット電極14とリード電極4
1とを導電性材料52、51でそれそれヒートシンク4
0にダイレクトボンディングしてなる窒化物半導体レー
ザダイオード101である。
Hereinafter, a nitride semiconductor laser diode having a heat radiating portion of the present invention will be specifically described with reference to the drawings. FIG. 2 is a schematic sectional view of a nitride semiconductor laser diode according to one embodiment of the present invention. FIG. 2 shows an n-type layer 2 (having a laminated structure such as a light guide layer and a light confinement layer), an active layer 3 and a p-type layer 4 (having a laminated structure such as a light guide layer and a light confinement layer) on a substrate 1. ) Are stacked, and the n-ohmic electrode 11 (negative electrode) is formed on the n-type nitride semiconductor layer in the concave portion formed by the etching process, and the p-ohmic electrode 12 is formed on the p-type nitride semiconductor layer in the convex portion which is not etched.
(Positive electrodes) are provided, and an insulating film is formed on the surface of the p-type nitride semiconductor layer having the p-ohmic electrode 12 and on the n-type layer exposed from the side surface of the nitride semiconductor layer as shown in FIG. 1
3 is formed, a p-pat electrode 15 is formed on the p-side p-ohmic electrode 12, and the n-side n-ohmic electrode 11 is formed.
An n-pat electrode 14 is formed as shown in FIG. 2 on the heat radiating portion 30 of the nitride semiconductor layer which is adjacent to the n-ohmic electrode 11 and which is not removed by etching, as shown in FIG. Pad electrode 14 and lead electrode 4
1 and conductive materials 52 and 51 respectively.
This is a nitride semiconductor laser diode 101 directly bonded to a semiconductor laser diode 101.

【0011】放熱部30は、図面に向かってn−オーミ
ック電極11の左隣の窒化物半導体層をエッチングで除
去せずに残存させヒートシンク40に接触可能な形状で
形成されている。放熱部30がn−オーミック電極11
の左隣に設けられることにより、電極に生じるジュール
熱を効率良くヒートシンク40に放散させることができ
る。また、放熱部30の高さをp−オーミック電極12
を有するp側の窒化物半導体層と同一にし、更にp−オ
ーミック電極12の厚みと同一に絶縁膜13をp−オー
ミック電極12の両側に設けることにより、窒化物半導
体レーザダイオード101の正及び負電極を有する面が
ヒートシンク40に良好に接触できるようになる。また
放熱部30にn−オーミック電極11と電気的に接触さ
れたn−パット電極14及びp−オーミック電極12と
電気的に接触されたp−パット電極15を厚みを考慮し
て各々設けることで、p側とn側の高低差をほぼ0μm
に調整することができ、窒化物半導体レーザダイオード
101とヒートシンク40とが水平に接触でき、より一
層効率的に熱の放散が行われる。
The heat radiating portion 30 is formed in such a shape that the nitride semiconductor layer on the left side of the n-ohmic electrode 11 as viewed in the drawing is left without being removed by etching and can contact the heat sink 40. The heat radiating part 30 is an n-ohmic electrode
Is provided on the left side, and Joule heat generated in the electrodes can be efficiently dissipated to the heat sink 40. Also, the height of the heat radiating portion 30 is adjusted to the p-ohmic electrode 12.
By providing an insulating film 13 on both sides of the p-ohmic electrode 12 so as to have the same thickness as that of the p-ohmic electrode 12, the positive and negative sides of the nitride semiconductor laser diode 101 can be formed. The surface having the electrodes can be in good contact with the heat sink 40. Further, by providing the n-pat electrode 14 electrically connected to the n-ohmic electrode 11 and the p-pat electrode 15 electrically connected to the p-ohmic electrode 12 in the heat radiating portion 30 in consideration of the thickness, respectively. , The height difference between the p-side and the n-side is almost 0 μm
, And the nitride semiconductor laser diode 101 and the heat sink 40 can be in horizontal contact with each other, so that heat can be more efficiently dissipated.

【0012】このように、半導体レーザダイオード10
1をヒートシンク40に接触させる際、放熱部30が形
成されているためp側とn側との間に段差が発生せず半
導体レーザダイオード101がヒートシンク40とほぼ
水平状に接触できる。更に放熱部30が窒化物半導体と
同一材料よりなっているので、活性層3の発熱が迅速に
放熱部30に伝わる。更に放熱部30には熱伝導率の良
いAu、Ag、Au/Ge等の金属材料よりなるn−パ
ット電極14が設けられているので、熱がこの部材を介
して効率良くヒートシンク40に伝導される。
As described above, the semiconductor laser diode 10
When the heat sink 1 is brought into contact with the heat sink 40, the semiconductor laser diode 101 can contact the heat sink 40 substantially horizontally without any step difference between the p-side and the n-side because the heat-dissipating portion 30 is formed. Further, since the heat radiating portion 30 is made of the same material as the nitride semiconductor, heat generated by the active layer 3 is quickly transmitted to the heat radiating portion 30. Further, since the heat radiating portion 30 is provided with the n-pat electrode 14 made of a metal material having good thermal conductivity, such as Au, Ag, or Au / Ge, heat is efficiently transmitted to the heat sink 40 via this member. You.

【0013】p−オーミック電極12を有するp型窒化
物半導体層の最上層と放熱部30の最上層との高低差が
0〜2μm、好ましくは0〜1μmであるとヒートシン
ク40との接触が良好となり、熱伝導性が更に向上し、
また、ヒートシンク40に対してほぼ水平にボンディン
グできるため窒化物半導体レーザ製造上、分留が向上し
て好都合である。p−パット電極15及びn−パット電
極14をダイレクトボンディングする導電性材料51及
び52はIn、PbSn、AuSn、AuSi等の半田
材、銀ペースト、Inペースト等を使用することができ
る。
When the height difference between the uppermost layer of the p-type nitride semiconductor layer having the p-ohmic electrode 12 and the uppermost layer of the heat radiating portion 30 is 0 to 2 μm, preferably 0 to 1 μm, the contact with the heat sink 40 is good. And the thermal conductivity is further improved,
Further, since the bonding can be performed substantially horizontally to the heat sink 40, the fractionation is improved in the production of the nitride semiconductor laser, which is advantageous. As the conductive materials 51 and 52 for directly bonding the p-pat electrode 15 and the n-pat electrode 14, solder materials such as In, PbSn, AuSn, and AuSi, silver paste, In paste, and the like can be used.

【0014】図3は、本発明の一実施態様である窒化物
半導体レーザダイオードの模式的な断面図である。図3
は、基板1上にn型層2(光ガイド層及び光閉じこめ層
等の積層構造を有する)、活性層3、p型層4(光りガ
イド層及び光閉じこめ層等の積層構造を有する)を積層
し、エッチング処理でリッジ形状にされたp型窒化物半
導体層の最上層にp−オーミック電極12を設置し、エ
ッチング処理でn型窒化物半導体層に形成された凹部の
n型窒化物半導体層上にn−オーミック電極11を設置
し、n−オーミック電極11に隣接して放熱部30及び
p側のリッジを形成した以外のp側の窒化物半導体層に
放熱部31を各々設け、p−パット電極15とリード電
極42、及びn−パット電極14とリード電極41とを
導電性材料52、51でそれぞれヒートシンク40でダ
イレクトボンディングしてなる窒化物半導体レーザダイ
オード102である。本発明は、従来、図1に示す様に
リッジを形成する場合、p側の窒化物半導体層は図1の
p型層4の様にエッチングされるのに対し、従来除去さ
れていたリッジのサイドの窒化物半導体をエッチングで
除去することなく残存させ放熱部31を形成すること
で、放熱部30に加えてヒートシンク40への熱伝導性
が向上する。更にリッジの形成位置をレーザの構成など
と加味し、その都度適切に選択することで、例えばp型
窒化物半導体層の中央や端部などを選択することで、放
熱部31を容易に形成でき且つ放熱部31の性能を十分
に発揮させる等のことができる。このように、リッジが
p側の左端であるときはp側窒化物半導体層の中央から
右端にかけて、又、図示されてないが、リッジがp側の
中央であるときはリッジの両側に、各々放熱部を設ける
など、電極が形成されてないp側及びn側の窒化物半導
体層上に可能なだけ放熱部を形成することができる。
FIG. 3 is a schematic sectional view of a nitride semiconductor laser diode according to one embodiment of the present invention. FIG.
Comprises an n-type layer 2 (having a laminated structure such as a light guide layer and a light confinement layer), an active layer 3 and a p-type layer 4 (having a laminated structure such as a light guide layer and a light confinement layer) on a substrate 1. The p-ohmic electrode 12 is provided on the uppermost layer of the p-type nitride semiconductor layer that has been laminated and formed into a ridge shape by the etching process, and the n-type nitride semiconductor in the concave portion formed in the n-type nitride semiconductor layer by the etching process An n-ohmic electrode 11 is provided on the layer, and a heat-radiating portion 31 is provided on the p-side nitride semiconductor layer other than the heat-radiating portion 30 and the p-side ridge formed adjacent to the n-ohmic electrode 11, respectively. A nitride semiconductor laser diode 102 in which the pad electrode 15 and the lead electrode 42, and the n-pat electrode 14 and the lead electrode 41 are directly bonded to the heat sink 40 with conductive materials 52 and 51, respectively. . According to the present invention, when a ridge is conventionally formed as shown in FIG. 1, the p-side nitride semiconductor layer is etched like the p-type layer 4 in FIG. By forming the heat radiating portion 31 by leaving the side nitride semiconductor without being removed by etching, the heat conductivity to the heat sink 40 in addition to the heat radiating portion 30 is improved. Further, by considering the ridge formation position in consideration of the configuration of the laser and the like, and appropriately selecting the position each time, for example, by selecting the center or the end of the p-type nitride semiconductor layer, the heat radiating portion 31 can be easily formed. In addition, the performance of the heat radiating portion 31 can be sufficiently exhibited. As described above, when the ridge is at the left end on the p-side, the center extends from the center to the right end of the p-side nitride semiconductor layer. By providing a heat radiating portion, the heat radiating portion can be formed as much as possible on the p-side and n-side nitride semiconductor layers where no electrodes are formed.

【0015】図3の放熱部31の窒化物半導体の最上層
とリッジの窒化物半導体の最上層の高さを一致させるの
が好ましく、更に放熱部31の最上層、リッジの最上層
及び放熱部30の高さを一致させるのがより好ましい。
こうすることで窒化物半導体層上の正及び負電極とヒー
トシンクとの接触性が良好となり、放熱性が向上する。
図3では、リッジの電極12の両側に絶縁膜13を設
け、更にp側にp−パット電極15、n側にn−パット
電極14を設け、p側とn側の高低差をほぼ同一にして
ある。また、本発明は、p側とn側の高低差が少なくな
ると、ダイレクトボンディングする導電性材料の量も少
なくてすむので正負の電極間がショートする確率が少な
くなり産業上の利用価値が増大する。
It is preferable that the height of the uppermost layer of the nitride semiconductor of the heat radiating portion 31 in FIG. 3 and the height of the uppermost layer of the nitride semiconductor of the ridge are made equal, and furthermore, the uppermost layer of the heat radiating portion 31, the uppermost layer of the ridge and the heat radiating portion. More preferably, the heights of the 30 are matched.
This improves the contact between the positive and negative electrodes on the nitride semiconductor layer and the heat sink, and improves the heat dissipation.
In FIG. 3, an insulating film 13 is provided on both sides of the ridge electrode 12, a p-pat electrode 15 is provided on the p-side, and an n-pat electrode 14 is provided on the n-side, so that the height difference between the p-side and the n-side is substantially the same. It is. Further, according to the present invention, when the height difference between the p-side and the n-side is reduced, the amount of the conductive material to be directly bonded can be reduced, so that the probability of short-circuiting between the positive and negative electrodes is reduced and the industrial utility value is increased. .

【0016】[0016]

【実施例】以下有機金属気相成長法により、本発明の窒
化ガリウム系化合物半導体レーザ素子を製造し放熱性の
改善によるしきい値の上昇の抑制及び寿命特性について
以下に本発明の一実施例及び比較例を示し比較した。 [比較例]MOCVDを用いてサファイア基板上に成長
させたGaN系化合物半導体青色発光素子を図1のよう
なp層形状が残るようにp型GaN層、及びn型InG
aN層の一部をエッチングにより取り除いた後、p型化
処理を行い最上層のp型GaN層を更に低抵抗化する。
図1の様にp型層にはp−オーミック電極12、n型層
にはn−オーミック電極11を形成し、これを500℃
で熱処理を行い、フェイスダウンでダイボンドし、後は
常法に従いレーザダイオードとした。この素子をパルス
で発振を試みたところ、しきい値電流密度は5KA/c
2で1時間後の出力は60%低下していた。 [実施例]実施例において、図3のようにp側及びn側
にリッジ高さと同一の放熱部30、31を設け(p−G
aNをエッチングせず、所望する形状で残す)、p側と
n側の高低差をなくし、このp及びn側の放熱部30、
31にまでパット電極を形成する様に変える以外は比較
例と同様にしてレーザダイオードとした。この素子をパ
ルスで発振を試みたところ、しきい値電流密度は3.5
KA/cm2で1時間後の出力は10%低下した。
The gallium nitride based compound semiconductor laser device of the present invention is manufactured by the metalorganic chemical vapor deposition method. And a comparative example. [Comparative Example] A GaN-based compound semiconductor blue light emitting device grown on a sapphire substrate by MOCVD was fabricated using a p-type GaN layer and n-type InG such that the p-layer shape as shown in FIG.
After a part of the aN layer is removed by etching, a p-type treatment is performed to further reduce the resistance of the uppermost p-type GaN layer.
As shown in FIG. 1, a p-ohmic electrode 12 is formed on the p-type layer, and an n-ohmic electrode 11 is formed on the n-type layer.
, And die-bonded face down, and thereafter a laser diode was formed according to a conventional method. When the device was oscillated with a pulse, the threshold current density was 5 KA / c.
The output after one hour at m 2 was reduced by 60%. [Embodiment] In the embodiment, as shown in FIG. 3, heat radiating portions 30 and 31 having the same ridge height are provided on the p-side and the n-side (p-G).
aN is not etched and remains in a desired shape), and the height difference between the p-side and the n-side is eliminated.
A laser diode was manufactured in the same manner as in the comparative example except that the pad electrode was changed to 31. When the device was oscillated with a pulse, the threshold current density was 3.5.
The output after one hour at KA / cm 2 was reduced by 10%.

【0017】以上のように放熱部を設置してある実施例
は、放熱部を有してない比較例に比べしきい値電流密度
が低く出力の低下が少なく寿命特性が良好である。
As described above, in the embodiment in which the heat radiating portion is provided, the threshold current density is low, the output is not reduced, and the life characteristics are good as compared with the comparative example having no heat radiating portion.

【0018】[0018]

【発明の効果】以上のように本発明は、正電極及び負電
極を有する面に放熱部を形成することによって、放熱性
を改善し、しきい値の上昇を抑え、寿命特性が著しく向
上する。更に、本発明は正電極を有するp側窒化物半導
体層の高さ、正電極を有するp側に放熱部を有する場合
は放熱部の高さ、及びn側の放熱部の高さが、高低差内
0〜2μmであると放熱体との接触をより良好にし、更
に好ましい効果が得られる。更に、その他の効果とし
て、本発明は、半導体レーザダイオードと放熱体がほぼ
平行に接触するため、レーザ光を集光するためのレンズ
の設計も容易になる。更に、その他の効果として、本発
明は、窒化物半導体層の電極を有する面でp側とn側の
高低差が少なくなると、ダイレクトボンディングする導
電性材料の量も少なくてすむので正電極と負電極間がシ
ョートする確率が少なくなり産業上の利用価値が増大す
る。
As described above, according to the present invention, by forming the heat radiating portion on the surface having the positive electrode and the negative electrode, the heat radiating property is improved, the rise in the threshold value is suppressed, and the life characteristics are remarkably improved. . Further, in the present invention, the height of the p-side nitride semiconductor layer having the positive electrode, the height of the heat radiating portion when the heat radiating portion is provided on the p side having the positive electrode, and the height of the heat radiating portion on the n side are high and low. When the difference is 0 to 2 μm, the contact with the heat radiator is further improved, and a more preferable effect is obtained. Further, as another effect, in the present invention, since the semiconductor laser diode and the heat radiator are in substantially parallel contact with each other, it is easy to design a lens for condensing the laser light. Furthermore, as another effect, the present invention provides a method of reducing the height difference between the p-side and the n-side on the surface having the electrode of the nitride semiconductor layer, which reduces the amount of the conductive material to be directly bonded. The probability of short circuit between the electrodes is reduced, and the industrial utility value is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の窒化物半導体レーザダイオードの模式的
断面図である。
FIG. 1 is a schematic sectional view of a conventional nitride semiconductor laser diode.

【図2】本発明の一実施態様である窒化物半導体レーザ
ダイオードの模式的断面図である。
FIG. 2 is a schematic cross-sectional view of a nitride semiconductor laser diode according to one embodiment of the present invention.

【図3】本発明の一実施態様である窒化物半導体レーザ
ダイオードの模式的断面図である。
FIG. 3 is a schematic sectional view of a nitride semiconductor laser diode according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・n型層 3・・・活性層 4・・・p型層 11・・・n−オーミック電極 12・・・p−オーミック電極 13・・・絶縁膜 14・・・n−パット電極 15・・・p−パット電極 30、31・・・放熱部 40・・・ヒートシンク 41、42・・・リード電極 51、52・・・導電性材料 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... N-type layer 3 ... Active layer 4 ... P-type layer 11 ... n-ohmic electrode 12 ... p-ohmic electrode 13 ... Insulating film 14 ... · N-pat electrode 15 ··· p-pat electrode 30 and 31 · · · radiator 40 · heat sink 41 and 42 · · lead electrode 51 and 52 ... conductive material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一面側に一対の正電極及び負電極を設
けてなる窒化物半導体レーザダイオードにおいて、正電
極及び負電極を有する面に正電極及び負電極を形成する
のとは別に、放熱体に接触可能な形状で形成された窒化
物半導体層を有してなることを特徴とする窒化物半導体
レーザダイオード。
1. A nitride semiconductor laser diode having a pair of positive and negative electrodes provided on the same surface side, in addition to forming a positive electrode and a negative electrode on a surface having a positive electrode and a negative electrode, dissipating heat. A nitride semiconductor laser diode comprising a nitride semiconductor layer formed in a shape capable of contacting a body.
JP03679197A 1997-02-21 1997-02-21 Nitride semiconductor laser diode Expired - Fee Related JP3309953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03679197A JP3309953B2 (en) 1997-02-21 1997-02-21 Nitride semiconductor laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03679197A JP3309953B2 (en) 1997-02-21 1997-02-21 Nitride semiconductor laser diode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001381604A Division JP3786000B2 (en) 2001-12-14 2001-12-14 Nitride semiconductor laser diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10233549A true JPH10233549A (en) 1998-09-02
JP3309953B2 JP3309953B2 (en) 2002-07-29

Family

ID=12479621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03679197A Expired - Fee Related JP3309953B2 (en) 1997-02-21 1997-02-21 Nitride semiconductor laser diode

Country Status (1)

Country Link
JP (1) JP3309953B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135369A (en) * 1993-11-11 1995-05-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and its fabrication
JPH07235729A (en) * 1994-02-21 1995-09-05 Nichia Chem Ind Ltd Gallium nitride compound semiconductor laser element
JPH1041585A (en) * 1996-07-17 1998-02-13 Toyoda Gosei Co Ltd Manufacture of group iii nitride semiconductor laser diode
JPH10200213A (en) * 1997-01-14 1998-07-31 Nec Corp Gallium nitride semiconductor laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135369A (en) * 1993-11-11 1995-05-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and its fabrication
JPH07235729A (en) * 1994-02-21 1995-09-05 Nichia Chem Ind Ltd Gallium nitride compound semiconductor laser element
JPH1041585A (en) * 1996-07-17 1998-02-13 Toyoda Gosei Co Ltd Manufacture of group iii nitride semiconductor laser diode
JPH10200213A (en) * 1997-01-14 1998-07-31 Nec Corp Gallium nitride semiconductor laser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US7026659B2 (en) 2001-02-01 2006-04-11 Cree, Inc. Light emitting diodes including pedestals
US7420222B2 (en) 2001-02-01 2008-09-02 Cree, Inc. Light emitting diodes including transparent oxide layers
US8692277B2 (en) 2001-02-01 2014-04-08 Cree, Inc. Light emitting diodes including optically matched substrates
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US7037742B2 (en) 2001-07-23 2006-05-02 Cree, Inc. Methods of fabricating light emitting devices using mesa regions and passivation layers
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US7611915B2 (en) 2001-07-23 2009-11-03 Cree, Inc. Methods of manufacturing light emitting diodes including barrier layers/sublayers
US8907366B2 (en) 2001-07-23 2014-12-09 Cree, Inc. Light emitting diodes including current spreading layer and barrier sublayers

Also Published As

Publication number Publication date
JP3309953B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
KR100568269B1 (en) GaN LED for flip-chip bonding and manufacturing method therefor
US6586875B1 (en) Light emitting diode with low-temperature solder layer
US7482696B2 (en) Light-emitting diode package structure
KR101166922B1 (en) Method of manufacturing light emitting diode
KR101028965B1 (en) Light emitting diode including barrier layers and manufacturing methods therefor
JP3889933B2 (en) Semiconductor light emitting device
KR100958054B1 (en) Submount of semiconductor laser diode, manufacturing method thereof and semiconductor laser diode assembly adopting the same
TWI449201B (en) High reflectivity p-contact for ingan leds
JP3617565B2 (en) Nitride semiconductor laser device
US9385277B2 (en) Nitride semiconductor light emitting device
US20100224890A1 (en) Light emitting diode chip with electrical insulation element
JP2012019234A (en) GaN BASED LIGHT-EMITTING DIODE CHIP AND METHOD OF MANUFACTURING LIGHT-EMITTING DIODE STRUCTURE ELEMENT
JPH07235729A (en) Gallium nitride compound semiconductor laser element
US9331453B2 (en) Laser diode device
JP2006313907A (en) Heat radiating structural body and light emitting assembly equipped therewith
JP3309953B2 (en) Nitride semiconductor laser diode
KR102056618B1 (en) Semiconductor light emitting device
JP3786000B2 (en) Nitride semiconductor laser diode and manufacturing method thereof
JPH09181394A (en) Nitride semiconductor laser diode
JP3620498B2 (en) Nitride semiconductor laser device
JP4288947B2 (en) Manufacturing method of nitride semiconductor light emitting device
JPH1022570A (en) Nitride semiconductor laser element
KR100397608B1 (en) Light emitting device using GaN series III-V group nitride semiconductor laser diode
US20070158665A1 (en) Light emitting diode
JPH10107384A (en) Nitride semiconductor light-emitting element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees