JP3786000B2 - Nitride semiconductor laser diode and manufacturing method thereof - Google Patents

Nitride semiconductor laser diode and manufacturing method thereof Download PDF

Info

Publication number
JP3786000B2
JP3786000B2 JP2001381604A JP2001381604A JP3786000B2 JP 3786000 B2 JP3786000 B2 JP 3786000B2 JP 2001381604 A JP2001381604 A JP 2001381604A JP 2001381604 A JP2001381604 A JP 2001381604A JP 3786000 B2 JP3786000 B2 JP 3786000B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
layer
semiconductor layer
semiconductor laser
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001381604A
Other languages
Japanese (ja)
Other versions
JP2002208756A (en
Inventor
孝夫 山田
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2001381604A priority Critical patent/JP3786000B2/en
Publication of JP2002208756A publication Critical patent/JP2002208756A/en
Application granted granted Critical
Publication of JP3786000B2 publication Critical patent/JP3786000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)よりなる窒化物半導体レーザダイオード(LD)に関し、特に放熱性に優れた窒化物半導体レーザダイオードに関する。
【0002】
【従来の技術】
半導体レーザダイオード(以下単に半導体レーザという場合がある。)は、熱によってその特性及び信頼性が著しく影響を受けるため、半導体レーザの駆動には高電流密度によるジュール熱を放散することが、実用上、非常に大切である。熱の放散は、半導体レーザをヒートシンクに接触させることによって行われている。
窒化物半導体レーザは、サファイアやスピネルのような絶縁性基板の上に成長されるため、正と負の電極を窒化物半導体層側から取り出すいわゆるフリップチップ形式である。例えば窒化物半導体レーザは、絶縁性基板、n型層、活性層、及びp型層を積層してなる基本構造を有しており、電極はp型層と活性層とがエッチングされ、エッチングにより露出したn型層と最上層のp型層とに設けられる。このような構造の場合、窒化物半導体レーザは露出したn型層と最上層のp型層とに段差が生じる。このような構造を有する半導体レーザチップの一例を図1に模式的な断面図で示すと、図1は、基板1、n型層2(光ガイド層及び光閉じこめ層等の積層構造を有する)、活性層3、p型層4(光りガイド層及び光閉じこめ層等の積層構造を有する)を有し、更に窒化物半導体層上の凹部にn−オーミック電極11(負電極)、凸部にp−オーミック電極12(正電極)を設置し、絶縁膜13、p−パット電極15、n−パット電極14を形成してある。そして高電流密度によるジュール熱は電極を有する面を、リード電極41及び42を有するヒートシンク40に接触させ放散される。
【0003】
【発明が解決しようとする課題】
しかしながら、このような図1の窒化物半導体レーザは、上記の如く1面2電極のため負電極形成時に正電極を有するp側と負電極を形成するn側との間でヒートシンクに接触する面に高低差(段差)が生じ、フェイスダウンでヒートシンクに良好なダイレクトボンディングができず、窒化物半導体レーザの電極とヒートシンクとが十分に接触できない。その結果、窒化物半導体レーザの放熱性が悪くなり、しきい値が上昇し、寿命特性が劣化する等の問題が生じる。
そこで本発明の目的は、窒化物半導体レーザの放熱性を向上させ、しきい値の上昇の抑制、寿命特性の向上を達成させることである。
【0004】
【課題を解決するための手段】
即ち、本発明の目的は、下記構成によって達成することができる。
(1) 本発明に係わる窒化物半導体レーザダイオードの製造方法は、基板上にn型窒化物半導体層、活性層、p型窒化物半導体層を積層し、エッチングによってリッジが形成されたp型窒化物半導体層を有し、同一面側に一対の正電極及び負電極を設けてなる窒化物半導体レーザダイオードの製造方法であって、エッチングにより、露出したn型窒化物半導体層上に負電極、p型窒化物半導体層のリッジ上に正電極を設置し、前記リッジのサイドのp型窒化物半導体層をエッチングによって除去することなく残存させることで、放熱部を形成することを特徴とする。
(2) また、本発明に係わる窒化物半導体レーザダイオードの製造方法は、上記窒化物半導体レーザダイオードの製造方法において、更に、正電極及び負電極を有する面に、正電極及び負電極とは別に、前記負電極に隣接し、エッチングで除去されない窒化物半導体層からなる放熱部を形成することを特徴とする。
(3) また、本発明に係わる窒化物半導体レーザダイオードは、基板上にn型窒化物半導体層、活性層、p型窒化物半導体層を積層し、エッチングによってリッジが形成されたp型窒化物半導体層を有し、同一面側に一対の正電極及び負電極を設けてなる窒化物半導体レーザダイオードにおいて、エッチングにより、露出したn型窒化物半導体層上に負電極、p型窒化物半導体層のリッジ上に正電極を設置し、前記p型窒化物半導体のリッジの、サイドのp型窒化物半導体層を除去することなく残存させることで設けた、放熱部を有することを特徴とする。
【0005】
(2)また、本発明に係わる窒化物半導体レーザダイオードの製造方法は上記窒化物半導体レーザダイオードの製造方法においてさらに、前記負電極に隣接し、エッチングで除去されない窒化物半導体層からなる放熱部を形成することを特徴とする。
【0006】
【発明の実施の形態】
つまり、本発明は、正電極及び負電極を有する面に正電極及び負電極を形成するのとは別に、放熱体に接触可能な形状で形成された窒化物半導体層(以下放熱部という場合がある。)を有することによって、窒化物半導体レーザダイオードの放熱体への接触面積を増大し、半導体レーザの駆動において非常に問題となる高電流密度によるジュール熱を良好に放散することができる。これによってしきい値の上昇を抑え、寿命特性が著しく向上する。
このような本発明の放熱部は、半導体レーザの窒化物半導体層を積層後、レジストを塗布しレジストに光を照射してエッチングする箇所を決める際に、所望する形状、つまり放熱体(例えばヒートシンク等)に接触可能な形状となるように、放熱部となり得る部分に露光せずエッチングすることで形成される。このため、多数の工程を必要とする半導体レーザの製作に特別新たな工程を必要とせず、簡易な方法で本発明の放熱部を設けることができる。
【0007】
放熱体とは、窒化物半導体レーザダイオードに生じるジュール熱を吸収し放散する吸熱材料であり、例えばヒートシンク、サブマウント、ステムなどであり、熱を放散させるための熱伝導性の良い材料としては、ダイヤモンド、BeO、CuW、AlN、cBN、Si、SiC、GaAs、Al等が挙げられる。特に、放熱体がダイヤモンドであると熱伝導性が良く、更に本発明の放熱部と組み合わせるとより良い効果が得られる。
また、放熱部とは、窒化物半導体レーザダイオードに生じるジュール熱を放熱体に伝導させるため放熱体に接触可能な形状で形成され、放熱体に接触し熱を放散させるための部位であり、窒化物半導体よりなる。ここで、放熱部が放熱体に接触可能な形状で形成されとは、放熱部が少なくとも放熱体に接触可能であれば良く、好ましくは放熱部の最上層が窒化物半導体層の凹部に設けられる負電極の上部より高く、つまり放熱部が負電極よりも放熱体に接触し易く形成され、更に好ましくは放熱部の最上層と正電極が設けられている窒化物半導体層の凸部の最上層との高低差が0〜2μmで形成され、特に好ましくは放熱体と水平に接触できるように放熱部が形成される。
【0008】
本発明の放熱部の設置位置は、放熱体に接触可能な状態であればいずれでも良いが、放熱効率を高めるため、凹部に形成された負電極及び/又は凸部に形成された正電極に隣接させて形成するのが好ましい。こうすることで高電流密度によるジュール熱を蓄積し易い電極から放熱部へ熱を効率良く伝導できる。また、放熱部は、窒化物半導体レーザダイオード1単位の窒化物半導体層上に2箇所以上形成されても良く、窒化物半導体レーザダイオードの一般的に好ましいとされる大きさの1単位内に可能なだけ形成されても良い。ここで、可能なだけ形成しても良いとは、電極が形成されていない窒化物半導体層を窒化物半導体レーザの性能の低下を引き起こさない範囲で放熱部として形成することを意味する。
また、凸部に設けられた正電極を有する窒化物半導体層の最上層と放熱部の最上層の高さを0〜2μm以内にすると、従来の窒化物半導体レーザダイオードのように著しい段差がなくなり、窒化物半導体レーザダイオードの正及び負電極を有する面を放熱体に接触させても斜めにならず良好に接触でき、放熱性が著しく改善される。また、放熱部は窒化物半導体であるので熱伝導性に優れており、この点でも放熱部が熱を放散するのに適している。
【0009】
本発明は、正電極及び負電極を有する同一面の少なくとも1箇所以上に窒化物半導体層からなる放熱部を有している窒化物半導体レーザダイオードであれば良く、窒化物半導体レーザダイオードにおける放熱部以外のその他の構成(窒化物半導体層の層構成、電極の形状及び材質等)は特に限定されず、公知の種種の窒化物半導体レーザダイオードの構成が適用できる。
【0010】
以下、図面を用いて本発明の放熱部を有する窒化物半導体レーザダイオードについて具体的に説明する。
図2は、本発明の一実施態様である窒化物半導体レーザダイオードの模式的な断面図である。
図2は、基板1上にn型層2(光ガイド層及び光閉じこめ層等の積層構造を有する)、活性層3、p型層4(光りガイド層及び光閉じこめ層等の積層構造を有する)を積層し、エッチング処理で形成した凹部のn型窒化物半導体層上にn−オーミック電極11(負電極)、エッチングされない凸部のp型窒化物半導体層にp−オーミック電極12(正電極)を各々設置し、p−オーミック電極12を有するp型窒化物半導体層の面上及び図2に示す様に窒化物半導体層の側面から露出しているn型層上に絶縁膜13を形成し、p側のp−オーミック電極12上にp−パット電極15を形成し、n側のn−オーミック電極11上からn−オーミック電極11に隣接しエッチングで除去されない窒化物半導体層の放熱部30にn−パット電極14を図2のように形成し、p−パット電極15とリード電極42、及びn−パット電極14とリード電極41とを導電性材料52、51でそれそれヒートシンク40にダイレクトボンディングしてなる窒化物半導体レーザダイオード101である。
【0011】
放熱部30は、図面に向かってn−オーミック電極11の左隣の窒化物半導体層をエッチングで除去せずに残存させヒートシンク40に接触可能な形状で形成されている。放熱部30がn−オーミック電極11の左隣に設けられることにより、電極に生じるジュール熱を効率良くヒートシンク40に放散させることができる。また、放熱部30の高さをp−オーミック電極12を有するp側の窒化物半導体層と同一にし、更にp−オーミック電極12の厚みと同一に絶縁膜13をp−オーミック電極12の両側に設けることにより、窒化物半導体レーザダイオード101の正及び負電極を有する面がヒートシンク40に良好に接触できるようになる。また放熱部30にn−オーミック電極11と電気的に接触されたn−パット電極14及びp−オーミック電極12と電気的に接触されたp−パット電極15を厚みを考慮して各々設けることで、p側とn側の高低差をほぼ0μmに調整することができ、窒化物半導体レーザダイオード101とヒートシンク40とが水平に接触でき、より一層効率的に熱の放散が行われる。
【0012】
このように、半導体レーザダイオード101をヒートシンク40に接触させる際、放熱部30が形成されているためp側とn側との間に段差が発生せず半導体レーザダイオード101がヒートシンク40とほぼ水平状に接触できる。更に放熱部30が窒化物半導体と同一材料よりなっているので、活性層3の発熱が迅速に放熱部30に伝わる。更に放熱部30には熱伝導率の良いAu、Ag、Au/Ge等の金属材料よりなるn−パット電極14が設けられているので、熱がこの部材を介して効率良くヒートシンク40に伝導される。
【0013】
p−オーミック電極12を有するp型窒化物半導体層の最上層と放熱部30の最上層との高低差が0〜2μm、好ましくは0〜1μmであるとヒートシンク40との接触が良好となり、熱伝導性が更に向上し、また、ヒートシンク40に対してほぼ水平にボンディングできるため窒化物半導体レーザ製造上、分留が向上して好都合である。
p−パット電極15及びn−パット電極14をダイレクトボンディングする導電性材料51及び52はIn、PbSn、AuSn、AuSi等の半田材、銀ペースト、Inペースト等を使用することができる。
【0014】
図3は、本発明の一実施態様である窒化物半導体レーザダイオードの模式的な断面図である。
図3は、基板1上にn型層2(光ガイド層及び光閉じこめ層等の積層構造を有する)、活性層3、p型層4(光りガイド層及び光閉じこめ層等の積層構造を有する)を積層し、エッチング処理でリッジ形状にされたp型窒化物半導体層の最上層にp−オーミック電極12を設置し、エッチング処理でn型窒化物半導体層に形成された凹部のn型窒化物半導体層上にn−オーミック電極11を設置し、n−オーミック電極11に隣接して放熱部30及びp側のリッジを形成した以外のp側の窒化物半導体層に放熱部31を各々設け、p−パット電極15とリード電極42、及びn−パット電極14とリード電極41とを導電性材料52、51でそれぞれヒートシンク40でダイレクトボンディングしてなる窒化物半導体レーザダイオード102である。
本発明は、従来、図1に示す様にリッジを形成する場合、p側の窒化物半導体層は図1のp型層4の様にエッチングされるのに対し、従来除去されていたリッジのサイドの窒化物半導体をエッチングで除去することなく残存させ放熱部31を形成することで、放熱部30に加えてヒートシンク40への熱伝導性が向上する。更にリッジの形成位置をレーザの構成などと加味し、その都度適切に選択することで、例えばp型窒化物半導体層の中央や端部などを選択することで、放熱部31を容易に形成でき且つ放熱部31の性能を十分に発揮させる等のことができる。このように、リッジがp側の左端であるときはp側窒化物半導体層の中央から右端にかけて、又、図示されてないが、リッジがp側の中央であるときはリッジの両側に、各々放熱部を設けるなど、電極が形成されてないp側及びn側の窒化物半導体層上に可能なだけ放熱部を形成することができる。
【0015】
図3の放熱部31の窒化物半導体の最上層とリッジの窒化物半導体の最上層の高さを一致させるのが好ましく、更に放熱部31の最上層、リッジの最上層及び放熱部30の高さを一致させるのがより好ましい。こうすることで窒化物半導体層上の正及び負電極とヒートシンクとの接触性が良好となり、放熱性が向上する。図3では、リッジの電極12の両側に絶縁膜13を設け、更にp側にp−パット電極15、n側にn−パット電極14を設け、p側とn側の高低差をほぼ同一にしてある。
また、本発明は、p側とn側の高低差が少なくなると、ダイレクトボンディングする導電性材料の量も少なくてすむので正負の電極間がショートする確率が少なくなり産業上の利用価値が増大する。
【0016】
【実施例】
以下有機金属気相成長法により、本発明の窒化ガリウム系化合物半導体レーザ素子を製造し放熱性の改善によるしきい値の上昇の抑制及び寿命特性について以下に本発明の一実施例及び比較例を示し比較した。
[比較例]
MOCVDを用いてサファイア基板上に成長させたGaN系化合物半導体青色発光素子を図1のようなp層形状が残るようにp型GaN層、及びn型InGaN層の一部をエッチングにより取り除いた後、p型化処理を行い最上層のp型GaN層を更に低抵抗化する。図1の様にp型層にはp−オーミック電極12、n型層にはn−オーミック電極11を形成し、これを500℃で熱処理を行い、フェイスダウンでダイボンドし、後は常法に従いレーザダイオードとした。
この素子をパルスで発振を試みたところ、しきい値電流密度は5KA/cmで1時間後の出力は60%低下していた。
[実施例]
実施例において、図3のようにp側及びn側にリッジ高さと同一の放熱部30、31を設け(p−GaNをエッチングせず、所望する形状で残す)、p側とn側の高低差をなくし、このp及びn側の放熱部30、31にまでパット電極を形成する様に変える以外は比較例と同様にしてレーザダイオードとした。
この素子をパルスで発振を試みたところ、しきい値電流密度は3.5KA/cmで1時間後の出力は10%低下した。
【0017】
以上のように放熱部を設置してある実施例は、放熱部を有してない比較例に比べしきい値電流密度が低く出力の低下が少なく寿命特性が良好である。
【0018】
【発明の効果】
以上のように本発明は、正電極及び負電極を有する面に放熱部を形成することによって、放熱性を改善し、しきい値の上昇を抑え、寿命特性が著しく向上する。
更に、本発明は正電極を有するp側窒化物半導体層の高さ、正電極を有するp側に放熱部を有する場合は放熱部の高さ、及びn側の放熱部の高さが、高低差内0〜2μmであると放熱体との接触をより良好にし、更に好ましい効果が得られる。
更に、その他の効果として、本発明は、半導体レーザダイオードと放熱体がほぼ平行に接触するため、レーザ光を集光するためのレンズの設計も容易になる。更に、その他の効果として、本発明は、窒化物半導体層の電極を有する面でp側とn側の高低差が少なくなると、ダイレクトボンディングする導電性材料の量も少なくてすむので正電極と負電極間がショートする確率が少なくなり産業上の利用価値が増大する。
【図面の簡単な説明】
【図1】従来の窒化物半導体レーザダイオードの模式的断面図である。
【図2】本発明の一実施態様である窒化物半導体レーザダイオードの模式的断面図である。
【図3】本発明の一実施態様である窒化物半導体レーザダイオードの模式的断面図である。
【符号の説明】
1・・・基板
2・・・n型層
3・・・活性層
4・・・p型層
11・・・n−オーミック電極
12・・・p−オーミック電極
13・・・絶縁膜
14・・・n−パット電極
15・・・p−パット電極
30、31・・・放熱部
40・・・ヒートシンク
41、42・・・リード電極
51、52・・・導電性材料
[0001]
BACKGROUND OF THE INVENTION
The present invention, nitride semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) relates than consisting nitride semiconductor a laser diode (LD), a particularly excellent heat dissipation The present invention relates to a nitride semiconductor laser diode.
[0002]
[Prior art]
Semiconductor laser diodes (hereinafter sometimes referred to simply as “semiconductor lasers”) are significantly affected in their characteristics and reliability by heat. Therefore, it is practically necessary to dissipate Joule heat due to high current density when driving a semiconductor laser. Is very important. Heat dissipation is performed by bringing a semiconductor laser into contact with a heat sink.
Since the nitride semiconductor laser is grown on an insulating substrate such as sapphire or spinel, it is a so-called flip chip type in which positive and negative electrodes are taken out from the nitride semiconductor layer side. For example, a nitride semiconductor laser has a basic structure in which an insulating substrate, an n-type layer, an active layer, and a p-type layer are stacked, and an electrode is etched by etching the p-type layer and the active layer. The exposed n-type layer and the uppermost p-type layer are provided. In such a structure, the nitride semiconductor laser has a step between the exposed n-type layer and the uppermost p-type layer. An example of a semiconductor laser chip having such a structure is shown in a schematic cross-sectional view in FIG. 1. FIG. 1 shows a substrate 1 and an n-type layer 2 (having a laminated structure such as a light guide layer and a light confinement layer). , An active layer 3 and a p-type layer 4 (having a laminated structure such as a light guide layer and a light confinement layer), an n-ohmic electrode 11 (negative electrode) in the concave portion on the nitride semiconductor layer, and a convex portion A p-ohmic electrode 12 (positive electrode) is provided, and an insulating film 13, a p-pad electrode 15, and an n-pad electrode 14 are formed. The Joule heat due to the high current density is dissipated by bringing the surface having the electrodes into contact with the heat sink 40 having the lead electrodes 41 and 42.
[0003]
[Problems to be solved by the invention]
However, since the nitride semiconductor laser shown in FIG. 1 has one surface and two electrodes as described above, the surface that contacts the heat sink between the p side having the positive electrode and the n side forming the negative electrode when forming the negative electrode. As a result, there is a difference in level (step), and good direct bonding to the heat sink cannot be performed face down, and the electrode of the nitride semiconductor laser and the heat sink cannot sufficiently contact each other. As a result, the heat dissipation of the nitride semiconductor laser is deteriorated, the threshold value is increased, and the life characteristics are deteriorated.
Therefore, an object of the present invention is to improve the heat dissipation of the nitride semiconductor laser, to suppress the increase in threshold value and to improve the life characteristics.
[0004]
[Means for Solving the Problems]
That is, the object of the present invention can be achieved by the following configuration.
(1) A method of manufacturing a nitride semiconductor laser diode according to the present invention includes p-type nitridation in which an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are stacked on a substrate, and a ridge is formed by etching. A nitride semiconductor laser diode manufacturing method comprising a semiconductor layer and having a pair of positive and negative electrodes provided on the same side, wherein the negative electrode is formed on the exposed n-type nitride semiconductor layer by etching, A positive electrode is provided on the ridge of the p-type nitride semiconductor layer, and the heat dissipation portion is formed by leaving the p-type nitride semiconductor layer on the side of the ridge without being removed by etching.
(2) Further, the method for manufacturing a nitride semiconductor laser diode according to the present invention is the above-described method for manufacturing a nitride semiconductor laser diode, further comprising a positive electrode and a negative electrode on a surface having a positive electrode and a negative electrode. A heat dissipating portion made of a nitride semiconductor layer that is adjacent to the negative electrode and is not removed by etching is formed.
(3) The nitride semiconductor laser diode according to the present invention is a p-type nitride in which an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are stacked on a substrate, and a ridge is formed by etching. In a nitride semiconductor laser diode having a semiconductor layer and provided with a pair of positive and negative electrodes on the same surface side, a negative electrode and a p-type nitride semiconductor layer are formed on the exposed n-type nitride semiconductor layer by etching. A positive electrode is provided on the ridge of the p-type nitride semiconductor, and a heat dissipation portion is provided by leaving the p-type nitride semiconductor ridge without removing the side p-type nitride semiconductor layer.
[0005]
(2) Further, in the method for manufacturing a nitride semiconductor laser diode according to the present invention, in the method for manufacturing a nitride semiconductor laser diode, further, a heat dissipating portion made of a nitride semiconductor layer adjacent to the negative electrode and not removed by etching is provided. It is characterized by forming.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
That is, according to the present invention, a nitride semiconductor layer (hereinafter, referred to as a heat dissipation portion) formed in a shape that can contact a heat dissipator is formed separately from forming the positive electrode and the negative electrode on the surface having the positive electrode and the negative electrode. In other words, the contact area of the nitride semiconductor laser diode to the heat radiating body can be increased, and Joule heat due to high current density, which is very problematic in driving the semiconductor laser, can be dissipated well. As a result, the rise in threshold value is suppressed, and the life characteristics are remarkably improved.
Such a heat radiating portion of the present invention has a desired shape, that is, a heat radiating body (for example, a heat sink), when a nitride semiconductor layer of a semiconductor laser is stacked, a resist is applied, and a portion to be etched is irradiated with light. Etc.) is formed by etching without exposure to a portion that can be a heat radiating portion. For this reason, a special new process is not required for the manufacture of a semiconductor laser that requires a large number of processes, and the heat dissipating part of the present invention can be provided by a simple method.
[0007]
A radiator is an endothermic material that absorbs and dissipates Joule heat generated in a nitride semiconductor laser diode, for example, a heat sink, a submount, a stem, and the like. As a material having good thermal conductivity for dissipating heat, Examples include diamond, BeO, CuW, AlN, cBN, Si, SiC, GaAs, and Al 2 O 3 . In particular, when the radiator is diamond, the thermal conductivity is good, and when combined with the radiator of the present invention, a better effect can be obtained.
Further, the heat radiating portion is a part that is formed in a shape that can contact the heat radiating body so as to conduct Joule heat generated in the nitride semiconductor laser diode to the heat radiating body, and that dissipates heat by contacting the heat radiating body. It consists of a physical semiconductor. Here, the heat radiating portion is formed in a shape that can contact the heat radiating body as long as the heat radiating portion can contact at least the heat radiating body. Preferably, the uppermost layer of the heat radiating portion is provided in the recess of the nitride semiconductor layer. It is higher than the upper part of the negative electrode, that is, the heat radiating part is formed more easily to contact the heat radiating body than the negative electrode, and more preferably the uppermost layer of the heat radiating part and the uppermost layer of the convex part of the nitride semiconductor layer provided with the positive electrode And a heat radiating portion is preferably formed so as to be in horizontal contact with the heat radiating body.
[0008]
The installation position of the heat radiating portion of the present invention may be any as long as it is in contact with the heat radiating body, but in order to increase the heat radiating efficiency, the negative electrode formed in the concave portion and / or the positive electrode formed in the convex portion is provided. It is preferable to form them adjacent to each other. By doing so, heat can be efficiently conducted from the electrode that easily accumulates Joule heat due to high current density to the heat radiating portion. Two or more heat radiation portions may be formed on the nitride semiconductor layer of one unit of the nitride semiconductor laser diode, and can be within one unit of a generally preferred size of the nitride semiconductor laser diode. It may be formed as much as possible. Here, “may be formed as much as possible” means that a nitride semiconductor layer on which no electrode is formed is formed as a heat dissipation portion within a range that does not cause a decrease in the performance of the nitride semiconductor laser.
In addition, when the height of the uppermost layer of the nitride semiconductor layer having the positive electrode provided on the convex portion and the uppermost layer of the heat dissipation portion is within 0 to 2 μm, there is no significant step difference as in the conventional nitride semiconductor laser diode. Even if the surface having the positive and negative electrodes of the nitride semiconductor laser diode is brought into contact with the heat dissipator, it can be satisfactorily contacted without being inclined, and the heat dissipation is remarkably improved. Further, since the heat radiating portion is a nitride semiconductor, it has excellent thermal conductivity, and this is also suitable for the heat radiating portion to dissipate heat.
[0009]
The present invention only needs to be a nitride semiconductor laser diode having a heat radiating portion made of a nitride semiconductor layer in at least one place on the same surface having the positive electrode and the negative electrode, and the heat radiating portion in the nitride semiconductor laser diode Other configurations (layer configuration of nitride semiconductor layer, electrode shape and material, etc.) are not particularly limited, and configurations of various types of known nitride semiconductor laser diodes can be applied.
[0010]
Hereinafter, a nitride semiconductor laser diode having a heat dissipation part of the present invention will be specifically described with reference to the drawings.
FIG. 2 is a schematic cross-sectional view of a nitride semiconductor laser diode which is an embodiment of the present invention.
2 shows an n-type layer 2 (having a laminated structure such as a light guide layer and a light confinement layer), an active layer 3 and a p-type layer 4 (having a laminated structure such as a light guide layer and a light confinement layer) on the substrate 1. ) And an n-ohmic electrode 11 (negative electrode) on the concave n-type nitride semiconductor layer formed by etching, and a p-ohmic electrode 12 (positive electrode) on the non-etched p-type nitride semiconductor layer. ) And the insulating film 13 is formed on the surface of the p-type nitride semiconductor layer having the p-ohmic electrode 12 and on the n-type layer exposed from the side surface of the nitride semiconductor layer as shown in FIG. Then, a p-pad electrode 15 is formed on the p-ohmic electrode 12 on the p-side, and the heat radiating portion of the nitride semiconductor layer that is adjacent to the n-ohmic electrode 11 from the n-ohmic electrode 11 on the n-side and is not removed by etching 30 to n-pad electrode 14 A nitride semiconductor formed as shown in FIG. 2 and formed by directly bonding the p-pad electrode 15 and the lead electrode 42, and the n-pad electrode 14 and the lead electrode 41 to the heat sink 40 with the conductive materials 52 and 51, respectively. This is a laser diode 101.
[0011]
The heat radiating portion 30 is formed in such a shape that the nitride semiconductor layer on the left side of the n-ohmic electrode 11 is left without being removed by etching and can contact the heat sink 40 as viewed in the drawing. By providing the heat radiating part 30 on the left side of the n-ohmic electrode 11, Joule heat generated in the electrode can be efficiently dissipated to the heat sink 40. In addition, the height of the heat radiating portion 30 is made the same as that of the p-side nitride semiconductor layer having the p-ohmic electrode 12, and the insulating film 13 is formed on both sides of the p-ohmic electrode 12 with the same thickness as the p-ohmic electrode 12. By providing, the surface having the positive and negative electrodes of the nitride semiconductor laser diode 101 can be in good contact with the heat sink 40. Also, by providing the n-pad electrode 14 that is in electrical contact with the n-ohmic electrode 11 and the p-pad electrode 15 that is in electrical contact with the p-ohmic electrode 12 in the heat radiation portion 30 in consideration of the thickness, respectively. The height difference between the p-side and the n-side can be adjusted to approximately 0 μm, the nitride semiconductor laser diode 101 and the heat sink 40 can be in horizontal contact, and heat can be more efficiently dissipated.
[0012]
As described above, when the semiconductor laser diode 101 is brought into contact with the heat sink 40, no step is generated between the p side and the n side because the heat radiating portion 30 is formed, so that the semiconductor laser diode 101 is substantially horizontal with the heat sink 40. Can touch. Furthermore, since the heat radiating portion 30 is made of the same material as the nitride semiconductor, the heat generated in the active layer 3 is quickly transmitted to the heat radiating portion 30. Furthermore, since the n-pad electrode 14 made of a metal material such as Au, Ag, or Au / Ge having good thermal conductivity is provided in the heat radiating portion 30, heat is efficiently conducted to the heat sink 40 through this member. The
[0013]
When the height difference between the uppermost layer of the p-type nitride semiconductor layer having the p-ohmic electrode 12 and the uppermost layer of the heat dissipation portion 30 is 0 to 2 μm, preferably 0 to 1 μm, the contact with the heat sink 40 becomes good, The conductivity is further improved, and since it can be bonded almost horizontally to the heat sink 40, the fractional distillation is advantageously improved in the manufacture of the nitride semiconductor laser.
As the conductive materials 51 and 52 for directly bonding the p-pad electrode 15 and the n-pad electrode 14, solder materials such as In, PbSn, AuSn, and AuSi, silver paste, In paste, and the like can be used.
[0014]
FIG. 3 is a schematic cross-sectional view of a nitride semiconductor laser diode that is one embodiment of the present invention.
3 shows an n-type layer 2 (having a laminated structure such as a light guide layer and a light confinement layer), an active layer 3 and a p-type layer 4 (having a laminated structure such as a light guide layer and a light confinement layer) on the substrate 1. ), P-ohmic electrode 12 is placed on the uppermost layer of the p-type nitride semiconductor layer ridge-shaped by etching treatment, and n-type nitridation of the recess formed in the n-type nitride semiconductor layer by etching treatment The n-ohmic electrode 11 is disposed on the metal semiconductor layer, and the heat dissipation portions 31 are provided on the p-side nitride semiconductor layers other than the heat dissipation portion 30 and the p-side ridge formed adjacent to the n-ohmic electrode 11, respectively. The nitride semiconductor laser diode 102 is formed by directly bonding the p-pad electrode 15 and the lead electrode 42 and the n-pad electrode 14 and the lead electrode 41 with conductive materials 52 and 51 with the heat sink 40, respectively. A.
In the present invention, when forming a ridge as shown in FIG. 1, the p-side nitride semiconductor layer is etched like the p-type layer 4 in FIG. By forming the heat radiating portion 31 by leaving the side nitride semiconductor without being removed by etching, the thermal conductivity to the heat sink 40 in addition to the heat radiating portion 30 is improved. Furthermore, the heat sink 31 can be easily formed by selecting the center and end of the p-type nitride semiconductor layer, for example, by appropriately selecting the ridge formation position in consideration of the laser configuration and the like each time. In addition, the performance of the heat radiating portion 31 can be sufficiently exhibited. Thus, when the ridge is at the left end on the p side, from the center to the right end of the p side nitride semiconductor layer, and not shown, when the ridge is at the center on the p side, A heat dissipating part can be formed as much as possible on the p-side and n-side nitride semiconductor layers where electrodes are not formed, such as providing a heat dissipating part.
[0015]
It is preferable that the height of the uppermost layer of the nitride semiconductor of the heat dissipating part 31 and the uppermost layer of the nitride semiconductor of the ridge in FIG. More preferably, the lengths are matched. By doing so, the contact between the positive and negative electrodes on the nitride semiconductor layer and the heat sink is improved, and the heat dissipation is improved. In FIG. 3, an insulating film 13 is provided on both sides of the ridge electrode 12, a p-pad electrode 15 is provided on the p side, an n-pad electrode 14 is provided on the n side, and the height difference between the p side and the n side is made substantially the same. It is.
Further, according to the present invention, when the height difference between the p-side and the n-side is reduced, the amount of the conductive material to be directly bonded can be reduced, so that the probability of short-circuiting between the positive and negative electrodes is reduced and the industrial utility value is increased. .
[0016]
【Example】
Hereinafter, the gallium nitride-based compound semiconductor laser device of the present invention is manufactured by metal organic vapor phase epitaxy, and the increase in the threshold and the life characteristics due to the improvement in heat dissipation are described below. Shown and compared.
[Comparative example]
After removing part of the p-type GaN layer and the n-type InGaN layer from the GaN-based compound semiconductor blue light emitting device grown on the sapphire substrate using MOCVD so that the p-layer shape as shown in FIG. 1 remains. Then, p-type treatment is performed to further reduce the resistance of the uppermost p-type GaN layer. As shown in FIG. 1, a p-ohmic electrode 12 is formed on the p-type layer, and an n-ohmic electrode 11 is formed on the n-type layer, which is heat-treated at 500 ° C. and die-bonded face-down. A laser diode was used.
When this device was oscillated with a pulse, the threshold current density was 5 KA / cm 2 and the output after 1 hour was reduced by 60%.
[Example]
In the embodiment, as shown in FIG. 3, the heat radiation portions 30 and 31 having the same height as the ridge are provided on the p side and the n side (p-GaN is not etched and left in a desired shape), and the heights of the p side and the n side are increased. A laser diode was made in the same manner as in the comparative example except that the difference was eliminated and the pad electrodes were formed so as to form the p and n side heat radiation portions 30 and 31.
When this device was oscillated with a pulse, the threshold current density was 3.5 KA / cm 2 and the output after 1 hour decreased by 10%.
[0017]
As described above, the example in which the heat dissipating part is installed has a lower threshold current density and a lower output, and has better life characteristics than the comparative example having no heat dissipating part.
[0018]
【The invention's effect】
As described above, according to the present invention, the heat radiation portion is formed on the surface having the positive electrode and the negative electrode, thereby improving the heat radiation property, suppressing the rise of the threshold value, and significantly improving the life characteristics.
Further, according to the present invention, the height of the p-side nitride semiconductor layer having the positive electrode, the height of the heat radiating portion when the heat radiating portion is provided on the p side having the positive electrode, and the height of the n-side radiating portion are high and low. When the difference is 0 to 2 μm, the contact with the heat radiating body is further improved, and further preferable effects are obtained.
Further, as another effect, the present invention makes it easy to design a lens for condensing the laser light because the semiconductor laser diode and the heat radiating body are in contact with each other in almost parallel. Furthermore, as another effect, the present invention reduces the amount of conductive material to be directly bonded when the difference in height between the p-side and the n-side on the surface having the nitride semiconductor layer electrode is reduced. The probability of short-circuiting between electrodes is reduced and the industrial utility value is increased.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a conventional nitride semiconductor laser diode.
FIG. 2 is a schematic cross-sectional view of a nitride semiconductor laser diode that is one embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view of a nitride semiconductor laser diode that is one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... N-type layer 3 ... Active layer 4 ... P-type layer 11 ... N-ohmic electrode 12 ... P-ohmic electrode 13 ... Insulating film 14 ... · N-pad electrode 15 ··· p-pad electrodes 30 and 31 · · · heat dissipation portion 40 · · · heat sink 41 and 42 · · · lead electrodes 51 and 52 · · · conductive material

Claims (3)

基板上にn型窒化物半導体層、活性層、p型窒化物半導体層を積層し、エッチングによってリッジが形成されたp型窒化物半導体層を有し、同一面側に一対の正電極及び負電極を設けてなる窒化物半導体レーザダイオードの製造方法であって、
エッチングにより、露出したn型窒化物半導体層上に負電極、p型窒化物半導体層のリッジ上に正電極を設置し、前記リッジのサイドのp型窒化物半導体層をエッチングによって除去することなく残存させることで、放熱部を形成することを特徴とする窒化物半導体レーザダイオードの製造方法。
An n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are stacked on a substrate, and has a p-type nitride semiconductor layer in which a ridge is formed by etching. A method of manufacturing a nitride semiconductor laser diode provided with an electrode,
By etching, a negative electrode is provided on the exposed n-type nitride semiconductor layer and a positive electrode is provided on the ridge of the p-type nitride semiconductor layer, and the p-type nitride semiconductor layer on the side of the ridge is removed without etching. A method of manufacturing a nitride semiconductor laser diode, characterized by forming a heat dissipation portion by remaining.
正電極及び負電極を有する面に、正電極及び負電極とは別に、前記負電極に隣接し、エッチングで除去されない窒化物半導体層からなる放熱部を形成することを特徴とする請求項1に記載の窒化物半導体レーザダイオードの製造方法。The heat radiation part which consists of a nitride semiconductor layer which is adjacent to the negative electrode and is not removed by etching is formed on the surface having the positive electrode and the negative electrode separately from the positive electrode and the negative electrode. The manufacturing method of the nitride semiconductor laser diode of description. 基板上にn型窒化物半導体層、活性層、p型窒化物半導体層を積層し、エッチングによってリッジが形成されたp型窒化物半導体層を有し、同一面側に一対の正電極及び負電極を設けてなる窒化物半導体レーザダイオードにおいて、
エッチングにより、露出したn型窒化物半導体層上に負電極、p型窒化物半導体層のリッジ上に正電極を設置し、前記p型窒化物半導体のリッジの、サイドのp型窒化物半導体層を除去することなく残存させることで設けた、放熱部を有することを特徴とする窒化物半導体レーザダイオード。
An n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are stacked on a substrate, and has a p-type nitride semiconductor layer in which a ridge is formed by etching. In a nitride semiconductor laser diode provided with an electrode,
A negative electrode is provided on the exposed n-type nitride semiconductor layer by etching, and a positive electrode is provided on the ridge of the p-type nitride semiconductor layer, and the p-type nitride semiconductor layer on the side of the ridge of the p-type nitride semiconductor is provided. A nitride semiconductor laser diode having a heat dissipating portion provided by leaving without being removed.
JP2001381604A 2001-12-14 2001-12-14 Nitride semiconductor laser diode and manufacturing method thereof Expired - Fee Related JP3786000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381604A JP3786000B2 (en) 2001-12-14 2001-12-14 Nitride semiconductor laser diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381604A JP3786000B2 (en) 2001-12-14 2001-12-14 Nitride semiconductor laser diode and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03679197A Division JP3309953B2 (en) 1997-02-21 1997-02-21 Nitride semiconductor laser diode

Publications (2)

Publication Number Publication Date
JP2002208756A JP2002208756A (en) 2002-07-26
JP3786000B2 true JP3786000B2 (en) 2006-06-14

Family

ID=19187358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381604A Expired - Fee Related JP3786000B2 (en) 2001-12-14 2001-12-14 Nitride semiconductor laser diode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3786000B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964399B1 (en) * 2003-03-08 2010-06-17 삼성전자주식회사 Semiconductor laser diode and semiconductor laser diode assembly adopting the same
JP4984986B2 (en) * 2007-03-12 2012-07-25 株式会社デンソー Laser apparatus and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230785B2 (en) * 1993-11-11 2001-11-19 日本電信電話株式会社 Semiconductor laser and method of manufacturing the same
JPH07235729A (en) * 1994-02-21 1995-09-05 Nichia Chem Ind Ltd Gallium nitride compound semiconductor laser element
JPH1041585A (en) * 1996-07-17 1998-02-13 Toyoda Gosei Co Ltd Manufacture of group iii nitride semiconductor laser diode
JPH10200213A (en) * 1997-01-14 1998-07-31 Nec Corp Gallium nitride semiconductor laser

Also Published As

Publication number Publication date
JP2002208756A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
KR100568269B1 (en) GaN LED for flip-chip bonding and manufacturing method therefor
JP5009841B2 (en) Light emitting device having current blocking structure and method for manufacturing light emitting device having current blocking structure
JP3889933B2 (en) Semiconductor light emitting device
KR101166922B1 (en) Method of manufacturing light emitting diode
TWI292227B (en) Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
KR100958054B1 (en) Submount of semiconductor laser diode, manufacturing method thereof and semiconductor laser diode assembly adopting the same
US9735314B2 (en) Nitride semiconductor light emitting device
JP4942996B2 (en) Light emitting diode
JP2013102240A (en) Group iii nitride light emitting device having light emitting region with double hetero-structure
US20060249745A1 (en) Heat dissipating structure and light emitting device having the same
JP2012054422A (en) Light-emitting diode
JP3617565B2 (en) Nitride semiconductor laser device
JPH07235729A (en) Gallium nitride compound semiconductor laser element
US9331453B2 (en) Laser diode device
JP2020532100A (en) End face emission type laser bar
US7095041B2 (en) High-efficiency light emitting diode
US20130134390A1 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
JP6101303B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
JP3309953B2 (en) Nitride semiconductor laser diode
JP3786000B2 (en) Nitride semiconductor laser diode and manufacturing method thereof
KR100397608B1 (en) Light emitting device using GaN series III-V group nitride semiconductor laser diode
JP3620498B2 (en) Nitride semiconductor laser device
US20060243991A1 (en) Light emitting diode and manufacturing method thereof
JP4288947B2 (en) Manufacturing method of nitride semiconductor light emitting device
JPH09181394A (en) Nitride semiconductor laser diode

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees