JPH10232141A - Method for magnetizing magnetic body and magnetic potentiometer using the same - Google Patents

Method for magnetizing magnetic body and magnetic potentiometer using the same

Info

Publication number
JPH10232141A
JPH10232141A JP3646397A JP3646397A JPH10232141A JP H10232141 A JPH10232141 A JP H10232141A JP 3646397 A JP3646397 A JP 3646397A JP 3646397 A JP3646397 A JP 3646397A JP H10232141 A JPH10232141 A JP H10232141A
Authority
JP
Japan
Prior art keywords
magnetic
center
ferromagnetic material
disk
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3646397A
Other languages
Japanese (ja)
Other versions
JP3510075B2 (en
Inventor
Toshio Ogawa
敏生 小川
Hirobumi Okumura
博文 奥村
Ichiro Tokunaga
一郎 徳永
Mitsumasa Inoue
光正 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP03646397A priority Critical patent/JP3510075B2/en
Publication of JPH10232141A publication Critical patent/JPH10232141A/en
Application granted granted Critical
Publication of JP3510075B2 publication Critical patent/JP3510075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for magnetizing a magnetic body that has improved linearity within a specific angle range and can obtain large output and a magnetic potentiometer using the magnetic body. SOLUTION: A ferromagnetic body 20 that is in disk shape while being saturated and magnetized and has a magnetic pole with at least four poles in terms of top view and a magnetic detection element (Hall element) for detecting the magnetic force of the normal constituent of the ferromagnetic body 20 while being arranged on the peripheral side surface of the ferromagnetic body 20 are provided. When a distance between magnetic poles N and S where the disk of the ferromagnetic body 20 is adjacent is set to A, a distance between a cross point C between a line L1 for connecting a center O of the ferromagnetic body 20 from a magnetization center (hole part) and a line L2 for connecting the magnetic poles N and S being adjacent to the line L1 and the magnetization center (hole part) is set to B, the magnetization center (hole part) of the magnetic pole is set to a position (A is smaller than the radius of the ferromagnetic body 20) for satisfying B/A=0.5-1.0 away from a disk side surface in the magnetized ferromagnetic body 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、4極以上の磁極を
着磁する磁性体の着磁方法及び磁気式ポテンショメータ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of magnetizing a magnetic material for magnetizing four or more magnetic poles and a magnetic potentiometer.

【0002】[0002]

【従来の技術】従来の磁気式ポテンショメータは、空芯
コイル中で飽和磁化した円盤状の強磁性体の側面に、法
線成分のみの磁界(磁束,磁力)を検出するホール素
子、半導体磁気抵抗効果素子等の磁気検出素子を設け
て、磁気検出素子の出力を取り出すタイプのものが知ら
れている。
2. Description of the Related Art A conventional magnetic potentiometer has a Hall element for detecting a magnetic field (magnetic flux and magnetic force) of only a normal component on a side surface of a disk-shaped ferromagnetic material saturated in an air-core coil, and a semiconductor magnetoresistive element. There is known a type in which a magnetic detection element such as an effect element is provided and the output of the magnetic detection element is extracted.

【0003】図6は一般的な磁気式ポテンショメータの
概念を示す説明図、図7は図6のホール素子の原理を示
す説明図である。図6において、1は図示しない枠体に
回転自在に支持された回転体で、この回転体1は、円盤
状の強磁性体2と、強磁性体2に突設され、図示しない
枠体から突出された操作軸部3とから構成されている。
この強磁性体2は後述するような空芯コイルによって1
組のN,S極を着磁してあり、回転する強磁性体2の
N,S極からの磁束を検出するホール素子4が配設され
ている。このホール素子4は強磁性体2の法線成分の磁
束のみを検出するもので、図7にホール素子4の一般的
な回路図を示してあり、図7にて、4はホール素子、5
は電源、6はホール素子4が法線成分の磁束を検出して
発生するホール電圧を検出する電圧計である。
FIG. 6 is an explanatory view showing the concept of a general magnetic potentiometer, and FIG. 7 is an explanatory view showing the principle of the Hall element shown in FIG. In FIG. 6, reference numeral 1 denotes a rotating body rotatably supported by a frame (not shown). And a protruding operation shaft 3.
This ferromagnetic material 2 is formed by an air-core coil as described later.
A set of N and S poles is magnetized, and a Hall element 4 for detecting magnetic flux from the N and S poles of the rotating ferromagnetic body 2 is provided. The Hall element 4 detects only the magnetic flux of the normal component of the ferromagnetic material 2, and FIG. 7 shows a general circuit diagram of the Hall element 4. In FIG.
Reference numeral 6 denotes a power supply, and 6 denotes a voltmeter for detecting a Hall voltage generated by the Hall element 4 detecting a magnetic flux of a normal component.

【0004】図8は一般的な磁気式ポテンショメータの
回路図で、この図にて、4はホール素子、7は増幅器、
8はゲイン調整部、9は増幅器、10は温度補償部であ
る。ホール素子4に電圧Vccが加えられており、上述
したホール素子4で発生したホール電圧は増幅器7等の
回路を経て増幅、ゲイン調整、温度補償を行われ、Vo
utが出力される。
FIG. 8 is a circuit diagram of a general magnetic potentiometer, in which 4 is a Hall element, 7 is an amplifier,
8 is a gain adjustment unit, 9 is an amplifier, and 10 is a temperature compensation unit. The voltage Vcc is applied to the Hall element 4. The Hall voltage generated in the Hall element 4 is amplified, gain-adjusted, and temperature-compensated through a circuit such as an amplifier 7 to obtain Vo.
ut is output.

【0005】次に、強磁性体に対する着磁方法について
説明する。図9は強磁性体に対する芯空コイルによる着
磁を示す説明図、図10は図9の方法による強磁性体の
着磁状態を示す説明図である。これらの図において、2
は中央に貫通孔を形成した円盤状の強磁性体、11は着
磁用の空芯コイル、12は空芯コイル11に接続された
電源部であり、図9に示すように、空芯コイル11内に
強磁性体2を収納して直流を通電すると、空芯コイル1
1に磁束φが発生して、図10に示すように、強磁性体
2の外周面部にN,S極が180°の角度配置で着磁さ
れる。このような空芯コイル11中で強磁性体2を飽和
磁化させた場合は、磁性体2は全体的に略平行に磁化さ
れており、そのため、強磁性体2から出る磁界の法線成
分が変曲点周辺を除いて、一次関数的に増加する。つま
り、強磁性体2は飽和磁化されているので、強磁性体2
の磁化の強さは、どの位置においても変わらないが、強
磁性体2を回転させると、ホール素子4に対して強磁性
体2の法線成分のみ変わるからである。
Next, a method of magnetizing a ferromagnetic material will be described. FIG. 9 is an explanatory diagram showing the magnetization of the ferromagnetic material by the coreless coil, and FIG. 10 is an explanatory diagram showing the magnetized state of the ferromagnetic material by the method of FIG. In these figures, 2
Is a disk-shaped ferromagnetic material having a through hole in the center, 11 is an air-core coil for magnetization, 12 is a power supply connected to the air-core coil 11, and as shown in FIG. When the ferromagnetic material 2 is housed in the coil 11 and a direct current is applied, the air-core coil 1
1, a magnetic flux φ is generated, and as shown in FIG. 10, N and S poles are magnetized on the outer peripheral surface of the ferromagnetic material 2 at an angle of 180 °. When the ferromagnetic material 2 is saturated and magnetized in such an air-core coil 11, the magnetic material 2 is magnetized substantially in parallel as a whole, so that the normal component of the magnetic field emitted from the ferromagnetic material 2 is reduced. Except for around the inflection point, it increases linearly. That is, since the ferromagnetic material 2 is saturated, the ferromagnetic material 2
Is not changed at any position, but when the ferromagnetic material 2 is rotated, only the normal component of the ferromagnetic material 2 to the Hall element 4 changes.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来技術で
は、強磁性体2にN極とS極を180度反対の位置に1
極づつしか着磁できず、該N極,S極の位置で出力のピ
ークとなるため、磁気式ポテンショメータの操作軸部3
の有効回転角度が小さいタイプとした場合には、従来と
同等な出力を得るためには、エネルギー積の大きい磁石
を用いる必要があり、(出力のピークは磁性体の飽和磁
化密度によってのみ決まるため)、そのためには強磁性
体2の材料を変更する必要があるが、コスト高となる。
特に、有効回転角度を小さくした場合、つまり、狭い範
囲において使用する場合に、その範囲において出力を大
きくするのに不向きであった。
In the prior art, the N pole and the S pole are placed on the ferromagnetic material 2 at positions 180 degrees opposite to each other.
Only the poles can be magnetized, and the output peaks at the positions of the N and S poles.
In the case of a type with a small effective rotation angle, it is necessary to use a magnet with a large energy product in order to obtain the same output as the conventional one. (Since the output peak is determined only by the saturation magnetization density of the magnetic material, ), It is necessary to change the material of the ferromagnetic material 2, but this increases the cost.
In particular, when the effective rotation angle is reduced, that is, when used in a narrow range, it is not suitable for increasing the output in that range.

【0007】また、いわゆるヨーク着磁により、強磁性
体2を磁化する方法があるが、この方法においては所定
のピッチで磁極を形成することが可能であり、狭い範囲
においても、磁性体の飽和磁化密度に応じた出力を得る
ことができる。図11は8極着磁するための説明図であ
り、13は強磁性体を収納する収納部を有するヨーク、
14はヨーク13の収納部に等間隔に8箇所形成された
電線(コイル)15を貫通する孔部である。この各孔部
14,14には1本の電線15を引き回して嵌装されて
いる。また、各孔部14,14はスリット状に収納部と
連通されている。そして、電線15に直流を通電するこ
とによって図11に示すように磁束が発生し、この磁束
によって強磁性体2にN,S極が着磁される。また、図
示していないがその他の孔部14の電線15の磁束によ
ってもN,S極が着磁され、結局、強磁性体2の周面に
N,S極が交互に8極着磁される。しかしながら、従来
のヨーク着磁方法においては、強磁性体(被着磁体)2
に電線15が当接するようにヨーク13の孔部14に配
設されて着磁していたため、強磁性体2の周表面を中心
とした磁界(図11あるいは後述する図5(a)参照)が
形成されるので、これを使用した磁気式ポテンショメー
タによるホール電圧Voutと回転軸の操作角度との特
性はリニアリティ(直線性)が悪く、正確に回転角度を
検出できなかった。
There is a method of magnetizing the ferromagnetic material 2 by so-called yoke magnetization. In this method, magnetic poles can be formed at a predetermined pitch, and the magnetic material can be saturated even in a narrow range. An output corresponding to the magnetization density can be obtained. FIG. 11 is an explanatory view for magnetizing eight poles, 13 is a yoke having a storage portion for storing a ferromagnetic material,
Reference numeral 14 denotes a hole that penetrates electric wires (coils) 15 formed at equal intervals in the storage portion of the yoke 13. One electric wire 15 is fitted around each of the holes 14 and 14. Each of the holes 14, 14 communicates with the storage section in a slit shape. When a direct current is applied to the electric wire 15, a magnetic flux is generated as shown in FIG. 11, and the magnetic flux magnetizes the N and S poles of the ferromagnetic material 2. Further, although not shown, the N and S poles are also magnetized by the magnetic flux of the electric wire 15 in the other holes 14, so that the N and S poles are alternately magnetized on the peripheral surface of the ferromagnetic material 2 by eight poles. You. However, in the conventional yoke magnetizing method, the ferromagnetic material (magnetized material) 2
The magnet 15 is arranged in the hole 14 of the yoke 13 so that the electric wire 15 is in contact with the magnetic field, and is magnetized. Therefore, a magnetic field centering on the peripheral surface of the ferromagnetic body 2 (see FIG. 11 or FIG. 5A described later) Is formed, the characteristics of the Hall voltage Vout and the operation angle of the rotating shaft by the magnetic potentiometer using the same have poor linearity (linearity), and the rotation angle cannot be detected accurately.

【0008】本発明の課題は、所定の角度の範囲で直線
性に優れ、かつ、高出力を得ることができる磁性体の着
磁方法及び該磁性体を用いた磁気式ポテンショメータを
提供することである。
An object of the present invention is to provide a method of magnetizing a magnetic material which is excellent in linearity in a predetermined angle range and can obtain a high output, and a magnetic potentiometer using the magnetic material. is there.

【0009】[0009]

【課題を解決するための手段】前記課題は、飽和磁化さ
れた円盤状で、平面視して4極以上の磁極を設けた強磁
性体と、前記強磁性体の周側面に配置され、前記強磁性
体の法線成分の磁力を検出する磁気検出素子とを備え、
前記強磁性体の円盤の隣接する磁極間の距離をAとし、
磁化中心から強磁性体の中心を結ぶ線と隣接する磁極間
を結ぶ線との交点と、磁化中心との距離をBとすると
き、前記磁極の磁化中心を、B/A=0.5〜1.0を
満足する位置(但し、Aは強磁性体の半径より小さい)
に円盤側面から離して設定して着磁された強磁性体であ
る第1の手段により解決できる。前記課題は、第1の手
段において、前記円盤側面から離して着磁する磁極の磁
化中心に隣接する他の磁化中心は、前記円盤側面に接し
て着磁させた強磁性体である第2の手段により解決でき
る。前記課題は、磁化中心となるコイルを配設したヨー
ク内に円盤状の強磁性体を収納するとともに、前記強磁
性体の円盤の隣接する磁極間の距離をAとし、前記磁化
中心から強磁性体の中心を結ぶ線と隣接する磁極間を結
ぶ線との交点と、磁化中心との距離をBとするとき、前
記磁極の磁化中心を、B/A=0.5〜1.0を満足す
る位置(但し、Aは強磁性体の半径より小さい)に前記
強磁性体の円盤側面から離して設定して着磁する第3の
手段により解決できる。前記課題は、第3の手段におい
て、前記ヨークには、前記強磁性体の円盤側面から離し
て配設した磁化中心から前記強磁性体の円盤周面に向か
って広がったテーパー面を形成した第4の手段により解
決できる。前記課題は、第3の手段において、前記円盤
側面から離して着磁する磁極の磁化中心に隣接する他の
磁化中心は、前記円盤側面に接して着磁させている第5
の手段により解決できる。
The object of the present invention is to provide a ferromagnetic material which is provided with four or more magnetic poles in plan view in the shape of a saturated magnetized disk, and which is disposed on a peripheral side surface of the ferromagnetic material. A magnetic detecting element for detecting the magnetic force of the normal component of the ferromagnetic material,
A is the distance between adjacent magnetic poles of the ferromagnetic disk,
When the distance between the magnetic center and the intersection of the line connecting the center of the ferromagnetic material from the magnetic center and the line connecting the adjacent magnetic poles is B, the magnetic center of the magnetic pole is defined as B / A = 0.5 to Position satisfying 1.0 (however, A is smaller than the radius of the ferromagnetic material)
The first means is a ferromagnetic material which is magnetized while being set apart from the side surface of the disk. In the first means, in the first means, the other magnetic center adjacent to the magnetic center of the magnetic pole magnetized away from the disk side surface is a ferromagnetic material magnetized in contact with the disk side surface. It can be solved by means. The problem is that a disk-shaped ferromagnetic material is housed in a yoke in which a coil serving as a magnetization center is disposed, the distance between adjacent magnetic poles of the disk of the ferromagnetic material is A, When the distance between the intersection of the line connecting the center of the body and the line connecting the adjacent magnetic poles and the center of magnetization is B, the center of magnetization of the magnetic pole satisfies B / A = 0.5 to 1.0. This can be solved by the third means in which the magnet is set at a position (where A is smaller than the radius of the ferromagnetic material) away from the side surface of the disk of the ferromagnetic material. According to a third aspect of the present invention, in the third means, the yoke has a tapered surface that extends from the center of magnetization disposed away from the disk side surface of the ferromagnetic material toward the disk peripheral surface of the ferromagnetic material. 4 can be solved. According to a third aspect, in the third means, the other magnetization center adjacent to the magnetization center of the magnetic pole magnetized away from the disk side surface is magnetized in contact with the disk side surface.
This can be solved by the following means.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は本発明に係る磁気式ポテン
ショメータの一実施の形態の強磁性体を示す説明図、図
2(a),(b),(c)は着磁に使用するヨークを示す平面図及
び正面図及び電線挿通孔の拡大図、図3は強磁性体と電
線との関係を示す説明図、図4は図3におけるリニアリ
ティと距離比の特性を示す図、図5は(a),(b)は電線を
強磁性体に接触させた状態及び離した状態で着磁を行っ
たときの磁束の状態を示す説明図である。なお、前記従
来例と同一部分には同一符号を付して詳細な説明を省略
する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a ferromagnetic material according to an embodiment of a magnetic potentiometer according to the present invention, and FIGS. 2 (a), (b) and (c) are a plan view and a front view showing a yoke used for magnetization. FIG. 3 is an explanatory diagram showing the relationship between the ferromagnetic material and the electric wire, FIG. 4 is a diagram showing the characteristics of the linearity and the distance ratio in FIG. 3, and FIGS. () Is an explanatory diagram showing a state of magnetic flux when magnetizing is performed in a state where the electric wire is in contact with the ferromagnetic material and in a state where the electric wire is separated from the ferromagnetic material. The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description will be omitted.

【0011】磁気式ポテンショメータの有効回転角度を
小さくした場合に対応できる強磁性体を図1に示してあ
る。この強磁性体20は円盤状でその中央に貫通孔が形
成されている。また、強磁性体20は4極着磁されてお
り、図1に示すように、4極のうちの2極のN,S極
(図示下方側)の着磁範囲(例えば有効回動範囲θ1に
相当程度)が狭く設定され、他の2極のN,S極(図示
上方側)の着磁範囲(例えば有効回動範囲θ1以外に相
当程度)が狭く設定されている。
FIG. 1 shows a ferromagnetic material that can cope with a case where the effective rotation angle of the magnetic potentiometer is reduced. The ferromagnetic body 20 has a disk shape and a through hole is formed at the center thereof. The ferromagnetic body 20 is magnetized in four poles, and as shown in FIG. 1, a magnetizing range (for example, an effective rotation range θ1) of two of N poles and S poles (lower side in the figure) of the four poles. Is set to be narrow, and the magnetizing range (for example, other than the effective rotation range θ1) of the other two N and S poles (upper side in the figure) is set to be narrow.

【0012】次に、図1に示す強磁性体20のヨーク着
磁方法について図2及び図3を参照して説明する。図に
おいて、21はヨークで、ヨーク21には強磁性体20
を収納する収納部22が穿設され、図2(a)に示すよう
に、収納部22の内周縁には電線(コイル)15を貫通
する4つの孔部23,24,25,26が形成されてい
る。これらの孔部23,24,25,26の配置は、図
2(a)で上方にある孔部23から130°の角度で各孔
部24,25がそれぞれ設定され、また、孔部23から
180°の角度で孔部26が配設されている。θ1は有
効回動範囲で、例えば、θ1=40°としている。な
お、各孔部23,24,25,26には1本の電線15
を引き回して嵌装されている。
Next, a method of yoke magnetizing the ferromagnetic material 20 shown in FIG. 1 will be described with reference to FIGS. In the figure, 21 is a yoke, and the yoke 21 is
A storage portion 22 is formed in the inner peripheral edge of the storage portion 22, and four holes 23, 24, 25, and 26 penetrating the electric wire (coil) 15 are formed as shown in FIG. Have been. The arrangement of the holes 23, 24, 25, 26 is such that the holes 24, 25 are respectively set at an angle of 130 ° from the hole 23 located above in FIG. The holes 26 are arranged at an angle of 180 °. θ1 is an effective rotation range, for example, θ1 = 40 °. Each hole 23, 24, 25, 26 has one electric wire 15
It is fitted around.

【0013】この孔部26は次に述べるような関係でヨ
ーク21に収納された強磁性体20の円盤側面から離し
て設定されている。即ち、図3に示すように、強磁性体
20の円盤の隣接する磁極N,S間の距離をAとし、孔
部26の電線(磁化中心)15から強磁性体20の中心
Oを結ぶ線L1と隣接する磁極N,S間を結ぶ線L2と
の交点Cと、孔部26の電線(磁化中心)15との距離
をBとするとき、磁極の磁化中心(孔部26)を、B/
A=0.5〜1.0を満足する位置(但し、Aは強磁性
体の半径より小さい)に強磁性体20の円盤側面から離
して設定している。また、磁化中心(孔部26)から強
磁性体20の円盤周面(収納部22)に向かって広がっ
たテーパー面27,27が形成されている。
The hole 26 is set apart from the side surface of the disk of the ferromagnetic material 20 housed in the yoke 21 in the following relationship. That is, as shown in FIG. 3, the distance between the adjacent magnetic poles N and S of the disk of the ferromagnetic material 20 is A, and a line connecting the electric wire (magnetization center) 15 of the hole 26 to the center O of the ferromagnetic material 20. Assuming that the distance between the intersection C of L1 and the line L2 connecting the adjacent magnetic poles N and S and the electric wire (magnetization center) 15 of the hole 26 is B, the magnetization center of the magnetic pole (hole 26) is represented by B /
The ferromagnetic material 20 is set at a position that satisfies A = 0.5 to 1.0 (where A is smaller than the radius of the ferromagnetic material) and is separated from the side surface of the disk of the ferromagnetic material 20. Further, tapered surfaces 27, 27 extending from the center of magnetization (hole 26) toward the disk peripheral surface of the ferromagnetic body 20 (storage portion 22) are formed.

【0014】ここで、B/A=0.5〜1.0について
説明する。図4には図3に示すリニアリティと距離比の
特性を示してあり、この図4にて、横軸は距離比(B/
A)、縦軸はリニアリティ(%)である。ところで、リ
ニアリティは2%以内であることが実用上必要であるの
で、図4からB/Aは0.5以上であることが望まし
い。また、磁化中心(孔部26)を強磁性体20からあ
まり離してしまうと(つまり、Bが大きすぎると)、強
磁性体20に着磁させるために電線に大きな電流を流さ
なくてはならないので、B/Aは1.0以下であること
が望ましい。したがって、B/A=0.5〜1.0に設
定している。
Here, B / A = 0.5 to 1.0 will be described. FIG. 4 shows the characteristics of the linearity and the distance ratio shown in FIG. 3. In FIG. 4, the horizontal axis represents the distance ratio (B /
A), the vertical axis is linearity (%). By the way, since it is practically necessary that the linearity is within 2%, it is desirable that B / A is 0.5 or more from FIG. If the magnetization center (hole portion 26) is too far from the ferromagnetic body 20 (that is, if B is too large), a large current must be passed through the electric wire to magnetize the ferromagnetic body 20. Therefore, it is desirable that B / A is 1.0 or less. Therefore, B / A is set to 0.5 to 1.0.

【0015】そして、孔部23,24,25は図2(c)
に示すように収納部22にスリットで連通されて形成さ
れており、これらの孔部23,24,25に挿通された
電線15による磁束は、図5(a)に示すように発生して
強磁性体20に図1に示すように着磁させる。一方、孔
部26は図2(a)に示すように収納部22にスリット及
びテーパー面27,27で構成された連通部分で連通さ
れており、孔部26に挿通された電線15による磁束
は、図5(b)に示すように発生して強磁性体20に着磁
する。つまり、磁化中心が強磁性体20から離れている
ので、強磁性体20にほぼ平行磁界を形成できる。した
がって、所定の角度の範囲で直線性に優れ、かつ、高出
力を得ることができる磁性体の着磁方法を提供する。
The holes 23, 24 and 25 are formed as shown in FIG.
As shown in FIG. 5A, the magnetic flux generated by the electric wire 15 inserted into the holes 23, 24, and 25 is generated as shown in FIG. The magnetic body 20 is magnetized as shown in FIG. On the other hand, as shown in FIG. 2A, the hole 26 communicates with the storage portion 22 at a communicating portion formed by slits and tapered surfaces 27, 27. The magnetic flux generated by the electric wire 15 inserted into the hole 26 is As shown in FIG. 5B, the magnetic flux is generated and magnetizes the ferromagnetic material 20. That is, since the magnetization center is far from the ferromagnetic material 20, a substantially parallel magnetic field can be formed in the ferromagnetic material 20. Therefore, the present invention provides a method of magnetizing a magnetic body which is excellent in linearity in a predetermined angle range and can obtain high output.

【0016】なお、前記実施の形態では4極で説明した
が、4極より多い極としてもよい。
Although the above embodiment has been described with four poles, the number of poles may be more than four.

【0017】このような前記実施の形態にあっては、飽
和磁化された円盤状で、平面視して4極以上の磁極を設
けた強磁性体20と、強磁性体20の周側面に配置さ
れ、強磁性体20の法線成分の磁力を検出する磁気検出
素子(ホール素子4)とを備え、図3に示すように、強
磁性体20の円盤の隣接する磁極N,S間の距離をAと
し、磁化中心(孔部26)から強磁性体20の中心Oを
結ぶ線L1と隣接する磁極N,S間を結ぶ線L2との交
点Cと、磁化中心(孔部26)との距離をBとすると
き、磁極の磁化中心(孔部26)を、B/A=0.5〜
1.0を満足する位置(但し、Aは強磁性体20の半径
より小さい)に円盤側面から離して設定して着磁された
強磁性体20であるため、さらには、円盤側面から離し
て着磁する磁極の磁化中心(孔部26)に隣接する他の
磁化中心(孔部24,25)は、円盤側面に接して着磁
させた強磁性体20であるため、強磁性体20にほぼ平
行磁界を形成したので、所定の角度の範囲で直線性に優
れ、かつ、高出力を得ることができる磁気式ポテンショ
メータを提供する。
In the above-described embodiment, the ferromagnetic body 20 is provided with four or more magnetic poles in plan view in the shape of a saturated magnetized disk, and the ferromagnetic body 20 is disposed on the peripheral side surface of the ferromagnetic body 20. And a magnetic detecting element (Hall element 4) for detecting the magnetic force of the normal component of the ferromagnetic body 20, and as shown in FIG. 3, the distance between the adjacent magnetic poles N and S of the disk of the ferromagnetic body 20. Is defined as A, and an intersection C between a line L1 connecting the center O of the ferromagnetic body 20 from the magnetization center (hole 26) to a line L2 connecting the adjacent magnetic poles N and S, and the magnetization center (hole 26). When the distance is B, the magnetization center of the magnetic pole (hole 26) is set to B / A = 0.5 to
Since the ferromagnetic material 20 is set at a position satisfying 1.0 (where A is smaller than the radius of the ferromagnetic material 20) and is magnetized at a distance from the side surface of the disk, further, it is further separated from the side surface of the disk. The other magnetization centers (holes 24 and 25) adjacent to the magnetization center (holes 26) of the magnetic pole to be magnetized are the ferromagnetic material 20 that is magnetized in contact with the disk side surface. Since a substantially parallel magnetic field is formed, a magnetic potentiometer having excellent linearity in a predetermined angle range and capable of obtaining high output is provided.

【0018】また、前記実施の形態にあっては、磁化中
心(孔部26)となるコイルを配設したヨーク内に円盤
状の強磁性体20を収納するとともに、強磁性体20の
円盤の隣接する磁極N,S間の距離をAとし、磁化中心
(孔部26)から強磁性体20の中心を結ぶ線L1と隣
接する磁極N,S間を結ぶ線L2との交点Cと、磁化中
心(孔部26)との距離をBとするとき、磁極の磁化中
心(孔部26)を、B/A=0.5〜1.0を満足する
位置(但し、Aは強磁性体20の半径より小さい)に強
磁性体20の円盤側面から離して設定して着磁するた
め、また、ヨークには、強磁性体20の円盤側面から離
して配設した磁化中心(孔部26)から強磁性体20の
円盤周面に向かって広がったテーパー面27,27を形
成したため、また、円盤側面から離して着磁する磁極の
磁化中心(孔部26)に隣接する他の磁化中心(孔部2
4,25)は、円盤側面に接して着磁させているため、
強磁性体20にほぼ平行磁界を形成できるので、所定の
角度の範囲で直線性に優れ、かつ、高出力を得ることが
できる磁性体20の着磁方法を提供する。
In the above embodiment, the disk-shaped ferromagnetic material 20 is housed in the yoke in which the coil serving as the magnetization center (hole 26) is disposed, and the disk of the ferromagnetic material 20 is The distance between the adjacent magnetic poles N and S is A, and an intersection C between a line L1 connecting the center of the magnetization (hole 26) to the center of the ferromagnetic body 20 and a line L2 connecting the adjacent magnetic poles N and S; Assuming that the distance from the center (hole 26) is B, the magnetization center of the magnetic pole (hole 26) is positioned at a position satisfying B / A = 0.5 to 1.0 (where A is the ferromagnetic material 20). (Smaller than the radius of the ferromagnetic material 20) to be magnetized at a distance from the disk side surface of the ferromagnetic material 20, and the yoke has a magnetization center (hole portion 26) disposed at a distance from the disk side surface of the ferromagnetic material 20. To form a tapered surface 27, 27, which widens toward the disk peripheral surface of the ferromagnetic material 20. Other magnetization center adjacent to the magnetization center (hole portion 26) of magnetic poles magnetized away from the board side (hole 2
4, 25) is magnetized in contact with the side of the disk,
Since a substantially parallel magnetic field can be formed in the ferromagnetic body 20, a method of magnetizing the magnetic body 20 that is excellent in linearity in a predetermined angle range and can obtain high output is provided.

【0019】[0019]

【発明の効果】請求項1,2記載の発明によれば、ヨー
ク着磁で強磁性体にほぼ平行磁界を形成したので、所定
の角度の範囲で直線性に優れ、かつ、高出力を得ること
ができる磁気式ポテンショメータを提供する。請求項
3,4,5記載の発明によれば、ヨーク着磁で強磁性体
にほぼ平行磁界を形成するので、所定の角度の範囲で直
線性に優れ、かつ、高出力を得ることができる磁性体の
着磁方法を提供する。
According to the first and second aspects of the present invention, since a substantially parallel magnetic field is formed in the ferromagnetic material by yoke magnetization, excellent linearity and a high output are obtained within a predetermined angle range. To provide a magnetic potentiometer. According to the third, fourth, and fifth aspects of the present invention, since a substantially parallel magnetic field is formed in the ferromagnetic material by yoke magnetization, excellent linearity and a high output can be obtained within a predetermined angle range. Provided is a method for magnetizing a magnetic material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る磁気式ポテンショメータの一実施
の形態の強磁性体を示す説明図である。
FIG. 1 is an explanatory diagram showing a ferromagnetic material of one embodiment of a magnetic potentiometer according to the present invention.

【図2】(a),(b),(c)は着磁に使用するヨークを示す平
面図及び正面図及び電線挿通孔の拡大図である。
FIGS. 2 (a), (b), and (c) are a plan view and a front view showing a yoke used for magnetization, and an enlarged view of a wire insertion hole.

【図3】強磁性体と電線との関係を示す説明図である。FIG. 3 is an explanatory diagram showing a relationship between a ferromagnetic material and an electric wire.

【図4】図3におけるリニアリティと距離比の特性を示
す図である。
FIG. 4 is a diagram showing characteristics of linearity and a distance ratio in FIG. 3;

【図5】(a),(b)は電線を強磁性体に接触させた状態及
び離した状態で着磁を行ったときの磁束の状態を示す説
明図である。
FIGS. 5A and 5B are explanatory diagrams showing states of magnetic flux when magnetizing is performed in a state where an electric wire is in contact with a ferromagnetic material and in a state where the electric wire is separated from the ferromagnetic material.

【図6】一般的な磁気式ポテンショメータの概念を示す
説明図である。
FIG. 6 is an explanatory view showing the concept of a general magnetic potentiometer.

【図7】図6のホール素子の原理を示す説明図である。FIG. 7 is an explanatory view showing the principle of the Hall element in FIG. 6;

【図8】一般的な磁気式ポテンショメータの回路図であ
る。
FIG. 8 is a circuit diagram of a general magnetic potentiometer.

【図9】強磁性体に対する芯空コイルによる着磁を示す
説明図である。
FIG. 9 is an explanatory view showing magnetization of a ferromagnetic material by a coreless coil.

【図10】図9の方法による強磁性体の着磁状態を示す
説明図である。
FIG. 10 is an explanatory diagram showing a magnetized state of a ferromagnetic material according to the method of FIG. 9;

【図11】8極着磁するための説明図である。FIG. 11 is an explanatory diagram for eight-pole magnetization.

【符号の説明】[Explanation of symbols]

4 ホール素子 20 強磁性体 24,25 孔部 26 孔部 27 テーパー面 A 距離 B 距離 C 交点 L1 結ぶ線 L2 結ぶ線 N,S 磁極 O 強磁性体20の中心 Reference Signs List 4 Hall element 20 Ferromagnetic material 24, 25 Hole 26 Hole 27 Tapered surface A Distance B Distance C Intersection L1 Connecting line L2 Connecting line N, S Magnetic pole O Center of ferromagnetic material 20

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 光正 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsumasa Inoue 1-7 Yukitani Otsuka-cho, Ota-ku, Tokyo Alps Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 飽和磁化された円盤状で、平面視して4
極以上の磁極を設けた強磁性体と、 前記強磁性体の周側面に配置され、前記強磁性体の法線
成分の磁力を検出する磁気検出素子とを備え、 前記強磁性体の円盤の隣接する磁極間の距離をAとし、
磁化中心から強磁性体の中心を結ぶ線と隣接する磁極間
を結ぶ線との交点と、磁化中心との距離をBとすると
き、前記磁極の磁化中心を、B/A=0.5〜1.0を
満足する位置(但し、Aは強磁性体の半径より小さい)
に円盤側面から離して設定して着磁された強磁性体であ
ることを特徴とする磁気式ポテンショメータ。
1. A disk having a saturation magnetization and having a shape of 4
A ferromagnetic body provided with more than two magnetic poles, and a magnetic detection element disposed on a peripheral side surface of the ferromagnetic body and detecting a magnetic force of a normal component of the ferromagnetic body. Let A be the distance between adjacent magnetic poles,
When the distance between the magnetic center and the intersection of the line connecting the center of the ferromagnetic material from the magnetic center and the line connecting the adjacent magnetic poles is B, the magnetic center of the magnetic pole is defined as B / A = 0.5 to Position satisfying 1.0 (however, A is smaller than the radius of the ferromagnetic material)
A magnetic potentiometer characterized in that it is a ferromagnetic material which is magnetized by being set apart from the side of the disk.
【請求項2】 請求項1記載において、前記円盤側面か
ら離して着磁する磁極の磁化中心に隣接する他の磁化中
心は、前記円盤側面に接して着磁させた強磁性体である
ことを特徴とする磁気式ポテンショメータ。
2. The magnetic recording medium according to claim 1, wherein the other magnetic center adjacent to the magnetic center of the magnetic pole magnetized away from the disk side surface is a ferromagnetic material magnetized in contact with the disk side surface. Characteristic magnetic potentiometer.
【請求項3】 磁化中心となるコイルを配設したヨーク
内に円盤状の強磁性体を収納するとともに、前記強磁性
体の円盤の隣接する磁極間の距離をAとし、前記磁化中
心から強磁性体の中心を結ぶ線と隣接する磁極間を結ぶ
線との交点と、磁化中心との距離をBとするとき、前記
磁極の磁化中心を、B/A=0.5〜1.0を満足する
位置(但し、Aは強磁性体の半径より小さい)に前記強
磁性体の円盤側面から離して設定して着磁することを特
徴とする磁性体の着磁方法。
3. A disk-shaped ferromagnetic material is housed in a yoke in which a coil serving as a magnetization center is disposed, and a distance between adjacent magnetic poles of the disk of the ferromagnetic material is A, and the distance from the magnetization center is strong. When the distance between the intersection of the line connecting the center of the magnetic body and the line connecting the adjacent magnetic poles and the center of magnetization is B, the magnetization center of the magnetic pole is represented by B / A = 0.5 to 1.0. A method of magnetizing a magnetic material, comprising: setting a magnet at a satisfactory position (where A is smaller than the radius of the ferromagnetic material) away from the side surface of the disk of the ferromagnetic material.
【請求項4】 請求項3記載において、前記ヨークに
は、前記強磁性体の円盤側面から離して配設した磁化中
心から前記強磁性体の円盤周面に向かって広がったテー
パー面を形成したことを特徴とする磁性体の着磁方法。
4. The yoke according to claim 3, wherein the yoke has a tapered surface extending from the center of magnetization of the ferromagnetic material disposed away from the disk side surface toward the disk peripheral surface of the ferromagnetic material. A method for magnetizing a magnetic material, comprising:
【請求項5】 請求項3記載において、前記円盤側面か
ら離して着磁する磁極の磁化中心に隣接する他の磁化中
心は、前記円盤側面に接して着磁させていることを特徴
とする磁性体の着磁方法。
5. The magnetic field according to claim 3, wherein another magnetic center adjacent to the magnetic center of the magnetic pole magnetized away from the disk side surface is magnetized in contact with the disk side surface. How to magnetize the body.
JP03646397A 1997-02-20 1997-02-20 Method of magnetizing magnetic material and magnetic potentiometer using the magnetic material Expired - Fee Related JP3510075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03646397A JP3510075B2 (en) 1997-02-20 1997-02-20 Method of magnetizing magnetic material and magnetic potentiometer using the magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03646397A JP3510075B2 (en) 1997-02-20 1997-02-20 Method of magnetizing magnetic material and magnetic potentiometer using the magnetic material

Publications (2)

Publication Number Publication Date
JPH10232141A true JPH10232141A (en) 1998-09-02
JP3510075B2 JP3510075B2 (en) 2004-03-22

Family

ID=12470515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03646397A Expired - Fee Related JP3510075B2 (en) 1997-02-20 1997-02-20 Method of magnetizing magnetic material and magnetic potentiometer using the magnetic material

Country Status (1)

Country Link
JP (1) JP3510075B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055135A1 (en) * 2005-11-14 2007-05-18 Kabushiki Kaisha Yaskawa Denki Magnetic encoder device
US7719395B2 (en) 2006-10-23 2010-05-18 Denso Corporation Magnetizer and magnetizing method
CN108696618A (en) * 2018-05-15 2018-10-23 维沃移动通信有限公司 A kind of mobile terminal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055135A1 (en) * 2005-11-14 2007-05-18 Kabushiki Kaisha Yaskawa Denki Magnetic encoder device
US7719395B2 (en) 2006-10-23 2010-05-18 Denso Corporation Magnetizer and magnetizing method
CN108696618A (en) * 2018-05-15 2018-10-23 维沃移动通信有限公司 A kind of mobile terminal
CN108696618B (en) * 2018-05-15 2020-04-07 维沃移动通信有限公司 Mobile terminal

Also Published As

Publication number Publication date
JP3510075B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US4374403A (en) Magnetic recording and reproducing system
JP2563597B2 (en) Composite thin film magnetic head
US6510025B2 (en) Thin film magnetic head including a protrusion structure and an insulation film in a magnetic core
US8724261B2 (en) High-frequency magnetic field generation element and magnetic head
JP3306305B2 (en) motor
JP2005209248A (en) Magnetic head, and magnetic recording/reproducing apparatus
JP2001116814A (en) Magnetic impedance element
JPH10232141A (en) Method for magnetizing magnetic body and magnetic potentiometer using the same
GB2092807A (en) Magnetic head
JP2003130933A (en) Magnetic sensor element
JP2007242140A (en) Magnetoresistance effect type reproducing head and magnetic disk device
JP2863552B2 (en) Thin-film magnetic head and recording / reproducing apparatus using this thin-film magnetic head
JPH07139966A (en) Magnetic encoder
JPS647485B2 (en)
JPH0777164B2 (en) Non-contact type potentiometer
JPH01184611A (en) Inductive thin film magnetic head
JPS59227015A (en) Magnetic head of vertical magnetization
KR100483955B1 (en) Voice Coil Motor for Data Storage Devices
JP2007221941A (en) Vcm device and magnetizing method
JPH02118414A (en) Magnetic drum for pulse generator
JPH0834141B2 (en) Non-contact position sensor
JPS58150121A (en) Vertical magnetic recording head
JPH0777165B2 (en) Non-contact type potentiometer
JPH0777163B2 (en) Potentiometer
JPH06251335A (en) Magnetoresistive effect type head

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031224

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees