JPH07139966A - Magnetic encoder - Google Patents

Magnetic encoder

Info

Publication number
JPH07139966A
JPH07139966A JP28470093A JP28470093A JPH07139966A JP H07139966 A JPH07139966 A JP H07139966A JP 28470093 A JP28470093 A JP 28470093A JP 28470093 A JP28470093 A JP 28470093A JP H07139966 A JPH07139966 A JP H07139966A
Authority
JP
Japan
Prior art keywords
magnetic pole
signal
magnetic
position signal
pole position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28470093A
Other languages
Japanese (ja)
Other versions
JP3233317B2 (en
Inventor
Yukimasa Moronowaki
幸昌 諸野脇
Yoshiro Shimizu
芳郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP28470093A priority Critical patent/JP3233317B2/en
Publication of JPH07139966A publication Critical patent/JPH07139966A/en
Application granted granted Critical
Publication of JP3233317B2 publication Critical patent/JP3233317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To miniaturize a magnetic recording medium and a magnetoresistance effect (MR) sensor and to enhance the capacity of them by magnetically recording a magnetic pole position signal and a reference point position signal on the same track. CONSTITUTION:A reference point position signal 28 and a magnetic pole position signal 29 are written on the same track of a recording medium 23 but an incremental signal 27 is magnetized on a separate track. The reference point position signal 28 is previously magnetized and the magnetic pole position signal 29 is subsequently magnetized. Therefore, the magnetic pole position signal 29 is made preferential and the magnetizing directions of both signals 28, 29 are magnetized so as to mutually become right-angled. Since the anisotropy to the sensing of an MR sensor becomes a pattern longitudinal direction, the anisotropy of a reference point position detection part and a magnetic pole position detection part mutually become right-angled. As a result, two signals 28,29 can be sensed by respective detection parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気抵抗効果センサを適
用した磁気式エンコーダに係り、特にブラシレスモータ
等に最適な磁極位置信号を発生する磁気式エンコーダの
小型化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic encoder to which a magnetoresistive effect sensor is applied, and more particularly to miniaturization of a magnetic encoder for generating an optimum magnetic pole position signal for a brushless motor or the like.

【0002】[0002]

【従来の技術】ブラシレスモータはロボット、工作機械
などの駆動源として多数使用されている。これらブラシ
レスモータはメンテナンスフリー、良好な制御特性、高
効率運転特性などの優れた特長を有するが、反面磁極位
置検出が必要になるというマイナスの点がある。この
為、一般には相数分だけのホール素子を固定子側に配し
て、磁極位置を検出していたが、特公 平2ー4580
3号公報に依ればインクリメンタル、基準点位置及び磁
極位置を同時に一括して検出できるエンコーダが開示さ
れている。このエンコーダはセンサ部に強磁性体を用い
た磁気抵抗効果センサ(以下MRセンサと省略)でいわ
ば磁気式エンコーダである。図5にこのエンコーダを適
用したブラシレスモータの構成の概略を示す。まず 、
ブラシレスモータ1のシャフト2の一端にドラム状の磁
気媒体3が固着されている。この磁気媒体3は基体がア
ルミニュウムなどの非磁性体で製造され、ドラム側面に
は薄い一様な硬質の磁性体膜が形成されている。図では
インクリメンタル信号7、基準点位置信号8及び磁極位
置信号9の着磁状態を矢印を付けて模式的に示す。この
磁気媒体3に対応してMRセンサ4がある適当なギャッ
プを介して図のごとく配されている。位置情報であるそ
れぞれのトラックの着磁信号はMRセンサ4によって電
気信号に変換され、FPC(フレキシブルプリント基
板)5を通じて波形成形回路基板6に接続される。波形
成形回路基板6ではMRセンサの出力電圧を増幅し、矩
形状の電圧信号に変換する。更に、波形成形回路基板6
の出力は図には示してない制御操作回路部にフィードバ
ックされ、所望の制御が行われるようになっている。磁
気媒体3とMRセンサ4とを取り出して、それぞれのト
ラックと検出部の位置関係を示したのが、図6である。
図からわかるように磁気記録媒体3上の各トラックに着
磁記録されたインクリメンタル信号7、基準点位置信号
8及び磁極位置信号9はそれぞれMRセンサ4のインク
リメンタル検出部10、基準点位置検出部11及び磁極
位置検出部12に対応している。さて、図6では一回転
分を表しており、磁極位置信号9は電気角で120゜の
位相差を有するU、V及びW相の三相、四極の場合を示
している。尚、MRセンサ4の下部にあるハンダ端子2
0は、FPCが接続されるいわゆるセンサの取り出し口
である。図7〜9を使い、各信号に対する検出部の構成
及び動作に就いて説明する。まず図7はインクリメンタ
ル信号検出の場合である。等ピッチλで磁気媒体3の円
周方向に着磁されているインクリメンタル信号をRI1
I4で示す細長いセンサパターン素子で検出するもの
で、センサパターン素子は λ/2 の間隔で配置され、
その等価回路を図中(c)に示す。センサパターン素子
I1〜RI4は180°の位相差でそれぞれ抵抗変化し、
(c)に示すように結線されているため、RI1とRI4
I3とRI4の中点電位VI,VI′は互いに逆相関係とな
り、正弦波状の電気信号を出力する。これを同図(d)
に示す 。次に基準位置検出の場合を図8に示す。イン
クリメンタルの場合と同様に四本のセンサパターン素子
Z1〜RZ4から成るが、基準位置信号はトラック上に一
箇所だけ着磁されており、同図(b)に示すように円周
方向にインクレメンタル信号の着磁ピッチλとほば同程
度の長さで着磁したものである。従って、図中(c)の
接続関係から同図(d)のVZ,VZ′はほぼ VCC/2
の電位を中心に図のような波形と位相関係になる。最後
に、磁極位置検出の場合を図9にて説明することにす
る。センサ構成、着磁状態、等価回路及び出力波形を同
図に示す。前述したインクリメンタル及び基準点位置の
場合と違い、センサパターン、磁化方向を90゜回転さ
せている。これは円周方向に着磁すると、等価的な磁石
長さが大きくなり、非常に細長い磁石となってしまう。
その結果磁化された部分だけに磁界が集中し、極間には
弱い磁界しか存在しないことになり、磁極位置検出が困
難になるためである。同図(a)及び(b)に示すセン
サパターン素子配置と着磁トラックの関係から、センサ
パターン素子RU1とRU4、RU2とRU3は各々同じ信号磁
界の影響を受けることになるため、同時に抵抗変化を起
こす。従って、中点電位VU、VU´はそれぞれ逆位相関
係にあると共に、磁極位置センサパターン素子長さLU
は、インクリメンタル信号の着磁ピッチλと同程度であ
るため、出力電圧波形は同図(d)に示すように立ち上
がりの比較的急峻な台形状となる。図9ではU相を例に
とって動作原理を説明したが、V或いはW相も同じ動作
をし、120°の位相差が異なるだけである。
2. Description of the Related Art Brushless motors are widely used as drive sources for robots, machine tools and the like. These brushless motors have excellent features such as maintenance-free, good control characteristics, and high-efficiency operation characteristics, but on the other hand, they have a negative point that magnetic pole position detection is required. For this reason, generally, Hall elements corresponding to the number of phases are arranged on the stator side to detect the magnetic pole position.
Japanese Patent Publication No. 3 discloses an encoder capable of simultaneously detecting incremental, reference point position and magnetic pole position at the same time. This encoder is a magnetoresistive sensor (hereinafter abbreviated as MR sensor) using a ferromagnetic material in the sensor section, so to speak, a magnetic encoder. FIG. 5 shows a schematic configuration of a brushless motor to which this encoder is applied. First,
A drum-shaped magnetic medium 3 is fixed to one end of a shaft 2 of the brushless motor 1. The base body of the magnetic medium 3 is made of a non-magnetic material such as aluminum, and a thin uniform hard magnetic film is formed on the side surface of the drum. In the figure, the magnetized states of the incremental signal 7, the reference point position signal 8 and the magnetic pole position signal 9 are schematically shown with arrows. The MR sensor 4 corresponding to the magnetic medium 3 is arranged as shown in the drawing through an appropriate gap. The magnetization signal of each track, which is the position information, is converted into an electric signal by the MR sensor 4, and is connected to the waveform shaping circuit board 6 through the FPC (flexible printed circuit board) 5. The waveform shaping circuit board 6 amplifies the output voltage of the MR sensor and converts it into a rectangular voltage signal. Further, the waveform shaping circuit board 6
The output of is fed back to a control operation circuit unit (not shown), and desired control is performed. The magnetic medium 3 and the MR sensor 4 are taken out and the positional relationship between each track and the detection portion is shown in FIG.
As can be seen from the figure, the incremental signal 7, the reference point position signal 8 and the magnetic pole position signal 9 magnetized and recorded on each track on the magnetic recording medium 3 are the incremental detection unit 10 and the reference point position detection unit 11 of the MR sensor 4, respectively. And the magnetic pole position detector 12. Now, FIG. 6 shows one rotation, and the magnetic pole position signal 9 shows the case of three-phase and four-pole of U, V and W phases having a phase difference of 120 ° in electrical angle. The solder terminal 2 under the MR sensor 4
Reference numeral 0 is a so-called sensor outlet to which the FPC is connected. The configuration and operation of the detection unit for each signal will be described with reference to FIGS. First, FIG. 7 shows a case of incremental signal detection. Incremental signals magnetized in the circumferential direction of the magnetic medium 3 at an equal pitch λ are represented by R I1 ~
Detecting with the elongated sensor pattern element indicated by R I4 , the sensor pattern elements are arranged at intervals of λ / 2,
The equivalent circuit is shown in FIG. Each of the sensor pattern elements R I1 to R I4 changes its resistance with a phase difference of 180 °,
Since the wires are connected as shown in (c), R I1 and R I4 ,
The midpoint potentials V I and V I ′ of R I3 and R I4 have an opposite phase relationship to each other and output a sinusoidal electric signal. This is shown in FIG.
Shown in. Next, FIG. 8 shows the case of detecting the reference position. Similar to the incremental case, it consists of four sensor pattern elements R Z1 to R Z4 , but the reference position signal is magnetized at only one location on the track, and as shown in FIG. It is magnetized with a length almost equal to the magnetizing pitch λ of the incremental signal. Therefore, from the connection relation of (c) in the figure, V Z and V Z ′ in (d) of the figure are almost V CC / 2.
There is a phase relationship with the waveform as shown centering on the potential of. Finally, the case of magnetic pole position detection will be described with reference to FIG. The sensor configuration, magnetized state, equivalent circuit and output waveform are shown in the same figure. Unlike the case of the incremental and reference point positions described above, the sensor pattern and the magnetization direction are rotated by 90 °. If this is magnetized in the circumferential direction, the equivalent magnet length becomes large, resulting in a very elongated magnet.
As a result, the magnetic field concentrates only on the magnetized portions, and only a weak magnetic field exists between the poles, which makes it difficult to detect the magnetic pole position. From the relationship between the sensor pattern element arrangement and the magnetized track shown in FIGS. 7A and 7B, the sensor pattern elements R U1 and R U4 , and R U2 and R U3 are affected by the same signal magnetic field. , At the same time, resistance change occurs. Therefore, the midpoint potentials V U and V U ′ have an antiphase relationship with each other, and the magnetic pole position sensor pattern element length L U
Is approximately the same as the magnetization pitch λ of the incremental signal, the output voltage waveform has a trapezoidal shape with a relatively steep rise, as shown in FIG. In FIG. 9, the operation principle has been described by taking the U phase as an example, but the V or W phase also performs the same operation, and only the phase difference of 120 ° is different.

【0003】[0003]

【発明が解決しようとする課題】以上説明したように、
従来の磁気式エンコーダではインクリメンタル信号、基
準点信号及び磁極位置信号を一括して同時に取り出すこ
とが可能であるが、信号用トラックが3トラックもある
ため、磁気媒体及びMRセンサが長く或いは大型になっ
てしまい、製造 、特性確保上大きな問題であった。ま
た、高価で使い易くないエンコーダであった。
As described above,
In the conventional magnetic encoder, the incremental signal, the reference point signal, and the magnetic pole position signal can be simultaneously extracted at one time, but since there are three signal tracks, the magnetic medium and the MR sensor become long or large. This was a big problem in terms of manufacturing and securing characteristics. Also, the encoder was expensive and not easy to use.

【0004】[0004]

【課題を解決するための手段】本発明は、上述のように
磁気抵抗効果センサを用いた磁気式エンコーダにおい
て、多トラック化しても小型化可能な磁気式エンコーダ
である。このために、着磁の磁化方向が互いに90°と
なる組み合わせを選ぶことにより、MRセンサの感知方
向を選択することが可能になり、磁気媒体の同一トラッ
ク上に異なる信号を書き込んでも、従来方式と比べて特
性上問題なく電気信号を得ることができる。即ち、性能
は従来と同一で、着磁トラック数を減らして小型化を図
ることができるものである。具体的には、基準点位置信
号及び磁極位置信号を同一トラックに書き込み、MRセ
ンサもそれに対応してお互い略直角となる異方性のパタ
ーンを同じ位置に設けたものである。
The present invention is a magnetic encoder using the magnetoresistive effect sensor as described above, which can be miniaturized even if the number of tracks is increased. For this reason, it is possible to select the sensing direction of the MR sensor by selecting a combination in which the magnetization directions of magnetization are 90 ° with each other, and even if different signals are written on the same track of the magnetic medium, the conventional method is used. An electric signal can be obtained without any problem in terms of characteristics as compared with. That is, the performance is the same as that of the conventional one, and the number of magnetized tracks can be reduced to achieve miniaturization. Specifically, the reference point position signal and the magnetic pole position signal are written in the same track, and the MR sensor is also provided with the corresponding anisotropic patterns that are substantially orthogonal to each other at the same position.

【0005】[0005]

【作用】基準点位置信号及び磁極位置信号の磁化方向が
互いに直角になっていること、またインクリメンタル信
号と異なりトラックの全周にわたって一様且つ一定な信
号を書き込む必要がないことを考慮すると、同じトラッ
クにそれぞれの信号を書き込んでも互いの干渉が少な
い。これに対応して、MRセンサ側にも検出部の感知方
向である異方性の向きを直角となるように形成し、同一
トラック上の着磁信号を選択検出できるようにした。
In consideration of the fact that the magnetization directions of the reference point position signal and the magnetic pole position signal are perpendicular to each other, and that it is not necessary to write a uniform and constant signal over the entire circumference of the track, unlike the incremental signal, the same. Even if each signal is written on the track, there is little mutual interference. Correspondingly, the MR sensor side is also formed so that the direction of anisotropy, which is the sensing direction of the detection section, is at a right angle so that the magnetization signal on the same track can be selectively detected.

【0006】[0006]

【実施例】以下、本発明を実施例より説明する。図1は
本発明による磁気式エンコーダの磁気媒体である。ま
た、これに対応するMRセンサを図2に示す。図1に示
す記録媒体23は、基準点位置信号28と磁極位置信号
29は同一トラック上に書き込まれているが、インクリ
メンタル信号27は別トラック上に着磁されている。更
に、基準点位置信号と磁極位置信号の重なっている部分
を拡大すると、図3に示すようになっている。即ち、本
発明では基準点位置信号を先に着磁して、その後に磁極
位置信号を着磁したものである。従って、図中の磁化状
態を示す矢印から分かるように、磁極位置信号が優先さ
れていると共に、両信号の磁化方向は互いに直角になる
ように着磁されている。一方、図2におけるMRセンサ
24の基準点位置検出部31及び磁極位置信号32は、
図4に示すようになっている。各検出パターン素子形状
は図8及び図9と基本的には同じであるが、磁極位置検
出部32の両側に基準点位置検出部31が配置されてい
ることが特徴である。また、MRセンサの感知にたいす
る異方性はパターンの長手方向になるため、図に示すよ
うに基準点位置検出部31と磁極位置検出部32の異方
性はお互いに直角になる。依って、図3に示す二つの着
磁記録信号をそれぞれの検出部でセンシングできること
が分かる。本発明では、基準点位置信号28の上に磁極
位置信号29を書き込んでいるが、基準点位置信号の低
下或いは波形の歪は実用上殆ど問題ない。これは重なり
部分の割合が少ない上、センサに異方性をもたせている
ためである。以上の説明から充分理解される如く、リニ
アスケールにも適用できることは言う迄もない。
EXAMPLES The present invention will be described below with reference to examples. FIG. 1 shows a magnetic medium of a magnetic encoder according to the present invention. An MR sensor corresponding to this is shown in FIG. In the recording medium 23 shown in FIG. 1, the reference point position signal 28 and the magnetic pole position signal 29 are written on the same track, but the incremental signal 27 is magnetized on another track. Further, an enlarged view of the overlapping portion of the reference point position signal and the magnetic pole position signal is as shown in FIG. That is, in the present invention, the reference point position signal is magnetized first, and then the magnetic pole position signal is magnetized. Therefore, as can be seen from the arrow indicating the magnetized state in the figure, the magnetic pole position signal is prioritized, and the magnetization directions of both signals are magnetized so as to be perpendicular to each other. On the other hand, the reference point position detector 31 and the magnetic pole position signal 32 of the MR sensor 24 in FIG.
It is as shown in FIG. The shape of each detection pattern element is basically the same as that of FIGS. 8 and 9, but is characterized in that the reference point position detection units 31 are arranged on both sides of the magnetic pole position detection unit 32. Further, since the anisotropy of the MR sensor for sensing is in the longitudinal direction of the pattern, the anisotropies of the reference point position detection unit 31 and the magnetic pole position detection unit 32 are perpendicular to each other as shown in the figure. Therefore, it can be seen that the two magnetized recording signals shown in FIG. 3 can be sensed by the respective detectors. In the present invention, the magnetic pole position signal 29 is written on the reference point position signal 28, but there is almost no problem in practical use when the reference point position signal is lowered or the waveform is distorted. This is because the ratio of overlapping portions is small and the sensor has anisotropy. As can be understood from the above description, it goes without saying that the present invention can be applied to a linear scale.

【0007】[0007]

【発明の効果】本発明に依れば、基準点位置信号及び磁
極位置信号を同一トラック上に着磁記録できるため、従
来過大で高価であった磁気記録媒体とMRセンサを小型
化できる。更に、磁気記録媒体とMRセンサの小型化に
依って組立調整が容易になると共に、性能向上をはかる
ことが可能となる。
According to the present invention, since the reference point position signal and the magnetic pole position signal can be magnetized and recorded on the same track, the magnetic recording medium and the MR sensor, which are conventionally too large and expensive, can be downsized. Further, the miniaturization of the magnetic recording medium and the MR sensor facilitates the assembly and adjustment, and improves the performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による磁気式エンコーダの磁気
記録媒体。
FIG. 1 is a magnetic recording medium of a magnetic encoder according to an embodiment of the present invention.

【図2】本発明の実施例によるMRセンサの概略図。FIG. 2 is a schematic diagram of an MR sensor according to an embodiment of the present invention.

【図3】基準点位置信号及び磁極位置信号を同一トラッ
ク上に着磁記録した場合。
FIG. 3 shows a case where a reference point position signal and a magnetic pole position signal are magnetized and recorded on the same track.

【図4】本発明による基準点位置及び磁極位置検出部の
拡大図。
FIG. 4 is an enlarged view of a reference point position and magnetic pole position detection unit according to the present invention.

【図5】従来技術を説明するための磁気式エンコーダを
組み込んだブラシレスモータ。
FIG. 5 is a brushless motor incorporating a magnetic encoder for explaining the related art.

【図6】従来技術による磁気媒体とMRセンサの拡大
図。
FIG. 6 is an enlarged view of a magnetic medium and an MR sensor according to the related art.

【図7】インクリメンタル検出の動作原理説明図。FIG. 7 is an explanatory diagram of an operation principle of incremental detection.

【図8】基準点検出の動作原理説明図。FIG. 8 is an explanatory diagram of an operation principle of reference point detection.

【図9】磁極位置検出の動作原理説明図。FIG. 9 is an explanatory diagram of an operation principle of magnetic pole position detection.

【符号の説明】[Explanation of symbols]

1 ブラシレスモータ、2 シャフト、3 磁気媒体、
23 磁気媒体、4,24 磁気抵抗効果センサ(MR
センサと省略)、 5 FPC(フレキシブルプリント
基板)、 6 波形成形回路基板、 7 インクリメン
タル、27 インクリメンタル信号、 8 基準点位
置、2 基準点位置信号、9 磁極位置信号、29 磁
極位置信号、 10 インクリメンタル、30 検出
部、10 インクリメンタル検出部、11 基準点位置
検出部、31 基準点位置検出部、12 磁極位置検出
部、3 磁極位置検出部、 20 ハンダ端子、40
ハンダ端子
1 brushless motor, 2 shafts, 3 magnetic media,
23 magnetic medium, 4, 24 magnetoresistive effect sensor (MR
Abbreviated as a sensor), 5 FPC (flexible printed circuit board), 6 waveform shaping circuit board, 7 incremental, 27 incremental signal, 8 reference point position, 2 reference point position signal, 9 magnetic pole position signal, 29 magnetic pole position signal, 10 incremental, 30 detection unit, 10 incremental detection unit, 11 reference point position detection unit, 31 reference point position detection unit, 12 magnetic pole position detection unit, 3 magnetic pole position detection unit, 20 solder terminal, 40
Solder terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁極位置信号、基準位置信号及びインク
リメンタル信号が各トラックに着磁記録されている磁気
媒体とストライプ状の強磁性体薄膜を非磁性体基板上に
形成し、磁極位置検出部、基準位置検出部及びインクリ
メンタル検出部を有する磁気抵抗効果センサとからなる
磁気式エンコーダにおいて、前記磁極位置検出信号と基
準位置信号は同一トラック上に着磁記録されていること
を特徴とする磁気式エンコーダ。
1. A magnetic medium in which a magnetic pole position signal, a reference position signal and an incremental signal are magnetized and recorded on each track and a stripe-shaped ferromagnetic thin film are formed on a non-magnetic substrate, and a magnetic pole position detecting section is provided. A magnetic encoder comprising a reference position detector and a magnetoresistive effect sensor having an incremental detector, wherein the magnetic pole position detection signal and the reference position signal are magnetized and recorded on the same track. .
【請求項2】 請求項1において、磁気記録媒体には前
記磁極位置信号と前記基準位置信号は互いに略直角とな
る方向に着磁記録されていると共に、前記基準点位置信
号の後に前記磁極位置信号が着磁記録されていることを
特徴とする磁気式エンコーダ。
2. The magnetic recording medium according to claim 1, wherein the magnetic pole position signal and the reference position signal are magnetized and recorded in directions substantially orthogonal to each other, and the magnetic pole position is recorded after the reference point position signal. A magnetic encoder characterized in that a signal is magnetized and recorded.
【請求項3】 請求項1〜2において、磁気抵抗効果セ
ンサの前記磁極位置検出部と前記基準点位置検出部は異
方性が互いに略直角となることを特徴とする磁気式エン
コーダ。
3. The magnetic encoder according to claim 1, wherein the magnetic pole position detecting section and the reference point position detecting section of the magnetoresistive effect sensor have anisotropies substantially orthogonal to each other.
【請求項4】 請求項1〜3において、磁気抵抗効果セ
ンサでは前記磁極位置検出部の両側に前記基準点位置検
出部が配置されていることを特徴とする磁気式エンコー
ダ。
4. The magnetic encoder according to claim 1, wherein in the magnetoresistive effect sensor, the reference point position detector is arranged on both sides of the magnetic pole position detector.
JP28470093A 1993-11-15 1993-11-15 Magnetic encoder Expired - Lifetime JP3233317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28470093A JP3233317B2 (en) 1993-11-15 1993-11-15 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28470093A JP3233317B2 (en) 1993-11-15 1993-11-15 Magnetic encoder

Publications (2)

Publication Number Publication Date
JPH07139966A true JPH07139966A (en) 1995-06-02
JP3233317B2 JP3233317B2 (en) 2001-11-26

Family

ID=17681847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28470093A Expired - Lifetime JP3233317B2 (en) 1993-11-15 1993-11-15 Magnetic encoder

Country Status (1)

Country Link
JP (1) JP3233317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151181A (en) * 2017-03-10 2018-09-27 パナソニックIpマネジメント株式会社 Magnetic position detecting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072022A (en) * 2016-10-25 2018-05-10 クノールブレムゼ商用車システムジャパン株式会社 Rotation detection device, gear shift unit, and transmission system
JP2018072021A (en) * 2016-10-25 2018-05-10 クノールブレムゼ商用車システムジャパン株式会社 Rotation detection device, gear shift unit, and transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151181A (en) * 2017-03-10 2018-09-27 パナソニックIpマネジメント株式会社 Magnetic position detecting device

Also Published As

Publication number Publication date
JP3233317B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JPH0245803B2 (en)
JPH0658766A (en) Absolute position detector and motor control apparatus
JP3306305B2 (en) motor
JP2004069546A (en) Magnetic detector
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JP3233317B2 (en) Magnetic encoder
JPH10206104A (en) Position detecting apparatus
JP3271204B2 (en) Rotation detection device
JPS624954B2 (en)
JP2550085B2 (en) Absolute position detector
JPH01286759A (en) Brushless motor
JPH074986A (en) Reference position detector
JP3092681B2 (en) Phase detector
JP2001264112A (en) Encoder, mr sensor, and power steering device
JPH0326324B2 (en)
JPS5822135Y2 (en) Rotation speed detection device
JPS60114714A (en) Magnetic encoder
JP2650397B2 (en) DC no commutator motor
JPH11325959A (en) Magnetic detector
JP2536693B2 (en) Magnetic encoder
JP3132598B2 (en) Phase detector
JP2805071B2 (en) Magnetic resistance element sensor for position detection
JPH01129753A (en) Linear dc motor having magnetic encoder
JPH0622505A (en) Motor with speed detector
JPH0441282B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

EXPY Cancellation because of completion of term