JP2003130933A - Magnetic sensor element - Google Patents

Magnetic sensor element

Info

Publication number
JP2003130933A
JP2003130933A JP2001324989A JP2001324989A JP2003130933A JP 2003130933 A JP2003130933 A JP 2003130933A JP 2001324989 A JP2001324989 A JP 2001324989A JP 2001324989 A JP2001324989 A JP 2001324989A JP 2003130933 A JP2003130933 A JP 2003130933A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive
sensor element
magnetic sensor
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001324989A
Other languages
Japanese (ja)
Other versions
JP3961809B2 (en
Inventor
Masahisa Ito
昌久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NA KK
Original Assignee
NA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NA KK filed Critical NA KK
Priority to JP2001324989A priority Critical patent/JP3961809B2/en
Publication of JP2003130933A publication Critical patent/JP2003130933A/en
Application granted granted Critical
Publication of JP3961809B2 publication Critical patent/JP3961809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor element usable effectively for a self- holding magnetic sensor which can reproduce its former state, when power is supplied again even after a power-off. SOLUTION: This magnetic sensor element is comprised of a magnetic reluctance element, a bias magnet, and magnetic materials. In the magnetoresistive element, magnetoresistive patterns of ferromagnetic thin films are bridge- connected in approximately-perpendicular directions. The bias magnet is fitted onto the magneto-resistive element so that a magnetic field is applied in a direction of an angle approximately 45 degrees to any of the magnetic reluctance patterns. The magnetic materials having coercive forces of 1,000 to 3,000 A/m are arranged near sides of the magnetoresistive element in a direction perpendicular approximately to the direction of magnetic poles of the bias magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気近接スイッチ
に関し、特に往復動作における原点検出用の磁気近接ス
イッチに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic proximity switch, and more particularly to a magnetic proximity switch for origin detection in reciprocating operation.

【0002】[0002]

【従来の技術】従来、近接スイッチの検出信号を自己保
持動作させる為には、ラッチ回路、ラッチングリレー等
によるのが一般的な方法であった。
2. Description of the Related Art Conventionally, a latch circuit, a latching relay or the like has been generally used as a method for self-holding a detection signal of a proximity switch.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
ラッチ回路やラッチングリレーを使用した方法では、電
源を切ってから再び投入した際に以前の状態を再現でき
ないという欠点があった。本発明は、上記欠点に対処す
る為になされたものであり、自己保持動作をさせる為に
必要な構成部品の数量はわずかで、前記ラッチ回路のよ
うな部品を必要とせずに電源OFF後も再投入時には、
以前の状態を再現できる自己保持型磁気センサに使用す
る磁気センサ素子を提供することを目的とする。
However, the conventional method using the latch circuit or the latching relay has a drawback that the previous state cannot be reproduced when the power is turned off and then turned on again. The present invention has been made in order to deal with the above-mentioned drawbacks, and the number of components necessary for the self-holding operation is small, and even after the power is turned off without requiring the parts such as the latch circuit. When reapplying,
It is an object of the present invention to provide a magnetic sensor element used in a self-holding magnetic sensor capable of reproducing the previous state.

【0004】[0004]

【課題を解決するための手段】上記した課題を解決する
ため、請求項1記載の本発明では、強磁性薄膜磁気抵抗
パターンを、略直交する向きにブリッジ接続加工した磁
気抵抗素子と、前記磁気抵抗素子上に、前記磁気抵抗パ
ターンの何れにも角度略45度の向きに磁界が印加され
るべく取りつけたバイアス磁石と、前記磁気抵抗素子の
側方に近接して、前記バイアス磁石の磁極方向と略直交
する方向に、保磁力1000〜3000A/mの磁性材
料を配置した磁気センサ素子を提供する。請求項2記載
の本発明では、前記磁性材料が、前記磁気抵抗素子を間
に挟んで2個以上配置されている請求項1記載の磁気セ
ンサ素子を提供する。
In order to solve the above problems, according to the present invention as set forth in claim 1, a magnetoresistive element in which a ferromagnetic thin film magnetoresistive pattern is bridge-connected in a direction substantially orthogonal to each other, and the magnetic A bias magnet mounted on the resistive element so that a magnetic field is applied to any of the magnetoresistive patterns in a direction of an angle of about 45 degrees, and a magnetic pole direction of the bias magnet in the vicinity of a side of the magnetoresistive element. Provided is a magnetic sensor element in which a magnetic material having a coercive force of 1000 to 3000 A / m is arranged in a direction substantially orthogonal to. The present invention according to claim 2 provides the magnetic sensor element according to claim 1, wherein two or more magnetic materials are arranged with the magnetoresistive element interposed therebetween.

【0005】[0005]

【発明の実施の形態】以下、本発明の磁気センサ素子の
実施形態について図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a magnetic sensor element of the present invention will be described below with reference to the drawings.

【0006】図1は本発明の磁気センサ素子の構造分解
図である。磁気抵抗素子(101)は磁気抵抗パターン
(1011)の各要素が互いに直交するようにブリッジ
状に形成され、前記磁気抵抗パターン(1011)上を
保護物質で覆ってある。
FIG. 1 is a structural exploded view of the magnetic sensor element of the present invention. The magnetoresistive element (101) is formed in a bridge shape so that each element of the magnetoresistive pattern (1011) is orthogonal to each other, and the magnetoresistive pattern (1011) is covered with a protective material.

【0007】バイアス磁石(102)は前記磁気抵抗パ
ターン(1011)の何れにも角度略45度の磁界が印
加されるように、前記磁気抵抗素子(101)の上にエ
ポキシ樹脂等により取りつけ固定する。
The bias magnet (102) is mounted and fixed by epoxy resin or the like on the magnetoresistive element (101) so that a magnetic field having an angle of approximately 45 degrees is applied to any of the magnetoresistive patterns (1011). .

【0008】磁性材料(1031、1032)は前記磁
気抵抗パターン(1011)を挟み前記バイアス磁石
(102)にほぼ接するように、前記磁気抵抗素子(1
01)に取りつけ、エポキシ樹脂等で固定する。
The magnetic material (1031, 1032) sandwiches the magnetoresistive pattern (1011) so as to be almost in contact with the bias magnet (102).
01) and fix with epoxy resin or the like.

【0009】図2は、前記磁気抵抗素子(101)と前
記バイアス磁石(102)と前記磁性材料(1031、
1032)を一体化した、磁気センサ素子(200)を
示す。
FIG. 2 shows the magnetoresistive element (101), the bias magnet (102) and the magnetic material (1031,
The magnetic sensor element (200) integrated with 1032) is shown.

【0010】図3は、前記した図2の磁気センサ素子
(200)と、検出対象の磁石(301)を間隔dで配
置し、前記磁石(301)の移動させる方向を矢印で示
したものである。
FIG. 3 is a diagram in which the magnetic sensor element (200) of FIG. 2 and the magnet (301) to be detected are arranged at an interval d, and the moving direction of the magnet (301) is indicated by an arrow. is there.

【0011】図3の検出対象磁石(301)単体の、磁
極表面からの距離(d)をパラメータとした、磁極方向
と直交する方向の磁極中心からの距離に対する磁束密度
を図4に示す。一方、図3における磁気センサ素子(2
00)の、検出対象磁石(301)に対する検出出力波
形を図5に示す。
FIG. 4 shows the magnetic flux density with respect to the distance from the magnetic pole center in the direction perpendicular to the magnetic pole direction, with the distance (d) from the magnetic pole surface of the single magnet (301) to be detected in FIG. 3 as a parameter. On the other hand, the magnetic sensor element (2
FIG. 5 shows the detection output waveform of the magnet 00) for the detection target magnet (301).

【0012】図5において、磁石の磁極方向と直交する
方向の磁極中心からの距離(X)が十分遠方において
も、正のX側では磁気センサ素子出力が正の値を保ち、
負のX側では磁気センサ素子出力が負の値を保つ特性と
なっている。
In FIG. 5, even when the distance (X) from the magnetic pole center in the direction orthogonal to the magnetic pole direction of the magnet is sufficiently far, the magnetic sensor element output maintains a positive value on the positive X side,
On the negative X side, the magnetic sensor element output has a characteristic of keeping a negative value.

【0013】図5に示す磁気センサ素子出力グラフが図
4のグラフと異なるのは磁性材料をバイアス磁石つき磁
気抵抗素子に付加した為であり、以下さらに詳細に説明
する。
The magnetic sensor element output graph shown in FIG. 5 differs from the graph of FIG. 4 because a magnetic material is added to the magnetoresistive element with a bias magnet, which will be described in more detail below.

【0014】磁性材料を取りつけない場合のバイアス磁
石つき磁気抵抗素子の図5に相当する出力電圧波形は図
6のとおりであり、途中の磁界強度の大小に関わりな
く、磁界発生源の磁石が遠ざかれば何れの場合も出力は
ほぼゼロに近づく為、このままでは本発明で意図してい
る自己保持動作とはならない。
The output voltage waveform corresponding to FIG. 5 of the magnetoresistive element with a bias magnet when no magnetic material is attached is as shown in FIG. 6, and the magnet of the magnetic field generation source moves away regardless of the magnitude of the magnetic field strength in the middle. In either case, since the output approaches zero, the self-holding operation intended by the present invention cannot be performed as it is.

【0015】磁性材料をバイアス磁石つき磁気抵抗素子
を挟むように取りつけた場合の動作は、磁性材料の磁気
特性によって異なる。
The operation when the magnetic material is attached so as to sandwich the magnetoresistive element with the bias magnet differs depending on the magnetic characteristics of the magnetic material.

【0016】(軟質磁性材料の場合)図7に示すように
磁性材料の集磁効果により、感度が高くなり、波形は立
ち上がりが急峻になるが、検出対象磁石が遠ざかり磁界
がほぼゼロに近くなると磁性材料の磁化は小さくなる
為、磁性材料がない時と同様に、出力はほぼゼロに近づ
くが磁化の残留値は保磁力に依存し、保磁力が小さいほ
ど少なくなる。
(In the case of soft magnetic material) As shown in FIG. 7, due to the magnetic flux collecting effect of the magnetic material, the sensitivity is increased and the waveform rises sharply, but when the magnet to be detected moves away and the magnetic field becomes close to zero. Since the magnetization of the magnetic material becomes small, the output approaches zero, as in the case without the magnetic material, but the residual value of the magnetization depends on the coercive force, and becomes smaller as the coercive force is smaller.

【0017】(硬質磁性材料(磁石用の材料)の場合)
図8に示すように磁性材料がない場合(図6)とほぼ同
じ特性を示す。(一般的に磁石用の硬質磁性材料(例え
ばフェライト)は保磁力が極めて大きく(130KA/
m以上)、通常の磁化されたフェライト磁石等で磁化す
ることができない為、あたかも磁性材料が存在しない特
性となる。)
(In case of hard magnetic material (material for magnet))
As shown in FIG. 8, it shows almost the same characteristics as when there is no magnetic material (FIG. 6). (Generally, hard magnetic materials for magnets (for example, ferrite) have an extremely large coercive force (130 KA /
Since it cannot be magnetized by an ordinary magnetized ferrite magnet or the like, it has a characteristic that magnetic material does not exist. )

【0018】(中間の磁気的な硬さを持つ磁性材料の場
合)図5に示した本発明の場合に相当し、通常の磁化さ
れたフェライト磁石程度で対象とする磁性材料が磁化
し、且つ、適当な保磁力を有する為、磁化されたフェラ
イト磁石を遠ざけても対象の磁性材料には磁化が残留す
る現象を利用している。ここで重要なポイントは、検出
対象磁石とセンサ間の実用的な動作距離(5mm前後)
で、動作する磁性材料を選定できるかどうかということ
である。
(In the case of a magnetic material having an intermediate magnetic hardness) This corresponds to the case of the present invention shown in FIG. 5, in which the magnetic material to be magnetized is magnetized to the extent of an ordinary magnetized ferrite magnet, and Since it has an appropriate coercive force, the phenomenon that magnetization remains in the target magnetic material even if the magnetized ferrite magnet is moved away is used. The important point here is the practical operating distance (around 5 mm) between the magnet to be detected and the sensor.
Then, whether or not a magnetic material that operates can be selected.

【0019】図9は各種材料の保磁力を比較したグラフ
であるが、前記図4のグラフより、実用的な磁石からの
距離に対する磁束密度を考慮すると5〜10mTの磁束
密度で動作する磁性材料を選定する必要があり、磁性材
料を磁化するには保磁力の2.5倍以上の磁化力が必要
であるから、前記5〜10mTの磁束密度を相当磁化力
に換算すると4000〜8000A/mとなる為、この
値の40%は1600〜3200A/mとなり、この値
以下の保磁力を有する材料でなければ不安定な磁化とな
る為に使用できない。
FIG. 9 is a graph comparing the coercive force of various materials. From the graph of FIG. 4, a magnetic material operating at a magnetic flux density of 5 to 10 mT is taken into consideration when considering the magnetic flux density with respect to the distance from a practical magnet. Since it is necessary to select a magnetizing force of 2.5 times or more of the coercive force to magnetize the magnetic material, converting the magnetic flux density of 5 to 10 mT into an equivalent magnetizing force of 4000 to 8000 A / m. Therefore, 40% of this value is 1600 to 3200 A / m, and unless the material has a coercive force of less than this value, unstable magnetization cannot be used.

【0020】また、あまり保磁力が小さいと周辺磁界の
影響を受けて磁化が反転する等の誤動作を起こす恐れが
ある為、保磁力としては1000〜3000A/mの範
囲が望ましい。このような磁性材料としては、図9に示
したように、例えば、S60CやSUS631などを用
いることができる。なお、本発明の実施形態で使用した
材料は、図9のグラフ中の保磁力がおよそ、1600A
/mのS60Cである。
If the coercive force is too small, the magnetic field may be affected by the peripheral magnetic field to cause a malfunction such as magnetization reversal. Therefore, the coercive force is preferably in the range of 1000 to 3000 A / m. As such a magnetic material, as shown in FIG. 9, for example, S60C or SUS631 can be used. The material used in the embodiment of the present invention has a coercive force of about 1600 A in the graph of FIG.
/ M S60C.

【0021】[0021]

【発明の効果】本発明の磁気センサ素子は、強磁性薄膜
磁気抵抗パターンを、略直交する向きにブリッジ接続加
工した磁気抵抗素子と、前記磁気抵抗素子上に、前記磁
気抵抗パターンの何れにも角度略45度の向きに磁界が
印加されるべく取りつけたバイアス磁石と、前記磁気抵
抗素子の側方に近接して、前記バイアス磁石の磁極方向
と略直交する方向に、保磁力1000〜3000A/m
の磁性材料を配置した構成である。従って、ラッチ回路
のような部品を必要とせず、自己保持動作をさせる為に
必要な構成部品の数量はわずかで済み、しかも、電源O
FF後も再投入時には、以前の状態を再現できる自己保
持型磁気センサに有効に使用できる。
According to the magnetic sensor element of the present invention, a ferromagnetic thin film magnetoresistive pattern is bridge-connected in a direction substantially orthogonal to the magnetoresistive element, and the magnetoresistive element is formed on either of the magnetoresistive patterns. A coercive force of 1000 to 3000 A / in a bias magnet attached so that a magnetic field is applied in the direction of an angle of approximately 45 degrees, and in a direction substantially orthogonal to the magnetic pole direction of the bias magnet, close to the side of the magnetoresistive element. m
The magnetic material is arranged. Therefore, a component such as a latch circuit is not required, and the number of components required for the self-holding operation is small, and the power source O
It can be effectively used for a self-holding type magnetic sensor that can reproduce the previous state when re-input after FF.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気センサ素子の構造分解図である。FIG. 1 is a structural exploded view of a magnetic sensor element.

【図2】磁気センサ素子の斜視図である。FIG. 2 is a perspective view of a magnetic sensor element.

【図3】磁気センサ素子と検出対象磁石の斜視図であ
る。
FIG. 3 is a perspective view of a magnetic sensor element and a detection target magnet.

【図4】検出対象磁石の磁極方向と直交する方向の磁束
密度を示す図である。
FIG. 4 is a diagram showing a magnetic flux density in a direction orthogonal to a magnetic pole direction of a detection target magnet.

【図5】検出対象磁石の磁極方向と直交する方向の磁気
センサ素子出力(本発明に関する)を示す図である。
FIG. 5 is a diagram showing a magnetic sensor element output (related to the present invention) in a direction orthogonal to a magnetic pole direction of a detection target magnet.

【図6】検出対象磁石の磁極方向と直交する方向のバイ
アス磁石つき磁気抵抗素子出力を示す図である。
FIG. 6 is a diagram showing a magnetoresistive element output with a bias magnet in a direction orthogonal to a magnetic pole direction of a detection target magnet.

【図7】検出対象磁石の磁極方向と直交する方向の磁気
センサ素子出力(本発明との比較のため、磁性材料をS
PCCとした場合)を示す図である。
FIG. 7 is a magnetic sensor element output in a direction orthogonal to the magnetic pole direction of the detection target magnet (for comparison with the present invention, the magnetic material is S
It is a figure which shows (when it is set as PCC).

【図8】検出対象磁石の磁極方向と直交する方向の磁気
センサ素子出力(本発明との比較のため、磁性材料を磁
石用のフェライトとした場合)を示す図である。
FIG. 8 is a diagram showing a magnetic sensor element output in a direction orthogonal to a magnetic pole direction of a detection target magnet (when the magnetic material is ferrite for a magnet for comparison with the present invention).

【図9】磁性材料の種類別保磁力を示す図である。FIG. 9 is a diagram showing coercive force by type of magnetic material.

【符号の説明】[Explanation of symbols]

101 磁気抵抗素子 102 バイアス磁石 1011 磁気抵抗パターン 1031 磁性材料 1032 磁性材料 101 Magnetoresistive element 102 bias magnet 1011 Magnetoresistive pattern 1031 Magnetic material 1032 magnetic material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01D 5/18 G01D 5/244 A 5/244 G01R 33/06 R ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // G01D 5/18 G01D 5/244 A 5/244 G01R 33/06 R

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強磁性薄膜磁気抵抗パターンを、略直交
する向きにブリッジ接続加工した磁気抵抗素子と、前記
磁気抵抗素子上に、前記磁気抵抗パターンの何れにも角
度略45度の向きに磁界が印加されるべく取りつけたバ
イアス磁石と、前記磁気抵抗素子の側方に近接して、前
記バイアス磁石の磁極方向と略直交する方向に、保磁力
1000〜3000A/mの磁性材料を配置した磁気セ
ンサ素子。
1. A magnetoresistive element in which a ferromagnetic thin film magnetoresistive pattern is bridge-connected in a direction substantially orthogonal to the magnetoresistive element, and a magnetic field is formed on the magnetoresistive element in a direction of an angle of about 45 degrees in any of the magnetoresistive patterns. Of a magnetic material having a coercive force of 1000 to 3000 A / m arranged in a direction substantially orthogonal to the magnetic pole direction of the bias magnet and a bias magnet attached so that a magnetic field is applied. Sensor element.
【請求項2】 前記磁性材料が、前記磁気抵抗素子を間
に挟んで2個以上配置されている請求項1記載の磁気セ
ンサ素子。
2. The magnetic sensor element according to claim 1, wherein two or more magnetic materials are arranged with the magnetoresistive element interposed therebetween.
JP2001324989A 2001-10-23 2001-10-23 Magnetic sensor element Expired - Fee Related JP3961809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324989A JP3961809B2 (en) 2001-10-23 2001-10-23 Magnetic sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324989A JP3961809B2 (en) 2001-10-23 2001-10-23 Magnetic sensor element

Publications (2)

Publication Number Publication Date
JP2003130933A true JP2003130933A (en) 2003-05-08
JP3961809B2 JP3961809B2 (en) 2007-08-22

Family

ID=19141627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324989A Expired - Fee Related JP3961809B2 (en) 2001-10-23 2001-10-23 Magnetic sensor element

Country Status (1)

Country Link
JP (1) JP3961809B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333489A (en) * 2006-06-13 2007-12-27 Tokai Rika Co Ltd Magnetic position detection device
JP2007333490A (en) * 2006-06-13 2007-12-27 Tokai Rika Co Ltd Magnetic position detection device
JP2008101932A (en) * 2006-10-17 2008-05-01 Tokai Rika Co Ltd Magnetic position sensor
JP2009074991A (en) * 2007-09-21 2009-04-09 East Japan Railway Co Magnetic storage sensor, measuring instrument, and measuring method
JP2010515880A (en) * 2007-01-08 2010-05-13 キョントン ネットワーク コーポレーション リミテッド Precision pressure sensor
US10094890B2 (en) 2014-10-09 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333489A (en) * 2006-06-13 2007-12-27 Tokai Rika Co Ltd Magnetic position detection device
JP2007333490A (en) * 2006-06-13 2007-12-27 Tokai Rika Co Ltd Magnetic position detection device
JP2008101932A (en) * 2006-10-17 2008-05-01 Tokai Rika Co Ltd Magnetic position sensor
JP2010515880A (en) * 2007-01-08 2010-05-13 キョントン ネットワーク コーポレーション リミテッド Precision pressure sensor
JP2009074991A (en) * 2007-09-21 2009-04-09 East Japan Railway Co Magnetic storage sensor, measuring instrument, and measuring method
US10094890B2 (en) 2014-10-09 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor

Also Published As

Publication number Publication date
JP3961809B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US6900713B2 (en) Magnetic switch capable of instantaneous switching of an output signal and magnetic sensor
KR960011854A (en) Magnetoresistive effect thin film and its manufacturing method
EP1248264A3 (en) Magnetoresistive element, memory element having the magnetoresistive element, and memory using the memory element
KR20040014164A (en) Magnetic detector
JP2790811B2 (en) Thin film magnetic head
JP3961809B2 (en) Magnetic sensor element
Kikuchi et al. Consideration of magnetization and detection on magnetic rotary encoder using finite element method
JPH10233146A (en) Ferromagnet passage sensor
US6714389B1 (en) Digital magnetoresistive sensor with bias
JP4192267B2 (en) Self-holding proximity switch
JPH0589435A (en) Magneto-resistance effect type magnetic head
JPH0676706A (en) Proximity switch for magnetic body detection
JPH08122011A (en) Magnetic angle detection apparatus
JP3141213B2 (en) Magnetic material detecting device and tachometer using magnetic material detecting device
JPS6138524B2 (en)
JPH10173252A (en) Magneto-resistance effect element and magneto-resistance sensor
JP3123276B2 (en) Position detection device
JPH10270775A (en) Magneto-resistance effect element and revolution sensor using the same
Campbell et al. The effect of the magnetization distribution within anisotropic alnico magnets upon field calculation
JPH08297814A (en) Magneto-resistance effect element
JPS5886609A (en) Generator for rotation position signal
JPH0710243Y2 (en) Magnetic linear scale
JP3431480B2 (en) Pulse signal generator
JPH0562029A (en) Magnetic bar code panel
JPS58189819A (en) Magneto-resistance effect head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070517

R150 Certificate of patent or registration of utility model

Ref document number: 3961809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees