JPH10173252A - Magneto-resistance effect element and magneto-resistance sensor - Google Patents

Magneto-resistance effect element and magneto-resistance sensor

Info

Publication number
JPH10173252A
JPH10173252A JP8353063A JP35306396A JPH10173252A JP H10173252 A JPH10173252 A JP H10173252A JP 8353063 A JP8353063 A JP 8353063A JP 35306396 A JP35306396 A JP 35306396A JP H10173252 A JPH10173252 A JP H10173252A
Authority
JP
Japan
Prior art keywords
layer
magnetic layer
magnetic
cobalt
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8353063A
Other languages
Japanese (ja)
Other versions
JP3013031B2 (en
Inventor
Seiji Mitani
誠司 三谷
Kesami Saitou
今朝美 齊藤
Hiroyasu Fujimori
啓安 藤森
Haruo Ito
治雄 伊藤
Yasuhiko Yanagida
康彦 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Tsushin Kogyo Co Ltd
Original Assignee
Teikoku Tsushin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Tsushin Kogyo Co Ltd filed Critical Teikoku Tsushin Kogyo Co Ltd
Priority to JP8353063A priority Critical patent/JP3013031B2/en
Publication of JPH10173252A publication Critical patent/JPH10173252A/en
Application granted granted Critical
Publication of JP3013031B2 publication Critical patent/JP3013031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a large rate of magneto-resistance change from the magnetic field variation of a small external signal having a small hysteresis by laminating a magnetic layer having a high electric resistance on a magnetic layer which is not formed on an insulating antiferromagnetic layer. SOLUTION: A magneto-resistance effect element is constituted by successively forming an insulating antiferromagnetic layer 13, a magnetic layer 15, a nonmagnetic conductor layer 17, and a magnetic layer on a nonmagnetic insulating surface 11 in this order by sputtering and a magnetic layer 20 having a high electric resistance on the magnetic layer 19. It is preferable to form the magnetic layer 20 by using a cobalt-aluminum oxide (Cox Al1-x-w Ow ) and setting the (x) and (w) to meet such conditions that 50<=x<=85at.% and 10<w<50at.%. It is also preferable to use a nickel oxide for forming the insulating antiferromagnetic layer and a nickel-iron-cobalt alloy, nickel-iron alloy, cobalt, or cobalt-iron alloy for forming the magnetic layers, and then, copper for forming the nonmagnetic layer 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はヒステリシスが少な
くて良好な特性を具備する磁気抵抗効果素子及びこれを
用いた磁気抵抗センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element having a small hysteresis and excellent characteristics and a magnetoresistive sensor using the same.

【0002】[0002]

【従来の技術】従来、磁界の変化を検出する素子として
磁気抵抗効果素子が利用されている。そしてこの種の磁
気抵抗効果素子としてスピンバルブ型の磁気抵抗効果素
子が提案されている。
2. Description of the Related Art Conventionally, a magnetoresistance effect element has been used as an element for detecting a change in a magnetic field. As this type of magnetoresistive element, a spin valve type magnetoresistive element has been proposed.

【0003】このスピンバルブ型の磁気抵抗効果素子
は、図8に示すように、非磁性絶縁基板11の上に、絶
縁性反強磁性層13と磁性層15と非磁性導体層17と
磁性層19とをこの順番で積層して構成されている。
As shown in FIG. 8, this spin valve type magnetoresistive element has an insulating antiferromagnetic layer 13, a magnetic layer 15, a nonmagnetic conductor layer 17, and a magnetic layer on a nonmagnetic insulating substrate 11. 19 are laminated in this order.

【0004】そしてこの磁気抵抗効果素子に平行な面内
において磁界の方向を変化させた場合、図9に示すよう
なMR特性曲線(ΔR/R−H特性曲線)が得られる。
なおこの実験にかかる従来例においては、絶縁性反強磁
性層13として膜厚50nmの酸化ニッケルを用い、磁
性層15として膜厚10nmのニッケル・鉄・コバルト
合金を用い、非磁性導体層17として膜厚2.5nmの
銅を用い、磁性層19として膜厚5nmのニッケル・鉄
・コバルト合金を用いた。
When the direction of the magnetic field is changed in a plane parallel to the magnetoresistive element, an MR characteristic curve (ΔR / RH characteristic curve) as shown in FIG. 9 is obtained.
In the conventional example according to this experiment, a 50 nm-thick nickel oxide is used as the insulating antiferromagnetic layer 13, a 10 nm-thick nickel-iron-cobalt alloy is used as the magnetic layer 15, and the nonmagnetic conductor layer 17 is used as the nonmagnetic conductor layer 17. Copper having a thickness of 2.5 nm was used, and a nickel-iron-cobalt alloy having a thickness of 5 nm was used as the magnetic layer 19.

【0005】つまり磁気抵抗効果素子に対して磁界Hが
その面方向に全く印加されていないか又はマイナス方向
に印加されている場合は、抵抗値Rは略一定で変化しな
い。次に磁界Hがプラス方向に印加されていった場合
は、磁界Hが+50(Oe)程度でその抵抗値Rが急峻
なカーブで増加して所定の値に達し、それ以上プラス方
向へ磁界Hの強さを強くしても該抵抗値Rは一定で変化
しなくなる。但し磁界Hが+250(Oe)を越える辺
りから抵抗値Rは急激に減少して元に戻る。
That is, when the magnetic field H is not applied to the magnetoresistive element in the surface direction at all or is applied in the minus direction, the resistance value R is substantially constant and does not change. Next, when the magnetic field H is applied in the plus direction, the resistance value R increases in a steep curve at a magnetic field H of about +50 (Oe) and reaches a predetermined value. The resistance value R is constant and does not change even if the strength of R is increased. However, when the magnetic field H exceeds +250 (Oe), the resistance value R sharply decreases and returns to the original value.

【0006】逆に磁界Hの強さを+400(Oe)辺り
から小さくしていくと抵抗値Rはなだらかに増加して行
き、磁界Hが−20(Oe)程度まで減少すると抵抗値
Rは急激に低下してほぼ元の値に戻る。
Conversely, when the intensity of the magnetic field H is reduced from around +400 (Oe), the resistance value R gradually increases, and when the magnetic field H decreases to about -20 (Oe), the resistance value R sharply increases. And almost return to the original value.

【0007】以上の現象は以下のように説明される。即
ち図10(a)に示すように外部磁界Hが磁気抵抗効果
素子の面方向に全く印加されていない場合に、上下の磁
性層15,19内の磁化の方向が同一方向を向いていた
とすると、磁気抵抗効果素子の両端間の抵抗値は所定の
抵抗値Rとなっている。
[0007] The above phenomenon is explained as follows. That is, as shown in FIG. 10A, when no external magnetic field H is applied in the plane direction of the magnetoresistive element at all, it is assumed that the magnetization directions in the upper and lower magnetic layers 15 and 19 are in the same direction. The resistance value between both ends of the magnetoresistive element is a predetermined resistance value R.

【0008】次にこの磁気抵効果抗素子に磁性層15,
19内の磁化の方向と同一方向の外部磁界H1(マイナ
ス方向を向く磁界)を印加した場合は、磁性層15,1
9内の磁化の方向は変化しないので、磁気抵抗効果素子
の両端間の抵抗値Rは殆どそのままで変化しない。
Next, a magnetic layer 15,
When an external magnetic field H1 (a magnetic field directed in the negative direction) in the same direction as the direction of the magnetization in 19 is applied, the magnetic layers 15 and 1
Since the direction of the magnetization in 9 does not change, the resistance value R between both ends of the magnetoresistive effect element hardly changes.

【0009】一方図10(b)に示すようにこの磁気抵
抗効果素子に反転した外部磁界H2(プラス方向を向く
磁界)を印加した場合は、外部磁界H2が小さくても
〔この従来例では+50(Oe)程度〕磁性層19内の
磁化の方向は即座に反応してその磁化の方向を外部磁界
H2の方向と同一方向に変化する。
On the other hand, as shown in FIG. 10B, when an inverted external magnetic field H2 (magnetic field directed in the plus direction) is applied to this magnetoresistive effect element, even if the external magnetic field H2 is small [+50 in this conventional example]. (Oe) degree] The direction of the magnetization in the magnetic layer 19 reacts immediately and changes the direction of the magnetization to the same direction as the direction of the external magnetic field H2.

【0010】しかしながら前述のように下側の磁性層1
5の磁化の方向は、絶縁性反強磁性層13の交換バイア
スの影響で反転しない。
However, as described above, the lower magnetic layer 1
The magnetization direction of No. 5 does not reverse under the influence of the exchange bias of the insulating antiferromagnetic layer 13.

【0011】このため積層した2つの磁性層15,19
内部の磁化の方向が逆方向となるので、磁気抵抗効果素
子の導電性のある磁性層15,19及び非磁性導体層1
7内を電子が通過しにくくなり、抵抗値Rが増加する。
For this reason, the two stacked magnetic layers 15 and 19
Since the directions of the internal magnetization are opposite, the conductive magnetic layers 15 and 19 and the non-magnetic conductor layer 1 of the magnetoresistive element are formed.
7, it becomes difficult for electrons to pass through, and the resistance value R increases.

【0012】なお更に外部磁界H2の強さを強くしてい
けば、磁性層15の磁化の方向もいつかは反転するので
2つの磁性層15,19内部の磁化の方向が同一とな
り、抵抗値Rは元の値に急激に戻るが、そのための外部
磁界H2の強さはかなり大きく、この従来例においては
+250(Oe)以上である。外部磁界の強さを弱くし
ていった場合も同様である。以上のことからこの磁気抵
抗効果素子のMR特性は前記図9に示すものとなる。
If the intensity of the external magnetic field H2 is further increased, the direction of the magnetization of the magnetic layer 15 is eventually reversed, so that the directions of the magnetization in the two magnetic layers 15 and 19 become the same, and the resistance R Suddenly returns to its original value, but the strength of the external magnetic field H2 for this is considerably large, and is +250 (Oe) or more in this conventional example. The same applies to the case where the strength of the external magnetic field is reduced. From the above, the MR characteristics of this magnetoresistive effect element are as shown in FIG.

【0013】[0013]

【発明が解決しようとする課題】しかしながら前記自由
に磁化の方向を変えられる磁性層19は、その厚みが薄
いと磁化の強さが小さくなってしまい、下側の磁性層1
5や絶縁性反強磁性層13の磁界の影響及び表界面の影
響に引きずられて外部磁界の変化に敏感に対応できず、
図9に示すようにヒステリシスが大きくなってしまう。
However, if the thickness of the magnetic layer 19 whose magnetization direction can be freely changed is small, the intensity of magnetization is small, and the lower magnetic layer 1
5 and the influence of the magnetic field of the insulating antiferromagnetic layer 13 and the influence of the surface interface, and cannot respond sensitively to changes in the external magnetic field.
As shown in FIG. 9, the hysteresis increases.

【0014】なお磁気抵抗効果が顕著に生じるのは磁性
層19の非磁性導体層17との界面付近の部分なので、
たとえ磁性層19の厚みを厚くして磁化の強さを大きく
しようとしても、磁気抵抗効果に寄与しない部分が増え
て磁気抵抗効果に寄与しない電流が増大するだけなので
効果的ではない。
The remarkable magnetoresistance effect occurs in the vicinity of the interface between the magnetic layer 19 and the nonmagnetic conductor layer 17, so that
Even if the thickness of the magnetic layer 19 is increased to increase the strength of the magnetization, it is not effective because the portion that does not contribute to the magnetoresistance effect increases and the current that does not contribute to the magnetoresistance effect increases.

【0015】そして従来のスピンバルブ型の磁気抵抗効
果素子は、図9に示すようにそのヒステリシスが大きく
て、その幅が100(Oe)程度あり、従って外部信号
磁界の変化幅も100(Oe)程度以上のものを用いな
いと、4%程度の磁気抵抗変化率(ΔR/R)が得られ
ない。
As shown in FIG. 9, the conventional spin-valve magnetoresistive element has a large hysteresis and a width of about 100 (Oe). Therefore, the change width of the external signal magnetic field is also 100 (Oe). Unless a material having a magnetoresistance of about 4% or more is used, a magnetoresistance change rate (ΔR / R) of about 4% cannot be obtained.

【0016】しかしながら実用的な外部信号磁界の変化
幅は50(Oe)以下であり、上記従来例ではこの程度
の外部信号磁界の変化幅では磁気抵抗変化率が小さくな
ってしまい、実用上対応できなかった。
However, a practical change width of the external signal magnetic field is 50 (Oe) or less. In the above-mentioned conventional example, a change rate of the external signal magnetic field of this level results in a small rate of change in magnetoresistance, which is practically applicable. Did not.

【0017】本発明は上述の点に鑑みてなされたもので
ありその目的は、ヒステリシスが小さくて小さい外部信
号磁界の変化から大きい磁気抵抗変化率が得られる磁気
抵抗効果素子及び磁気抵抗センサを提供することにあ
る。
The present invention has been made in view of the above points, and an object of the present invention is to provide a magnetoresistive element and a magnetoresistive sensor which have a small hysteresis and can obtain a large magnetoresistance change rate from a small change in an external signal magnetic field. Is to do.

【0018】[0018]

【課題を解決するための手段】上記問題点を解決するた
め本発明にかかる磁気抵抗効果素子は、絶縁性反強磁性
層と磁性層と非磁性導体層と磁性層とをこの順番で積層
してなる磁気抵抗効果素子において、前記絶縁性反強磁
性層と隣接しない方の磁性層の上に高電気抵抗磁性層を
積層することによって構成した。これによって外部信号
磁界の変化に対する応答性が良くなり、ヒステリシスも
低下する。なお前記高電気抵抗磁性層として、コバルト
アルミニウム酸化物{Co(x)Al(1-x-w)(w)}を用
い、且つxとwとを、 50≦x≦85at% 10<w<50at% の条件を満足するように構成することが好ましい。また
前記絶縁性反強磁性層として酸化ニッケルを用い、前記
磁性層としてニッケル・鉄・コバルト合金又はニッケル
・鉄合金又はコバルト又はコバルト・鉄合金を用い、前
記非磁性導体層として銅を用いて構成することが好まし
い。また本発明にかかる磁気抵抗センサは、前記磁気抵
抗効果素子を、少なくともその一部に用いて構成した。
In order to solve the above problems, a magnetoresistive element according to the present invention comprises an insulating antiferromagnetic layer, a magnetic layer, a nonmagnetic conductor layer and a magnetic layer laminated in this order. The magnetoresistive effect element is formed by laminating a high electric resistance magnetic layer on a magnetic layer not adjacent to the insulating antiferromagnetic layer. This improves the response to changes in the external signal magnetic field, and reduces the hysteresis. As the high electric resistance magnetic layer, cobalt aluminum oxide {Co (x) Al (1-xw) O (w) } is used, and x and w are set as follows: 50 ≦ x ≦ 85 at% 10 <w <50 at % Is preferably satisfied. The insulating antiferromagnetic layer is formed of nickel oxide, the magnetic layer is formed of nickel-iron-cobalt alloy or nickel-iron alloy or cobalt or cobalt-iron alloy, and the nonmagnetic conductor layer is formed of copper. Is preferred. Further, the magnetoresistive sensor according to the present invention is configured by using the magnetoresistive effect element in at least a part thereof.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。図1は本発明の1実施形態に
かかるスピンバルブ型の磁気抵抗効果素子の断面拡大概
略図である。同図に示すようにこの磁気抵抗効果素子
は、非磁性絶縁基板11上に、スパッタリングによって
絶縁性反強磁性体層13と磁性層15と非磁性導体層1
7と磁性層19とをこの順番で積層し、さらに磁性層1
9上に高電気抵抗磁性層20を積層することによって構
成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an enlarged schematic cross-sectional view of a spin-valve magnetoresistive element according to one embodiment of the present invention. As shown in the figure, this magnetoresistive effect element comprises an insulating antiferromagnetic layer 13, a magnetic layer 15, and a nonmagnetic conductor layer 1 formed on a nonmagnetic insulating substrate 11 by sputtering.
7 and the magnetic layer 19 are laminated in this order.
9, a high electric resistance magnetic layer 20 is laminated.

【0020】ここで非磁性絶縁基板11はガラス板によ
って構成されている。
Here, the non-magnetic insulating substrate 11 is made of a glass plate.

【0021】次に絶縁性反強磁性体層13は膜厚50
(nm)の酸化ニッケル(NiO)によって形成されて
おり、磁性層15は膜厚10(nm)のニッケル・鉄・
コバルト合金(Ni−Fe−Co)によって形成されて
おり、非磁性導体層17は膜厚2.5(nm)の銅(C
u)によって形成されており、磁性層19は膜厚2.5
(nm)のニッケル・鉄・コバルト合金(Ni−Fe−
Co)によって形成されており、高電気抵抗磁性層20
は膜厚10(nm)のコバルトアルミニウム酸化物(C
o−Al−O)によって形成されている。
Next, the insulating antiferromagnetic layer 13 has a thickness of 50.
(Nm) of nickel oxide (NiO), and the magnetic layer 15 has a thickness of 10 (nm) of nickel / iron / nickel.
The nonmagnetic conductor layer 17 is formed of a cobalt alloy (Ni-Fe-Co), and the nonmagnetic conductor layer 17 is made of copper (C) having a thickness of 2.5 (nm).
u), and the magnetic layer 19 has a thickness of 2.5
(Nm) nickel-iron-cobalt alloy (Ni-Fe-
Co) and the high electric resistance magnetic layer 20.
Is a 10-nm-thick cobalt aluminum oxide (C
o-Al-O).

【0022】磁気抵抗効果素子を以上のように構成する
ことによって、この磁気抵抗効果素子の面に平行な面内
において磁界の方向を変化させた場合、図2に示すよう
なMR特性曲線(ΔR/R−H特性曲線)が得られた。
なお抵抗値Rは磁気抵抗効果素子の両端間の抵抗値であ
る。
By configuring the magnetoresistive element as described above, when the direction of the magnetic field is changed in a plane parallel to the plane of the magnetoresistive element, the MR characteristic curve (ΔR / RH characteristic curve).
The resistance value R is a resistance value between both ends of the magnetoresistive element.

【0023】同図に示すようにこの磁気抵抗効果素子に
よれば、その磁気抵抗変化率(ΔR/R)は4.2%と
高く、またヒステリシスの幅も20(Oe)程度と小さ
く、さらに外部印加磁界が+100(Oe)程度印加さ
れるまで安定している。
As shown in the figure, according to this magnetoresistance effect element, the magnetoresistance change rate (ΔR / R) is as high as 4.2%, and the width of hysteresis is as small as about 20 (Oe). It is stable until an externally applied magnetic field of about +100 (Oe) is applied.

【0024】この現象は以下のように説明できる。即
ち、磁性層19自体はその膜厚が薄いので、磁化の強さ
が小さい。しかしながらその上に形成した高電気抵抗磁
性層20は磁性層19と同様に磁化されやすく、外部印
加磁界の変化に敏感に反応して磁性層19と共にその磁
化の方向を変化するので、その磁界を磁性層19に印加
することができ、このため磁性層19の小さい磁化の強
さを補強することができる。
This phenomenon can be explained as follows. That is, since the thickness of the magnetic layer 19 itself is small, the intensity of magnetization is small. However, the high electric resistance magnetic layer 20 formed thereon is easily magnetized similarly to the magnetic layer 19, and changes its magnetization direction together with the magnetic layer 19 in response to a change in an externally applied magnetic field. It can be applied to the magnetic layer 19, which can reinforce the small magnetization strength of the magnetic layer 19.

【0025】このため磁性層19は下側の磁性層15や
絶縁性反強磁性層13の磁界の影響に引きずられること
はなくなり、外部印加磁界の変化に敏感に対応すること
ができるようになる。
For this reason, the magnetic layer 19 is not dragged by the influence of the magnetic field of the lower magnetic layer 15 or the insulating antiferromagnetic layer 13 and can respond to a change in an externally applied magnetic field. .

【0026】一方高電気抵抗磁性層20は抵抗値が高い
のでこの内部を電流は殆ど流れない。つまり磁気抵抗効
果に寄与する磁性層19の非磁性導体層17との界面付
近の部分以外の部分の電流が増大することはない。
On the other hand, since the high electric resistance magnetic layer 20 has a high resistance value, almost no current flows through the inside thereof. That is, the current does not increase in portions other than the portion near the interface between the magnetic layer 19 and the nonmagnetic conductor layer 17 that contributes to the magnetoresistance effect.

【0027】以上のことから磁気抵抗変化率を高くで
き、また外部磁界の変化に敏感に対応してヒステリシス
を小さくできるのである。
As described above, the rate of change in magnetoresistance can be increased, and the hysteresis can be reduced in response to changes in the external magnetic field.

【0028】図3は本発明の一実施形態にかかる上記磁
気抵抗効果素子を用いて構成した磁気抵抗センサ10の
拡大斜視図である。同図に示すようにこの磁気抵抗セン
サ10は、非磁性絶縁基板11表面の一辺近傍に前記図
1に示す構造の磁気抵抗効果素子を直線状に形成してな
る磁気抵抗パターン21を設け、また非磁性絶縁基板1
1表面の別の一辺にダミー抵抗パターン31を形成し、
更に別の1辺に3つの電極パターン41,43,45を
形成し、電極パターン41をダミー抵抗パターン31の
一端部に接続し、電極パターン43を磁気抵抗パターン
21とダミー抵抗パターン31のそれぞれ接近する側の
端部に接続し、電極パターン45を磁気抵抗パターン2
1の残りの端部に接続して構成されている。なおダミー
抵抗パターン31は磁気抵抗パターン21と全く同一の
構造・寸法に形成されている。
FIG. 3 is an enlarged perspective view of the magnetoresistive sensor 10 using the magnetoresistive element according to one embodiment of the present invention. As shown in FIG. 1, the magnetoresistive sensor 10 has a magnetoresistive pattern 21 formed by linearly forming a magnetoresistive element having the structure shown in FIG. Non-magnetic insulating substrate 1
A dummy resistance pattern 31 is formed on another side of one surface,
Further, three electrode patterns 41, 43, and 45 are formed on another side, the electrode pattern 41 is connected to one end of the dummy resistance pattern 31, and the electrode pattern 43 is moved closer to the magnetoresistive pattern 21 and the dummy resistance pattern 31, respectively. The electrode pattern 45 and the magnetoresistive pattern 2
1 is connected to the other end. The dummy resistance pattern 31 has exactly the same structure and dimensions as the magnetoresistive pattern 21.

【0029】そして図4に示すように、この磁気抵抗セ
ンサ10を回転体40の外周側面近傍に設置する。なお
回転体40の外周側面には回転方向に向けてN,S磁極
が等間隔に交互に設けられている。このとき磁気抵抗セ
ンサ10の磁気抵抗パターン21を回転体40の外周側
面に接近させ、且つダミー抵抗パターン31を該外周側
面から離れた位置となるようにする。つまり磁気抵抗パ
ターン21のみに回転体40の磁界が印加され、ダミー
抵抗パターン31にはほとんど印加されないように設置
する。
Then, as shown in FIG. 4, the magnetoresistive sensor 10 is installed near the outer peripheral side surface of the rotating body 40. Note that N and S magnetic poles are alternately provided at equal intervals on the outer peripheral side surface of the rotating body 40 in the rotating direction. At this time, the magnetoresistive pattern 21 of the magnetoresistive sensor 10 is made to approach the outer peripheral side surface of the rotating body 40, and the dummy resistance pattern 31 is located at a position away from the outer peripheral side surface. That is, the magnetic field of the rotator 40 is applied only to the magnetoresistive pattern 21 and is hardly applied to the dummy resistance pattern 31.

【0030】なおこの磁気抵抗センサ10には図5に示
すような電気回路が接続される。つまり図3に示す電極
パターン41を電源電圧Vccに接続し、電極パターン
45をアースし、磁気抵抗パターン21とダミー抵抗パ
ターン31の中点電位Vbとなる電極パターン43を取
り出してコンパレータ50(シュミット・トリガ回路)
に入力する。ダミー抵抗パターン31は磁気抵抗パター
ン21と温度計数を一致させることで温度によって中点
電位Vbが変化しないようにするために設置されてい
る。
An electric circuit as shown in FIG. 5 is connected to the magnetoresistive sensor 10. That is, the electrode pattern 41 shown in FIG. 3 is connected to the power supply voltage Vcc, the electrode pattern 45 is grounded, the electrode pattern 43 which becomes the midpoint potential Vb of the magnetoresistive pattern 21 and the dummy resistance pattern 31 is taken out, and the comparator 50 (Schmitt. Trigger circuit)
To enter. The dummy resistance pattern 31 is provided so that the midpoint potential Vb does not change with temperature by matching the temperature coefficient with the magnetic resistance pattern 21.

【0031】そして図4に示す回転体40を回転すれ
ば、磁気抵抗センサ10の磁気抵抗パターン21に入射
する磁界の方向が周期的に略sin波形状に変化し、こ
れによって図6に示すように磁気抵抗パターン21の抵
抗値が略方形波形状に変化する。
When the rotating body 40 shown in FIG. 4 is rotated, the direction of the magnetic field incident on the magnetoresistive pattern 21 of the magnetoresistive sensor 10 changes periodically into a substantially sin wave shape, as shown in FIG. Then, the resistance value of the magnetoresistive pattern 21 changes to a substantially square wave shape.

【0032】従って図5に示す中点電位Vbも方形波形
状となり、この出力電圧をコンパレータ50により正規
の方形波へと波形整形する。これによって回転体40の
回転状態が検出できる。
Therefore, the midpoint potential Vb shown in FIG. 5 also has a square wave shape, and the output voltage is shaped into a regular square wave by the comparator 50. Thereby, the rotation state of the rotating body 40 can be detected.

【0033】ところで前記方形波形状の中点電位Vbの
波形全体が上(又は下)に変動して、コンパレータ50
の基準電圧Vaとの電位差が大きく(又は小さく)なっ
たとしても、中点電位Vbの波形は略方形波状なので、
コンパレータ50による電位の反転位置は中点電位Vb
の電圧急変部分であることに変わりなく、従ってコンパ
レータ50の出力波形のON−OFF比はほとんど変化
しない。
Meanwhile, the entire waveform of the midpoint potential Vb of the square wave shape fluctuates upward (or downward), and the comparator 50
Is larger (or smaller) than the reference voltage Va, since the waveform of the midpoint potential Vb is substantially a square wave,
The inversion position of the potential by the comparator 50 is the midpoint potential Vb.
, And the ON-OFF ratio of the output waveform of the comparator 50 hardly changes.

【0034】一方図4に示す磁気抵抗センサ10の磁気
抵抗パターン21と回転体40の外周側面との離間距離
Gが設計寸法よりも小さくなって磁気抵抗パターン21
に標準よりも大きい振幅の外部磁界が印加された場合、
又は逆に離間距離Gが大きくなって磁気抵抗パターン2
1に小さい振幅の外部磁界が印加された場合であって
も、図6に示すように外部磁界の振幅が略20(Oe)
〜100(Oe)の範囲内であれば何れの場合の出力信
号も標準の出力信号とほとんど同じで変化しない。
On the other hand, the distance G between the magnetoresistive pattern 21 of the magnetoresistive sensor 10 shown in FIG.
When an external magnetic field with a larger amplitude than the standard is applied to
Or, conversely, the separation distance G increases and the magnetoresistive pattern 2
Even when an external magnetic field having a small amplitude is applied to the external signal, the amplitude of the external magnetic field is approximately 20 (Oe) as shown in FIG.
The output signal in any case within the range of 100100 (Oe) is almost the same as the standard output signal and does not change.

【0035】つまり本実施形態によれば、中点電位Vb
自体が変動したり、また回転体40と磁気抵抗センサ1
0の離間距離が変動したりしても、常に正確なコンパレ
ータ50からの出力波形が得られる。
That is, according to the present embodiment, the midpoint potential Vb
The body itself fluctuates, and the rotating body 40 and the magnetoresistive sensor 1
Even if the separation distance of 0 fluctuates, an accurate output waveform from the comparator 50 is always obtained.

【0036】なお本発明は上記実施形態に限定されるも
のではなく、以下のような種々の変形が可能である。 磁気抵抗効果素子は図7に示すように、非磁性絶縁基
板11上に、高電気抵抗磁性層20と磁性層19と非磁
性導体層17と磁性層15と絶縁性反強磁性層13とを
この順番で積層することによって構成しても良い。この
ように構成した場合は上側の磁性層15が絶縁性反強磁
性層13に接触することで下側の磁性層19に比べて外
部磁界の変化の影響を受けにくくなり、上記実施形態と
同様のMR特性を得ることができる。
The present invention is not limited to the above embodiment, and various modifications as described below are possible. As shown in FIG. 7, the magnetoresistive element includes a high electric resistance magnetic layer 20, a magnetic layer 19, a nonmagnetic conductor layer 17, a magnetic layer 15, and an insulating antiferromagnetic layer 13 on a nonmagnetic insulating substrate 11. You may comprise by laminating in this order. In the case of such a configuration, the upper magnetic layer 15 is in contact with the insulating antiferromagnetic layer 13 so that the upper magnetic layer 15 is less susceptible to a change in the external magnetic field than the lower magnetic layer 19. Can be obtained.

【0037】また磁気抵抗効果素子を構成する各層の
材質としてはそれぞれ他の材料を用いても良く、例えば
磁性層としてはニッケル・鉄・コバルト合金の他に例え
ばニッケル・鉄合金又はコバルト又はコバルト・鉄合金
を用いても良い。
As the material of each layer constituting the magnetoresistive element, other materials may be used. For example, as the magnetic layer, for example, a nickel-iron alloy or cobalt or cobalt-cobalt alloy besides nickel-iron-cobalt alloy An iron alloy may be used.

【0038】また、高電気抵抗磁性層として、コバル
ト希土類酸化物、鉄希土類酸化物、鉄ハフニウム酸化
物、鉄シリコン酸化物、コバルト鉄ボロン酸化物、コバ
ルト鉄ボロンフッ化物などを用いても良い。
Further, as the high electric resistance magnetic layer, cobalt rare earth oxide, iron rare earth oxide, iron hafnium oxide, iron silicon oxide, cobalt iron boron oxide, cobalt iron boron fluoride, or the like may be used.

【0039】上記実施形態では被検出体として回転体
40を用いたが、直線状に移動するものであっても良い
ことは言うまでもない。
In the above embodiment, the rotating body 40 is used as the object to be detected. However, it is needless to say that the rotating body 40 may move linearly.

【0040】[0040]

【発明の効果】以上詳細に説明したように本発明によれ
ば、小さい外部信号磁界で大きい磁気抵抗変化率が得ら
れ、更にヒステリシスも小さくできるという優れた効果
を奏する。
As described in detail above, according to the present invention, a large rate of change in magnetoresistance can be obtained with a small external signal magnetic field, and the hysteresis can be reduced.

【0041】また本発明にかかる磁気抵抗センサによれ
ば、sin波形の外部磁場を直接方形波信号に変換でき
るので、容易且つ正確に方形波の出力信号が得られると
いう優れた効果を奏する。
Further, according to the magnetoresistive sensor according to the present invention, since an external magnetic field having a sin waveform can be directly converted into a square wave signal, an excellent effect that a square wave output signal can be obtained easily and accurately can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施形態にかかるスピンバルブ型の
磁気抵抗効果素子の断面拡大概略図である。
FIG. 1 is an enlarged schematic cross-sectional view of a spin-valve magnetoresistive element according to an embodiment of the present invention.

【図2】本発明にかかる磁気抵抗効果素子のMR特性曲
線図である。
FIG. 2 is an MR characteristic curve diagram of the magnetoresistance effect element according to the present invention.

【図3】本発明にかかる磁気抵抗効果素子を用いて構成
した磁気抵抗センサ10の拡大斜視図である。
FIG. 3 is an enlarged perspective view of a magnetoresistive sensor 10 using the magnetoresistive element according to the present invention.

【図4】磁気抵抗センサ10の1使用例を示す図であ
る。
FIG. 4 is a diagram showing one usage example of the magnetoresistive sensor 10.

【図5】磁気抵抗センサ10に接続される電気回路図で
ある。
FIG. 5 is an electric circuit diagram connected to the magnetoresistive sensor 10.

【図6】外部磁場と出力波形の関係を示す図である。FIG. 6 is a diagram showing a relationship between an external magnetic field and an output waveform.

【図7】本発明の他の実施形態にかかる磁気抵抗効果素
子の断面拡大概略図である。
FIG. 7 is an enlarged schematic cross-sectional view of a magnetoresistive element according to another embodiment of the present invention.

【図8】従来のスピンバルブ型の磁気抵抗効果素子の断
面拡大概略図である。
FIG. 8 is an enlarged schematic cross-sectional view of a conventional spin-valve magnetoresistive element.

【図9】図8に示す磁気抵抗効果素子のMR特性曲線図
である。
9 is an MR characteristic curve diagram of the magnetoresistive element shown in FIG.

【図10】磁気抵抗効果素子の動作原理説明図である。FIG. 10 is a diagram illustrating the operation principle of a magnetoresistive element.

【符号の説明】[Explanation of symbols]

10 磁気抵抗センサ 11 非磁性絶縁基板 13 絶縁性反強磁性層 15 磁性層 17 非磁性導体層 19 磁性層 20 高電気抵抗磁性層 DESCRIPTION OF SYMBOLS 10 Magnetoresistive sensor 11 Nonmagnetic insulating substrate 13 Insulating antiferromagnetic layer 15 Magnetic layer 17 Nonmagnetic conductor layer 19 Magnetic layer 20 High electric resistance magnetic layer

フロントページの続き (72)発明者 伊藤 治雄 神奈川県川崎市中原区苅宿335番地 帝国 通信工業株式会社内 (72)発明者 柳田 康彦 神奈川県川崎市中原区苅宿335番地 帝国 通信工業株式会社内Continuing from the front page (72) Inventor Haruo Ito 335 Karisuku, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Teikoku Telecommunications Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性反強磁性層と磁性層と非磁性導体
層と磁性層とをこの順番で積層してなる磁気抵抗効果素
子において、 前記絶縁性反強磁性層と隣接しない方の磁性層の上に高
電気抵抗磁性層を積層したことを特徴とする磁気抵抗効
果素子。
1. A magnetoresistive element in which an insulating antiferromagnetic layer, a magnetic layer, a nonmagnetic conductor layer, and a magnetic layer are laminated in this order, wherein a magnetic layer not adjacent to the insulating antiferromagnetic layer is provided. A magnetoresistive element, wherein a high electric resistance magnetic layer is laminated on the layer.
【請求項2】 前記高電気抵抗磁性層は、コバルトアル
ミニウム酸化物{Co(x)Al(1-x-w)(w)}であり、
且つxとwは、 50≦x≦85at% 10<w<50at% の条件を満足することを特徴とする請求項1記載の磁気
抵抗効果素子。
2. The high electric resistance magnetic layer is a cobalt aluminum oxide {Co (x) Al (1-xw) O (w) },
2. The magnetoresistive element according to claim 1, wherein x and w satisfy a condition of 50 ≦ x ≦ 85 at% and 10 <w <50 at%.
【請求項3】 前記絶縁性反強磁性層は酸化ニッケルで
あり、前記磁性層はニッケル・鉄・コバルト合金又はニ
ッケル・鉄合金又はコバルト又はコバルト・鉄合金であ
り、前記非磁性導体層は銅であることを特徴とする請求
項1又は2記載の磁気抵抗効果素子。
3. The insulating antiferromagnetic layer is nickel oxide, the magnetic layer is nickel-iron-cobalt alloy or nickel-iron alloy or cobalt or cobalt-iron alloy, and the nonmagnetic conductor layer is copper. The magnetoresistive element according to claim 1, wherein:
【請求項4】 請求項1又は2又は3記載の磁気抵抗効
果素子を、少なくともその一部に用いてなることを特徴
とする磁気抵抗センサ。
4. A magnetoresistive sensor, wherein the magnetoresistive element according to claim 1, 2 or 3 is used for at least a part thereof.
JP8353063A 1996-12-13 1996-12-13 Magnetoresistance effect element and magnetoresistance sensor Expired - Fee Related JP3013031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353063A JP3013031B2 (en) 1996-12-13 1996-12-13 Magnetoresistance effect element and magnetoresistance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353063A JP3013031B2 (en) 1996-12-13 1996-12-13 Magnetoresistance effect element and magnetoresistance sensor

Publications (2)

Publication Number Publication Date
JPH10173252A true JPH10173252A (en) 1998-06-26
JP3013031B2 JP3013031B2 (en) 2000-02-28

Family

ID=18428317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353063A Expired - Fee Related JP3013031B2 (en) 1996-12-13 1996-12-13 Magnetoresistance effect element and magnetoresistance sensor

Country Status (1)

Country Link
JP (1) JP3013031B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023564A1 (en) * 2000-09-18 2002-03-21 Koninklijke Philips Electronics N.V. Method of manufacturing a spin valve structure
US6937449B2 (en) 2001-06-13 2005-08-30 Hitachi, Ltd. Spin-valve head containing closed-flux-structure domain control films
US8199443B2 (en) 2007-03-27 2012-06-12 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording device and magnetic memory
US8331062B2 (en) 2006-09-28 2012-12-11 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023564A1 (en) * 2000-09-18 2002-03-21 Koninklijke Philips Electronics N.V. Method of manufacturing a spin valve structure
US6937449B2 (en) 2001-06-13 2005-08-30 Hitachi, Ltd. Spin-valve head containing closed-flux-structure domain control films
US8331062B2 (en) 2006-09-28 2012-12-11 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory
US8199443B2 (en) 2007-03-27 2012-06-12 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording device and magnetic memory

Also Published As

Publication number Publication date
JP3013031B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
US6872467B2 (en) Magnetic field sensor with augmented magnetoresistive sensing layer
US20010050859A1 (en) Memory cell array and method for manufacturing it
US20020181167A1 (en) Magnetoresistive sensor with magnetostatic coupling of magnetic regions
JPH06181349A (en) Magnetoresistance effect-type weak magnetic-field sensor
JPH08226960A (en) Magnetic field sensor and manufacture thereof
EP2013925A1 (en) Thin film 3 axis fluxgate and the implementation method thereof
WO2000041250A1 (en) Spin dependent tunneling sensor
CN205861754U (en) A kind of anisotropic magnetoresistance current sensor without set and resetting means
CN109471051B (en) TMR full-bridge magnetic sensor and preparation method thereof
JP3013031B2 (en) Magnetoresistance effect element and magnetoresistance sensor
JP2000193407A (en) Magnetic positioning device
JPH0870149A (en) Magnetoresistance element
JPH11101861A (en) Magneto-resistance effect type sensor
JP2000180524A (en) Magnetic field sensor
JPH0870148A (en) Magnetoresistance element
JP2000298162A (en) Magnetic detecting element, its manufacture, and magnetic detecting device
RU2316783C2 (en) Magneto-resistive layered system and sensitive element on basis of such a layered system
JPH07297465A (en) Huge magnetic reluctance sensor with insulation pinned layer
CN114839418A (en) Sensor, electronic device, and detection device
JPH0563254A (en) Magnetoresistance composite element
JP3282444B2 (en) Magnetoresistive element
Ueno et al. Sensitive asymmetrical MI effect in crossed anisotropy sputtered films
CN100368820C (en) Spinning valve type digital magnetic field sensor and fabrication method thereof
JP2000091664A (en) Magnetic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees