JPH10232113A - Method for measuring gap between electrodes of liquid crystal cell - Google Patents

Method for measuring gap between electrodes of liquid crystal cell

Info

Publication number
JPH10232113A
JPH10232113A JP5225997A JP5225997A JPH10232113A JP H10232113 A JPH10232113 A JP H10232113A JP 5225997 A JP5225997 A JP 5225997A JP 5225997 A JP5225997 A JP 5225997A JP H10232113 A JPH10232113 A JP H10232113A
Authority
JP
Japan
Prior art keywords
light
gap
electrode plate
liquid crystal
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5225997A
Other languages
Japanese (ja)
Inventor
Kenji Aiko
健二 愛甲
Yasuyuki Moriguchi
泰之 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP5225997A priority Critical patent/JPH10232113A/en
Publication of JPH10232113A publication Critical patent/JPH10232113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly measure the gap with the electrode plate opposite to the pixel electrode plate of a liquid crystal cell. SOLUTION: A luminous flux LT of a mercury lamp 611 is outputted for a proper amount of time by controlling a shutter 612, is focused to a spot Sp of excitation light (ultraviolet rays or near ultraviolet rays) by a pin hole p, a focusing lens 614, and an excitation filter 615, is projected to the surface of a first galss substrate 1a and is transmitted through each layer, excitation light reflected by the surface of each layer is eliminated, fluorescence R3' and R4' generated on the surface of both alignment layers 3a and 3b are transmitted and the images are formed at the element of a CCD sensor 623 by an image- focusing lens 622, a gap G' between the surfaces of both alignment layers 3a and 3b is calculated from the gap of both elements whose images are formed, and a thickness ΔG of the alignment layer 3b is added to it, thus obtaining the dimension of the a gap G between a picture element electrode plate 2a and the counter electrode plate 2b. As a result, by using fluorescence and a fluorescence transmission filter, unneeded reflection light of each layer is eliminated, thus positively and accurately measuring the gap G.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、液晶セルの電極
間のギャップ寸法の測定方法に関する。
The present invention relates to a method for measuring a gap size between electrodes of a liquid crystal cell.

【0002】[0002]

【従来の技術】最近多用されているカラー液晶パネルは
液晶セルやTFT基板などを積層して製作される。図2
は液晶セルの断面を示す。液晶セルは、第1のガラス基
板1aの裏面(下側)に、透明な画素電極板2aと配向
膜3aを順次に積層し、第2のガラス基板1bの表面
(上側)に、カラーフィルタ4と透明な対向電極板2b
および配向膜3bを順次に積層し、画素電極板2aと対
向電極板2bとを所定の寸法のギャップGをなして対面
させ、両配向膜3a,3b間のギャップG’内に液晶
(LCD)を注入して構成される。両ガラス基板1a,
1bの厚さは、液晶パネルのサイズにより異なるが1m
m前後、両電極板2a,2bは数μm以下であり、両配
向膜3a,3bは500nm程度の微小厚である。なお
画素電極板2aには、カラーフィルタ4の各カラー素子
RGBに対する画素電極eが配列されている。
2. Description of the Related Art Recently, a color liquid crystal panel which is frequently used is manufactured by laminating a liquid crystal cell, a TFT substrate and the like. FIG.
Indicates a cross section of the liquid crystal cell. In the liquid crystal cell, a transparent pixel electrode plate 2a and an alignment film 3a are sequentially laminated on the back surface (lower side) of the first glass substrate 1a, and the color filter 4 is formed on the surface (upper side) of the second glass substrate 1b. And transparent electrode plate 2b
And an alignment film 3b are sequentially laminated, and the pixel electrode plate 2a and the counter electrode plate 2b are opposed to each other with a gap G of a predetermined size, and a liquid crystal (LCD) is provided in a gap G 'between the alignment films 3a and 3b. It is composed by injecting. Both glass substrates 1a,
The thickness of 1b varies depending on the size of the liquid crystal panel, but is 1m.
m, both electrode plates 2a and 2b are several μm or less, and both alignment films 3a and 3b have a very small thickness of about 500 nm. The pixel electrodes e for the respective color elements RGB of the color filter 4 are arranged on the pixel electrode plate 2a.

【0003】液晶セル内の液晶は、印加電圧が変化する
と透過率が変化して照明された光を透過または遮断する
もので、印加電圧の変化に対する透過率の変化特性が急
峻なほど電圧感度がよくて、望ましい。この変化特性の
急峻度は液晶材の種類により異なり、また画素電極板2
aと対向電極板2bのギャップGの寸法に依存して大き
く変化するもので、最適の急峻度はギャップGが、例え
ば約10μmのときえられる。このようにギャップGは
急峻度に影響するので、これを測定してその適否が検査
されている。以下、図2により従来のギャップ測定方法
を説明する。
The liquid crystal in the liquid crystal cell changes its transmittance when the applied voltage changes, and transmits or blocks the illuminated light. The steeper the change characteristic of the transmittance with respect to the change of the applied voltage, the higher the voltage sensitivity. Good and desirable. The steepness of this change characteristic varies depending on the type of liquid crystal material, and the pixel electrode plate 2
a and the counter electrode plate 2b greatly varies depending on the size of the gap G. The optimum steepness is obtained when the gap G is, for example, about 10 μm. As described above, since the gap G affects the steepness, the gap G is measured to check whether the gap is appropriate. Hereinafter, a conventional gap measuring method will be described with reference to FIG.

【0004】図2において、液晶セルを測定対象とする
と、注入された液晶5が測定に悪影響を及ぼすので、こ
れが未注入の状態、すなわち未完成の液晶セルが測定対
象とされる。第1のガラス基板1aの表面に対して適当
な傾斜角θT 、例えば45°で直径φが数μmの白色光
を投射する。投射された白色光は、ガラス基板1a,画
素電極板2a、両配向膜3a,3b、対向電極板2b、
カラーフィルタ4を順次に透過する。この間、それぞれ
の表面(上面)は正反射方向に反射光R1 〜R6 (図て
は便宜上、それぞれの光軸を示す)を反射し、これらが
CCDセンサに入射して対応する各素子にそれぞれ受光
される。なお、画素電極板2aの画素電極eも測定を邪
魔するので、白色光はこれを避けるように投射される。
ギャップGの測定には、画素電極板2aの下面、すなわ
ちこれに接触した配向膜3aの表面の反射光R3 と、対
向電極板2bの表面の反射光R5 とが必要であり、これ
以外の反射光R1,R2,R4,R6 は無用であるので、これ
らの位置の順序関係により、反射光R3,R5 を受光した
素子を識別し、両素子の間隔よりギャップGの寸法が算
出されている。
In FIG. 2, if a liquid crystal cell is to be measured, the injected liquid crystal 5 has a bad influence on the measurement. Therefore, the liquid crystal cell is in an uninjected state, that is, an unfinished liquid crystal cell is to be measured. White light having an appropriate inclination angle θ T , for example, 45 ° and a diameter φ of several μm is projected onto the surface of the first glass substrate 1a. The projected white light is applied to a glass substrate 1a, a pixel electrode plate 2a, both alignment films 3a and 3b, a counter electrode plate 2b,
The light sequentially passes through the color filters 4. During this time, the respective surfaces (upper surfaces) reflect the reflected lights R 1 to R 6 (the respective optical axes are shown for convenience in the drawing) in the regular reflection direction, and these are incident on the CCD sensor to be applied to the corresponding elements. Each is received. Since the pixel electrode e of the pixel electrode plate 2a also interferes with the measurement, white light is projected so as to avoid this.
The measurement of the gap G, a lower surface of the pixel electrode plates 2a, i.e. the reflected light R 3 of the surface of the alignment layer 3a in contact thereto, it is necessary and the reflected light R 5 of the surface of the counter electrode plate 2b, other Since the reflected lights R 1 , R 2 , R 4 , and R 6 are useless, the element that has received the reflected lights R 3 and R 5 is identified based on the order of these positions, and the gap G is determined based on the distance between the two elements. Are calculated.

【0005】[0005]

【発明が解決しようとする課題】さて、上記の各反射光
1 〜R6 は、すべてがかならずしも明確なものでな
く、強度の弱い不鮮明なものや、反対に各層の裏面の反
射光もありうる。このため、各素子のうちから反射光R
3,R5 を受光した両素子を正しく識別することは難しい
場合があり、そのような場合にはギャップGは正しく測
定されず、または測定が不可能となる。そこで、無用な
反射光を除去して必要な反射光のみをCCDセンサに受
光し、ギャップGを正しく測定する手段が要請されてい
る。この発明は、以上に鑑みてなされたもので、無用な
反射光を除去して必要な反射光のみをCCDセンサに受
光し、ギャップGを正しく測定する手段を課題とする。
The above reflected lights R 1 to R 6 are not necessarily all clear, but may be indistinct with weak intensity or, conversely, reflected light on the back surface of each layer. sell. For this reason, the reflected light R
In some cases, it is difficult to correctly discriminate between the two devices that have received R 3 and R 5. In such a case, the gap G is not measured correctly or cannot be measured. Therefore, there is a demand for a means for removing unnecessary reflected light, receiving only necessary reflected light by a CCD sensor, and correctly measuring the gap G. The present invention has been made in view of the above, and it is an object of the present invention to remove unnecessary reflected light, receive only necessary reflected light by a CCD sensor, and measure a gap G correctly.

【0006】[0006]

【課題を解決するための手段】この発明は液晶セルの電
極間ギャップ測定方法であって、液晶が未注入の状態の
未完成の液晶セルを測定対象とする。光軸が第1のガラ
ス基板の表面対して適当な傾斜角をなし、励起光を発生
する光源と集束レンズとを有する投光系と、光軸が投光
系に対して対称的な方向をなし、蛍光透過フィルタと結
像レンズおよびCCDセンサを有する受光系とをそれぞ
れ設ける。励起光を集束レンズによりスポットに集束し
て第1のガラス基板の表面に投射し、蛍光透過フィルタ
により、第1のガラス基板、画素電極板、対向電極板、
カラーフィルタの、それぞれの表面が反射する励起光を
除去し、励起光により両配光膜の表面に発生する蛍光を
透過させて、結像レンズによりCCDセンサの素子にそ
れぞれ結像させ、蛍光が結像した両素子の間隔より両配
光膜の表面間のギャップ寸法を算出し、これに配光膜の
厚さを加えて、画素電極板と対向電極板間のギャップ寸
法とする。上記において、投光系の光源に水銀ランプを
使用し、これが発光する紫外線または近紫外線を励起光
とし、水銀ランプの各種の波長を含む光束より励起光を
選択して透過する励起フィルタと、励起光の投射時間を
制御するシャッタとを投光系に設ける。
SUMMARY OF THE INVENTION The present invention relates to a method for measuring the gap between electrodes of a liquid crystal cell, wherein an incomplete liquid crystal cell in which liquid crystal has not been injected is measured. An optical axis forms an appropriate inclination angle with respect to the surface of the first glass substrate, and a light projecting system having a light source for generating excitation light and a focusing lens, and a direction in which the optical axis is symmetric with respect to the light projecting system. None, a fluorescence transmission filter and a light receiving system having an imaging lens and a CCD sensor are provided. The excitation light is focused to a spot by a focusing lens and projected on the surface of the first glass substrate, and the first glass substrate, the pixel electrode plate, the counter electrode plate,
The excitation light reflected from each surface of the color filter is removed, the fluorescence generated on the surfaces of both light distribution films by the excitation light is transmitted, and the image is formed on each element of the CCD sensor by the imaging lens. The gap size between the surfaces of both light distribution films is calculated from the distance between the two formed elements, and the thickness of the light distribution film is added to the gap size to obtain the gap size between the pixel electrode plate and the counter electrode plate. In the above, a mercury lamp is used as a light source of the light projecting system, and ultraviolet light or near ultraviolet light emitted from the mercury lamp is used as excitation light, and an excitation filter that selects and transmits excitation light from a luminous flux including various wavelengths of the mercury lamp, and an excitation filter. A shutter for controlling the light projection time is provided in the light projection system.

【0007】[0007]

【発明の実施の形態】上記のギャップ測定方法は、配向
膜を形成する配向剤が、例えば有機シランなどの有機物
であって、適当な波長の励起光を照射すると、これと異
なる波長の蛍光をよく発生し、他の構成要素のガラス基
板や両電極板、カラーフィルタは励起光をそのまま反射
し、蛍光を発生しないか、または発生しても極めて微弱
なことに着眼したものである。測定対象は、従来と同様
に液晶が未注入の未完成の液晶セルとし、投光系の光源
が発生する励起光は集束レンズによりスポットに集束さ
れて、第1のガラス基板の表面に対して適当な傾斜角で
投射される。投射された励起光のスポットは、第1のガ
ラス基板、画素電極板、対向電極板,カラーフィルタ
の、それぞれの表面により正反射方向に反射されるが、
これらの反射光は励起光のままであって無用であるの
で、受光系の蛍光透過フィルタにより除去される。これ
に対して両配光膜の表面には、投射された励起光により
蛍光が発生し、これが蛍光透過フィルタを透過して、結
像レンズによりCCDセンサの素子にそれぞれ結像され
る。蛍光が結像した両素子の間隔より両配光膜の表面間
のギャップ寸法が算出され、これに配光膜の厚さを加え
ると、画素電極板と対向電極板間の正しいギャップ寸法
がえられる。このようにこの発明は、蛍光と蛍光透過フ
ィルタを使用することにより、従来困難であった反射光
の識別の問題が解消され、必要な蛍光のみがCCDセン
サに確実に受光されて、ギャップGを正しく測定できる
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the above-described gap measuring method, an alignment agent forming an alignment film is an organic substance such as an organic silane, and when irradiated with excitation light having an appropriate wavelength, fluorescence having a different wavelength is emitted. The glass substrate, the two electrode plates, and the color filters, which are frequently generated, reflect the excitation light as it is and do not generate the fluorescence, or focus on the extremely weakness even if the fluorescence is generated. The measurement target is an unfinished liquid crystal cell into which liquid crystal has not been injected as in the related art, and the excitation light generated by the light source of the light projecting system is focused to a spot by a focusing lens, and is focused on the surface of the first glass substrate. It is projected at an appropriate tilt angle. The projected excitation light spot is reflected in the regular reflection direction by the respective surfaces of the first glass substrate, the pixel electrode plate, the counter electrode plate, and the color filter.
Since these reflected lights remain the excitation light and are useless, they are removed by the fluorescence transmission filter of the light receiving system. On the other hand, on the surfaces of both light distribution films, fluorescent light is generated by the projected excitation light, passes through the fluorescent light transmitting filter, and is formed on the elements of the CCD sensor by the image forming lens. The gap size between the surfaces of both light distribution films is calculated from the distance between the two devices on which the fluorescent light is imaged, and the thickness of the light distribution film is added to this to obtain the correct gap size between the pixel electrode plate and the counter electrode plate. Can be As described above, according to the present invention, by using the fluorescence and the fluorescence transmission filter, the problem of the identification of the reflected light, which has been difficult in the past, is solved. Only the required fluorescence is reliably received by the CCD sensor, and the gap G is reduced. It can be measured correctly.

【0008】次に、一般に蛍光を発生させる励起光とし
て、紫外線や近紫外線などの波長が比較的に短い光が適
当とされている。投光系の光源に使用した水銀ランプ
は、紫外線や近紫外線を含む各種の波長の光束を発生す
るので、これを光源に使用して紫外線と近紫外線のいず
れかを、投光系に設けた励起フィルタにより選択して励
起光とされる。また、紫外線や近紫外線は加熱効果や化
学作用が可視光より強く、投射時間が長いと、両電極
板、両配光膜、カラーフィルタなどを損傷する恐れがあ
るので、投光系に設けたシャッタにより投射時間を適当
な短時間に制御して、これらの損傷が防止される。
Next, it is generally considered that light having a relatively short wavelength such as ultraviolet light or near ultraviolet light is suitable as excitation light for generating fluorescence. Since the mercury lamp used as the light source of the light-emitting system generates luminous flux of various wavelengths including ultraviolet light and near-ultraviolet light, this is used as a light source, and either ultraviolet light or near-ultraviolet light is provided in the light-emitting system. The excitation light is selected by the excitation filter. In addition, ultraviolet rays and near ultraviolet rays have a heating effect and chemical action stronger than visible light, and if the projection time is long, both electrode plates, both light distribution films, color filters, etc. may be damaged. These damages are prevented by controlling the projection time to an appropriate short time by the shutter.

【0009】[0009]

【実施例】図1は、この発明を実行するギャップ測定装
置10の一実施例を示す。図1に示すギャップ測定装置
10は、投光系61と受光系62よりなる測定光学系6と、
シャッタ制御回路71とギャップ算出回路72よりなる制御
・演算部7とにより構成される。投光系61は、水銀ラン
プ611 、シャッタ612 、ピンホールpを有するピンホー
ル板613 、集束レンズ614 、および紫外線または近紫外
線を透過する励起フィルタ615 よりなり、その光軸は、
第1のガラス基板1aの表面に対して、従来と同様に、
画素電極eを避けて傾斜角θT の方向に設定される。受
光系62は、蛍光透過フィルタ621 、結像レンズ622 、お
よびCCDセンサ623 よりなり、その光軸は投光系61に
対称的な方向に設定される。
FIG. 1 shows an embodiment of a gap measuring apparatus 10 for carrying out the present invention. The gap measuring device 10 shown in FIG. 1 includes a measuring optical system 6 including a light projecting system 61 and a light receiving system 62,
The control / calculation unit 7 includes a shutter control circuit 71 and a gap calculation circuit 72. The light projecting system 61 includes a mercury lamp 611, a shutter 612, a pinhole plate 613 having a pinhole p, a focusing lens 614, and an excitation filter 615 that transmits ultraviolet light or near ultraviolet light.
On the surface of the first glass substrate 1a, as in the related art,
It is set in the direction of the inclination angle theta T to avoid the pixel electrode e. The light receiving system 62 includes a fluorescence transmission filter 621, an imaging lens 622, and a CCD sensor 623, and its optical axis is set in a direction symmetric to the light projecting system 61.

【0010】ギャップ測定においては、水銀ランプ611
よりの各種の波長を含む光束LT に対して、シャッタ61
2 をシャッタ制御回路71により制御して適当な時間開放
し、この間に出力される光束LT はピンホールp、集束
レンズ614 、励起フィルタ615 により、紫外線または近
紫外線が選択されるとともに、微小な直径の励起光スポ
ットSP に集束されて、第1のガラス基板1aの表面に
投射される。なお、シャッタ612 の開放時間は、実験な
どにより定めるものとする。投射されたスポットSP
は、液晶セルの各層を順次に透過して、第1のガラス基
板1a、画素電極板2a、対向電極板2b,およびカラ
ーフィルタ4の各表面により反射光R1,R2,R5,R6
(図はそれぞれの光軸を示す)が反射される。
In the gap measurement, a mercury lamp 611 is used.
With respect to the light beam L T include more various wavelengths, the shutter 61
2 is controlled by the shutter control circuit 71 opens the appropriate time, the light beam L T pinhole p output during this time, the focusing lens 614, the excitation filter 615, together with the ultraviolet or near-ultraviolet light is selected, a small is focused to the excitation light spot S P output diameter, it is projected onto the surface of the first glass substrate 1a. Note that the opening time of the shutter 612 is determined by an experiment or the like. Projected spot SP
Are sequentially transmitted through each layer of the liquid crystal cell, and are reflected by the respective surfaces of the first glass substrate 1a, the pixel electrode plate 2a, the counter electrode plate 2b, and the color filter 4 as R 1 , R 2 , R 5 , R 6
(The figures show the respective optical axes) are reflected.

【0011】これらの反射光R1,R2,R5,R6 は励起光
そのままであるので、無用として受光系62の蛍光透過フ
ィルタ621 により除去される。これに対して両配光膜3
a,3bの表面は、投射されたスポットSP により励起
されて蛍光R3',R4'をそれぞれ発生し、これらは蛍光
透過フィルタ621 を透過して、結像レンズ622 によりC
CDセンサ623 の対応する素子に結像される。蛍光
3',R4'が結像した両素子の出力信号は、ギャップ算
出回路72に入力して、両素子の間隔より両配光膜3a,
3bの表面間のギャップG’(拡大図に示す)の寸法が
正しく算出され、これに配光膜3bの厚さΔGが加えら
れて、画素電極板2aの下面と対向電極板2bの上面間
のギャップGの寸法がえられ、これより出力されるギャ
ップGの測定データを基準値または許容値に比較して良
否が検査される。なお付言すると、ギャップGは液晶セ
ルの全面に対して均一に、所定の寸法とすることが必要
であり、このために、液晶セルの面積の大きさに応じた
適当な複数箇所についてギャップGの寸法を測定して、
各箇所の寸法と均一性の良否が検査される。
Since these reflected lights R 1 , R 2 , R 5 , R 6 are the excitation lights as they are, they are removed by the fluorescence transmission filter 621 of the light receiving system 62 as unnecessary. On the other hand, both light distribution films 3
a, the surface of the 3b is excited by the projected spots S P fluorescent R 3 ', R 4' generates respectively, these are transmitted through the fluorescence transmission filter 621, by the imaging lens 622 C
An image is formed on the corresponding element of the CD sensor 623. The output signals of the two devices on which the fluorescences R 3 ′ and R 4 ′ are formed are input to the gap calculation circuit 72, and the light distribution films 3a, 3a,
The dimension of the gap G ′ (shown in the enlarged view) between the surfaces of the pixel electrode plate 2b is correctly calculated, and the thickness ΔG of the light distribution film 3b is added thereto. The dimensions of the gap G are obtained, and the measurement data of the gap G output from the gap G is compared with a reference value or an allowable value to check the quality. It should be noted that the gap G needs to be uniform and of a predetermined size over the entire surface of the liquid crystal cell. For this reason, the gap G should be formed at a plurality of appropriate locations corresponding to the size of the area of the liquid crystal cell. Measure the dimensions,
The dimensions and uniformity of each part are inspected.

【0012】[0012]

【発明の効果】以上の説明のとおり、この発明のギャッ
プ測定方法は、配向膜が蛍光を発生することに着眼した
もので、励起光として、例えば水銀ランプ光源が発光す
る紫外線または近紫外線を使用し、そのスポットを、液
晶が注入される前の液晶セルに投射し、第1のガラス基
板などによる励起光のままの無用な反射光を蛍光透過フ
ィルタにより除去し、両配向膜の表面が発生する蛍光を
透過してCCDセンサの素子に確実に受光することによ
り、画素電極板の下面と対向電極板の上面間のギャップ
の寸法を正しく測定するもので、液晶セルの各層が損傷
しないように励起光の投射時間を制限することが配慮さ
れており、液晶セルの電極間ギャップの確実・正確な測
定に寄与する効果には大きいものがある。
As described above, the gap measuring method of the present invention focuses on the generation of fluorescence from the alignment film, and uses, for example, ultraviolet light or near ultraviolet light emitted from a mercury lamp light source as excitation light. Then, the spot is projected on a liquid crystal cell before liquid crystal is injected, and unnecessary reflected light as excitation light from the first glass substrate or the like is removed by a fluorescence transmission filter, and the surfaces of both alignment films are generated. The size of the gap between the lower surface of the pixel electrode plate and the upper surface of the opposing electrode plate is accurately measured by transmitting the emitted fluorescent light to the CCD sensor element without fail, so that each layer of the liquid crystal cell is not damaged. Consideration is given to limiting the projection time of the excitation light, and there is a great effect that contributes to reliable and accurate measurement of the gap between the electrodes of the liquid crystal cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明を実行するギャップ測定装置
の一実施例の構成図である。
FIG. 1 is a configuration diagram of an embodiment of a gap measuring device that executes the present invention.

【図2】図2は、液晶セルの断面と、従来のギャップ測
定方法の説明図である。
FIG. 2 is an explanatory view of a cross section of a liquid crystal cell and a conventional gap measuring method.

【符号の説明】[Explanation of symbols]

1a…第1のガラス基板、1b…第2のガラス基板、2
a…画素電極板、2b…対向電極板、3a, 3b…配向
膜、4…カラーフィルタ、5…液晶(LCD)、6…こ
の発明の測定光学系、61…投光系、611 …水銀ランプ、
612…シャッタ 613 …ピンホール板、614 …集束レンズ、615 …励起フ
ィルタ、62…受光系、621 …蛍光透過フィルタ、622 …
結像レンズ、623 …CCDセンサ、7…制御・演算部、
71…シャッタ制御回路、72…ギャップ算出回路、10…
この発明を実行するギャップ測定装置、R1 〜R6 …反
射光、R3',R4'…蛍光、e…画素電極、p…ピンホー
ル、LT …光束、SP …励起光のスポット、G…画素電
極板2aの下面と対向電極板2bの上面間のギャップ、
G’…両配向膜3a,3bの表面間のギャップ。
1a: first glass substrate, 1b: second glass substrate, 2
a: pixel electrode plate, 2b: counter electrode plate, 3a, 3b: alignment film, 4: color filter, 5: liquid crystal (LCD), 6: measuring optical system of the present invention, 61: light projecting system, 611: mercury lamp ,
612: shutter 613: pinhole plate, 614: focusing lens, 615: excitation filter, 62: light receiving system, 621: fluorescence transmission filter, 622:
Imaging lens, 623: CCD sensor, 7: control / calculation unit,
71: shutter control circuit, 72: gap calculation circuit, 10 ...
Gap measuring apparatus for executing the present invention, R 1 to R 6 ... reflected light, R 3 ', R 4' ... fluorescent, e ... pixel electrode, p ... pinhole, L T ... light beams, the S P ... pumping light spot G: a gap between the lower surface of the pixel electrode plate 2a and the upper surface of the counter electrode plate 2b;
G ': gap between the surfaces of both alignment films 3a and 3b.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】裏面側に画素電極板と配向膜が順次に積層
された第1のガラス基板と、表面側にカラーフィルタと
対向電極板および配向膜が順次に積層された第2のガラ
ス基板とを、該画素電極板と該対向電極板を所定の寸法
のギャップをなして対面させ、該両配向膜間のギャップ
内に液晶を注入して構成される液晶セルにおいて、該液
晶が未注入の状態の未完成の液晶セルを測定対象とし、
光軸が前記第1のガラス基板の表面対して適当な傾斜角
をなし、励起光を発生する光源と集束レンズとを有する
投光系と、光軸が該投光系に対して対称的な方向をな
し、蛍光透過フィルタと結像レンズおよびCCDセンサ
を有する受光系とをそれぞれ設け、該励起光を該集束レ
ンズによりスポットに集束して該第1のガラス基板の表
面に投射し、該蛍光透過フィルタにより、該第1のガラ
ス基板、画素電極板、対向電極板、カラーフィルタの、
それぞれの表面が反射する励起光を除去し、該励起光に
より該両配光膜の表面に発生する蛍光を透過させて、該
結像レンズにより該CCDセンサの素子にそれぞれ結像
させ、該蛍光が結像した両素子の間隔より該両配光膜の
表面間のギャップ寸法を算出し、該算出された寸法に該
配光膜の厚さを加えて、前記画素電極と対向電極間のギ
ャップ寸法とすることを特徴とする、液晶セルの電極間
ギャップ測定方法。
1. A first glass substrate on which a pixel electrode plate and an alignment film are sequentially laminated on a back surface side, and a second glass substrate on which a color filter, a counter electrode plate and an alignment film are sequentially laminated on a front surface side In a liquid crystal cell formed by facing the pixel electrode plate and the counter electrode plate with a gap of a predetermined size and injecting liquid crystal into the gap between the alignment films, the liquid crystal is not injected. The unfinished liquid crystal cell in the state of
A light projecting system having an optical axis forming an appropriate inclination angle with respect to the surface of the first glass substrate and having a light source for generating excitation light and a focusing lens; and an optical axis being symmetrical with respect to the light projecting system. A light-transmitting filter, an imaging lens, and a light-receiving system having a CCD sensor are provided. The excitation light is focused on the spot by the focusing lens and projected on the surface of the first glass substrate. By the transmission filter, the first glass substrate, the pixel electrode plate, the counter electrode plate, the color filter,
The excitation light reflected from each surface is removed, the fluorescence generated on the surfaces of both light distribution films is transmitted by the excitation light, and the image is formed on the elements of the CCD sensor by the imaging lens. Calculate the gap size between the surfaces of both light distribution films from the distance between the two elements on which the images are formed, add the thickness of the light distribution film to the calculated size, and calculate the gap between the pixel electrode and the counter electrode. A method for measuring a gap between electrodes of a liquid crystal cell, the method comprising measuring dimensions.
【請求項2】前記投光系の光源に水銀ランプを使用し
て、該水銀ランプの発光する紫外線または近紫外線を前
記励起光とし、該水銀ランプの各種の波長を含む光束よ
り該励起光を選択して透過する励起フィルタと、該励起
光の投射時間を制御するシャッタとを該投光系に設けた
ことを特徴とする、請求項1記載の液晶セルの電極間ギ
ャップ測定方法。
2. A mercury lamp is used as a light source of the light projecting system, and ultraviolet light or near ultraviolet light emitted by the mercury lamp is used as the excitation light, and the excitation light is converted from a luminous flux including various wavelengths of the mercury lamp. 2. The method for measuring a gap between electrodes of a liquid crystal cell according to claim 1, wherein an excitation filter that selectively transmits light and a shutter that controls a projection time of the excitation light are provided in the light projection system.
JP5225997A 1997-02-20 1997-02-20 Method for measuring gap between electrodes of liquid crystal cell Pending JPH10232113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5225997A JPH10232113A (en) 1997-02-20 1997-02-20 Method for measuring gap between electrodes of liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5225997A JPH10232113A (en) 1997-02-20 1997-02-20 Method for measuring gap between electrodes of liquid crystal cell

Publications (1)

Publication Number Publication Date
JPH10232113A true JPH10232113A (en) 1998-09-02

Family

ID=12909771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5225997A Pending JPH10232113A (en) 1997-02-20 1997-02-20 Method for measuring gap between electrodes of liquid crystal cell

Country Status (1)

Country Link
JP (1) JPH10232113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636322B1 (en) 1999-05-07 2003-10-21 Sharp Kabushiki Kaisha Method and device for measuring cell gap of liquid crystal display using near-IR radiation
US6757062B2 (en) 2000-01-31 2004-06-29 Sharp Kabushiki Kaisha Method and device for measuring thickness of liquid crystal layer
CN109579750A (en) * 2017-09-29 2019-04-05 本田技研工业株式会社 The film thickness measuring method and its device of dielectric film
CN113218344A (en) * 2020-02-04 2021-08-06 本田技研工业株式会社 Method for inspecting membrane electrode structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636322B1 (en) 1999-05-07 2003-10-21 Sharp Kabushiki Kaisha Method and device for measuring cell gap of liquid crystal display using near-IR radiation
US6757062B2 (en) 2000-01-31 2004-06-29 Sharp Kabushiki Kaisha Method and device for measuring thickness of liquid crystal layer
CN109579750A (en) * 2017-09-29 2019-04-05 本田技研工业株式会社 The film thickness measuring method and its device of dielectric film
CN113218344A (en) * 2020-02-04 2021-08-06 本田技研工业株式会社 Method for inspecting membrane electrode structure

Similar Documents

Publication Publication Date Title
JP4358230B2 (en) Display device and electronic device
JP3199313B2 (en) Reflection type liquid crystal display device and projection type liquid crystal display device using the same
US7692128B2 (en) Focus control method for an optical apparatus which inspects a photo-mask or the like
JPH1096700A (en) Apparatus for inspecting foreign matter
JPH10232113A (en) Method for measuring gap between electrodes of liquid crystal cell
JP2000146687A (en) Front-illuminated fluorescent screen regarding uv imaging
JPH02262185A (en) Projection type display device
JP3363743B2 (en) Optical anisotropy measuring apparatus and optical anisotropy measuring method using the same
JP2007085893A (en) Method of testing electro-optical device, device for testing the electro-optical device and method of manufacturing the electro-optical device
US7307444B2 (en) Testing method and testing apparatus for liquid crystal panel
JP4358955B2 (en) Foreign matter inspection device
JP2002277411A (en) Method and apparatus for inspecting transparent laminate
JPH06208112A (en) Direct-view display device
JP3759363B2 (en) Inspection repair method and inspection repair device for reflective liquid crystal display device
JP2000121565A (en) Image pickup device and surface observing method
JP2006275704A (en) Film thickness irregularity detection method
JP2003156446A (en) Lighting optical apparatus, and inspection device provided with the same
JPH1082622A (en) Substrate inspection apparatus
JPH08122272A (en) Inspection device of liquid crystal color filter
JP3794233B2 (en) Lens array substrate inspection method, lens array substrate inspection device, electro-optical device manufacturing method, and projection display device manufacturing method
JP2001305484A (en) Projector
JP2003043441A (en) Optical device
JP2001041713A (en) Minute region measuring device
JP3242830B2 (en) Color filter density measurement method
JP3782673B2 (en) Beam spot diameter management method for film thickness measuring apparatus and beam spot diameter management sample used therefor