JPH10223862A - Semiconductor memory element and manufacturing method thereof - Google Patents

Semiconductor memory element and manufacturing method thereof

Info

Publication number
JPH10223862A
JPH10223862A JP10012343A JP1234398A JPH10223862A JP H10223862 A JPH10223862 A JP H10223862A JP 10012343 A JP10012343 A JP 10012343A JP 1234398 A JP1234398 A JP 1234398A JP H10223862 A JPH10223862 A JP H10223862A
Authority
JP
Japan
Prior art keywords
conductivity type
oxide film
type impurity
region
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10012343A
Other languages
Japanese (ja)
Inventor
Seoku Han Bon
セオク ハン ボン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
LG Semicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Semicon Co Ltd filed Critical LG Semicon Co Ltd
Publication of JPH10223862A publication Critical patent/JPH10223862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines

Abstract

PROBLEM TO BE SOLVED: To reduce isolated regions to realize a high integration, by isolating memory elements through first and second isolating regions in axial directions Y and X respectively. SOLUTION: Mutually parallel active regions 1' continuous in the X-axis direction but at a specified spaces in the Y-axis direction and mutually parallel first isolating regions arranged between the active regions are formed on a semiconductor substrate with word lines 21-24 formed in the Y-axis direction. In an Si substrate between the word lines 21-24 sources 25 and drains 26 doped with a first conductivity type impurity are formed to form memory elements. To isolate the memory elements having the word lines, sources and drains second isolating regions 27 doped with a second conductivity type impurity opposite to the first conductivity type impurity are formed on specified points of the active regions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体メモリ素子
及びその製造方法に関し、特に、素子の隔離構造を改良
した技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device and a method of manufacturing the same, and more particularly, to a technique for improving a device isolation structure.

【0002】[0002]

【従来の技術】従来、DRAM(Dynamic Random Acces
s Memory)素子は、図4に示すように、メモリセルの形
成される矩形状のアクチブ領域1を形成し、該アクチブ
領域1を除外した非アクチブ領域2に厚い酸化膜(フィ
ルド酸化膜)を形成してメモリ素子間を電気的に隔離さ
せるLOCOS(Local Oxidation of Silicon)法を施
して構成していた。
2. Description of the Related Art Conventionally, DRAM (Dynamic Random Acces
As shown in FIG. 4, the memory element forms a rectangular active region 1 in which a memory cell is formed, and a thick oxide film (filled oxide film) is formed on a non-active region 2 excluding the active region 1. It is formed by applying a LOCOS (Local Oxidation of Silicon) method of forming and electrically isolating the memory elements.

【0003】即ち、メモリ素子(図示されず)の形成さ
れるアクチブ領域1をフィルド酸化膜2により囲み、メ
モリ素子間の電荷の流れを遮断する構造であって、その
メモリ素子を隔離する原理について説明すると、メモリ
素子のソースとドレイン間のチャネルを形成するために
は、所定電圧(しきい電圧)以上の電圧をゲートに印加
する必要があるが、前記しきい電圧はゲート酸化膜の厚
さに比例するので、例えば、フィルド酸化膜の厚さがゲ
ート酸化膜の厚さよりも10倍厚い場合、前記フィルド
酸化膜に形成されたトランジスタをターンオンさせよう
とすると、アクチブ領域上のトランジスタをターンオン
させる電圧の10倍の電圧をゲートに印加する必要があ
る。従って、正常なアクチブ領域上のトランジスタをタ
ーンオンさせるのに必要なだけの電圧をフィルド酸化膜
上に形成されたトランジスタのゲートに印加しても、ト
ランジスタはターンオンされないという原理に基づいて
メモリ素子間を電気的に隔離する方法である。
That is, a structure in which an active region 1 in which a memory element (not shown) is formed is surrounded by a filled oxide film 2 to block a flow of electric charge between the memory elements, and a principle of isolating the memory element. In order to form a channel between a source and a drain of a memory element, it is necessary to apply a voltage higher than a predetermined voltage (threshold voltage) to a gate. For example, if the thickness of the filled oxide film is 10 times larger than the thickness of the gate oxide film, and if the transistor formed on the filled oxide film is turned on, the transistor on the active region is turned on. It is necessary to apply a voltage ten times the voltage to the gate. Therefore, even if a voltage necessary to turn on the transistor in the normal active region is applied to the gate of the transistor formed on the filled oxide film, the transistor is not turned on based on the principle that the transistor is not turned on. It is a method of electrically isolating.

【0004】次に、このようなLOCOS法を施してメ
モリ素子間を電気的に隔離する従来方法について、図4
及び図5(A) 〜(C) ,図6(D)−(F)を用いて
説明する。まず、図4及び図5(A)に示すように、シ
リコン基板11を酸化させてパッド酸化膜として35n
m程度のシリコン酸化膜12を形成し、該シリコン酸化
膜12上に100nm厚さに酸化防止膜のシリコン窒化
膜13を蒸着する。
Next, a conventional method of electrically isolating memory elements by performing such a LOCOS method will be described with reference to FIG.
5 (A) to 5 (C) and FIGS. 6 (D) to 6 (F). First, as shown in FIGS. 4 and 5A, the silicon substrate 11 is oxidized to form a pad oxide film having a thickness of 35 n.
A silicon oxide film 12 having a thickness of about m is formed, and a silicon nitride film 13 as an antioxidant film is deposited on the silicon oxide film 12 to a thickness of 100 nm.

【0005】次いで、該シリコン室化膜13上に感光膜
14を塗布した後、メモリ素子の形成されるアクチブ領域
1及びメモリ素子の形成されない非アクチブ領域2を形
成するため、マスク(図示されず)を用いて写真食刻法
を施し非アクチブ領域2上の感光膜14を除去する。次
いで、図5(B)に示すように、前記感光膜14の除去
により表面の露出された非アクチブ領域2上のシリコン
窒化膜13を乾式食刻法を用いて除去した後、アクチブ
領域1上に残存する感光膜14を除去する。
Next, a photosensitive film is formed on the silicon chamber film 13.
After coating 14, photolithography is performed using a mask (not shown) to form an active region 1 where a memory element is formed and a non-active region 2 where a memory element is not formed. Of the photosensitive film 14 is removed. Next, as shown in FIG. 5B, the silicon nitride film 13 on the non-active region 2 whose surface has been exposed by the removal of the photosensitive film 14 is removed by dry etching, and then the active region 1 is removed. The remaining photosensitive film 14 is removed.

【0006】次いで、図5(C)に示すように、前記シ
リコン基板11を水蒸気を用いて湿式酸化を行うと、酸
化防止膜のシリコン窒化膜13の残存するアクチブ領域
1は酸化されず、シリコン窒化膜13の覆われていない
非アクチブ領域2が酸化され約800nm厚さの酸化膜
(フィルド酸化膜と称する)15が成長する。このと
き、前記シリコン窒化膜13のエッジ部下方側にSiO
2が浸透してバーズビーク15’が形成され、前記厚い
酸化膜15がメモリ素子間を電気的に隔離させる役割を
してLOCOS法によるメモリ素子の隔離が行われる。
Next, as shown in FIG. 5C, when the silicon substrate 11 is subjected to wet oxidation using water vapor, the remaining active region 1 of the silicon nitride film 13 as an antioxidant film is not oxidized, The non-active region 2 not covered with the nitride film 13 is oxidized, and an oxide film (called a filled oxide film) 15 having a thickness of about 800 nm grows. At this time, SiO 2 is formed below the edge of the silicon nitride film 13.
2 penetrates to form a bird's beak 15 ', and the thick oxide film 15 serves to electrically isolate the memory elements, thereby isolating the memory elements by the LOCOS method.

【0007】このように、メモリ素子の形成されるアク
チブ領域1をフィルド酸化膜2により囲ませ、メモリ素
子間の隔離作業が終了すると、図6(D)に示すよう
に、アクチブ領域に残存されたシリコン窒化膜13とシ
リコン酸化膜12とを除去し、半導体基板の全面にゲー
ト用酸化膜16を約35nm程に成長させた後、図6
(E)に示すように、アクチブ領域にポリシリコンを蒸
着させパターニングしてワードライン17を形成し、図
6(F)に示すように、ワードライン17両方側のシリ
コン基板内に不純物をイオン注入してソース18及びド
レイン19を夫々形成し、アクチブ領域1にメモリ素子
を形成する。
As described above, the active region 1 in which the memory element is formed is surrounded by the filled oxide film 2, and when the isolation operation between the memory elements is completed, as shown in FIG. 6D, the active region 1 remains in the active region. After removing the silicon nitride film 13 and the silicon oxide film 12 that have been formed and growing a gate oxide film 16 to a thickness of about 35 nm over the entire surface of the semiconductor substrate, FIG.
As shown in FIG. 6E, polysilicon is deposited on the active region and patterned to form word lines 17, and as shown in FIG. 6F, impurities are ion-implanted into the silicon substrate on both sides of the word lines 17. Then, a source 18 and a drain 19 are respectively formed, and a memory element is formed in the active region 1.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うなLOCOS法を用いて隔離構造を形成する従来の半
導体メモリ素子及びその製造方法においては、アクチブ
領域と非アクチブ領域間に段差が発生し、平坦化されて
いないため、メモリ素子上に配線工程を行う場合、配線
の短絡現象が発生するという問題点があった。
However, in the conventional semiconductor memory device and the method of manufacturing the same in which the isolation structure is formed by using the LOCOS method, a step is generated between the active region and the non-active region, and a flat surface is formed. Therefore, when a wiring process is performed on a memory element, there is a problem that a wiring short-circuit phenomenon occurs.

【0009】また、乾式食刻を施してワードラインを形
成する場合、食刻中にイオンがフィルド酸化膜の傾斜部
分(バーズビーク)で乱反射し、ワードラインの側面を
食刻させるワードラインのハレーション(halation)現
象が発生するため、安定したワードライン幅を確保しよ
うとすると設計値よりも広いワードライン幅が必要とな
ってチップの面積が増加して集積度が低下するという問
題点があった。
In the case of forming a word line by performing dry etching, ions are irregularly reflected on an inclined portion (bird's beak) of the filled oxide film during the etching, and the halation of the word line for etching the side surface of the word line is performed. In order to secure a stable word line width, a word line width larger than a design value is required, and the chip area is increased and the degree of integration is reduced.

【0010】さらに、フィルド酸化膜を形成する時、シ
リコン格子とフィルド酸化膜との界面でシリコン基板の
結晶構造が悪化され、フィルド酸化膜に隣接したメモリ
素子間に漏洩電流が発生してメモリ素子の特性を弱化さ
せ、フィルド酸化膜のバーズビークによりメモリ素子の
形成領域が縮小してしまうため、予めメモリ素子の形成
領域を広めに確保しておく必要があり、この点からも、
高集積化を図ることができないという問題点があった。
Further, when the filled oxide film is formed, the crystal structure of the silicon substrate is deteriorated at the interface between the silicon lattice and the filled oxide film, and a leakage current is generated between the memory devices adjacent to the filled oxide film, thereby causing the memory device to fail. In this case, since the formation region of the memory element is reduced due to the bird's beak of the filled oxide film, it is necessary to secure a large formation region of the memory element in advance.
There is a problem that high integration cannot be achieved.

【0011】本発明は、このような従来の課題に着目し
てなされたもので、メモリ素子のチャネルの長手方向に
形成される隔離構造を変更することにより、前記各課題
を解決した半導体メモリ素子及びその製造方法を提供す
ることを目的とする。
The present invention has been made in view of such conventional problems, and a semiconductor memory device which has solved the above-mentioned problems by changing an isolation structure formed in a longitudinal direction of a channel of the memory device. And a method for producing the same.

【0012】[0012]

【課題を解決するための手段】このような目的を達成す
るため、本発明に係るメモリ素子は、半導体基板内に所
定の幅を有して第1方向に連続され、該第1方向に垂直
な第2方向には所定間隔を置いて平行に夫々配列された
複数のアクチブ領域と、前記アクチブ領域に前記第1領
域と平行に夫々形成された複数の第1隔離領域と、前記
アクチブ領域に交差するように配列された複数のワード
ラインと、前記ワードライン間の前記アクチブ領域内の
所定部位に形成され、第1導電型不純物がドーピングさ
れたソース及びドレイン領域と、前記ワードライン、ソ
ース、及びドレインを有するメモリ素子間を分離するよ
うに前記アクチブ領域内の所定部位に、前記第1導電型
不純物とは反対の導電型である第2導電型不純物がドー
ピングして形成された第2隔離領域と、を備えたことを
特徴とするまた、本発明に係る半導体メモリ素子の製造
方法は、半導体基板に酸化膜及び酸化防止膜を順次形成
する工程と、該酸化膜及び酸化防止膜上に感光膜をコー
ティングし、第1方向には複数のアクチブ領域が所定間
隔を有して夫々列状に形成され、前記第1方向と垂直な
第2方向には前記複数のアクチブ領域間に夫々第1隔離
領域が形成されるように、前記感光膜を食刻してパター
ニングする工程と、前記第1隔離領域上の酸化防止膜を
除去して酸化膜を露出させる工程と、該露出された酸化
膜を酸化させる工程と、前記半導体基板に残存する酸化
防止膜を除去する工程と、前記半導体基板の全面にゲー
ト酸化膜を形成する工程と、該ゲート酸化膜上に前記第
1方向と交差する方向に連続する複数のワードラインを
形成する工程と、前記ワードライン間の半導体基板の所
定領域内に第1導電型不純物を注入する工程と、該第1
不純物領域間の半導体基板内に前記第1導電型不純物と
は逆の導電型である第2導電型不純物を注入して第2隔
離領域を形成する工程と、を順次行うことを特徴とす
る。
In order to achieve the above object, a memory device according to the present invention has a predetermined width in a semiconductor substrate and is continuous in a first direction and is perpendicular to the first direction. A plurality of active regions arranged in parallel in the second direction at predetermined intervals, a plurality of first isolation regions respectively formed in the active region in parallel with the first region, and a plurality of active regions in the active region. A plurality of word lines arranged to intersect, source and drain regions formed at predetermined portions in the active region between the word lines and doped with a first conductivity type impurity, the word lines, the source, And a predetermined portion in the active region is doped with a second conductivity type impurity having a conductivity type opposite to the first conductivity type impurity so as to separate memory elements having a drain and a drain. A method of manufacturing a semiconductor memory device according to the present invention, the method further comprising: sequentially forming an oxide film and an anti-oxidation film on a semiconductor substrate; A photosensitive film is coated on the prevention film, and a plurality of active areas are formed in rows in a first direction at predetermined intervals, and the plurality of active areas are formed in a second direction perpendicular to the first direction. Etching and patterning the photosensitive film so that a first isolation region is formed therebetween; and removing an oxidation preventing film on the first isolation region to expose an oxide film. Oxidizing the exposed oxide film, removing the antioxidant film remaining on the semiconductor substrate, forming a gate oxide film on the entire surface of the semiconductor substrate, and forming the first oxide film on the gate oxide film. Continuous in the direction intersecting the direction Forming a word line, a step of implanting first conductivity type impurity into the word within the predetermined region of the semiconductor substrate between the lines, the first
Implanting a second conductivity type impurity having a conductivity type opposite to that of the first conductivity type impurity into the semiconductor substrate between the impurity regions to form a second isolation region.

【0013】[0013]

【発明の効果】本発明に係る半導体メモリ素子によれ
ば、半導体メモリ素子の隔離領域が縮小されるため高集
積化に適用することができる。また、チャネル長手方向
の素子隔離用段差が無くなり平坦化され、かつ、バーズ
ビークの形成も防止できるため、ワードラインハレーシ
ョンの現象がなくなって安定したワードラインの幅を最
小限で確保することができ、以て、高集積化及び信頼性
の向上を図れる。
According to the semiconductor memory device of the present invention, since the isolation region of the semiconductor memory device is reduced, it can be applied to high integration. In addition, since the step for element isolation in the longitudinal direction of the channel is eliminated and flattened, and the formation of a bird's beak can be prevented, the phenomenon of word line halation is eliminated, and a stable word line width can be secured to a minimum, Thus, high integration and improvement in reliability can be achieved.

【0014】また、本発明に係る半導体メモリ素子の製
造方法によれば、前記特長を有する半導体メモリ素子を
製造できることに加えて、メモリ素子上に配線工程を行
うときの配線の短絡現象発生を防止できる。
According to the method of manufacturing a semiconductor memory device according to the present invention, in addition to manufacturing the semiconductor memory device having the above-mentioned features, it is possible to prevent the occurrence of a short-circuit phenomenon of wiring when performing a wiring process on the memory device. it can.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。本発明に係るメモリ素子においては、
図1に示すように、X軸方向には断絶なしに連続され、
Y軸方向には所定間隔を置いて相互平行に形成された複
数のアクチブ領域1’と、それらアクチブ領域1’間に
夫々相互平行に配列された複数の第1隔離領域(フィル
ド酸化膜)2’と、が半導体基板上に配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the memory device according to the present invention,
As shown in FIG. 1, continuous in the X-axis direction without interruption,
A plurality of active regions 1 'formed in parallel with each other at predetermined intervals in the Y-axis direction, and a plurality of first isolation regions (filled oxide films) 2 arranged in parallel with each other between the active regions 1''Are arranged on the semiconductor substrate.

【0016】また、図2に示したように、前記アクチブ
領域1’及び第1隔離領域2’上には、各ワードライン
21、22、23、及び24がY軸方向に形成されてい
る。また、前記ワードライン21、22、23、及び2
4間のシリコン基板内には、メモリ素子を形成するため
第1導電型不純物のドーピングされたソース25及びド
レイン26が形成され、それらワードライン、ソース、
及びドレインを有したメモリ素子間を隔離するため、ア
クチブ領域1’上の所定部位に、前記第1導電型不純物
とは反対の導電型の第2導電型不純物がドーピングされ
た第2隔離領域27が形成されている。
As shown in FIG. 2, word lines 21, 22, 23 and 24 are formed on the active region 1 'and the first isolation region 2' in the Y-axis direction. The word lines 21, 22, 23, and 2
A source 25 and a drain 26 doped with a first conductivity type impurity are formed in the silicon substrate between the four to form a memory device.
In order to isolate between memory elements having drains and drains, a second isolation region 27 doped with a second conductivity type impurity having a conductivity type opposite to the first conductivity type impurity is provided at a predetermined portion on the active region 1 ′. Are formed.

【0017】次に、このように構成された本発明に係る
メモリ素子を製造する方法について説明する。まず、半
導体基板の全面にパッド酸化膜のシリコン酸化膜と、酸
化防止膜のシリコン窒化膜と、を順次形成した後、これ
らシリコン酸化膜及びシリコン窒化膜上に感光膜をコー
ティングし、図1に示した形状のアクチブ領域1’と第
1隔離領域2’とを形成するため、X軸方向に連続され
Y軸方向には所定の間隔を有して形成される複数のアク
チブ領域1’と、該アクチブ領域1’と同様な形状を有
して該アクチブ領域1’間に平行に配列された複数の第
1隔離領域2’と、がY軸方向に交互に形成されるよう
にマスクを用いて前記感光膜を写真食刻する。
Next, a description will be given of a method of manufacturing the memory device according to the present invention thus constituted. First, a silicon oxide film as a pad oxide film and a silicon nitride film as an antioxidant film are sequentially formed on the entire surface of the semiconductor substrate, and then a photosensitive film is coated on the silicon oxide film and the silicon nitride film. A plurality of active regions 1 ′ that are continuous in the X-axis direction and are formed at predetermined intervals in the Y-axis direction to form an active region 1 ′ and a first isolated region 2 ′ having the shapes shown; A mask is used so that a plurality of first isolation regions 2 ′ having the same shape as the active region 1 ′ and arranged in parallel between the active regions 1 ′ are alternately formed in the Y-axis direction. Then, the photosensitive film is photo-etched.

【0018】次いで、前記第1隔離領域2’上の感光膜
を除去した後、前記半導体基板をエッチングして第1隔
離領域2’上のシリコン窒化膜を除去し、該半導体基板
を酸化して第1隔離領域2’に厚い酸化膜のフィルド酸
化膜を形成する。このとき、該フィルド酸化膜2’は複
数のアクチブ領域1’の間を相互に電気的に隔離してい
る。
Next, after removing the photosensitive film on the first isolation region 2 ', the semiconductor substrate is etched to remove the silicon nitride film on the first isolation region 2', and the semiconductor substrate is oxidized. A thick oxide film is formed in the first isolation region 2 '. At this time, the filled oxide film 2 'electrically isolates the plurality of active regions 1' from each other.

【0019】次いで、前記アクチブ領域1’上のシリコ
ン窒化膜を除去すると、このような工程を経た半導体基
板はX軸方向にフィルド酸化膜が形成されない平坦な形
状を有し、バーズビークも形成されずに済む。次いで、
前記半導体基板上にポリシリコンからなる複数のワード
ライン21、22、23、24をY軸方向に沿って夫々
形成し、それらワードライン22間の半導体基板の両方
側所定部位にn−不純物を注入してソース25及びドレ
イン26を形成する。その後、本発明の要旨であるX軸
方向にメモリ素子を隔離するため、アクチブ領域1’上
の所定領域であるメモリ素子隔離領域27にp−不純物
を注入して第2隔離領域を形成する。
Next, when the silicon nitride film on the active region 1 'is removed, the semiconductor substrate having undergone such a process has a flat shape in which no filled oxide film is formed in the X-axis direction, and no bird's beak is formed. Only Then
A plurality of word lines 21, 22, 23, and 24 made of polysilicon are formed on the semiconductor substrate along the Y-axis direction, and n-impurities are implanted into predetermined portions on both sides of the semiconductor substrate between the word lines 22. Thus, a source 25 and a drain 26 are formed. Thereafter, in order to isolate the memory element in the X-axis direction, which is the gist of the present invention, a second isolation area is formed by implanting p-impurity into the memory element isolation area 27 which is a predetermined area on the active area 1 '.

【0020】従って、本発明に係るメモリ素子は、Y軸
方向にはフィルド酸化膜(第1隔離領域)によりメモリ
素子が隔離され、X軸方向には注入された不純物イオン
(第2隔離領域)によりメモリ素子が隔離されている。
このような方法により製造された本発明に係るメモリ素
子の隔離の原理について、図3を参照して説明する。
Therefore, in the memory device according to the present invention, the memory device is isolated in the Y-axis direction by the filled oxide film (first isolation region), and the implanted impurity ions in the X-axis direction (second isolation region). Separate the memory elements.
The principle of isolation of the memory device according to the present invention manufactured by such a method will be described with reference to FIG.

【0021】メモリ素子の動作原理として、まず、ロー
ディコーダー(図示せず)及びコラムディコーダー(図
示せず)により該当のワードライン22とビットライン
28とが選択されると、前記ワードライン22に印加し
た電圧によりソース25とドレイン26間にチャネルが
形成され、キャパシスタンス内に蓄積された電荷がビッ
トラインに伝送されてメモリ素子に貯蔵された情報が読
み取られ、又は、外部から入力した情報をビットライン
を経てキャパシタに伝達して貯蔵する。即ち、前記ワー
ドライン22が選択される場合、ビットラインに連結さ
れたソース25とキャパシタに連結されたドレイン26
間にチャネルが形成され、ビットラインに入力した情報
がキャパシタ内に蓄積されるか、又は、キャパシタに貯
蔵された情報がビットラインに伝送される。
As a principle of operation of the memory device, first, when a corresponding word line 22 and a bit line 28 are selected by a row decoder (not shown) and a column decoder (not shown), the word line 22 is selected. A channel is formed between the source 25 and the drain 26 by the applied voltage, and the charge stored in the capacitance is transmitted to the bit line to read information stored in the memory device, or to read information input from the outside. The data is transmitted to the capacitor via the bit line and stored. That is, when the word line 22 is selected, a source 25 connected to a bit line and a drain 26 connected to a capacitor are provided.
A channel is formed therebetween, and information input to the bit line is stored in the capacitor, or information stored in the capacitor is transmitted to the bit line.

【0022】しかし、ワードライン23が選択される場
合、キャパシタに連結されたドレイン領域26からp型
不純物のドーピングされた素子隔離領域27への電荷の
流れは形成されないため、キャパシタに貯蔵された情報
は影響を受けずに元来の情報を継続して維持する。即
ち、p型基板には0V又はマイナス電圧が加えられ、p
型基板及びp型不純物領域27はオーミック接触(ohmi
c conduct )されているため、p型不純物領域27はp
型基板に印加する0V又はマイナス電圧が印加して、ワ
ードライン23にプラス電圧が印加されても、ゲートに
形成されたn−チャネルとp型不純物領域27間には常
時逆方向のpn接合が行われ、電荷の流れが行われない
ため、メモリ素子間が電気的に隔離される。
However, when the word line 23 is selected, no charge flows from the drain region 26 connected to the capacitor to the device isolation region 27 doped with the p-type impurity, so that the information stored in the capacitor is not generated. Keeps the original information unaffected. That is, 0V or minus voltage is applied to the p-type substrate,
Substrate and the p-type impurity region 27 are in ohmic contact (ohmic contact).
c conduct), the p-type impurity region 27
Even if 0 V or a negative voltage is applied to the mold substrate, and a positive voltage is applied to the word line 23, a pn junction in the opposite direction always exists between the n-channel formed in the gate and the p-type impurity region 27. In this case, the flow of charges is not performed, so that the memory elements are electrically isolated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体メモリ素子の隔離構造を示
した平面図。
FIG. 1 is a plan view showing an isolation structure of a semiconductor memory device according to the present invention.

【図2】本発明に係るメモリ素子の平面図。FIG. 2 is a plan view of a memory element according to the present invention.

【図3】図2のA−A’に沿った縦断面図。FIG. 3 is a longitudinal sectional view along A-A 'of FIG. 2;

【図4】従来の半導体メモリ素子の隔離構造を示した平
面図。
FIG. 4 is a plan view showing an isolation structure of a conventional semiconductor memory device.

【図5】従来の半導体メモリ素子の製造方法の前段を示
した工程図。
FIG. 5 is a process chart showing a former stage of a conventional method of manufacturing a semiconductor memory device.

【図6】従来の半導体メモリ素子の製造方法の後段を示
した工程図。
FIG. 6 is a process chart showing a latter stage of a conventional method of manufacturing a semiconductor memory device.

【符号の説明】[Explanation of symbols]

1、1’:アクチブ領域 2、2’:第1隔離領域 21、22、23、24:ワードライン 25:ソース 26:ドレイン 27:第2隔離領域 1, 1 ': active area 2, 2': first isolation area 21, 22, 23, 24: word line 25: source 26: drain 27: second isolation area

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板内に所定の幅を有して第1方向
に連続され、該第1方向に垂直な第2方向には所定間隔
を置いて平行に夫々配列された複数のアクチブ領域と、 前記アクチブ領域に前記第1領域と平行に夫々形成され
た複数の第1隔離領域と、 前記アクチブ領域に交差するように配列された複数のワ
ードラインと、 前記ワードライン間の前記アクチブ領域内の所定部位に
形成され、第1導電型不純物がドーピングされたソース
及びドレイン領域と、 前記ワードライン、ソース、及びドレインを有するメモ
リ素子間を分離するように前記アクチブ領域内の所定部
位に、前記第1導電型不純物とは反対の導電型である第
2導電型不純物がドーピングして形成された第2隔離領
域と、 を備えたことを特徴とする半導体メモリ素子。
1. A plurality of active areas which are continuous in a first direction with a predetermined width in a semiconductor substrate and are arranged in parallel in a second direction perpendicular to the first direction at predetermined intervals. A plurality of first isolation regions respectively formed in the active region in parallel with the first region; a plurality of word lines arranged to intersect the active region; and the active region between the word lines. A source and drain region formed at a predetermined portion in the inside and doped with a first conductivity type impurity, and a predetermined portion in the active region so as to separate a memory element having the word line, the source and the drain; A second isolation region formed by doping with a second conductivity type impurity having a conductivity type opposite to that of the first conductivity type impurity.
【請求項2】前記第1隔離領域は、フィルド酸化膜であ
ることを特徴とする請求項1記載の半導体メモリ素子。
2. The semiconductor memory device according to claim 1, wherein said first isolation region is a filled oxide film.
【請求項3】前記第1導電型不純物はn型で、第2導電
型不純物はp型であることを特徴とする請求項1又は請
求項2に記載の半導体メモリ素子。
3. The semiconductor memory device according to claim 1, wherein said first conductivity type impurity is n-type, and said second conductivity type impurity is p-type.
【請求項4】前記第1導電型不純物はp型で、第2導電
型不純物はn型であることを特徴とする請求項1又は請
求項2に記載の半導体メモリ素子。
4. The semiconductor memory device according to claim 1, wherein said first conductivity type impurity is p-type and said second conductivity type impurity is n-type.
【請求項5】半導体基板に酸化膜及び酸化防止膜を順次
形成する工程と、 該酸化膜及び酸化防止膜上に感光膜をコーティングし、
第1方向には複数のアクチブ領域が所定間隔を有して夫
々列状に形成され、前記第1方向と垂直な第2方向には
前記複数のアクチブ領域間に夫々第1隔離領域が形成さ
れるように、前記感光膜を食刻してパターニングする工
程と、 前記第1隔離領域上の酸化防止膜を除去して酸化膜を露
出させる工程と、 該露出された酸化膜を酸化させる工程と、 前記半導体基板に残存する酸化防止膜を除去する工程
と、 前記半導体基板の全面にゲート酸化膜を形成する工程
と、 該ゲート酸化膜上に前記第1方向と交差する方向に連続
する複数のワードラインを形成する工程と、 前記ワードライン間の半導体基板の所定領域内に第1導
電型不純物を注入する工程と、 該第1不純物領域間の半導体基板内に前記第1導電型不
純物とは逆の導電型である第2導電型不純物を注入して
第2隔離領域を形成する工程と、を順次行うことを特徴
とする半導体メモリ素子の製造方法。
5. A step of sequentially forming an oxide film and an antioxidant film on a semiconductor substrate, coating a photosensitive film on the oxide film and the antioxidant film,
A plurality of active regions are formed in a row at predetermined intervals in a first direction, and a first isolation region is formed between the plurality of active regions in a second direction perpendicular to the first direction. Etching the photoresist film to pattern the photoresist film, removing the antioxidant film on the first isolation region to expose the oxide film, and oxidizing the exposed oxide film. A step of removing an antioxidant film remaining on the semiconductor substrate; a step of forming a gate oxide film on the entire surface of the semiconductor substrate; and a plurality of steps continuous on the gate oxide film in a direction crossing the first direction. Forming a word line; implanting a first conductivity type impurity into a predetermined region of the semiconductor substrate between the word lines; and defining the first conductivity type impurity in the semiconductor substrate between the first impurity regions. Second conductivity of opposite conductivity type Forming a second isolation region by injecting an electric impurity into the second isolation region.
JP10012343A 1997-02-06 1998-01-26 Semiconductor memory element and manufacturing method thereof Pending JPH10223862A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019970003770A KR100230811B1 (en) 1997-02-06 1997-02-06 Semiconductor memory device and method for manufacturing the same
KR3770/1997 1997-02-06

Publications (1)

Publication Number Publication Date
JPH10223862A true JPH10223862A (en) 1998-08-21

Family

ID=19496623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10012343A Pending JPH10223862A (en) 1997-02-06 1998-01-26 Semiconductor memory element and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JPH10223862A (en)
KR (1) KR100230811B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319623B1 (en) * 1999-05-18 2002-01-05 김영환 Dram cell array and fabrication method thereof

Also Published As

Publication number Publication date
KR100230811B1 (en) 1999-11-15
KR19980067615A (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US8330246B2 (en) Intermediate structures for forming circuits
JPH11186412A (en) Semiconductor device and its manufacture
JP2002343879A (en) Semiconductor device and method of manufacturing the same
JP2004504719A (en) Semiconductor device and method for fabricating the same to solve the problem of optical edge effect on etched trenches
KR100214917B1 (en) Semiconductor device and method of manufacturing the same
KR100761637B1 (en) Integrated circuit and method of manufacture thereof
US6136657A (en) Method for fabricating a semiconductor device having different gate oxide layers
US5538917A (en) Fabrication method of semiconductor integrated circuit device
US5012312A (en) Semiconductor integrated circuit and a process for producing the same
JPH10223862A (en) Semiconductor memory element and manufacturing method thereof
JPH10189760A (en) Fabrication of semiconductor element
KR0135690B1 (en) Fabrication method of contact in semiconductor device
JPH06177263A (en) Manufacture of metal contact of word-line branch
EP0966036B1 (en) Method for fabricating a semiconductor device having different gate oxide layers
KR0170509B1 (en) Method of making mask rom
JPH10125873A (en) Semiconductor integrated circuit device and manufacture for forming arch type gate field effect transistor(fet) on main surface of semiconductor substrate
KR100239690B1 (en) Method for forming field oxide film of semiconductor memory cell
KR100541697B1 (en) DRAM cell transistor manufacturing method
KR100219069B1 (en) Fabrication method of a semiconductor device
KR100236047B1 (en) Process for fabricating semiconductor device
KR100304973B1 (en) Method for manufacturing of semiconductor device
KR100460704B1 (en) Method for fabricating bottom gate-type tft of sram to increase capacitance of node
KR0185636B1 (en) Manufacturing method of capacitor improved characteristic of step difference in semiconductor memory device
JP2000150878A (en) Manufacture of semiconductor integrated circuit device
KR0165816B1 (en) Recess etching apparatus of semiconductor process