JPH10219420A - Warm member and hot member, their production, and warm die and hot die using same - Google Patents

Warm member and hot member, their production, and warm die and hot die using same

Info

Publication number
JPH10219420A
JPH10219420A JP3324897A JP3324897A JPH10219420A JP H10219420 A JPH10219420 A JP H10219420A JP 3324897 A JP3324897 A JP 3324897A JP 3324897 A JP3324897 A JP 3324897A JP H10219420 A JPH10219420 A JP H10219420A
Authority
JP
Japan
Prior art keywords
layer
mixture layer
gas
hot
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3324897A
Other languages
Japanese (ja)
Inventor
Yoshitaka Chiba
芳孝 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3324897A priority Critical patent/JPH10219420A/en
Publication of JPH10219420A publication Critical patent/JPH10219420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the service life of warm and hot members, such as dies, and to prevent the occurrence of peeling of a mixture layer and the occurrence of the origin or propagation passage of cracks by forming a mixture layer composed essentially of iron sulfide and iron oxide and containing nitrogen on the surface of a member and controlling the weight concentration ratio between sulfur and oxygen in the mixture layer to a slightly high value in a specific range. SOLUTION: A mixture layer, composed essentially of iron sulfide and iron oxide and containing nitrogen, is formed on the surface of a member prepared by using a steel as a base material, and the weight concentration ratio between sulfur and oxygen, S/O, in the mixture layer is limited to a value satisfying 0.5<S/O<10. Further, a nitrided layer can be formed on the member-body side of the mixture layer. When the concentration ratio (S/O) is <=0.5, the coefficient of friction of sliding parts, such as machine parts, and that between a point of operation of the press of a die and a work cannot be reduced sufficiently. Conversely, when (S/O) is >=10, the adhesion between the main body of the member or die, prepared by using a steel as a base material, or the mixture layer and the nitrided layer formed on the main-body side of the member or die becomes insufficient, and peeling and falling off become liable to occur, and as a result, the resultant member and die cannot withstand long- time service.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温間ないし熱間で
使用される鋼を母材とする温熱間用部材、およびその製
造方法、ならびにこれを用いた温熱間用金型に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a warm member made of steel used in a warm or hot state, a method for producing the member, and a warm mold using the same. .

【0002】[0002]

【従来の技術】従来、例えば鋼を母材とする温熱間鍛造
用金型(以下、金型と記す)には、主にJISに規定さ
れるSKD61,SKT4に代表される熱間工具鋼が用
いられており、特に耐久性を要求される用途には、これ
らよりも高温強度の高いSKD7,SKD8,高速度鋼
あるいはこれらの改良鋼が用いられている。近年、被加
工製品の高精度化や加工能率の向上の要求に呼応して、
金型の靭性を保持するとともに、金型表面に耐摩耗性、
耐焼付性を付与する目的から、一般に表面処理が施され
るようになってきた。このような金型に対して実施され
る表面処理方法としては、イオン法、塩浴法、ガス法等
による単一窒化処理が主流である。
2. Description of the Related Art Conventionally, for example, a hot tool steel represented by SKD61 and SKT4 stipulated by JIS is mainly used in a hot forging die (hereinafter referred to as a die) using steel as a base material. SKD7, SKD8, high-speed steel, and improved steels having higher high-temperature strength than these are used for applications requiring durability. In recent years, in response to demands for higher precision and higher processing efficiency of products to be processed,
While maintaining the mold toughness, wear resistance and
For the purpose of imparting seizure resistance, surface treatment has generally been applied. As a surface treatment method performed on such a mold, a single nitriding treatment by an ion method, a salt bath method, a gas method, or the like is mainly used.

【0003】例えば、特開平7−138733号には、
金型の耐ヒートクラック性および塑性流動を軽減するた
めに、イオン窒化処理後に950℃まで昇温させて高周
波加熱により最表面の脆弱な、白層と呼ばれている高濃
度窒素化合物の低減と、窒素拡散層を3.0mmまで深
くする方法が提案されている。また、特開昭57−54
551号には金型芯部の靭性を保持しながら、同時に焼
付き防止を目的として、低温(350〜450℃)でイ
オン窒化する熱間加工用金型を提案しているが、これら
の効果は従来手法の窒化処理材と比較して金型寿命は2
〜3割程度の金型寿命の向上であり、飛躍的な金型寿命
改善の手法とは必ずしも言えない面があった。
For example, Japanese Patent Application Laid-Open No. 7-138733 discloses that
In order to reduce heat crack resistance and plastic flow of the mold, the temperature is raised to 950 ° C after ion nitriding and high-frequency heating is used to reduce the fragile, high-concentration nitrogen compounds called the white layer on the outermost surface. A method has been proposed in which the nitrogen diffusion layer is deepened to 3.0 mm. Also, Japanese Patent Application Laid-Open No. 57-54
No. 551 proposes a hot working mold that performs ion nitriding at a low temperature (350 to 450 ° C.) for the purpose of preventing seizure while maintaining the toughness of the mold core. Has a mold life of 2 times compared with the conventional nitriding material.
This is an improvement of the mold life of about 30%, which is not necessarily a dramatic improvement of the mold life.

【0004】近年のニアネットシェイプ化は、製品の形
状が複雑で、加工時に被加工材の肉流れが大きくなり、
金型作業面との摩擦が過大となり、摩擦熱による金型表
面部の軟化がより進行し、金型自身の変態点(700〜
900℃)を越えてしまうほど高温になる場合がある。
その結果、金型自身が本来持つべき特性を失わせ、高温
特性が著しく低下し、金型の損耗現象が加速されて短寿
命となる。また現在、表面処理の主流として実施されて
いるイオン窒化など、単一の窒化処理を施した金型で
は、形成させた窒化物の一部が過熱のため分解してしま
い、その効果が十分に発揮できなくなるという問題があ
った。
[0004] In recent years, near-net shaping has resulted in a complicated product shape and a large flow of material during processing.
The friction with the working surface of the mold becomes excessive, the surface of the mold is softened more by the frictional heat, and the transformation point of the mold itself (700 to
(900 ° C.).
As a result, the properties that the mold itself should have are lost, the high-temperature properties are significantly reduced, and the mold wear phenomenon is accelerated to shorten the life. In addition, in molds that have been subjected to a single nitridation treatment, such as ion nitridation, which is currently performed as the mainstream of surface treatment, part of the formed nitride is decomposed due to overheating, and the effect is not sufficient. There was a problem that it could not be demonstrated.

【0005】単一窒化処理以外の手法としては、特開平
4−228557号には、建設機械の油圧ポンプおよび
モータなどに使用されるピストン、シリンダ等の潤滑油
保有性向上を目的として、油中で使用される冷間摺動部
材に対してガス浸硫窒化方法および装置が提案されてい
る。また特開昭60−39155号の提案では、硫化ア
ンモニウムの分解ガスとアンモニアガスを導入し鉄系製
品の表面に主に硫化第2鉄(FeS2)からなる第一層
を形成させ、第二層としてFe4Nの窒化鉄を形成させ
た構造としている。
[0005] As a method other than the single nitriding treatment, Japanese Patent Application Laid-Open No. 4-228557 discloses a method for improving lubricating oil holding properties of pistons and cylinders used in hydraulic pumps and motors of construction machinery. Gas sulphonitriding methods and devices have been proposed for cold sliding members used in. Japanese Patent Application Laid-Open No. 60-39155 proposes that a first layer mainly composed of ferric sulfide (FeS 2 ) is formed on the surface of an iron-based product by introducing a decomposition gas of ammonium sulfide and an ammonia gas. The layer has a structure in which iron nitride of Fe 4 N is formed.

【0006】さらに片桐等(日本金属学会第51巻、第
10号(1987),P.930〜934)は、無色硫
化アンモニウム溶液を用い、硫化水素濃度150pp
m、アンモニア濃度75%、処理温度580℃、処理時
間1〜6時間の条件で鉄鋼材料に浸硫窒化処理を施すこ
とにより、最表面に多孔質の硫化第1鉄(FeS)層が
形成され、これに酸化鉄(Fe34)が共存した表面層
を得たことが報告されている。その他、特公平7−42
566号では、軟鋼、鋳鉄からなるボルト、ナットなど
地下埋設下での防食、または地上部の防錆や美観向上を
目的として四酸化三鉄(Fe34)を母材に形成させる
酸化鉄形成方法などが提案されている。
Further, Katagiri et al. (The Japan Institute of Metals, Vol. 51, No. 10, (1987), pp. 930-934) use a colorless ammonium sulfide solution and a hydrogen sulfide concentration of 150 pp.
m, an ammonia concentration of 75%, a treatment temperature of 580 ° C., and a treatment time of 1 to 6 hours, whereby a porous ferrous sulfide (FeS) layer is formed on the outermost surface by subjecting the steel material to nitrosulphurizing treatment. It is reported that a surface layer in which iron oxide (Fe 3 O 4 ) coexists was obtained. Other, 7-42
No. 566 discloses an iron oxide in which triiron tetroxide (Fe 3 O 4 ) is formed in a base material for the purpose of preventing corrosion under an underground burial, such as bolts and nuts made of mild steel and cast iron, or for the purpose of preventing rust and improving the appearance of the ground. A formation method and the like have been proposed.

【0007】[0007]

【発明が解決しようとする課題】一般に、高温の被加工
材を塑性加工する際の金型の損耗は、下記に示す経過に
より進行する。金型表面部は、次のような被加工材との
接触により熱的衝撃を受ける。すなわち、高温の被加工
材の表面は、金型作業面上に強く押し付けられ、型彫面
に沿って流動し、摩擦熱の発生と塑性変形による発熱を
伴いながら塑性加工を受ける。この作業中に金型表面部
は、急激に昇温して膨張する。作業が終了すると被加工
材は、素早く金型から離型される。金型表面部は、被加
工材が離型するのと同時に冷却し始め、収縮が起る。
Generally, the wear of a metal mold during plastic working of a high-temperature workpiece proceeds in the following course. The mold surface receives a thermal shock due to the following contact with the workpiece. That is, the surface of the high-temperature workpiece is pressed strongly onto the mold working surface, flows along the die-sculptured surface, and undergoes plastic working while generating frictional heat and generating heat due to plastic deformation. During this operation, the surface of the mold rapidly rises in temperature and expands. When the work is completed, the workpiece is quickly released from the mold. The mold surface starts to cool at the same time as the workpiece is released, and contracts.

【0008】上記のような被加工材の塑性加工が繰り返
される結果、金型表面部には膨張と収縮による熱疲労を
受けるだけでなく、熱影響により軟化した金型表面部
は、加工応力や膨張・収縮に伴って発生する応力に対す
る抵抗力が低下しており、金型表層部でヒートクララッ
クや塑性流動が生じ易くなり、摩耗などの損耗が進行す
る。この際、特に金型表面と被加工材が直接接触すると
焼付現象が発生し易くなる。焼付が発生すると被加工材
から金型表面部への熱伝達が容易となり、金型の損耗が
より急速に進行する。
[0008] As a result of the repetitive plastic working of the workpiece as described above, not only the mold surface is subjected to thermal fatigue due to expansion and contraction, but also the mold surface softened by heat is affected by the processing stress and the like. The resistance to the stress generated due to expansion and contraction is reduced, and heat crack and plastic flow are likely to occur on the surface layer of the mold, and wear such as wear proceeds. At this time, especially when the surface of the mold and the workpiece are in direct contact, the seizure phenomenon is likely to occur. When seizure occurs, heat transfer from the workpiece to the surface of the mold is facilitated, and wear of the mold proceeds more rapidly.

【0009】このため、通常の作業では、1サイクル毎
に金型表面に潤滑剤あるいは離型剤が塗布され、これら
が金型表面と被加工材との間に、フィルム状に介在し、
金型作業面と被加工材が直接接触しない利点がある。反
面、昇温した金型表面部は、上記の冷剤が塗布されるた
め冷却速度が大きくなり、単位時間内の収縮量が大きく
なる弊害を伴う。前述したように通常の熱間鍛造用金型
には、単一窒化処理されたものが使用されている他、従
来から室温付近の比較的低温側で使用される摺動部を有
する機械部品等に浸硫窒化処理が施されている。特開平
4−228557号に開示された内容は、潤滑油保有性
の高いFeS2を200〜350℃で二次加熱処理を行
なって、鉄鋼部材の最表面に硫化第2鉄(FeS2)を
形成させて潤滑効果を高めたものである。ところが、例
えばこのような処理を施した金型を本発明が対象とする
高温に加熱された被加工材を高圧のもとで成形すると、
硫化第2鉄の結合力が弱いために容易に剥離や脱落が起
り、温熱間用金型としては使用に耐えないものである。
For this reason, in a normal operation, a lubricant or a release agent is applied to the mold surface every cycle, and these are interposed in a film form between the mold surface and the workpiece.
There is an advantage that the work surface of the mold does not come into direct contact with the workpiece. On the other hand, since the above-mentioned cooling agent is applied to the heated surface of the mold, the cooling rate is increased, and the mold shrinkage per unit time is disadvantageously increased. As described above, a normal hot forging die is a single-nitrided die, and a mechanical part having a sliding portion conventionally used on a relatively low temperature side near room temperature. Has been subjected to a nitrosulphurizing treatment. Japanese Patent Application Laid-Open No. 4-228557 discloses that FeS 2 having a high lubricating oil content is subjected to secondary heat treatment at 200 to 350 ° C., and ferrous sulfide (FeS 2 ) is formed on the outermost surface of a steel member. It is formed to enhance the lubrication effect. However, for example, when a workpiece that has been subjected to such processing is molded under high pressure from a workpiece heated to a high temperature targeted by the present invention,
Since the binding force of ferric sulfide is weak, peeling or falling off easily occurs, and it cannot be used as a warm-heat mold.

【0010】また、特開昭60−39155号に提案さ
れた各層は多孔質であるため、金型に適用した場合に
は、高温、たとえば600℃以上の被加工材を高圧のも
とで成形すると、ヒートクラックの起点または伝搬通路
となり易く使用に適さない。さらに片桐等によって提案
された方法は、供給原料として無色硫化アンモニウム溶
液を用いているため、得られた表層部の硫黄と酸素の重
量濃度比(S/O)が0.5未満となり、金型表面と被
加工材との摩擦係数を十分下げることができず、また上
述したように多孔質層に起因するヒートクラックの起点
または伝播の通路となり易く、高温の被加工材を高圧下
で塑性加工する金型の用途には必ずしも適したものとは
言えない。これら従来の浸硫窒化法によって鋼の母材表
面に形成される層は、本発明が対象の一つとする金型の
ように高温に加熱された被加工材を塑性加工する場合に
は、多孔質層に起因するヒートクラックの起点や伝播の
通路となり易く、十分機能できなかったのである。
Further, since each layer proposed in Japanese Patent Application Laid-Open No. 60-39155 is porous, when applied to a metal mold, a material to be processed at a high temperature, for example, 600 ° C. or higher is formed under a high pressure. Then, it is likely to be a starting point of a heat crack or a propagation path, which is not suitable for use. Further, the method proposed by Katagiri et al. Uses a colorless ammonium sulfide solution as a feedstock, so that the weight concentration ratio (S / O) of sulfur and oxygen in the surface layer obtained is less than 0.5, and The coefficient of friction between the surface and the work material cannot be reduced sufficiently, and as described above, it tends to be a starting point or a propagation path for heat cracks caused by the porous layer. It is not always suitable for the use of the mold. The layers formed on the surface of the steel base material by the conventional sulphiditriding method have a porous structure when the work material heated to a high temperature is plastically worked like a mold to which the present invention is applied. This was likely to be a starting point of a heat crack or a passage for propagation caused by the material layer, and could not function sufficiently.

【0011】[0011]

【課題を解決するための手段】発明者は、例えば鋼を母
材とする金型として使用する場合、高温に加熱された被
加工材の熱や塑性変形による発熱等の熱をどうすれば直
接金型表面に伝達されずに遮断でき、金型の寿命を大幅
に向上することができるかについて検討した。その結
果、金型自身の表面を改質して、金型表面と被加工材と
の間に焼付が起こりにくく、かつ潤滑効果と断熱効果と
を兼備できる緻密な表面処理皮膜を形成することができ
れば、摩擦熱の発生を抑制し、さらに熱伝達による金型
表面部の軟化防止となり、ひいては金型の寿命向上が可
能となることがわかった。発明者が部材の表層部に形成
される各種皮膜について、実験を重ねた結果、硫化鉄と
酸化鉄を主体とする窒素を含む混合物層を形成させ、特
に前記混合物層中の硫黄と酸素の重量濃度比(S/O)
を高目の特定範囲内に限定すると、非常に効果が高くな
ることを見出した。
SUMMARY OF THE INVENTION The inventor of the present invention, for example, when using as a mold made of steel as a base material, how to directly use the mold such as heat of a workpiece heated to a high temperature or heat generated by plastic deformation. It was examined whether it can be shut off without being transmitted to the surface and the life of the mold can be greatly improved. As a result, it is possible to modify the surface of the mold itself to form a dense surface treatment film that is less likely to seize between the mold surface and the workpiece, and has both a lubricating effect and a heat insulating effect. It has been found that if possible, the generation of frictional heat is suppressed, the surface of the mold is softened by heat transfer, and the life of the mold can be improved. As a result of repeated experiments on various films formed on the surface layer of the member by the inventor, a mixture layer containing nitrogen mainly composed of iron sulfide and iron oxide was formed, and the weight of sulfur and oxygen in the mixture layer was particularly high. Concentration ratio (S / O)
Was found to be very effective when the value was limited to a higher specific range.

【0012】すなわち、本発明の第1発明は、鋼を母材
とする部材の表層部に硫化鉄と酸化鉄を主体とする窒素
を含む混合物層を有し、前記混合物層中の硫黄と酸素の
重量濃度比(S/O)が0.5<S/O<10の式を満
足する領域を有することを特徴とする温熱間用部材であ
る。また、第2発明は、鋼を母材とする部材の表層部に
硫化鉄と酸化鉄を主体とする窒素を含む混合物層を有
し、前記混合物層中の硫黄と酸素の重量濃度比(S/
O)が0.5<S/O<10の式を満足する領域を有
し、かつ前記混合物層の部材本体側に少なくとも窒化層
が形成され、前記窒化層は白層と窒素拡散層からなるこ
とを特徴とする温熱間用部材である。
That is, a first aspect of the present invention is to provide a member made of steel as a base material having a mixture layer containing nitrogen mainly composed of iron sulfide and iron oxide on a surface layer portion thereof, wherein sulfur and oxygen in the mixture layer are contained. Wherein the weight concentration ratio (S / O) has a region satisfying the expression 0.5 <S / O <10. Further, the second invention has a mixture layer containing nitrogen mainly composed of iron sulfide and iron oxide on a surface layer portion of a member made of steel as a base material, and a weight concentration ratio of sulfur and oxygen (S) in the mixture layer. /
O) has a region satisfying the expression 0.5 <S / O <10, and at least a nitride layer is formed on the member body side of the mixture layer, and the nitride layer includes a white layer and a nitrogen diffusion layer. It is a member for warmth characterized by the above-mentioned.

【0013】第3発明は、鋼を母材とする部材の表層部
に硫化鉄と酸化鉄を主体とする窒素を含む混合物層を有
し、前記混合物層中の硫黄と酸素の重量濃度比(S/
O)が0.5<S/O<10の式を満足する領域を有
し、かつ前記混合物層の部材本体側に少なくとも窒化層
が形成され、前記窒化層は窒素拡散層からなることを特
徴とする温熱間用部材である。上記混合物層中のSの濃
度は、重量%で5〜30とするのが好ましい。また、上
記混合物層の厚さは0.1〜20μmの緻密な層である
ことが望ましく、さらに上記窒化層の最高硬さは900
HV以上とするのがよい。
According to a third aspect of the present invention, a member containing steel as a base material has a mixture layer containing nitrogen mainly composed of iron sulfide and iron oxide at a surface layer portion, and a weight concentration ratio of sulfur and oxygen in the mixture layer ( S /
O) has a region satisfying the expression of 0.5 <S / O <10, and at least a nitride layer is formed on the member body side of the mixture layer, and the nitride layer is a nitrogen diffusion layer. It is a member for warm and hot. The concentration of S in the mixture layer is preferably 5 to 30 by weight%. The mixture layer is preferably a dense layer having a thickness of 0.1 to 20 μm, and the nitride layer has a maximum hardness of 900 μm.
HV or more is good.

【0014】上記温熱間用部材を製造する第4発明は、
ガス発生容器内に無色硫化アンモニウム溶液と黄色硫化
アンモニウム溶液を6:1ないし1:1の割合で供給
し、発生する液面上ガスと窒素ガスまたはアルゴンガス
からなる搬送用ガスとの混合ガス中の硫化水素ガス濃度
を100〜600ppm、アンモニアガス濃度を0.1
〜1.0%に調整して、鋼を母材とする温熱間用部材を
配置して460〜600℃に加熱された反応炉に導入す
るとともに、別容器から供給する窒素ガスとアンモニア
ガスにより前記反応炉内のアンモニア濃度を10〜70
%に調整して、ガス浸硫窒化処理をすればよい。
[0014] A fourth invention for producing the above-mentioned warm / hot member is as follows.
A colorless ammonium sulfide solution and a yellow ammonium sulfide solution are supplied into the gas generating container at a ratio of 6: 1 to 1: 1. A mixture of a gas on the liquid surface to be generated and a carrier gas composed of nitrogen gas or argon gas is used. Hydrogen sulfide gas concentration of 100 to 600 ppm, ammonia gas concentration of 0.1
Adjusted to ~ 1.0%, a warming member made of steel as a base material was arranged and introduced into a reactor heated to 460 to 600 ° C, and nitrogen gas and ammonia gas supplied from separate containers were used. The ammonia concentration in the reactor is 10 to 70
%, And the gas sulphonitriding treatment may be performed.

【0015】なお、少なくとも部材本体側に形成させる
窒化層に、白層と窒素拡散層とを含有させるには、第4
発明の反応炉の加熱温度を高めの500〜600℃と
し、かつ前記反応炉内のアンモニア濃度を高めの20〜
70%にするのがよい。さらに、少なくとも部材本体側
に形成させる窒化層に窒素拡散層のみ含有させるには、
第4発明の反応炉の加熱温度を低めの460〜550℃
とし、かつ前記反応炉内のアンモニア濃度を低めの10
〜40%にするのがよい。また、上記第1ないし第3発
明で構成される温熱間用部材は温熱間用金型として好ま
しい。
In order to include a white layer and a nitrogen diffusion layer in at least the nitride layer formed on the member body side, the fourth layer
The heating temperature of the reaction furnace of the present invention is set to a high value of 500 to 600 ° C., and the ammonia concentration in the reaction furnace is set to a high value of 20 to 600 ° C.
It is good to make it 70%. Further, in order to include only the nitrogen diffusion layer in the nitride layer formed at least on the member body side,
The heating temperature of the reactor of the fourth invention is lowered to 460 to 550 ° C.
And the ammonia concentration in the reactor
It is good to be ~ 40%. Further, the warming member constituted by the first to third inventions is preferable as a warming mold.

【0016】[0016]

【発明の実施の形態】本発明の温熱間用部材の特徴の一
つは、鋼を母材とする部材の表層部に硫化鉄と酸化鉄を
主体とする窒素を含む混合物層を有し、該混合物層中の
硫黄と酸素の重量濃度比(S/O)を0.5<S/O<
10に限定した点にある。前記混合物層中の硫黄と酸素
の濃度比(S/O)が0.5以下では、機械部品などの
摺動部や金型作業面と被加工材との摩擦係数を十分低減
することができず、逆に10以上の場合には、鋼を母材
とする部材や金型本体または前記混合物層の部材や金型
本体側に形成される窒化層との密着性が不十分となり、
剥離や脱落が容易となり、長期使用に耐えられなくなる
ため10未満とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One of the features of the member for warming and warming of the present invention is that a member containing steel as a base material has a mixture layer containing nitrogen mainly containing iron sulfide and iron oxide on a surface layer portion thereof. The sulfur / oxygen weight concentration ratio (S / O) in the mixture layer is 0.5 <S / O <
It is limited to 10. When the sulfur / oxygen concentration ratio (S / O) in the mixture layer is 0.5 or less, the friction coefficient between a workpiece and a sliding part such as a machine part or a mold working surface can be sufficiently reduced. On the contrary, in the case of 10 or more, the adhesion between the steel base material and the mold body or the nitride layer formed on the mold body or the member of the mixture layer or the mold body becomes insufficient.
Since it is easy to peel off or fall off and cannot endure long-term use, it is set to less than 10.

【0017】また他の特徴は、上記混合物層が形成され
た部材や金型本体側には、少なくとも窒化層が形成さ
れ、前記窒化層が白層と窒素拡散層からなるか、または
窒素拡散層からなる点にある。前記窒化層は、比較的高
温で相手材と摺動する部分を有する部材や被加工材が高
圧下で塑性加工される金型の場合、部材や金型本体の表
面部の強度不足を補う効果を有する他、長期使用後に上
記混合物層が部分的に磨滅した際、耐焼付性が短時間に
低下するのを防止する効果を有する。なお上記窒化層
は、例えば金型の型彫面が比較的起伏の少ない形状か、
または塑性加工が容易な被加工材の場合には白層と称さ
れるε−Fe23Nおよび窒素拡散層と呼ばれるγ′−
Fe4Nからなる白層と窒素拡散層とを形成させるのが
よい。
Another feature is that at least a nitride layer is formed on the member or the mold body side on which the mixture layer is formed, and the nitride layer is formed of a white layer and a nitrogen diffusion layer. It consists of In the case of a mold in which a member having a portion that slides with a counterpart material at a relatively high temperature or a workpiece is plastically processed under high pressure, the nitrided layer compensates for insufficient strength of the surface of the member or the mold body. In addition, when the mixture layer is partially worn out after long-term use, it has the effect of preventing the seizure resistance from being reduced in a short time. In addition, the above-mentioned nitrided layer, for example, the shape of the die sculpture surface of the mold is relatively less uneven,
Or in the case of plastic working easy workpiece it is called a white layer called ε-Fe 2 ~ 3 N and nitrogen diffusion layer γ'-
It is preferable to form a white layer made of Fe 4 N and a nitrogen diffusion layer.

【0018】また、型彫面の起伏が大きく、鋭角状の突
起や谷部を施した金型、または起伏が小さくても被加工
材が難加工性の場合には、上記の硬質の白層が存在する
とクラックの発生起点となり易いため、白層のない窒素
拡散層だけの窒化層とするのがよい。上述した本発明の
第1発明ないし第3発明の構成要件を満足する混合物層
中のSの濃度は、同じ理由から重量%で5〜30とする
のが良く、また混合物層の厚さは上記効果を発揮させる
ために0.1μmが必要であり、逆に20μmを越える
と剥離しやすくなるため0.1〜20μmの緻密な層と
することが望ましい。さらに望ましくは、上記窒化層の
硬さを、部材や金型本体の強度を補うために900HV
以上とするのが良い。
In the case where the surface of the engraved surface has large undulations and a mold with sharp projections and valleys, or the material to be processed is difficult to process even if the undulations are small, the above hard white layer is used. Is likely to be a starting point of crack generation, so it is preferable to form a nitride layer having only a nitrogen diffusion layer without a white layer. For the same reason, the concentration of S in the mixture layer that satisfies the constitutional requirements of the first to third inventions of the present invention is preferably 5 to 30 by weight%, and the thickness of the mixture layer is as described above. In order to exhibit the effect, the thickness is required to be 0.1 μm. Conversely, if the thickness exceeds 20 μm, it is easy to peel off, so that a dense layer of 0.1 to 20 μm is desirable. More preferably, the hardness of the nitrided layer is adjusted to 900 HV in order to supplement the strength of the member or the mold body.
It is better to do above.

【0019】本発明が対象とする温熱間用部材は、例え
ばアルミホイールの成形用ロール、レールやガイドなど
の摺動部材、押出ピン、コアピン、中子ピンなど温熱間
で使用されるピン類、さらに押出ダイスの他、ギア、バ
ルブ成形用型、鍛造またはプレス成形用型の温熱間用金
型などであり、被加工材や相手材が400℃以上の温度
に晒される雰囲気で使用する部材、600℃以上、特に
800℃以上の温度で使用する部材として好適である。
The hot members to which the present invention is applied include, for example, rolls for forming aluminum wheels, sliding members such as rails and guides, pins used in the hot state such as extrusion pins, core pins, core pins, and the like. In addition to the extrusion dies, gears, molds for valve molding, hot molds for forging or press molding, and the like, members used in an atmosphere in which a workpiece or a counterpart material is exposed to a temperature of 400 ° C. or more, It is suitable as a member used at a temperature of 600 ° C. or higher, particularly 800 ° C. or higher.

【0020】上記構成要件を満足させる本発明の温熱間
用部材、特に温熱間用金型を製造するには、例えば浸硫
と酸化の供給源に硫化アンモニウム溶液を用いる方法が
ある。この方法では、部材表層部に硫化鉄と酸化鉄を主
体とする窒素を含む緻密な混合物層中の硫黄と酸素の重
量濃度比(S/O)を0.5より多く形成させるのに好
都合である。
In order to manufacture the hot-working member of the present invention which satisfies the above constitutional requirements, in particular, a hot-working mold, there is, for example, a method of using an ammonium sulfide solution as a source of sulfuration and oxidation. This method is advantageous for forming a weight concentration ratio (S / O) of sulfur and oxygen in the dense mixture layer containing nitrogen mainly composed of iron sulfide and iron oxide, which is more than 0.5, on the surface layer of the member. is there.

【0021】すなわち、予めガス発生容器内に硫化水素
濃度が低く水分の多い無色硫化アンモニウム溶液(JI
S K8943)と、硫化水素濃度が高く水分の少ない
黄色硫化アンモニウム溶液(JIS K8942)とを
加えて混合溶液とし、発生する液面上ガスを搬送用ガス
である窒素ガスまたはアルゴンガスと混合した状態で硫
化水素ガス濃度を100〜600ppm、アンモニアガ
ス濃度を0.1〜1.0%に調整して、被処理部材を配
置して460〜600℃に加熱された反応炉に導入する
とともに、例えばボンベ等の別容器から供給する窒素ガ
スとアンモニアガスにより、反応炉内のアンモニア濃度
を10〜70%に調整して所定時間の浸硫窒化処理を行
なえばよい。
That is, a colorless ammonium sulfide solution having a low hydrogen sulfide concentration and a high water content (JI
SK8943) and a yellow ammonium sulfide solution having a high hydrogen sulfide concentration and a low water content (JIS K8942) to form a mixed solution, and the generated gas on the liquid surface is mixed with nitrogen gas or argon gas as a carrier gas. The hydrogen sulfide gas concentration is adjusted to 100 to 600 ppm and the ammonia gas concentration is adjusted to 0.1 to 1.0%, and the members to be treated are arranged and introduced into a reaction furnace heated to 460 to 600 ° C. It is only necessary to adjust the concentration of ammonia in the reaction furnace to 10 to 70% with nitrogen gas and ammonia gas supplied from another container such as a cylinder or the like, and perform the sulphinitriding treatment for a predetermined time.

【0022】ここで無色硫化アンモニウム溶液の液面上
ガス(ヘッドガス)中のH2Sの濃度は25℃において
30ppm、黄色硫化アンモニウム溶液の液面上ガス中
のH2S濃度は1250ppmであるので、上記部材表
層部に形成する構成要件を満足させるためには、無色硫
化アンモニウム溶液と黄色硫化アンモニウム溶液の割合
を6:1ないし1:1の範囲とし、液面上ガス中のH2
S濃度を100ppmないし600ppmの範囲とす
る。
Here, the concentration of H 2 S in the on-liquid gas (head gas) of the colorless ammonium sulfide solution is 30 ppm at 25 ° C., and the H 2 S concentration in the on-liquid gas of the yellow ammonium sulfide solution is 1250 ppm. Therefore, in order to satisfy the constituent requirements to be formed on the surface layer of the member, the ratio of the colorless ammonium sulfide solution to the yellow ammonium sulfide solution is set in the range of 6: 1 to 1: 1 and H 2 in the gas above the liquid surface is adjusted.
The S concentration is in the range of 100 ppm to 600 ppm.

【0023】上記浸硫窒化処理のうち、少なくとも部材
本体側に形成させる窒化層に、白層と窒素拡散とを含有
させるには、反応炉の加熱温度を高めにして窒素の拡散
効率を高めるとともに、窒化の供給源となる前記反応炉
内のアンモニア濃度を高めるのが望ましい。そのために
反応炉の加熱温度を500〜600℃、反応炉内のアン
モニア濃度を20〜70%にするのがよい。また、少な
くとも部材本体側に形成させる窒化層が窒素拡散層のみ
含有させるには、反応炉の加熱温度を低めにして窒素の
拡散を抑制するとともに、窒化の供給源となる前記反応
炉内のアンモニア濃度を低めとするのが望ましい。その
ためには、反応炉の加熱温度を460〜550℃、反応
炉内のアンモニア濃度を10〜40%にするのがよい。
In the above nitrosulphurizing process, at least the nitriding layer formed on the member body side contains a white layer and nitrogen diffusion, by increasing the heating temperature of the reaction furnace and increasing the nitrogen diffusion efficiency. It is desirable to increase the concentration of ammonia in the reactor as a source of nitriding. For this purpose, the heating temperature of the reaction furnace is preferably 500 to 600 ° C., and the ammonia concentration in the reaction furnace is preferably 20 to 70%. Further, in order for the nitrided layer formed at least on the member main body side to contain only the nitrogen diffusion layer, the heating temperature of the reaction furnace is lowered to suppress the diffusion of nitrogen, and the ammonia in the reaction furnace serving as a nitriding supply source is reduced. It is desirable to lower the concentration. For this purpose, the heating temperature of the reactor is preferably 460 to 550 ° C., and the ammonia concentration in the reactor is preferably 10 to 40%.

【0024】なお、硫化アンモニウム溶液以外に、浸硫
と酸化の供給源として、亜硫酸アンモニウム−水和物、
亜硫酸アンモニウム溶液などを用いることもできる。温
間ないし熱間で使用される部材または金型の表層部は、
形態上は多孔質でなく緻密であること、構成上は摩擦係
数が小さく、かつ断熱効果が高く、特に温熱間用金型の
場合には耐焼付性の向上に寄与する硫化鉄を多めに存在
させることが重要である。一方、本発明の温熱間用金型
に用いられる金型母材は、JIS規格に規定されるSK
D61,SKT4に代表される高温強度と靭性を有する
熱間工具鋼が好適であり、これらよりも高温強度の高い
SKD7,SKD8,高速度鋼あるいはこれらの改良鋼
に対しても必要に応じて適用することができる。
In addition to the ammonium sulfide solution, ammonium sulfite-hydrate,
An ammonium sulfite solution or the like can also be used. The surface layer of the member or mold used during warm or hot,
It is dense, not porous in terms of form, and has a low friction coefficient and a high heat insulating effect due to its composition.Especially in the case of a hot mold, there is a large amount of iron sulfide that contributes to the improvement of seizure resistance It is important that On the other hand, the mold base material used for the hot mold of the present invention is SK specified in JIS standard.
Hot tool steels having high temperature strength and toughness typified by D61 and SKT4 are suitable, and can be applied to SKD7, SKD8, high-speed steels or higher-grade steels having higher high-temperature strengths than these, if necessary. can do.

【0025】[0025]

【実施例】以下に実施例に基づいて詳細に説明する。 (実施例1)表1に示す組成の鋼を準備し、焼入れ焼戻
しにより鋼1および鋼2とも48HRCに調質した。そ
の後、直径5mm、長さ20mmの形状を持つ丸棒試験
片を作製し、その端面は砥石で仕上げた。これらの試験
片に表2に示す種々の表面処理を施したものを用いて熱
間焼付試験を行なった。熱間焼付試験は、試験片の一端
部をボール盤のチャックに取付け1540rpmで回転
させ、600℃に加熱したSNCM439製のブロック
に試験片の他端を押し付け、30秒間摩擦摺動させるも
ので、押し付け荷重は0.31〜1.70KNとし、焼
付が発生した押し付け荷重を断面積で除した値を焼付限
界面圧(MPa)として耐焼付性を評価した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. (Example 1) Steel having the composition shown in Table 1 was prepared, and both steel 1 and steel 2 were tempered to 48HRC by quenching and tempering. Thereafter, a round bar test piece having a shape of 5 mm in diameter and 20 mm in length was prepared, and its end face was finished with a grindstone. Hot baking tests were performed on these test pieces that had been subjected to various surface treatments shown in Table 2. In the hot baking test, one end of the test piece was attached to a chuck of a drilling machine, rotated at 1540 rpm, and the other end of the test piece was pressed against a block made of SNCM439 heated to 600 ° C. and frictionally slid for 30 seconds. The load was 0.31 to 1.70 KN, and the value obtained by dividing the pressing load at which seizure occurred by the cross-sectional area was evaluated as the seizure limit surface pressure (MPa) to evaluate the seizure resistance.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表3に、各種表面処理後の表面構造と試験
結果を示す。本発明部材の焼付限界面圧は69.9〜8
6.6MPaの範囲にあり、イオン窒化と比較して2.
2〜2.7倍、塩浴浸硫窒化Aおよび無色硫化アンモニ
ウム溶液を用いたガス浸硫窒化と比較して1.2〜1.
4倍、塩浴浸硫窒化Bと比較して1.8〜2.3倍であ
る。このように本発明部材は、比較部材と比較して焼付
限界面圧が大幅に改善されていることがわかる。なお、
焼付限界面圧に至った後の試験片端部を切り出してミク
ロ組織観察したところ、これらはいずれも再焼入れ組織
を呈しており、鋼のAC1変態点を越える温度に昇温し
ていることが認められ、大きな摩擦発熱があったことが
認められた。これにより、本発明部材は摩擦発熱を著し
く抑制できることがわかる。
Table 3 shows the surface structure after various surface treatments and the test results. The seizure limit surface pressure of the member of the present invention is 69.9 to 8
It is in the range of 6.6 MPa and is 2. compared with ion nitriding.
2 to 2.7 times, 1.2 to 1. 1 times as compared to gas sulphonitriding using salt bath sulphinitriding A and a colorless ammonium sulphide solution.
4 times, 1.8 to 2.3 times compared to the salt bath sulphonitriding B. Thus, it can be seen that the members of the present invention have significantly improved seizure limit surface pressure as compared with the comparative members. In addition,
Was microstructure observed by cutting a test piece end after reaching the seizure limit surface pressure, they both are present a re-hardened structure, that has been heated to a temperature above the AC 1 transformation point of steel It was recognized that a large amount of frictional heat was generated. This indicates that the member of the present invention can significantly reduce frictional heat generation.

【0029】[0029]

【表3】 [Table 3]

【0030】なお、表3のうち試料No.6と試料N
o.8(いずれも比較部材に相当)、試料No.12と
試料No.20(いずれも本発明部材に相当)と同じ処
理を行なった試験片表面部の断面組織観察およびEPM
A(微少部X線分析装置)による線分析を行ない、その
結果を図1、図2、図3および図4にそれぞれ示す。図
1は、本発明部材の対象外である塩浴浸硫窒化Aのもの
で、表面処理層の最上部の混合物層中のSの最大濃度が
2.2wt%、混合物層中の硫黄と酸素の濃度比(S/
O)が0.29で、混合物層の厚さは22μmであっ
た。図2も本発明部材の対象外である塩浴浸硫窒化Bの
もので、混合物中のSの最大濃度が1.1wt%、混合
物層中の硫黄と酸素の濃度比(S/O)が0.03で、
混合物層の厚さは5μmであった。
In Table 3, sample No. 6 and sample N
o. 8 (all correspond to comparative members), 12 and sample no. Observation of cross-sectional structure and EPM of the surface of the test piece subjected to the same treatment as No. 20 (each of which corresponds to the present invention member)
A (microscopic X-ray analyzer) was used to perform line analysis, and the results are shown in FIGS. 1, 2, 3 and 4, respectively. FIG. 1 shows the results of salt bath oxynitridation A, which is out of the scope of the member of the present invention, in which the maximum concentration of S in the uppermost mixture layer of the surface treatment layer is 2.2 wt%, and the amount of sulfur and oxygen in the mixture layer is Concentration ratio (S /
O) was 0.29 and the thickness of the mixture layer was 22 μm. FIG. 2 also shows the case of the salt bath oxynitridation B which is not the object of the present invention, in which the maximum concentration of S in the mixture is 1.1 wt% and the concentration ratio of sulfur to oxygen (S / O) in the mixture layer. 0.03,
The thickness of the mixture layer was 5 μm.

【0031】これに対して、本発明部材に相当する表面
処理層の混合物層のSの最大濃度は、図3に示すように
21wt%で硫黄と酸素の濃度比(S/O)が1.24
で、混合物層の厚さは3μm、また図4ではSの最大濃
度が20wt%、硫黄と酸素の濃度比(S/O)が1.
18で、混合物層の厚さは3.5μmであった。このよ
うに本発明部材の試料No.12(図3)および試料N
o.20(図4)は高濃度のS濃度を有し、混合物層中
のS/Oも従来部材よりも大きいことがわかる。
On the other hand, as shown in FIG. 3, the maximum concentration of S in the mixture layer of the surface treatment layer corresponding to the member of the present invention is 21 wt%, and the concentration ratio of sulfur to oxygen (S / O) is 1. 24
In FIG. 4, the maximum concentration of S is 20 wt%, and the concentration ratio of sulfur to oxygen (S / O) is 1.
At 18, the mixture layer thickness was 3.5 μm. As described above, the sample No. of the member of the present invention. 12 (FIG. 3) and sample N
o. 20 (FIG. 4) has a high S concentration, and it can be seen that the S / O in the mixture layer is higher than that of the conventional member.

【0032】次に前述の混合物層および部材本体側の窒
化層の構造を光学顕微鏡組織で説明する。本発明部材の
試料No.12および試料No.20を図3および図4
に示す。図3は前述の3μm厚さを有する混合物層の部
材本体側に窒化層を有し、窒化層は窒素拡散層単独で形
成され、その厚さは0.08mmであった。図4は前述
の3.5μm厚さを有する混合物層より形成され、その
厚さはそれぞれ白層が5μmおよび窒素拡散層は0.1
4mmであった。なお、混合物層および窒化層の構成物
質については実施例3のX線解析で詳しく述べる。
Next, the structures of the above-mentioned mixture layer and the nitride layer on the member body side will be described with an optical microscope structure. Sample No. of the member of the present invention. 12 and sample no. 20 to FIGS. 3 and 4
Shown in FIG. 3 shows that the mixture layer having a thickness of 3 μm described above had a nitride layer on the member body side, and the nitride layer was formed of a nitrogen diffusion layer alone, and the thickness was 0.08 mm. FIG. 4 is formed from the aforementioned mixture layer having a thickness of 3.5 μm, the thickness of which is 5 μm for the white layer and 0.1 μm for the nitrogen diffusion layer, respectively.
4 mm. The constituent materials of the mixture layer and the nitride layer will be described in detail in Example 3 by X-ray analysis.

【0033】(実施例2)表3に示した試料No.5か
ら試料No.10(比較部材に相当)、試料No.11
から試料No.12および試料No.19から試料N
o.20(本発明部材に相当)と同じ処理を行なった試
験片表面部の断面について表面より25μm毎に荷重1
00gを付加して硬さを測定し、それぞれの最高硬さを
測定した結果を表4に示す。本発明部材の試料No.1
1および試料No.12の最高硬さは他の試料と比較し
て最も軟らかい硬さを示したが、最高硬さは900HV
以上であった。また、本発明部材の試料No.19およ
び試料No.20の最高硬さはそれぞれ1033HVお
よび1042HVであり、最高硬さは900HV以上で
あった。
Example 2 Sample Nos. Shown in Table 3 5 to Sample No. Sample No. 10 (corresponding to a comparative member) 11
From Sample No. 12 and sample no. Sample N from 19
o. 20 (corresponding to the member of the present invention).
The hardness was measured by adding 00 g, and the results of measuring the maximum hardness of each were shown in Table 4. Sample No. of the member of the present invention. 1
1 and sample no. The highest hardness of 12 showed the softest hardness as compared with the other samples, but the highest hardness was 900 HV.
That was all. In addition, the sample No. of the member of the present invention. 19 and sample no. The maximum hardness of 20 was 1033 HV and 1042 HV, respectively, and the maximum hardness was 900 HV or more.

【0034】[0034]

【表4】 [Table 4]

【0035】(実施例3)表3に示した試料No.6お
よび試料No.8(比較部材に相当)、試料No.12
および試料No.20(本発明部材に相当)と同じ処理
を行なった試験片表面部について、最表面よりX線回折
装置を用いてX線解析を行なった結果を図5に示す。X
線回折条件は、Coターゲットを用いて印加電圧40K
V、印加電流200mAの条件で回折角(2θ)は30
°より120°まで測定した。図5の試料No.6およ
び試料No.8の定性分析結果は酸化鉄がFe34およ
び窒化鉄はFe3NおよびFe4Nであり、硫化鉄は検出
されなかった。図5の試料No.12の定性分析結果
は、硫化鉄がFeS、酸化鉄がFe34および窒化鉄は
Fe4Nであった。図5の試料No.20の定性分析結
果は硫化鉄がFeS、酸化鉄がFe34および窒化鉄は
Fe3NとFe4Nであった。
Example 3 Sample Nos. Shown in Table 3 6 and sample no. Sample No. 8 (corresponding to a comparative member) 12
And sample no. FIG. 5 shows the results of X-ray analysis using the X-ray diffractometer from the outermost surface of the surface of the test piece subjected to the same treatment as No. 20 (corresponding to the member of the present invention). X
The line diffraction conditions were as follows: applied voltage 40K using a Co target.
V and the applied current of 200 mA, the diffraction angle (2θ) is 30.
From 120 ° to 120 °. Sample No. of FIG. 6 and sample no. The results of the qualitative analysis of No. 8 showed that the iron oxide was Fe 3 O 4 and the iron nitride was Fe 3 N and Fe 4 N, and no iron sulfide was detected. Sample No. of FIG. The qualitative analysis results of No. 12 showed that iron sulfide was FeS, iron oxide was Fe 3 O 4, and iron nitride was Fe 4 N. Sample No. of FIG. The qualitative analysis results of No. 20 showed that iron sulfide was FeS, iron oxide was Fe 3 O 4, and iron nitride was Fe 3 N and Fe 4 N.

【0036】以上のことから実施例1で示した混合物層
のEPMAの結果と総合的に考えると、試料No.6お
よび試料No.8の混合物層は、少量のSをそれぞれ
2.5wt%と1.1wt%含んではいるが、実質的に
はFe34とFe3Nより形成されることが確認され
た。また、混合物層の部材本体側の窒化層は、光学顕微
鏡の結果と総合的に考えるとFe3N(白層)およびF
4N(窒素拡散層)であることが確認された。次に試
料No.12および試料No.20の混合物層は、実質
的にはFeSとFe34を主体としてFe3Nを含むこ
とが確認された。また、混合物層の部材本体側の窒化層
は試料No.12はFe4N(窒素拡散層)単独より形
成され、試料No.20はFe3N(白層)およびFe4
N(窒素拡散層)より形成されることが確認された。
From the above, when considering the result of EPMA of the mixture layer shown in Example 1 comprehensively, Sample No. 6 and sample no. Although the mixture layer of No. 8 contained 2.5 wt% and 1.1 wt% of small amounts of S, respectively, it was confirmed that it was substantially formed of Fe 3 O 4 and Fe 3 N. The nitride layer on the member body side of the mixture layer is composed of Fe 3 N (white layer) and F
e 4 N (nitrogen diffusion layer) was confirmed. Next, the sample No. 12 and sample no. It was confirmed that the mixture layer of No. 20 substantially contained Fe 3 N with FeS and Fe 3 O 4 as the main components. The nitride layer on the member body side of the mixture layer was the sample No. Sample No. 12 is formed of Fe 4 N (nitrogen diffusion layer) alone. 20 is Fe 3 N (white layer) and Fe 4
It was confirmed to be formed from N (nitrogen diffusion layer).

【0037】(実施例4)表3に示した試料No.6お
よび試料No.8(比較部材に相当)、試料No.12
および試料No.20(本発明部材に相当)と同じ処理
を行なった試験片表面部について表面より連続加重式表
面性測定機にて混合物層と窒化層界面での密着性を評価
するため、引っ掻き抵抗力を測定した結果を表5に示
す。連続加重式表面性測定機の測定条件は、30μのダ
イヤモンド引掻針を用い、移動速度 0.2mm/se
c、垂直荷重のフルスケールが500gを用いた。
Example 4 Sample Nos. Shown in Table 3 6 and sample no. Sample No. 8 (corresponding to a comparative member) 12
And sample no. The surface resistance of the test piece treated in the same manner as that of Sample No. 20 (corresponding to the member of the present invention) was measured from the surface by a continuous load-type surface property measuring instrument in order to evaluate the adhesion at the interface between the mixture layer and the nitride layer. Table 5 shows the results. The measurement conditions of the continuous weighting type surface property measuring machine were as follows: a diamond scratching needle of 30μ was used, and the moving speed was 0.2 mm / sec.
c, 500 g of full scale vertical load was used.

【0038】[0038]

【表5】 [Table 5]

【0039】本発明部材の試料No.12および試料N
o.20の引っ掻き抵抗力は、比較部材と比べて引っ掻
き抵抗力が大きいことが確認された。このことより、本
発明の混合物層の密着性は比較部材と比べて密着性が良
好であると言える。さらに表層部の形態より試料No.
6および試料No.8の混合物層は多孔質形態であるの
に対し、本発明部材の試料No.12および試料No.
20の混合物層は緻密な形態であり、例えば高温鍛造作
業で金型に負荷される熱応力に対して、多孔質で密着性
が乏しい比較部材は、多孔質に起因するヒートクラック
の起点または伝播の通路となり易いのに対して本発明部
材は密着性の改善と緻密な形態を有しているので、温熱
間用金型として使用した場合に寿命向上が予想できる。
Sample No. of the member of the present invention 12 and sample N
o. It was confirmed that the scratch resistance of No. 20 was higher than that of the comparative member. From this, it can be said that the adhesiveness of the mixture layer of the present invention is better than that of the comparative member. Further, Sample No. was determined from the form of the surface layer.
6 and sample no. Sample No. 8 of the member of the present invention, while the mixture layer of Sample No. 8 was in a porous form. 12 and sample no.
The mixture layer of No. 20 is in a dense form. For example, in response to thermal stress applied to a mold in a high-temperature forging operation, a porous and poorly adhered comparative member is a starting point or a propagation point of a heat crack due to the porosity. However, since the member of the present invention has improved adhesion and a dense form, it can be expected to improve the life when used as a mold for warming.

【0040】(実施例5)表3の試料No.2,4,
6,8,10,12,18および20の表層部の構造を
有するリングプレッシャー成形に使用する熱間鍛造金型
を用意した。金型の寸法は直径148mm、高さ66m
mである。鋼2の鋼を金型近似寸法に荒加工し、焼入
れ、焼戻しにより48HRCに調質し、上記の寸法に仕
上げ加工後、所定の表層部の構造が得られるようにそれ
ぞれ表面処理を行なった。鍛造は1600tonの鍛造
プレスを用い、1200℃に高周波加熱したSCM42
0Hワークをアップセット加工後14秒おきに鍛造し
た。表6に金型の寿命を示す。
Example 5 Sample No. 3 in Table 3 2,4
Hot forging dies used for ring pressure molding having the surface layer structures of 6, 8, 10, 12, 18, and 20 were prepared. The dimensions of the mold are 148mm in diameter and 66m in height
m. Steel No. 2 was rough-worked to a mold approximate size, tempered to 48 HRC by quenching and tempering, and after finishing to the above-mentioned size, each was subjected to surface treatment so as to obtain a predetermined surface layer structure. Forging was performed using a 1600-ton forging press and SCM42 heated to 1200 ° C by high frequency.
The 0H work was forged every 14 seconds after the upset processing. Table 6 shows the life of the mold.

【0041】[0041]

【表6】 [Table 6]

【0042】金型はいずれも摩耗による損傷で寿命とな
った。本発明金型は従来の金型である比較金型に比べ
て、いずれも金型寿命が比較金型に比べて約2倍向上
し、耐摩耗性に優れた金型であることがわかる。
Each of the molds reached the end of its life due to damage due to wear. It can be seen that the mold of the present invention has a mold life approximately twice as long as that of the comparative mold as compared with the comparative mold which is a conventional mold, and is excellent in wear resistance.

【0043】[0043]

【発明の効果】以上に述べたように、本発明の表層部の
構造を有する温熱間用部材や温熱間用金型は、主として
硫化鉄が摩擦熱による熱負荷の抑制効果と断熱効果によ
り、金型の寿命を向上させることが可能となり、しかも
主として酸化鉄は金型に使用中に生成されるFe23
FeOにより混合物層が厚くなるのを防止する効果や、
混合物層の形態が緻密であり、混合物層と窒化層の密着
性が向上していることから使用中の混合物層の剥離やク
ラックの起点または伝播の通路になりにくくなる利点が
あり、長期使用に効果の高いものである。
As described above, in the warm member and the warm mold having the surface layer structure of the present invention, the iron sulfide mainly has the effect of suppressing the heat load due to frictional heat and the heat insulating effect. It is possible to improve the life of the mold, and the effect of mainly preventing the oxide layer from being thickened by Fe 2 O 3 or FeO generated during use in the mold,
Since the form of the mixture layer is dense and the adhesion between the mixture layer and the nitride layer is improved, there is an advantage that the mixture layer does not easily become a starting point of cracks or a propagation path of a crack during use, and is used for a long time. It is highly effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較部材の試料No.6の混合物層の構造を示
す電子顕微鏡写真とEPMAによる線分析チャートおよ
び混合物層の部材本体側の窒化層の構造を示す光学顕微
鏡写真である。
FIG. 1 shows a sample No. of a comparative member. 6 is an electron micrograph showing the structure of the mixture layer of No. 6, a line analysis chart by EPMA, and an optical microscope photograph showing the structure of the nitride layer on the member body side of the mixture layer.

【図2】比較部材の試料No.8の混合物層の構造を示
す電子顕微鏡写真とEPMAによる線分析チャートおよ
び混合物層の部材本体側の窒化層の構造を示す光学顕微
鏡写真である。
FIG. 2 shows a sample No. of a comparative member. 8 is an electron micrograph showing the structure of the mixture layer of No. 8, a line analysis chart by EPMA, and an optical microscope photograph showing the structure of the nitride layer on the member body side of the mixture layer.

【図3】本発明部材の試料No.12の混合物層の構造
を示す電子顕微鏡写真とEPMAによる線分析チャート
および混合物層の部材本体側の窒化層の構造を示す光学
顕微鏡写真である。
FIG. 3 shows a sample No. of a member of the present invention. 12 is an electron micrograph showing the structure of a mixture layer of No. 12, a line analysis chart by EPMA, and an optical microscope photograph showing the structure of a nitride layer on the member body side of the mixture layer.

【図4】本発明部材の試料No.20の混合物層の構造
を示す電子顕微鏡写真とEPMAによる線分析チャート
および混合物層の部材本体側の窒化層の構造を示す光学
顕微鏡写真である。
FIG. 4 shows a sample No. of the member of the present invention. 20 is an electron micrograph showing the structure of the mixture layer of No. 20, a line analysis chart by EPMA, and an optical microscope photograph showing the structure of the nitride layer on the member body side of the mixture layer.

【図5】比較部材の試料No.6および試料No.8と
本発明部材の試料No.12および試料No.20のX
線回折図である。
FIG. 5 shows a sample No. of a comparative member. 6 and sample no. 8 and the sample No. of the member of the present invention. 12 and sample no. 20 X
FIG.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年2月7日[Submission date] February 7, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】[0026]

【表1】 [Table 1]

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 鋼を母材とする部材の表層部に硫化鉄と
酸化鉄を主体とする窒素を含む混合物層を有し、前記混
合物層中の硫黄と酸素の重量濃度比(S/O)が0.5
<S/O<10の式を満足する領域を有することを特徴
とする温熱間用部材。
1. A steel-based member having a mixture layer containing nitrogen mainly composed of iron sulfide and iron oxide on a surface layer of a member made of steel, wherein a weight concentration ratio of sulfur and oxygen (S / O) in the mixture layer is ) Is 0.5
A member for warming and warming having a region satisfying a formula of <S / O <10.
【請求項2】 鋼を母材とする部材の表層部に硫化鉄と
酸化鉄を主体とする窒素を含む混合物層を有し、前記混
合物層中の硫黄と酸素の重量濃度比(S/O)が0.5
<S/O<10の式を満足する領域を有し、かつ前記混
合物層の部材本体側に少なくとも窒化層が形成され、前
記窒化層は白層と窒素拡散層からなることを特徴とする
温熱間用部材。
2. A member containing steel as a base material has a mixture layer containing nitrogen mainly composed of iron sulfide and iron oxide on a surface layer portion thereof, and a weight concentration ratio of sulfur and oxygen (S / O) in the mixture layer. ) Is 0.5
<S / O <10, wherein at least a nitride layer is formed on the member body side of the mixture layer, and the nitride layer is composed of a white layer and a nitrogen diffusion layer. Intermediate member.
【請求項3】 鋼を母材とする部材の表層部に硫化鉄と
酸化鉄を主体とする窒素を含む混合物層を有し、前記混
合物層中の硫黄と酸素の重量濃度比(S/O)が0.5
<S/O<10の式を満足する領域を有し、かつ前記混
合物層の部材本体側に少なくとも窒化層が形成され、前
記窒化層は窒素拡散層からなることを特徴とする温熱間
用部材。
3. A member containing steel as a base material has a mixture layer containing nitrogen mainly composed of iron sulfide and iron oxide on a surface layer portion thereof, and a weight concentration ratio of sulfur and oxygen (S / O) in the mixture layer. ) Is 0.5
A member having a region satisfying the expression <S / O <10, and at least a nitride layer formed on the member body side of the mixture layer, wherein the nitride layer comprises a nitrogen diffusion layer. .
【請求項4】 請求項1ないし3のいずれかに記載の混
合物層中のSの濃度が重量%で5〜30である温熱間用
部材。
4. A member for hot and warm use, wherein the concentration of S in the mixture layer according to claim 1 is 5 to 30 by weight%.
【請求項5】 請求項1ないし4のいずれかに記載の混
合物層の厚さが0.1〜20μmの緻密な層である温熱
間用部材。
5. A member for warming and warming, wherein the mixture layer according to claim 1 is a dense layer having a thickness of 0.1 to 20 μm.
【請求項6】 請求項2または3に記載の窒化層の最高
硬さが900HV以上である温熱間用部材。
6. A hot / hot member wherein the nitride layer according to claim 2 or 3 has a maximum hardness of 900 HV or more.
【請求項7】 ガス発生容器内に無色硫化アンモニウム
溶液と黄色硫化アンモニウム溶液を6:1ないし1:1
の割合で供給し、発生する液面上ガスと窒素ガスまたは
アルゴンガスからなる搬送用ガスとの混合ガス中の硫化
水素ガス濃度を100〜600ppm、アンモニアガス
濃度を0.1〜1.0%に調整して、鋼を母材とする温
熱間用部材を配置して460〜600℃に加熱された反
応炉に導入するとともに、別容器から供給する窒素ガス
とアンモニアガスにより前記反応炉内のアンモニア濃度
を10〜70%に調整して、ガス浸硫窒化処理すること
を特徴とする温熱間用部材の製造方法。
7. A 6: 1 to 1: 1 mixture of a colorless ammonium sulfide solution and a yellow ammonium sulfide solution in a gas generating vessel.
And the concentration of hydrogen sulfide gas in the mixed gas of the generated gas on the liquid surface and the carrier gas composed of nitrogen gas or argon gas is 100 to 600 ppm, and the ammonia gas concentration is 0.1 to 1.0%. And a warming member having steel as a base material is arranged and introduced into a reaction furnace heated to 460 to 600 ° C., and nitrogen gas and ammonia gas supplied from another container are used for the inside of the reaction furnace. A method for producing a member for hot and warm use, comprising adjusting the ammonia concentration to 10 to 70% and subjecting it to gas sulphiditriding.
【請求項8】 反応炉の加熱温度が500〜600℃で
あり、前記反応炉内のアンモニア濃度が20〜70%で
ある請求項7に記載の温熱間用部材の製造方法。
8. The method according to claim 7, wherein the heating temperature of the reactor is 500 to 600 ° C., and the ammonia concentration in the reactor is 20 to 70%.
【請求項9】 反応炉の加熱温度が460〜550℃で
あり、前記反応炉内のアンモニア濃度が10〜40%で
ある請求項7に記載の温熱間用部材の製造方法。
9. The method according to claim 7, wherein the heating temperature of the reactor is 460 to 550 ° C., and the ammonia concentration in the reactor is 10 to 40%.
【請求項10】 請求項1ないし6のいずれかに記載の
温熱間用部材で構成したことを特徴とする温熱間用金
型。
10. A hot mold comprising the warm member according to any one of claims 1 to 6.
JP3324897A 1997-01-31 1997-01-31 Warm member and hot member, their production, and warm die and hot die using same Pending JPH10219420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3324897A JPH10219420A (en) 1997-01-31 1997-01-31 Warm member and hot member, their production, and warm die and hot die using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324897A JPH10219420A (en) 1997-01-31 1997-01-31 Warm member and hot member, their production, and warm die and hot die using same

Publications (1)

Publication Number Publication Date
JPH10219420A true JPH10219420A (en) 1998-08-18

Family

ID=12381195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324897A Pending JPH10219420A (en) 1997-01-31 1997-01-31 Warm member and hot member, their production, and warm die and hot die using same

Country Status (1)

Country Link
JP (1) JPH10219420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020685A1 (en) * 2002-08-29 2004-03-11 Honda Giken Kogyo Kabushiki Kaisha Member made of steel product having layers formed thereon and method for producing member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020685A1 (en) * 2002-08-29 2004-03-11 Honda Giken Kogyo Kabushiki Kaisha Member made of steel product having layers formed thereon and method for producing member

Similar Documents

Publication Publication Date Title
JP5143531B2 (en) Cold mold steel and molds
JP4737606B2 (en) Cold die steel with excellent deformation suppression characteristics and galling resistance
Ceschini et al. Effect of laser surface treatment on the dry sliding behaviour of the EN-GJS400-12 ductile cast iron
Psyllaki et al. Microstructure and tribological behaviour of liquid nitrocarburised tool steels
JPWO2009107288A1 (en) Shot peening projection material, finish line, manufacturing method, and shot peening projection material
JP3305972B2 (en) Warm mold and method for manufacturing the same
US7041149B2 (en) Sintered sprocket for silent chain and production method therefor
JP4844874B2 (en) Manufacturing method of press-molded products
JP5090257B2 (en) Tool steel suitable for aluminum machining dies and aluminum machining dies
JPH10204610A (en) Member for warm or hot use, its production and die for warm or hot use using the member
JPH10219420A (en) Warm member and hot member, their production, and warm die and hot die using same
JP3228440B2 (en) Hot working mold with excellent heat crack resistance
JP6692005B1 (en) Manufacturing method of forged products
JP4650706B2 (en) Tool for hot working and gas nitronitriding method
JPH10219423A (en) Member for warm and hot working and production therefor as well as metal mold for warm and hot working formed by using the same
JPH06172943A (en) Die for hot working excellent in wear resistance
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JP2015137734A (en) Piston ring and method for manufacturing the same
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPH0361345A (en) Hot-working tool made of ni-base alloy and aftertreatment for same
KR20100107874A (en) A method for the surface treatmet of mold
JP7289728B2 (en) Nitrided material manufacturing method and nitrided material
JP2019099867A (en) Ferrous powder mixture and method for producing ferrous sintered member
WO2020241087A1 (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
JPH04308059A (en) Tool steel for hot working