JPH10219423A - Member for warm and hot working and production therefor as well as metal mold for warm and hot working formed by using the same - Google Patents

Member for warm and hot working and production therefor as well as metal mold for warm and hot working formed by using the same

Info

Publication number
JPH10219423A
JPH10219423A JP4300997A JP4300997A JPH10219423A JP H10219423 A JPH10219423 A JP H10219423A JP 4300997 A JP4300997 A JP 4300997A JP 4300997 A JP4300997 A JP 4300997A JP H10219423 A JPH10219423 A JP H10219423A
Authority
JP
Japan
Prior art keywords
layer
hot
iron
warm
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP4300997A
Other languages
Japanese (ja)
Inventor
Yoshitaka Chiba
芳孝 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4300997A priority Critical patent/JPH10219423A/en
Publication of JPH10219423A publication Critical patent/JPH10219423A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member for warm and hot working, such as for machine parts, having sliding parts to be used warm and hot, a process for producing the same and a metal mold for warm and hot service formed by using the same. SOLUTION: This member for warm and hot working has a mixture layer consisting of iron sulfide particles and iron nitride particles on the surface layer part of the member. The region where the weight concn. ratio (S/N) of the sulfur and nitrogen in the mixture layers satisfies the equation 0.5<S/N<10 exists in the mixture layer. The member body side preferably has an intermediate layer consisting of iron sulfide, iron nitride and iron oxide. Further, at least a nitrided layer is preferably formed on the member body side of the intermediate layer. The member is adequate for the metal mold for warm and hot working.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温間ないし熱間で
使用される温熱間用部材、およびその製造方法、ならび
にこれを用いた温熱間用金型に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot or hot member used warm or hot, a method for manufacturing the same, and a hot mold using the same.

【0002】[0002]

【従来の技術】従来、例えば温熱間鍛造用金型(以下、
金型と記す)には、主にJISに規定されるSKD6
1,SKT4に代表される熱間工具鋼が用いられてお
り、特に耐久性を要求される用途には、これらよりも高
温強度の高いSKD7,SKD8,高速度鋼あるいはこ
れらの改良鋼が用いられている。近年、被加工製品の高
精度化や加工能率の向上の要求に呼応して、金型の靭性
を保持するとともに、金型表面に耐摩耗性、耐焼付性を
付与する目的から、一般に表面処理が施されるようにな
ってきた。このような金型に対して実施される表面処理
方法としては、イオン法、塩浴法、ガス法等による単一
窒化処理が主流である。
2. Description of the Related Art Conventionally, for example, a mold for hot forging (hereinafter, referred to as a forging die).
The mold is mainly used for SKD6 specified in JIS.
1, hot tool steels represented by SKT4 are used. In particular, for applications requiring durability, SKD7, SKD8, high-speed steels or higher-grade steels having higher hot strength than these are used. ing. In recent years, in response to demands for higher precision and improved processing efficiency of products to be processed, surface treatment is generally performed to maintain the toughness of the mold and to provide wear resistance and seizure resistance to the mold surface. Is being applied. As a surface treatment method performed on such a mold, a single nitriding treatment by an ion method, a salt bath method, a gas method, or the like is mainly used.

【0003】例えば、特開平7−138733号には、
金型の耐ヒートクラック性および塑性流動を軽減するた
めに、イオン窒化処理後に950℃まで昇温させて高周
波加熱により最表面の脆弱な、白層と呼ばれている高濃
度窒素化合物の低減と、窒素拡散層を3.0mmまで深
くする方法が提案されている。また、特開昭57−54
551号には金型芯部の靭性を保持しながら、同時に焼
付き防止を目的として、低温(350〜450℃)でイ
オン窒化する熱間加工用金型を提案しているが、これら
の効果は従来手法の窒化処理材と比較して金型寿命は2
〜3割程度の金型寿命の向上であり、飛躍的な金型寿命
改善の手法とは必ずしも言えない面があった。
For example, Japanese Patent Application Laid-Open No. 7-138733 discloses that
In order to reduce heat crack resistance and plastic flow of the mold, the temperature is raised to 950 ° C after ion nitriding and high-frequency heating is used to reduce the fragile, high-concentration nitrogen compounds called the white layer on the outermost surface. A method has been proposed in which the nitrogen diffusion layer is deepened to 3.0 mm. Also, Japanese Patent Application Laid-Open No. 57-54
No. 551 proposes a hot working mold that performs ion nitriding at a low temperature (350 to 450 ° C.) for the purpose of preventing seizure while maintaining the toughness of the mold core. Has a mold life of 2 times compared with the conventional nitriding material.
This is an improvement of the mold life of about 30%, which is not necessarily a dramatic improvement of the mold life.

【0004】近年のニアネットシェイプ化は、製品の形
状が複雑で、加工時に被加工材の肉流れが大きくなり、
金型作業面との摩擦が過大となり、摩擦熱による金型表
面部の軟化がより進行し、金型自身の変態点(700〜
900℃)を越えてしまうほど高温になる場合がある。
その結果、金型自身が本来持つべき特性を失わせ、高温
特性が著しく低下し、金型の損耗現象が加速されて短寿
命となる。また現在、表面処理の主流として実施されて
いるイオン窒化など、単一の窒化処理を施した金型で
は、形成させた窒化物の一部が過熱のため分解してしま
い、その効果が十分に発揮できなくなるという問題があ
った。
[0004] In recent years, near-net shaping has resulted in a complicated product shape and a large flow of material during processing.
The friction with the working surface of the mold becomes excessive, the surface of the mold is softened more by the frictional heat, and the transformation point of the mold itself (700 to
(900 ° C.).
As a result, the properties that the mold itself should have are lost, the high-temperature properties are significantly reduced, and the mold wear phenomenon is accelerated to shorten the life. In addition, in molds that have been subjected to a single nitridation treatment, such as ion nitridation, which is currently performed as the mainstream of surface treatment, part of the formed nitride is decomposed due to overheating, and the effect is not sufficient. There was a problem that it could not be demonstrated.

【0005】単一窒化処理以外の手法としては、特開平
4−228557号には、建設機械の油圧ポンプおよび
モータなどに使用されるピストン、シリンダ等の潤滑油
保有性向上を目的として、油中で使用される冷間摺動部
材に対してガス浸硫窒化方法および装置が提案されてい
る。また、特開昭60−39155号の提案では、硫化
アンモニウムの分解ガスとアンモニアガスを導入し、鉄
系製品の表面に主に硫化第2鉄(FeS2)からなる第
一層を形成させ、第二層としてFe4Nの窒化鉄を形成
させた構造としている。
[0005] As a method other than the single nitriding treatment, Japanese Patent Application Laid-Open No. 4-228557 discloses a method for improving lubricating oil holding properties of pistons and cylinders used in hydraulic pumps and motors of construction machinery. Gas sulphonitriding methods and devices have been proposed for cold sliding members used in. Further, the proposal of JP 60-39155, to form a first layer consisting of introducing a decomposition gas and ammonia gas ammonium sulfide, mainly sulphide ferric on the surface of the iron-based products (FeS 2), The second layer has a structure in which Fe 4 N iron nitride is formed.

【0006】また片桐等(日本金属学会第51巻、第1
0号(1987),P.930〜934)は、無色硫化
アンモニウム溶液を用い、硫化水素濃度150ppm、
アンモニア濃度75%、処理温度580℃、処理時間1
〜6時間の条件で鉄鋼材料に浸硫窒化処理を施すことに
より、最表面に多孔質の硫化第1鉄(FeS)層が形成
され、これに酸化鉄(Fe34)が共存した表面層を得
たことが報告されている。
Also, Katagiri et al. (The Institute of Metals, Vol. 51, No. 1
0 (1987), p. 930 to 934) use a colorless ammonium sulfide solution, a hydrogen sulfide concentration of 150 ppm,
Ammonia concentration 75%, processing temperature 580 ° C, processing time 1
By subjecting the steel material to a nitrosulphurizing treatment under conditions of up to 6 hours, a porous ferrous sulfide (FeS) layer is formed on the outermost surface, and a surface in which iron oxide (Fe 3 O 4 ) coexists It is reported that a layer was obtained.

【0007】さらに、椛澤(熱処理 36巻 6号(19
96),P.383〜387)は、N2で希釈させたH2
Sボンベ、純N2ボンベ,および純NH3ボンベを使用し
た数種の処理サイクルで前記3種のボンベにCO2ボン
ベを用いたガス軟窒化対応サイクルを示し、得られた表
面組織は、窒素化合物層の上に固体潤滑性のある黒い浸
硫層を形成させ、その浸硫層のFeS,Fe1-xSは、
硫黄が窒素と異なり、α−Feに対し、ほとんど固溶限
をもたないので、FeS,Fe1-xSの浸硫層は鋼の表
面に限定され、内部に拡散しないことを報告されてい
る。その他、特公平7−42566号では、軟鋼、鋳鉄
からなるボルト、ナットなど地下埋設下での防食、また
は地上部の防錆や美観向上を目的として四酸化三鉄(F
34)を母材に形成させる酸化鉄形成方法などが提案
されている。
Further, Kabasawa (Heat Treatment 36, 6 (19
96), p. 383-387) is, H 2, which was diluted with N 2
Several types of processing cycles using S cylinder, pure N 2 cylinder, and pure NH 3 cylinder show a gas nitrocarburizing cycle using CO 2 cylinder for the three kinds of cylinders. A black lubricating layer having solid lubricity is formed on the compound layer, and the FeS, Fe 1-x S of the vulcanizing layer is
It has been reported that sulfur differs from nitrogen in that it has almost no solid solubility limit for α-Fe, so the sulfurized layer of FeS, Fe 1-x S is limited to the surface of steel and does not diffuse inside. I have. In addition, in Japanese Patent Publication No. 7-42566, ferrous oxide (F) is used for the purpose of preventing corrosion under underground burial such as bolts and nuts made of mild steel and cast iron, or for preventing rust and improving the appearance of the ground.
There has been proposed a method of forming iron oxide in which e 3 O 4 ) is formed on a base material.

【0008】[0008]

【発明が解決しようとする課題】一般に、高温の被加工
材を塑性加工する際の金型の損耗は、下記に示す経過に
より進行する。金型表面部は、次のような被加工材との
接触により熱的衝撃を受ける。すなわち、高温の被加工
材の表面は、金型作業面上に強く押し付けられ、型彫面
に沿って流動し、摩擦熱の発生と塑性変形による発熱を
伴いながら塑性加工を受ける。この作業中に金型表面部
は、急激に昇温して膨張する。作業が終了すると被加工
材は、素早く金型から離型される。金型表面部は、被加
工材が離型するのと同時に冷却し始め、収縮が起る。
Generally, the wear of a metal mold during plastic working of a high-temperature workpiece proceeds in the following course. The mold surface receives a thermal shock due to the following contact with the workpiece. That is, the surface of the high-temperature workpiece is pressed strongly onto the mold working surface, flows along the die-sculptured surface, and undergoes plastic working while generating frictional heat and generating heat due to plastic deformation. During this operation, the surface of the mold rapidly rises in temperature and expands. When the work is completed, the workpiece is quickly released from the mold. The mold surface starts to cool at the same time as the workpiece is released, and contracts.

【0009】上記のような被加工材の塑性加工が繰り返
される結果、金型表面部には膨張と収縮による熱疲労を
受けるだけでなく、熱影響により軟化した金型表面部
は、加工応力や膨張・収縮に伴って発生する応力に対す
る抵抗力が低下しており、金型表層部でヒートクララッ
クや塑性流動が生じ易くなり、摩耗などの損耗が進行す
る。この際、特に金型表面と被加工材が直接接触すると
焼付現象が発生し易くなる。焼付が発生すると被加工材
から金型表面部への熱伝達が容易となり、金型の損耗が
より急速に進行する。
As a result of the repetitive plastic working of the material to be processed as described above, not only the mold surface is subject to thermal fatigue due to expansion and contraction, but also the mold surface softened by heat is affected by the processing stress and The resistance to the stress generated due to expansion and contraction is reduced, and heat crack and plastic flow are likely to occur on the surface layer of the mold, and wear such as wear proceeds. At this time, especially when the surface of the mold and the workpiece are in direct contact, the seizure phenomenon is likely to occur. When seizure occurs, heat transfer from the workpiece to the surface of the mold is facilitated, and wear of the mold proceeds more rapidly.

【0010】このため、通常の作業では、1サイクル毎
に金型表面に潤滑剤あるいは離型剤が塗布され、これら
が金型表面と被加工材との間に、フィルム状に介在し、
金型作業面と被加工材が直接接触しない利点がある。反
面、昇温した金型表面部は、上記の冷剤が塗布されるた
め冷却速度が大きくなり、単位時間内の収縮量が大きく
なる弊害を伴う。前述したように通常の熱間鍛造用金型
には、単一窒化処理されたものが使用されている他、従
来から室温付近の比較的低温側で使用される摺動部を有
する機械部品等に浸硫窒化処理が施されている。特開平
4−228557号に開示された内容は、潤滑油保有性
の高いFeS2を200〜350℃で二次加熱処理を行
なって、鉄鋼部材の最表面に硫化第2鉄(FeS2)を
形成させて潤滑効果を高めたものである。
For this reason, in a normal operation, a lubricant or a release agent is applied to the mold surface every cycle, and these are interposed in a film form between the mold surface and the workpiece.
There is an advantage that the work surface of the mold does not come into direct contact with the workpiece. On the other hand, since the above-mentioned cooling agent is applied to the heated surface of the mold, the cooling rate is increased, and the mold shrinkage per unit time is disadvantageously increased. As described above, a normal hot forging die is a single-nitrided die, and a mechanical part having a sliding portion conventionally used on a relatively low temperature side near room temperature. Has been subjected to a nitrosulphurizing treatment. Japanese Patent Application Laid-Open No. 4-228557 discloses that FeS 2 having a high lubricating oil content is subjected to secondary heat treatment at 200 to 350 ° C., and ferrous sulfide (FeS 2 ) is formed on the outermost surface of a steel member. It is formed to enhance the lubrication effect.

【0011】さらに椛澤(熱処理 36巻 6号(199
6),P.383〜387)に開示された内容は、固体
潤滑性のある浸硫層を3〜5μmに形成させて、室温
(20℃)での耐焼付性や耐摩耗性の向上に効果をもた
せたものである。ところが、例えばこのような処理を施
した金型を本発明が対象とする高温に加熱された被加工
材を高圧のもとで成形すると、硫化第2鉄や硫化第1鉄
(FeS,Fe1-xS)は接合する窒化層との熱膨張係
数の違いにより容易に剥離や脱落が起り、温熱間用金型
としては使用に耐えないものである。
Further, Kabasawa (Heat Treatment 36, 6 (199)
6), p. 383-387) discloses that a sulfurized layer having a solid lubricating property is formed in a thickness of 3-5 μm to improve the seizure resistance and wear resistance at room temperature (20 ° C.). It is. However, for example, when a mold that has been subjected to such a treatment is formed under high pressure from a workpiece heated to a high temperature, which is a target of the present invention, ferrous sulfide or ferrous sulfide (FeS, Fe 1 -x S) easily peels off or falls off due to a difference in thermal expansion coefficient from the nitride layer to be joined, and is unsuitable for use as a warm-hot mold.

【0012】また、特開昭60−39155号に提案さ
れた各層は多孔質であるため、金型に適用した場合に
は、高温、例えば600℃以上の被加工材を高圧のもと
で成形すると、ヒートクラックの起点または伝搬通路と
なり易く使用に適さない。さらに片桐等によって提案さ
れた方法は、供給原料として無色硫化アンモニウム溶液
を用いているため、得られた表層部の硫黄と酸素の重量
濃度比(S/O)が0.5未満となり、金型表面と被加
工材との摩擦係数を十分下げることができず、また上述
したように多孔質層に起因するヒートクラックの起点ま
たは伝播の通路となり易く、高温の被加工材を高圧下で
塑性加工する金型の用途には必ずしも適したものとは言
えない。
Further, since each layer proposed in Japanese Patent Application Laid-Open No. 60-39155 is porous, when applied to a mold, a material to be processed at a high temperature, for example, 600 ° C. or higher, is formed under a high pressure. Then, it is likely to be a starting point of a heat crack or a propagation path, which is not suitable for use. Further, the method proposed by Katagiri et al. Uses a colorless ammonium sulfide solution as a feedstock, so that the weight concentration ratio (S / O) of sulfur and oxygen in the surface layer obtained is less than 0.5, and The coefficient of friction between the surface and the work material cannot be reduced sufficiently, and as described above, it tends to be a starting point or a propagation path for heat cracks caused by the porous layer. It is not always suitable for the use of the mold.

【0013】これら従来の浸硫窒化法によって鉄鋼材料
の表面に形成される層は、本発明が対象の一つとする金
型のように高温に加熱された被加工材を塑性加工する場
合には、多孔質層に起因するヒートクラックの起点や伝
播の通路となり易く、あるいは硫化第2鉄(FeS2
や硫化第1鉄(FeS,Fe1-xS)は接合する窒化鉄
との熱膨張係数の違いにより、容易に剥離や脱落が起り
易く、十分機能できなかったのである。
The layer formed on the surface of the steel material by the conventional sulphiditriding method can be used when plastically working a material heated to a high temperature, such as a mold to which the present invention is applied. , Which is likely to be a starting point or a propagation path for heat cracks caused by the porous layer, or ferric sulfide (FeS 2 )
Iron and ferrous sulfide (FeS, Fe 1-x S) were apt to be easily peeled off or dropped off due to the difference in thermal expansion coefficient from the iron nitride to be joined, and could not function sufficiently.

【0014】[0014]

【課題を解決するための手段】発明者は、例えば金型と
して使用する場合、高温に加熱された被加工材の熱や塑
性変形による発熱等の熱をどうすれば直接金型表面に伝
達されずに遮断でき、金型の寿命を大幅に向上すること
ができるかについて検討した。その結果、金型自身の表
面を改質して、金型表面と被加工材との間に焼付が起こ
りにくく、かつ潤滑効果と断熱効果とを兼備できる緻密
な表面処理皮膜を形成することができれば、摩擦熱の発
生を抑制し、さらに熱伝達による金型表面部の軟化防止
となり、ひいては金型の寿命向上が可能となることがわ
かった。発明者が部材の表層部に形成される各種皮膜に
ついて、実験を重ねた結果、硫化鉄粒子と窒化鉄粒子か
らなる混合物層を形成させ、特に前記混合物層中の硫黄
と窒素の重量濃度比(S/N)を特定範囲内に限定する
と、非常に効果が高くなることを見出した。
When the present invention is used, for example, as a mold, the inventor can determine how heat such as heat of a workpiece heated to a high temperature or heat generated by plastic deformation is not directly transmitted to the mold surface. We examined whether it could be shut off and the life of the mold could be significantly improved. As a result, it is possible to modify the surface of the mold itself to form a dense surface treatment film that is less likely to seize between the mold surface and the workpiece, and has both a lubricating effect and a heat insulating effect. It has been found that if possible, the generation of frictional heat is suppressed, the surface of the mold is softened by heat transfer, and the life of the mold can be improved. As a result of repeated experiments on various films formed on the surface layer of the member, the inventors formed a mixture layer composed of iron sulfide particles and iron nitride particles, and particularly, a weight concentration ratio of sulfur and nitrogen in the mixture layer ( It has been found that limiting S / N) to a specific range greatly enhances the effect.

【0015】すなわち、本発明の第1発明は、部材の表
層部に硫化鉄粒子と窒化鉄粒子からなる混合物層を有
し、前記混合物層中の硫黄と窒素の重量濃度比(S/
N)が0.5<S/N<10の式を満足する領域が存在
することを特徴とする温熱間用部材であり、第2発明
は、部材の表層部に硫化鉄粒子と窒化鉄粒子からなる混
合物層を有し、前記混合物層中の硫黄と窒素の重量濃度
比(S/N)が0.5<S/N<10の式を満足する領
域が存在し、かつ前記混合物層の部材本体側に少なくと
も窒化層が形成されていることを特徴とする温熱間用部
材である。
That is, the first invention of the present invention has a mixture layer composed of iron sulfide particles and iron nitride particles on the surface layer of a member, and the weight concentration ratio of sulfur to nitrogen (S /
N) is a member for warming and warming, characterized in that there is a region satisfying the expression of 0.5 <S / N <10. The second invention provides an iron sulfide particle and an iron nitride particle on a surface layer of the member. Wherein there is a region where the weight concentration ratio of sulfur to nitrogen (S / N) in the mixture layer satisfies the expression 0.5 <S / N <10, and A hot / warm member characterized in that at least a nitride layer is formed on the member body side.

【0016】また第3発明は、部材の表層部に硫化鉄粒
子と窒化鉄粒子からなる混合物層を有し、前記混合物層
中の硫黄と窒素の重量濃度比(S/N)が0.5<S/
N<10の式を満足する領域を有し、かつ前記混合物層
の部材本体側に硫化鉄と窒化鉄および酸化鉄からなる中
間層を有することを特徴とする温熱間用部材であり、第
4発明は、部材の表層部に硫化鉄粒子と窒化鉄粒子から
なる混合物層を有し、前記混合物層中の硫黄と窒素の重
量濃度比(S/N)が0.5<S/N<10の式を満足
する領域を有し、かつ前記混合物層の部材本体側に硫化
鉄と窒化鉄および酸化鉄からなる中間層を有し、さらに
前記中間層の部材本体側に少なくとも窒化層が形成され
ていることを特徴とする温熱間用部材である。
According to a third aspect of the present invention, there is provided a member having a mixture layer of iron sulfide particles and iron nitride particles on a surface layer of the member, wherein a weight concentration ratio (S / N) of sulfur to nitrogen in the mixture layer is 0.5. <S /
A member for warm / hot use, characterized by having a region satisfying the equation of N <10, and having an intermediate layer composed of iron sulfide, iron nitride and iron oxide on the member body side of the mixture layer. The invention has a mixture layer composed of iron sulfide particles and iron nitride particles on the surface layer of the member, and the weight concentration ratio (S / N) of sulfur and nitrogen in the mixture layer is 0.5 <S / N <10. And a middle layer made of iron sulfide, iron nitride, and iron oxide on the member body side of the mixture layer, and at least a nitride layer is formed on the member body side of the intermediate layer. It is a member for warm and hot characterized by having.

【0017】さらに第5発明は、部材の表層部に硫化鉄
粒子と窒化鉄粒子からなる混合物層を有し、前記混合物
層中の硫黄と窒素の重量濃度比(S/N)が0.5<S
/N<10の式を満足する領域が存在し、かつ前記混合
物層と部材本体側に形成される窒化層との間に硫化鉄と
窒化鉄および酸化鉄からなる中間層が形成され、前記窒
化層は白層と窒素拡散層からなることを特徴とする温熱
間用部材である。
According to a fifth aspect of the present invention, there is provided a member having a mixture layer composed of iron sulfide particles and iron nitride particles on a surface layer of the member, wherein a weight concentration ratio (S / N) of sulfur to nitrogen in the mixture layer is 0.5. <S
/ N <10, and an intermediate layer made of iron sulfide, iron nitride and iron oxide is formed between the mixture layer and the nitride layer formed on the member body side. The layer is a warm / hot member characterized by comprising a white layer and a nitrogen diffusion layer.

【0018】上記混合物層中のSの濃度は、重量%で5
〜35、中間層中のSの濃度は重量%で1〜10とする
のが好ましい。また、上記混合物層の厚さは0.1〜2
0μmおよび中間層の厚さは0.1〜40μmの緻密な
層であることが望ましく、さらに上記窒化層の最高硬さ
は800HV以上とするのがよい。
The concentration of S in the mixture layer is 5% by weight.
The concentration of S in the intermediate layer is preferably 1 to 10 by weight%. The thickness of the mixture layer is 0.1 to 2
It is desirable that the thickness of the intermediate layer is 0 μm and the thickness of the intermediate layer is 0.1 to 40 μm, and that the nitride layer has a maximum hardness of 800 HV or more.

【0019】上記温熱間用部材を製造する第6発明は、
ガス発生容器内に無色硫化アンモニウム溶液と黄色硫化
アンモニウム溶液を6:1ないし1:1の割合で供給
し、発生する液面上ガスとアルゴンまたは窒素ガスから
なる搬送用ガスとの混合ガス中の硫化水素ガス濃度を1
00〜600ppm、アンモニアガス濃度を0.1〜
1.0%に調整して、温熱間用部材を配置して600〜
650℃に加熱された反応炉に導入するとともに、別容
器から供給するアルゴンまたは窒素ガスとアンモニアガ
スにより前記反応炉内のアンモニア濃度を20〜70%
に調整し、600〜650℃保持後の冷却速度を30〜
250℃/Hrに徐冷してガス浸硫窒化処理することを
特徴とする温熱間用部材の製造方法である。また、上記
第1ないし第6発明で構成される温熱間用部材は温熱間
用金型として好ましい。
A sixth aspect of the invention for producing the above-mentioned warm / hot member is as follows.
A colorless ammonium sulfide solution and a yellow ammonium sulfide solution are supplied into the gas generating vessel at a ratio of 6: 1 to 1: 1. The mixed gas of the gas on the liquid surface and the carrier gas composed of argon or nitrogen gas is supplied. Hydrogen sulfide gas concentration of 1
00 to 600 ppm, ammonia gas concentration 0.1 to
Adjust to 1.0%, arrange the hot / cold members and
The ammonia concentration in the reaction furnace is set to 20 to 70% by introducing into the reaction furnace heated to 650 ° C. and supplying argon or nitrogen gas and ammonia gas supplied from another container.
The cooling rate after holding at 600 to 650 ° C is 30 to
This is a method for producing a member for hot and warm use, wherein the member is gradually cooled to 250 ° C./Hr and subjected to a gas sulfide nitriding treatment. Further, the warming member constituted by the first to sixth inventions is preferable as a warming mold.

【0020】[0020]

【発明の実施の形態】本発明の温熱間用部材の特徴の第
1は、部材の表層部に硫化鉄粒子と窒化鉄粒子からなる
混合物層を有し、該混合物層中の硫黄と窒素の重量濃度
比(S/N)を0.5<S/O<10に限定した点にあ
る。前記混合物層中の硫黄と窒素の濃度比(S/N)が
0.5以下では、機械部品などの摺動部や金型作業面と
被加工材との摩擦係数を十分低減することができず、逆
に10以上の場合には、部材や金型本体または前記混合
物層の部材や金型本体側に形成される中間層との密着性
が不十分となり、剥離や脱落が容易となり、長期使用に
耐えられなくなるため10未満とする。
BEST MODE FOR CARRYING OUT THE INVENTION The first feature of the member for warming and warming of the present invention is that the member has a mixture layer composed of iron sulfide particles and iron nitride particles on the surface layer, and the sulfur and nitrogen in the mixture layer are contained in the mixture layer. The point is that the weight concentration ratio (S / N) is limited to 0.5 <S / O <10. When the sulfur / nitrogen concentration ratio (S / N) in the mixture layer is 0.5 or less, the friction coefficient between a work part and a sliding part such as a machine part or a mold working surface can be sufficiently reduced. On the contrary, in the case of 10 or more, the adhesiveness between the member or the mold body or the intermediate layer formed on the member or the mold body side of the mixture layer becomes insufficient, and the peeling or falling off becomes easy, and the Since it cannot be used, it is set to less than 10.

【0021】また、本発明の温熱間用部材の特徴の第2
は、前記混合物層と部材本体側に存在する窒化層との間
に硫化鉄と窒化鉄および酸化鉄からなる中間層を有する
点にある。中間層は、構造的には部材表層部の混合物層
と窒化層との間にあって、それぞれの密着性を向上させ
る効果がある。また、従来技術である表層部の硫化鉄
(FeS2,FeS,Fe1-xS)層と窒化層で構成され
る構造とする場合には、ガス浸硫窒化処理の冷却速度を
150℃/Hr以上にして冷却すると硫化鉄層が剥離し
たり、高温の被加工材を高圧下で塑性加工すると容易に
剥離し脱落することがあり、表層部硫化鉄を3〜5μm
程度に抑える必要があった。
Further, the second feature of the warming member of the present invention is as follows.
Is characterized in that an intermediate layer composed of iron sulfide, iron nitride and iron oxide is provided between the mixture layer and the nitride layer present on the member body side. The intermediate layer is structurally located between the mixture layer and the nitride layer in the surface layer of the member, and has the effect of improving the adhesion between the layers. Further, in the case of a conventional structure having a surface layer of iron sulfide (FeS 2 , FeS, Fe 1-x S) layer and a nitride layer, the cooling rate of the gas sulfide nitriding treatment is set to 150 ° C. / The iron sulfide layer may peel off when cooled to a temperature of at least Hr, or may easily peel off and drop off when plastically processing a high-temperature workpiece under high pressure.
Had to be kept to a point.

【0022】また他の特徴は、上記混合物層の金型本体
側に少なくとも窒化層が形成されていることである。こ
の場合、前記混合物層と窒化層だけの構造でもよい。ま
た望ましくは、前記混合物層と窒化層との間に上記の構
造からなる中間層を介在させるのがよく、さらに前記混
合物層と窒化層との密着性が保たれれば、他の構造から
なる中間層が介在しても差し支えない。なお窒化層は、
より詳細には、白層と窒素拡散層からなる。前記窒化層
は、比較的高温で摺動する相手材を有する部材や被加工
材が高圧下で塑性加工される金型の場合、部材や金型本
体の表面部の強度不足を補う効果を有する他、長期使用
後に上記混合物層が部分的に磨滅した際、耐焼付性が短
時間に低下するのを防止する効果を有する。
Another feature is that at least a nitride layer is formed on the mold body side of the mixture layer. In this case, the structure may include only the mixture layer and the nitride layer. Preferably, an intermediate layer having the above structure is interposed between the mixture layer and the nitride layer. If the adhesion between the mixture layer and the nitride layer is maintained, the intermediate layer has another structure. An intermediate layer may be interposed. The nitride layer is
More specifically, it is composed of a white layer and a nitrogen diffusion layer. The nitride layer has an effect of compensating for insufficient strength of the surface portion of the member or the mold body in the case of a member having a mating material sliding at a relatively high temperature or a mold in which a workpiece is plastically processed under high pressure. In addition, it has an effect of preventing the seizure resistance from being reduced in a short time when the mixture layer is partially worn out after long-term use.

【0023】上述した本発明の第1発明ないし第5発明
の構成要件を満足する混合物層中のSの濃度は、同じ理
由から重量%で5〜35とするのが良く、また混合物層
の厚さは上記効果を発揮させるために0.1μmが必要
であり、逆に20μmを越えると剥離しやすくなるため
0.1〜20μmの緻密な層とすることが望ましい。
For the same reason, the concentration of S in the mixture layer which satisfies the constitutional requirements of the first to fifth inventions of the present invention is preferably 5 to 35 by weight%. The thickness is required to be 0.1 μm in order to exert the above-mentioned effect, and conversely, if it exceeds 20 μm, it is easy to peel off, so it is desirable to form a dense layer of 0.1 to 20 μm.

【0024】また、本発明の第3発明ないし第5発明の
構成要件を満足する中間層は、硫化鉄と窒化鉄および酸
化鉄からなる混合層であればよいが、望ましくはそれぞ
れの混合比は硫化鉄:窒化鉄:酸化鉄で20〜40:2
0〜40:20〜40が望ましい。中間層のSの濃度
は、同じ理由から重量%で1〜10とするのが良く、ま
た中間層の厚さは上記効果を発揮させるためには、0.
1μmが必要であり、逆に40μmを越えると剥離しや
すくなるため、0.1〜40μmの緻密な層とすること
が望ましい。さらに望ましくは、上記窒化層の硬さを、
部材や金型本体の強度を補うために900HV以上とす
るのが良い。
The intermediate layer satisfying the constitutional requirements of the third to fifth aspects of the present invention may be a mixed layer composed of iron sulfide, iron nitride and iron oxide. Iron sulfide: iron nitride: iron oxide 20-40: 2
0 to 40: 20 to 40 is desirable. For the same reason, the concentration of S in the intermediate layer is preferably set to 1 to 10 in terms of% by weight.
1 μm is required, and conversely, if it exceeds 40 μm, it is easy to peel off. Therefore, it is desirable to form a dense layer of 0.1 to 40 μm. More preferably, the hardness of the nitrided layer is
The pressure is preferably set to 900 HV or more in order to supplement the strength of the members and the mold body.

【0025】本発明が対象とする温熱間用部材は、例え
ばアルミホイールの成形用ロール、レールやガイドなど
の摺動部材、押出ピン、コアピン、中子ピンなど温熱間
で使用されるピン類、さらに押出ダイスの他、ギア、バ
ルブ成形用型、鍛造またはプレス成形用型の温熱間用金
型などであり、被加工材や相手材が400℃以上の温度
に晒される雰囲気で使用する部材、600℃以上、特に
800℃以上の温度で使用する部材として好適である。
The hot members to which the present invention is applied include, for example, rolls for forming aluminum wheels, sliding members such as rails and guides, and pins used in the warm state such as extrusion pins, core pins, and core pins. In addition to the extrusion dies, gears, molds for valve molding, hot molds for forging or press molding, and the like, members used in an atmosphere in which a workpiece or a counterpart material is exposed to a temperature of 400 ° C. or more, It is suitable as a member used at a temperature of 600 ° C. or higher, particularly 800 ° C. or higher.

【0026】上記構成要件を満足させる本発明の温熱間
用部材、特に温熱間用金型を製造するには、例えば浸硫
と酸化および窒化の供給源に硫化アンモニウム溶液を用
いる方法がある。この方法では、部材表層部に硫化鉄粒
子と窒化鉄粒子からなる緻密な混合物層中の硫黄と窒素
の重量濃度比(S/N)を0.5より多く形成させるの
に好都合である。
In order to manufacture the hot-working member of the present invention which satisfies the above-mentioned constitutional requirements, in particular, a hot-working mold, there is a method using, for example, an ammonium sulfide solution as a source of sulfuration, oxidation and nitriding. This method is advantageous in that the weight concentration ratio (S / N) of sulfur and nitrogen in the dense mixture layer of iron sulfide particles and iron nitride particles is more than 0.5 on the surface layer of the member.

【0027】すなわち、予めガス発生容器内に硫化水素
濃度が低く水分の多い無色硫化アンモニウム溶液(JI
S K8943)と、硫化水素濃度が高く水分の少ない
黄色硫化アンモニウム溶液(JIS K8942)とを
加えて混合溶液とし、発生する液面上ガスを搬送用ガス
であるアルゴンまたは窒素ガスと混合した状態で硫化水
素ガス濃度を100〜600ppm、アンモニアガス濃
度を0.1〜1.0%に調整して、被処理部材を配置し
て600〜650℃に加熱された反応炉に導入するとと
もに、例えばボンベ等の別容器から供給するアルゴンま
たは窒素ガスとアンモニアガスにより、反応炉内のアン
モニア濃度を20〜70%に調整して所定時間の浸硫窒
化を行ない、600〜650℃保持後の冷却速度を30
〜250℃/Hrに徐冷して処理を行なえばよい。
That is, a colorless ammonium sulfide solution having a low hydrogen sulfide concentration and a high water content (JI
SK8943) and a yellow ammonium sulfide solution having high hydrogen sulfide concentration and low water content (JIS K8942) to form a mixed solution, and the gas on the liquid surface generated is mixed with argon or nitrogen gas as a carrier gas. The hydrogen sulfide gas concentration is adjusted to 100 to 600 ppm, the ammonia gas concentration is adjusted to 0.1 to 1.0%, and the members to be treated are arranged and introduced into a reaction furnace heated to 600 to 650 ° C. The ammonia concentration in the reaction furnace is adjusted to 20 to 70% with argon or nitrogen gas and ammonia gas supplied from another container such as the one described above to perform sulphinitriding for a predetermined time, and the cooling rate after holding at 600 to 650 ° C. 30
What is necessary is just to cool slowly to -250 degreeC / Hr, and to process.

【0028】ここで無色硫化アンモニウム溶液の液面上
ガス(ヘッドガス)中のH2Sの濃度は25℃において
30ppm、黄色硫化アンモニウム溶液の液面上ガス中
のH2S濃度は1250ppmであるので、上記部材表
層部に形成する構成要件を満足させるためには、無色硫
化アンモニウム溶液と黄色硫化アンモニウム溶液の割合
を6:1ないし1:1の範囲とし、液面上ガス中のH2
S濃度を100ppmないし600ppmの範囲とす
る。
Here, the concentration of H 2 S in the on-liquid gas (head gas) of the colorless ammonium sulfide solution is 30 ppm at 25 ° C., and the H 2 S concentration in the on-liquid gas of the yellow ammonium sulfide solution is 1250 ppm. Therefore, in order to satisfy the constituent requirements to be formed on the surface layer of the member, the ratio of the colorless ammonium sulfide solution to the yellow ammonium sulfide solution is set in the range of 6: 1 to 1: 1 and H 2 in the gas above the liquid surface is adjusted.
The S concentration is in the range of 100 ppm to 600 ppm.

【0029】上記浸硫窒化処理のうち、少なくとも部材
本体側に形成させる窒化層に、白層と窒素拡散とを含有
させるには、通常の窒化処理温度よりも反応炉の加熱温
度を高めにして窒素の拡散効率を高めるとともに、窒化
の供給源となる前記反応炉内のアンモニア濃度を高める
のが望ましい。そのために反応炉の加熱温度を600〜
650℃、反応炉内のアンモニア濃度を20〜70%に
するのがよい。
In the above nitrosulphurizing treatment, in order to at least include the white layer and the nitrogen diffusion in the nitrided layer formed on the member body side, the heating temperature of the reaction furnace is set higher than the normal nitriding treatment temperature. It is desirable to increase the diffusion efficiency of nitrogen and the concentration of ammonia in the reactor, which is a source of nitriding. Therefore, the heating temperature of the reactor is set to 600-
It is preferable to set the ammonia concentration in the reaction furnace to 650 ° C. and 20 to 70%.

【0030】また、600〜650℃保持後の冷却速度
を250℃/Hrより大きい速度にすると、部材表層部
の混合層が剥離するので250℃/Hrより小さい方が
よく、また30℃/Hr以下にすると、例えば620℃
より250℃に冷却する冷却作業に要する時間が12.
3時間と長くなり経済的でないので、保持後の冷却速度
は30〜250℃/Hrの範囲とする。なお、硫化アン
モニウム溶液以外に、浸硫と酸化の供給源として、亜硫
酸アンモニウム−水和物、亜硫酸アンモニウム溶液など
を用いることもできる。温間ないし熱間で使用される部
材または金型の表層部は、形態上は多孔質でなく緻密で
あること、構成上は摩擦係数が小さく、かつ断熱効果が
高く、特に温熱間用金型の場合には耐焼付性の向上に寄
与する硫化鉄を多めに存在させることが重要である。
When the cooling rate after holding at 600 to 650 ° C. is set to a rate higher than 250 ° C./Hr, the mixed layer on the surface layer of the member is peeled off. For example, 620 ° C.
11. The time required for the cooling operation to further cool to 250 ° C.
Since it takes 3 hours and is not economical, the cooling rate after the holding is in the range of 30 to 250 ° C./Hr. In addition to the ammonium sulfide solution, an ammonium sulfite-hydrate, an ammonium sulfite solution, or the like can also be used as a source of sulfurization and oxidation. The surface layer of the member or mold used during warm or hot is not porous but dense in form, has a small coefficient of friction, and has a high heat-insulating effect in terms of structure. In this case, it is important that iron sulfide contributing to the improvement of seizure resistance be present in a large amount.

【0031】一方、本発明の温熱間用金型に用いられる
金型母材は、JIS規格に規定されるSKD61,SK
T4に代表される高温強度と靭性を有する熱間工具鋼が
好適であり、これらよりも高温強度の高いSKD7,S
KD8,高速度鋼あるいはこれらの改良鋼に対しても必
要に応じて適用することができる。
On the other hand, the mold base material used for the hot mold of the present invention is SKD61, SK specified in JIS standard.
Hot tool steel having high temperature strength and toughness represented by T4 is preferable, and SKD7, S having higher high temperature strength than these are preferred.
It can be applied to KD8, high-speed steel, or their improved steels as needed.

【0032】[0032]

【実施例】以下に実施例に基づいて詳細に説明する。 (実施例1)表1に示す組成の鋼を準備し、焼入れ焼戻
しにより鋼1および鋼2は48HRCに調質した。その
後、直径5mm、長さ20mmの形状を持つ丸棒試験片
を作製し、その端面は砥石で仕上げた。これらの試験片
に表2に示す種々の表面処理を施したものを用いて熱間
焼付試験を行なった。熱間焼付試験は、試験片の一端部
をボール盤のチャックに取付け1540rpmで回転さ
せ、600℃に加熱したSNCM439製のブロックに
試験片の他端を押し付け、30秒間摩擦摺動させるもの
で、押し付け荷重は0.31〜2.07KNとし、焼付
が発生した押し付け荷重を断面積で除した値を焼付限界
面圧(MPa)として耐焼付性を評価した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. (Example 1) Steel having the composition shown in Table 1 was prepared, and steel 1 and steel 2 were tempered to 48HRC by quenching and tempering. Thereafter, a round bar test piece having a shape of 5 mm in diameter and 20 mm in length was prepared, and its end face was finished with a grindstone. Hot baking tests were performed on these test pieces that had been subjected to various surface treatments shown in Table 2. In the hot baking test, one end of the test piece was attached to a chuck of a drill press, rotated at 1540 rpm, and the other end of the test piece was pressed against a block made of SNCM439 heated to 600 ° C., and frictionally slid for 30 seconds. The load was 0.31 to 2.07 KN, and the seizure resistance was evaluated by defining the value obtained by dividing the pressing load at which seizure occurred by the cross-sectional area as the seizure limit surface pressure (MPa).

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】表3に、各種表面処理後の表面構造と試験
結果を示す。本発明部材の焼付限界面圧は102.4〜
105.4MPaの範囲にあり、イオン窒化と比較して
3.3倍、塩浴浸硫窒化Aと比較して1.7〜1.8
倍、塩浴浸硫窒化Bと比較して2.7〜2.8倍、ボン
ベガスによるガス浸硫窒化と比較して1.3倍である。
このように本発明部材は、比較部材と比較して焼付限界
面圧が大幅に改善されていることがわかる。なお、焼付
限界面圧に至った後の試験片端部を切り出してミクロ組
織観察したところ、これらはいずれも再焼入れ組織を呈
しており、鋼のAC1変態点を越える温度に昇温してい
ることが認められ、大きな摩擦発熱があったことが認め
られた。これにより、本発明部材は摩擦発熱を著しく抑
制できることがわかる。
Table 3 shows the surface structure after various surface treatments and the test results. The seizure limit surface pressure of the member of the present invention is 102.4 or more.
It is in the range of 105.4 MPa, 3.3 times that of ion nitriding, and 1.7 to 1.8 that of salt bath sulphinitriding A.
2.7 times to 2.8 times compared to salt bath sulphonitriding B and 1.3 times compared to gas sulphonitriding with cylinder gas.
Thus, it can be seen that the members of the present invention have significantly improved seizure limit surface pressure as compared with the comparative members. In addition, when the end of the test piece after reaching the sintering limit surface pressure was cut out and observed for microstructure, each of them exhibited a re-quenched structure, and the temperature was raised to a temperature exceeding the AC 1 transformation point of the steel. It was confirmed that a large amount of frictional heat was generated. This indicates that the member of the present invention can significantly reduce frictional heat generation.

【0036】[0036]

【表3】 [Table 3]

【0037】なお、表3のうち試料No.6と試料N
o.10(いずれも比較部材に相当)、試料No.12
(本発明部材に相当)と同じ処理を行なった試験片表面
部の断面組織観察およびEPMA(微少部X線分析装
置)による線分析を行ない、その結果を図1、図2およ
び図3にそれぞれ示す。図1は、本発明部材の対象外で
ある塩浴浸硫窒化Aのもので、表面処理層の最上部の混
合物層中のSの最大濃度が2.2wt%、混合物層中の
硫黄と窒素の濃度比(S/N)が0.4で、混合物層の
厚さは29μmであった。図2も本発明部材の対象外で
あるボンベガスによるガス浸硫窒化のもので、混合物中
のSの最大濃度が32.4wt%、混合物層中の硫黄と
窒素の濃度比(S/N)が10.8で、混合物層の厚さ
は1.2μmであった。また酸素のピークは確認できな
かった。
In Table 3, the sample No. 6 and sample N
o. Sample No. 10 (each corresponds to a comparative member), 12
The cross-sectional structure of the surface of the test piece subjected to the same treatment as that of (corresponding to the member of the present invention) was observed, and a line analysis was performed using an EPMA (micro X-ray analyzer). The results are shown in FIGS. 1, 2 and 3, respectively. Show. FIG. 1 shows the results of salt bath oxynitridation A, which is out of the scope of the member of the present invention, in which the maximum concentration of S in the uppermost mixture layer of the surface treatment layer is 2.2 wt%, and sulfur and nitrogen in the mixture layer are different. Was 0.4, and the thickness of the mixture layer was 29 μm. FIG. 2 also shows the case of gas sulphonitriding with a cylinder gas which is not the object of the present invention. At 10.8, the thickness of the mixture layer was 1.2 μm. No oxygen peak could be confirmed.

【0038】これに対して、本発明部材に相当する表面
処理層の混合物層のSの最大濃度は、図3に示すように
28.0wt%で硫黄と窒素の濃度比(S/N)が5.
8で、混合物層の厚さは12μmであった。また、混合
物層中の酸素ピークは確認できなかったが、中間層中の
酸素の最大濃度は8.8wt%であった。このように本
発明部材の試料No.12(図3)の混合物層は酸素を
含まず硫化鉄粒子と窒化鉄粒子からなり、混合物層中の
S/Nが0.5<S/N<10の範囲にあり、従来部材
と比較して混合物層の構造、構成が異なることがわか
る。
On the other hand, the maximum concentration of S in the mixture layer of the surface treatment layer corresponding to the member of the present invention is 28.0 wt% as shown in FIG. 3, and the sulfur / nitrogen concentration ratio (S / N) is high. 5.
At 8, the mixture layer thickness was 12 μm. Although no oxygen peak in the mixture layer could be confirmed, the maximum concentration of oxygen in the intermediate layer was 8.8 wt%. As described above, the sample No. of the member of the present invention. The mixture layer of FIG. 12 (FIG. 3) contains iron sulfide particles and iron nitride particles without oxygen, and the S / N in the mixture layer is in the range of 0.5 <S / N <10. It can be seen that the structure and configuration of the mixture layer are different.

【0039】次に前述の混合物層および部材本体側の窒
化層の構造を光学顕微鏡組織で説明する。本発明部材の
試料No.12を図3に示す。図3は前述の12μm厚
さを有する混合物層と18μmの厚さを有する中間層お
よび部材本体側に窒化層を有し、窒化層は白層と窒素拡
散層で形成され、その厚さはそれぞれ18μmおよび
0.25mmであった。なお、混合物層と中間層および
窒化層の構成物質については実施例3のX線解析で詳し
く述べる。
Next, the structures of the mixture layer and the nitride layer on the member body side will be described with reference to an optical microscope structure. Sample No. of the member of the present invention. 12 is shown in FIG. FIG. 3 shows a mixture layer having a thickness of 12 μm, an intermediate layer having a thickness of 18 μm, and a nitride layer on the member body side. The nitride layer is formed of a white layer and a nitrogen diffusion layer. 18 μm and 0.25 mm. The constituent materials of the mixture layer, the intermediate layer and the nitride layer will be described in detail in the X-ray analysis of Example 3.

【0040】(実施例2)表2に示した処理5と処理6
について、540℃で20時間、および600℃で5時
間保持後、250℃までの冷却速度を35〜500℃/
Hrに変えて処理後の混合物層の膜はがれについて検討
した結果を表4に示す。処理5は、冷却速度が大きいと
膜はがれを生じるのに対し、本発明の処理6は500℃
/Hrでは膜はがれが生じるが、200℃/Hrより小
さい冷却速度の場合は、膜はがれがなく健全であった。
(Embodiment 2) Process 5 and Process 6 shown in Table 2
After holding at 540 ° C. for 20 hours and at 600 ° C. for 5 hours, the cooling rate to 250 ° C. was increased to 35 to 500 ° C. /
Table 4 shows the results of examining film peeling of the mixture layer after the treatment in place of Hr. Process 5 causes film peeling when the cooling rate is high, whereas process 6 of the present invention requires 500 ° C.
At / Hr, the film peeled off, but at a cooling rate lower than 200 ° C./Hr, the film was sound without peeling.

【0041】[0041]

【表4】 [Table 4]

【0042】(実施例3)表3に示した試料No.5か
ら試料No.10(比較部材に相当)、試料No.11
から試料No.14(本発明部材に相当)と同じ処理を
行なった試験片表面部の断面について表面より25μm
毎に荷重100gを付加して硬さを測定し、それぞれの
最高硬さを測定した結果を表5に示す。本発明部材の試
料No.11より試料No.14の最高硬さは800H
V以上であった。
Example 3 Sample Nos. Shown in Table 3 5 to Sample No. Sample No. 10 (corresponding to a comparative member) 11
From Sample No. 14 (corresponding to the member of the present invention) The cross section of the surface of the test piece subjected to the same treatment as that of the sample of the present invention was 25 μm from the surface.
The hardness was measured by applying a load of 100 g every time, and the results of measuring the maximum hardness of each were shown in Table 5. Sample No. of the member of the present invention. Sample No. 11 from The maximum hardness of 14 is 800H
V or more.

【0043】[0043]

【表5】 [Table 5]

【0044】(実施例4)表3に示した試料No.6お
よび試料No.10(比較部材に相当)、試料No.1
2(本発明部材に相当)と同じ処理を行なった試験片表
面部について、最表面よりX線回折装置を用いてX線解
析を行なった結果を図5に示す。X線回折条件は、Co
ターゲットを用いて印加電圧40KV、印加電流200
mAの条件で回折角(2θ)は30°より120°まで
測定した。
Example 4 Sample Nos. Shown in Table 3 6 and sample no. Sample No. 10 (corresponding to a comparative member) 1
FIG. 5 shows the results of X-ray analysis using the X-ray diffractometer from the outermost surface of the surface of the test piece subjected to the same treatment as in Example 2 (corresponding to the member of the present invention). The X-ray diffraction condition is Co
Applied voltage 40KV, applied current 200 using target
The diffraction angle (2θ) was measured from 30 ° to 120 ° under the condition of mA.

【0045】図4の試料No.6の定性分析結果は酸化
鉄がFe34および窒化鉄はFe3NおよびFe4Nであ
り、硫化鉄は検出されなかった。図4の試料No.10
の定性分析結果は、硫化鉄はFeS、窒化鉄はFe3
およびFe4Nであり、酸化鉄は検出されなかった。図
4の試料No.12の定性分析結果は、硫化鉄がFe
S、酸化鉄がFe34および窒化鉄はFe3NとFe4
であった。
The sample No. shown in FIG. The results of the qualitative analysis of No. 6 were that the iron oxide was Fe 3 O 4 and the iron nitride was Fe 3 N and Fe 4 N, and no iron sulfide was detected. Sample No. of FIG. 10
The qualitative analysis results are as follows: iron sulfide is FeS, iron nitride is Fe 3 N
And Fe 4 N, and no iron oxide was detected. Sample No. of FIG. The qualitative analysis result of No. 12 shows that iron sulfide is Fe
S, iron oxide is Fe 3 O 4 and iron nitride is Fe 3 N and Fe 4 N
Met.

【0046】以上のことから実施例1で示した混合物層
のEPMAの結果と総合的に考えると、試料No.6の
混合物層は、少量のSを2.2wt%含んではいるが、
実質的にはFe34とFe3Nより形成されることが確
認された。また、混合物層の部材本体側の窒化層は、光
学顕微鏡の結果と総合的に考えるとFe3N(白層)お
よびFe4N(窒素拡散層)であることが確認された。
次に試料No.10の混合物層は、Sを32.4wt%
含み、実質的にはFeS単層である。また、中間層は実
質的にFeSとFe3Nを含み、部材本体側の窒化層は
Fe4N(窒素拡散層)であることが確認された。次に
試料No.12の混合物層は、Fe34を含まず実質的
にはFeSとFe3Nからなることが確認された。ま
た、部材本体側の窒化層は試料No.11ではFe3
(白層)およびFe4N(窒素拡散層)が形成された。
From the above, considering the result of EPMA of the mixture layer shown in Example 1 comprehensively, Sample No. Although the mixture layer of No. 6 contains a small amount of S at 2.2 wt%,
It was confirmed that it was substantially formed from Fe 3 O 4 and Fe 3 N. In addition, it was confirmed that the nitrided layer on the member body side of the mixture layer was Fe 3 N (white layer) and Fe 4 N (nitrogen diffusion layer) when considered comprehensively with the results of an optical microscope.
Next, the sample No. The mixture layer of No. 10 contained 32.4 wt% of S.
It is a FeS monolayer substantially. Further, it was confirmed that the intermediate layer substantially contained FeS and Fe 3 N, and the nitride layer on the member body side was Fe 4 N (nitrogen diffusion layer). Next, the sample No. It was confirmed that the mixture layer of No. 12 did not contain Fe 3 O 4 and was substantially composed of FeS and Fe 3 N. In addition, the nitride layer on the member body side was the sample No. 11 is Fe 3 N
(White layer) and Fe 4 N (nitrogen diffusion layer).

【0047】(実施例5)表3に示した試料No.6と
試料No.8および試料No.10(比較部材に相
当)、試料No.12(本発明部材に相当)と同じ処理
を行なった試験片表面部について表面より連続加重式表
面性測定機にて混合物層と窒化層界面での密着性を評価
するため、引っ掻き抵抗力を測定した結果を表6に示
す。連続加重式表面性測定機の測定条件は、30μのダ
イヤモンド引掻針を用い、移動速度 0.2mm/se
c、垂直荷重のフルスケールが500gを用いた。
Example 5 Sample Nos. Shown in Table 3 6 and sample no. 8 and sample no. Sample No. 10 (corresponding to a comparative member) The surface resistance of the test piece subjected to the same treatment as that of Sample No. 12 (corresponding to the member of the present invention) was measured from the surface with a continuous weighting type surface property measuring device to evaluate the adhesion at the interface between the mixture layer and the nitride layer, in order to evaluate the scratch resistance. Table 6 shows the results. The measurement conditions of the continuous weighting type surface property measuring machine were as follows: a diamond scratching needle of 30μ was used, and the moving speed was 0.2 mm / sec.
c, 500 g of full scale vertical load was used.

【0048】[0048]

【表6】 [Table 6]

【0049】本発明部材の試料No.12の引っ掻き抵
抗力は、比較部材と比べて引っ掻き抵抗力が大きいこと
が確認された。このことより、本発明の混合物層の密着
性は比較部材と比べて密着性が良好であると言える。さ
らに表層部の形態より試料No.6および試料No.8
の混合物層は多孔質形態であるのに対し、本発明部材の
試料No.12の混合物層は緻密な形態であり、例えば
高温鍛造作業で金型に負荷される熱応力に対して、多孔
質で密着性が乏しい比較部材は、多孔質に起因するヒー
トクラックの起点または伝播の通路となり易いのに対し
て本発明部材は密着性の改善と緻密な形態を有している
ので、温熱間用金型として使用した場合に寿命向上が予
想できる。
Sample No. of the member of the present invention It was confirmed that the scratch resistance of No. 12 was higher than that of the comparative member. From this, it can be said that the adhesiveness of the mixture layer of the present invention is better than that of the comparative member. Further, Sample No. was determined from the form of the surface layer. 6 and sample no. 8
Is a porous layer, whereas the sample No. of the member of the present invention is a porous layer. The mixture layer of No. 12 is in a dense form. For example, when heat stress is applied to a mold in a high-temperature forging operation, the porous and poorly adhered comparative member is a starting point or a propagation point of a heat crack caused by the porous material. However, since the member of the present invention has improved adhesion and a dense form, it can be expected to improve the life when used as a mold for warming.

【0050】(実施例6)表3の試料No.2,4,
6,8,12の表層部の構造を有するリングプレッシャ
ー成形に使用する熱間鍛造金型を用意した。金型の寸法
は直径148mm、高さ56mmである。鋼2の鋼を金
型近似寸法に荒加工し、焼入れ、焼戻しにより48HR
Cに調質し、上記の寸法に仕上げ加工後、所定の表層部
の構造が得られるようにそれぞれ表面処理を行なった。
鍛造は1600tonの鍛造プレスを用い、1200℃
に高周波加熱したSCM420Hワークをアップセット
加工後14秒おきに鍛造した。表7に金型の寿命を示
す。
Example 6 Sample No. 3 in Table 3 2,4
Hot forging dies used for ring pressure molding having 6, 8, and 12 surface layer structures were prepared. The dimensions of the mold are 148 mm in diameter and 56 mm in height. Roughening the steel of steel 2 to the approximate dimensions of the mold, quenching and tempering 48HR
After tempering to C and finishing to the above dimensions, each was subjected to a surface treatment so as to obtain a predetermined surface layer structure.
Forging uses a forging press of 1600 tons, 1200 ° C
The SCM420H workpiece heated at high frequency was forged every 14 seconds after upset processing. Table 7 shows the life of the mold.

【0051】[0051]

【表7】 [Table 7]

【0052】金型はいずれも摩耗による損傷で寿命とな
った。本発明金型は従来の金型である比較金型に比べ
て、いずれも金型寿命が比較金型に比べて約2倍向上
し、耐摩耗性に優れた金型であることがわかる。
Each of the molds reached the end of its life due to damage due to wear. It can be seen that the mold of the present invention has a mold life approximately twice as long as that of the comparative mold as compared with the comparative mold which is a conventional mold, and is excellent in wear resistance.

【0053】[0053]

【発明の効果】以上に述べたように、本発明の表層部の
構造を有する温熱間用部材や温熱間用金型は、主として
硫化鉄が摩擦熱による熱負荷の抑制効果と断熱効果によ
り、また窒化鉄が表面の耐摩耗性保持効果により、金型
の寿命を向上させることが可能となった。混合物層の形
態が緻密であり、混合物層と窒化層との間にある中間層
の密着性が向上していることから、使用中の混合物層の
剥離やクラックの起点または伝播の通路になりにくくな
る利点があり、長期使用に効果の高いものである。
As described above, in the warm member and the warm mold having the surface layer structure of the present invention, the iron sulfide mainly has the effect of suppressing the heat load due to frictional heat and the heat insulating effect. In addition, iron nitride can improve the life of the mold due to the effect of maintaining the wear resistance of the surface. Since the form of the mixture layer is dense and the adhesion of the intermediate layer between the mixture layer and the nitride layer is improved, the mixture layer is less likely to become a starting point or a propagation path of a separation layer or a crack during use. It is very effective for long-term use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較部材の試料No.6の混合物層の構造を示
す電子顕微鏡写真とEPMAによる線分析チャートおよ
び混合物層の部材本体側の窒化層の構造を示す光学顕微
鏡写真である。
FIG. 1 shows a sample No. of a comparative member. 6 is an electron micrograph showing the structure of the mixture layer of No. 6, a line analysis chart by EPMA, and an optical microscope photograph showing the structure of the nitride layer on the member body side of the mixture layer.

【図2】比較部材の試料No.10の混合物層の構造を
示す電子顕微鏡写真とEPMAによる線分析チャートお
よび混合物層の部材本体側の窒化層の構造を示す光学顕
微鏡写真である。
FIG. 2 shows a sample No. of a comparative member. 10 is an electron micrograph showing the structure of a mixture layer of No. 10, a line analysis chart by EPMA, and an optical microscope photograph showing the structure of a nitride layer on the member body side of the mixture layer.

【図3】本発明部材の試料No.12の混合物層の構造
を示す電子顕微鏡写真とEPMAによる線分析チャート
および混合物層の部材本体側の窒化層の構造を示す光学
顕微鏡写真である。
FIG. 3 shows a sample No. of a member of the present invention. 12 is an electron micrograph showing the structure of a mixture layer of No. 12, a line analysis chart by EPMA, and an optical microscope photograph showing the structure of a nitride layer on the member body side of the mixture layer.

【図4】比較部材の試料No.6および試料No.10
と本発明部材の試料No.12のX線回折図である。
FIG. 4 shows a sample No. of a comparative member. 6 and sample no. 10
And the sample No. of the member of the present invention. 12 is an X-ray diffraction diagram of FIG.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 部材の表層部に硫化鉄粒子と窒化鉄粒子
からなる混合物層を有し、前記混合物層中の硫黄と窒素
の重量濃度比(S/N)が0.5<S/N<10の式を
満足する領域が存在することを特徴とする温熱間用部
材。
1. A member having a mixture layer composed of iron sulfide particles and iron nitride particles on a surface layer portion thereof, wherein a weight concentration ratio (S / N) of sulfur and nitrogen in the mixture layer is 0.5 <S / N. A member for hot and warm use, wherein there is a region satisfying the expression <10.
【請求項2】 部材の表層部に硫化鉄粒子と窒化鉄粒子
からなる混合物層を有し、前記混合物層中の硫黄と窒素
の重量濃度比(S/N)が0.5<S/N<10の式を
満足する領域が存在し、かつ前記混合物層の部材本体側
に少なくとも窒化層が形成されていることを特徴とする
温熱間用部材。
2. A member having a mixture layer composed of iron sulfide particles and iron nitride particles on a surface layer portion thereof, wherein a weight concentration ratio (S / N) of sulfur to nitrogen in the mixture layer is 0.5 <S / N. A member for warm / hot use, wherein a region satisfying the expression <10 is present, and at least a nitride layer is formed on the member body side of the mixture layer.
【請求項3】 部材の表層部に硫化鉄粒子と窒化鉄粒子
からなる混合物層を有し、前記混合物層中の硫黄と窒素
の重量濃度比(S/N)が0.5<S/N<10の式を
満足する領域を有し、かつ前記混合物層の部材本体側に
硫化鉄と窒化鉄および酸化鉄からなる中間層を有するこ
とを特徴とする温熱間用部材。
3. A member having a mixture layer composed of iron sulfide particles and iron nitride particles on a surface layer portion thereof, wherein a weight concentration ratio (S / N) of sulfur to nitrogen in the mixture layer is 0.5 <S / N. A member for warm / hot use, having a region satisfying the expression <10 and having an intermediate layer made of iron sulfide, iron nitride and iron oxide on the member main body side of the mixture layer.
【請求項4】 部材の表層部に硫化鉄粒子と窒化鉄粒子
からなる混合物層を有し、前記混合物層中の硫黄と窒素
の重量濃度比(S/N)が0.5<S/N<10の式を
満足する領域を有し、かつ前記混合物層の部材本体側に
硫化鉄と窒化鉄および酸化鉄からなる中間層を有し、さ
らに前記中間層の部材本体側に少なくとも窒化層が形成
されていることを特徴とする温熱間用部材。
4. A member having a mixture layer composed of iron sulfide particles and iron nitride particles on a surface layer portion thereof, wherein the weight concentration ratio of sulfur to nitrogen (S / N) in said mixture layer is 0.5 <S / N. <10, and an intermediate layer composed of iron sulfide, iron nitride, and iron oxide on the member body side of the mixture layer, and at least a nitride layer on the member body side of the intermediate layer. A hot / hot member characterized by being formed.
【請求項5】 部材の表層部に硫化鉄粒子と窒化鉄粒子
からなる混合物層を有し、前記混合物層中の硫黄と窒素
の重量濃度比(S/N)が0.5<S/N<10の式を
満足する領域が存在し、かつ前記混合物層と部材本体側
に形成される窒化層との間に硫化鉄と窒化鉄および酸化
鉄からなる中間層が形成され、前記窒化層は白層と窒素
拡散層からなることを特徴とする温熱間用部材。
5. A member having a mixture layer composed of iron sulfide particles and iron nitride particles on a surface layer portion thereof, wherein a weight concentration ratio (S / N) of sulfur to nitrogen in the mixture layer is 0.5 <S / N. There is a region satisfying the expression <10, and an intermediate layer made of iron sulfide, iron nitride and iron oxide is formed between the mixture layer and the nitride layer formed on the member body side, and the nitride layer is A warm / hot member comprising a white layer and a nitrogen diffusion layer.
【請求項6】 請求項1ないし5のいずれかに記載の混
合物層中のSの濃度が重量%で5〜35である温熱間用
部材。
6. A hot / warm member in which the concentration of S in the mixture layer according to claim 1 is 5 to 35% by weight.
【請求項7】 請求項3ないし5のいずれかに記載の中
間層中のSの濃度が重量%で1〜10である温熱間用部
材。
7. The member for hot and warm use according to claim 3, wherein the concentration of S in the intermediate layer is 1 to 10 by weight%.
【請求項8】 請求項1ないし7のいずれかに記載の混
合物層の厚さが0.1〜20μmである温熱間用部材。
8. A hot / hot member wherein the thickness of the mixture layer according to claim 1 is 0.1 to 20 μm.
【請求項9】 請求項3ないし5および請求項7のいず
れかに記載の中間層の厚さが0.1〜40μmの緻密な
層である温熱間用部材。
9. A warm / hot member according to claim 3, wherein the intermediate layer is a dense layer having a thickness of 0.1 to 40 μm.
【請求項10】 請求項2および請求項4ないし6のい
ずれかに記載の窒化層の最高硬さが800HV以上であ
る温熱間用部材。
10. A member for warm and warm use, wherein the nitrided layer according to claim 2 has a maximum hardness of 800 HV or more.
【請求項11】 ガス発生容器内に無色硫化アンモニウ
ム溶液と黄色硫化アンモニウム溶液を6:1ないし1:
1の割合で供給し、発生する液面上ガスとアルゴンまた
は窒素ガスからなる搬送用ガスとの混合ガス中の硫化水
素ガス濃度を100〜600ppm、アンモニアガス濃
度を0.1〜1.0%に調整して、温熱間用部材を配置
して600〜650℃に加熱された反応炉に導入すると
ともに、別容器から供給するアルゴンまたは窒素ガスと
アンモニアガスにより前記反応炉内のアンモニア濃度を
20〜70%に調整し、600〜650℃保持後の冷却
速度を30〜250℃/Hrに徐冷してガス浸硫窒化処
理することを特徴とする温熱間用部材の製造方法。
11. A colorless ammonium sulfide solution and a yellow ammonium sulfide solution are placed in a gas generating vessel at a ratio of 6: 1 to 1: 1.
The hydrogen sulfide gas concentration is 100 to 600 ppm and the ammonia gas concentration is 0.1 to 1.0% in the mixed gas of the on-liquid level gas generated and the carrier gas composed of argon or nitrogen gas. The member for hot and hot is arranged and introduced into the reactor heated to 600 to 650 ° C., and the ammonia concentration in the reactor is adjusted to 20 by argon or nitrogen gas and ammonia gas supplied from another container. A method for producing a member for hot and warm use, wherein the temperature is adjusted to 70% and the cooling rate after holding at 600 to 650 ° C is gradually cooled to 30 to 250 ° C / Hr, followed by gas sulphonitriding.
【請求項12】 請求項1ないし11のいずれかに記載
の温熱間用部材で構成したことを特徴とする温熱間用金
型。
12. A hot working mold comprising the hot working member according to any one of claims 1 to 11.
JP4300997A 1997-02-12 1997-02-12 Member for warm and hot working and production therefor as well as metal mold for warm and hot working formed by using the same Abandoned JPH10219423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4300997A JPH10219423A (en) 1997-02-12 1997-02-12 Member for warm and hot working and production therefor as well as metal mold for warm and hot working formed by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4300997A JPH10219423A (en) 1997-02-12 1997-02-12 Member for warm and hot working and production therefor as well as metal mold for warm and hot working formed by using the same

Publications (1)

Publication Number Publication Date
JPH10219423A true JPH10219423A (en) 1998-08-18

Family

ID=12651998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4300997A Abandoned JPH10219423A (en) 1997-02-12 1997-02-12 Member for warm and hot working and production therefor as well as metal mold for warm and hot working formed by using the same

Country Status (1)

Country Link
JP (1) JPH10219423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316795A (en) * 2000-05-08 2001-11-16 Hitachi Metals Ltd Tool for warm-hot working and gas sulfurizing-nitriding method therefor
WO2008154934A1 (en) 2007-06-16 2008-12-24 Mahle International Gmbh Piston ring with a sulphonitriding treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316795A (en) * 2000-05-08 2001-11-16 Hitachi Metals Ltd Tool for warm-hot working and gas sulfurizing-nitriding method therefor
JP4650706B2 (en) * 2000-05-08 2011-03-16 日立金属株式会社 Tool for hot working and gas nitronitriding method
WO2008154934A1 (en) 2007-06-16 2008-12-24 Mahle International Gmbh Piston ring with a sulphonitriding treatment
US7833636B2 (en) 2007-06-16 2010-11-16 Mahle International Gmbh Piston ring with sulphonitriding treatment

Similar Documents

Publication Publication Date Title
JP5299140B2 (en) MATERIAL OF SHOT PEENING PROJECTION MATERIAL AND METHOD FOR PRODUCING SHOT PEENING PROJECTION MATERIAL
JP4656473B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance
JP3305972B2 (en) Warm mold and method for manufacturing the same
WO2004039517A1 (en) Mold for casting and method of surface treatment thereof
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
US6454880B1 (en) Material for die casting tooling components, method for making same, and tooling components made from the material and process
JP2007308788A (en) Nitriding/oxidizing treatment method for metal member and reoxidizing method therefor
JPH10219423A (en) Member for warm and hot working and production therefor as well as metal mold for warm and hot working formed by using the same
JP5090257B2 (en) Tool steel suitable for aluminum machining dies and aluminum machining dies
CN1570192A (en) Valve finisher surface modified processing method
JPH06172943A (en) Die for hot working excellent in wear resistance
JPH10204610A (en) Member for warm or hot use, its production and die for warm or hot use using the member
EP3797894B1 (en) Method for manufacturing forged article
JP4650706B2 (en) Tool for hot working and gas nitronitriding method
JPH10219420A (en) Warm member and hot member, their production, and warm die and hot die using same
JPH0688166A (en) Die for hot working excellent in heat cracking resistance
JP2014018820A (en) Casting mold and method for manufacturing the same
KR20100107874A (en) A method for the surface treatmet of mold
Matteis et al. Damage of repeatedly nitrocarburised steel dies for aluminium extrusion
TW202115267A (en) Mold and method for producing mold having excellent wear resistance and erosion resistance to molten metal
JP4224219B2 (en) Hot forging method
JP7289728B2 (en) Nitrided material manufacturing method and nitrided material
Maslyuk et al. Hot-forged wear-resistant powder meterials based on stainless steels of the austenitic class
JP2020163435A (en) Liner of extrusion container
JP2020001056A (en) Mold and method for manufacturing mold

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20041119

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20050104