JP4844874B2 - Manufacturing method of press-molded products - Google Patents

Manufacturing method of press-molded products Download PDF

Info

Publication number
JP4844874B2
JP4844874B2 JP2006120210A JP2006120210A JP4844874B2 JP 4844874 B2 JP4844874 B2 JP 4844874B2 JP 2006120210 A JP2006120210 A JP 2006120210A JP 2006120210 A JP2006120210 A JP 2006120210A JP 4844874 B2 JP4844874 B2 JP 4844874B2
Authority
JP
Japan
Prior art keywords
press
less
present
molding
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006120210A
Other languages
Japanese (ja)
Other versions
JP2007002333A (en
JP2007002333A5 (en
Inventor
義之 井上
邦親 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006120210A priority Critical patent/JP4844874B2/en
Publication of JP2007002333A publication Critical patent/JP2007002333A/en
Publication of JP2007002333A5 publication Critical patent/JP2007002333A5/ja
Application granted granted Critical
Publication of JP4844874B2 publication Critical patent/JP4844874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特に、プレス成形用パンチやダイ等、プレス金型による、プレス成形品の製造方法に関するものである。 The present invention is particularly for press forming punch and die like, according to the press die, those concerning the manufacturing process of the press-molded product.

従来、使用中の摺動を伴うプレス金型等においては、マトリックスの硬さとCr系特殊炭化物を含有することで、高硬度、且つ優れた耐摩耗性を有するSKD11等が適用されていた。しかし、近年、金型における難加工材の成形やプレス金型等における摺動環境の過酷化により、SKD11等に窒化、PVD、CVD、塩浴処理等の表面処理を施して使用している。   Conventionally, SKD11 and the like having high hardness and excellent wear resistance have been applied to press dies with sliding in use and the like by containing matrix hardness and Cr-based special carbide. However, in recent years, SKD11 and the like have been subjected to surface treatments such as nitriding, PVD, CVD, salt bath treatment, etc. due to the molding of difficult-to-work materials in dies and the severer sliding environment in press dies.

上述したものは高硬度化による耐摩耗性向上の技術であるが、一方、近年、酸化物の自己潤滑性に着目した技術開発がなされるようになってきている。例えば、アルミナ基板上にCu−Moをイオンビーム蒸着した時の、種々の温度におけるCu、Mo、Oの結合状態の研究と、その種々の試験温度での摩擦試験を行ったものについての報告がある(非特許文献1)。これによると、300℃以上においてCuO+MoOの複合酸化物が生成し、さらに高温になるに伴って多くなることから、600℃における摩擦試験では摩擦係数が低くなり、優れた摺動特性が得られるということが報告されている。
Surface and Coatings Technology89,1997年,p.245−251
The above is a technique for improving the wear resistance by increasing the hardness. On the other hand, in recent years, technical development has been made focusing on the self-lubricating property of oxides. For example, there are reports on the study of the bonding state of Cu, Mo, O at various temperatures when Cu-Mo is ion beam deposited on an alumina substrate, and the results of friction tests at various test temperatures. Yes (Non-Patent Document 1). According to this, since a complex oxide of CuO + MoO 3 is generated at 300 ° C. or higher and increases as the temperature becomes higher, the friction coefficient at 600 ° C. decreases, and excellent sliding characteristics can be obtained. It has been reported.
Surface and Coatings Technology 89, 1997, p. 245-251

摺動特性の付与手法として、上述したSKD11等の硬質物質による対策では、その素材自体を金型形状に加工する際の被削性に悪影響を及ぼすという問題があった。また、表面処理を施すと、母材とコーティング膜との密着性が悪く、剥離してしまう問題や、さらには、コーティングをする手間、及びコストがかかるという問題があった。   As a method for imparting sliding characteristics, the above-described measures using hard substances such as SKD11 have a problem of adversely affecting the machinability when the material itself is processed into a mold shape. In addition, when the surface treatment is performed, there is a problem that the adhesion between the base material and the coating film is poor, and the base material and the coating film are peeled off.

一方、優れた摺動特性が得られるCu−Moの複合コーティングを施した材料においては、耐摩耗性の観点から母材は高硬度である必要がある。また同様、母材とコーティング膜の密着性が悪く、膜が剥離してしまう問題や、さらには、コーティングをする手間、及びコストがかかるという問題があった。   On the other hand, in a material provided with a Cu—Mo composite coating that provides excellent sliding characteristics, the base material needs to have high hardness from the viewpoint of wear resistance. Similarly, there is a problem that the adhesion between the base material and the coating film is poor, and the film is peeled off, and further, there are problems of labor and cost for coating.

本発明の目的は、上記の課題を解決した、優れた自己潤滑特性を有するプレス金型による、プレス成形品の製造方法を提供することである。 An object of the present invention is to provide a method for producing a press-formed product by using a press die having excellent self-lubricating properties, which solves the above-described problems.

本発明者は、上記の課題を検討した結果、上記使用環境下でのプレス金型において、潤滑特性、及び耐摩耗性に優れ、長寿命化するためには、コーティングをしなくても、それ自体が優れた潤滑特性、及び耐摩耗性を有するプレス金型こそが最適であることを突きとめた。それ故、優れた自己潤滑特性を有するCuとMoの複合酸化物を、内部酸化により、マルテンサイト系鋼の母材の最表面に自己生成している状態のプレス金型を目標にすることで、本発明を開発するに至った。   As a result of studying the above problems, the present inventor has found that the press mold under the above-mentioned use environment is excellent in lubrication characteristics and wear resistance and has a long service life without coating. It has been found that a press die having excellent lubrication characteristics and wear resistance is optimal. Therefore, by targeting a press die in a state where a complex oxide of Cu and Mo having excellent self-lubricating properties is self-generated on the outermost surface of the base material of martensitic steel by internal oxidation. The present invention has been developed.

すなわち、本発明は、質量%で、C:0.7〜1.6%未満、Si:0.5〜3.0%、Mn:0.1〜3.0%未満、P:0.05%未満(0%を含む)、S:0.01〜0.12%、Cr:7.0〜13.0%、Moの1種またはMoとWの2種を(Mo+W/2):0.5〜1.7%、V:0.7%未満(0%を含む)、Ni:0.3〜1.5%、Cu:0.1〜1.0%、Al:0.1〜0.7%を含み、残部Feおよび不可避的不純物でなるマルテンサイト系鋼からなるプレス金型によって、被加工材をプレス成形する、プレス成形品の製造方法において、プレス成形中の金型と被加工材が摺動するときの、金型と被加工材との最大加工速度が0.37m/sを超える条件下でプレス成形することを特徴とするプレス成形品の製造方法である。なお、本発明で言う最大加工速度とは、プレス成形中において金型と被加工材の摺動する速度が最大の時の、その加工速度である。 That is, the present invention is mass%, C: 0.7 to less than 1.6%, Si: 0.5 to 3.0%, Mn: less than 0.1 to 3.0%, P: 0.05 % (Including 0%), S: 0.01 to 0.12%, Cr: 7.0 to 13.0%, 1 type of Mo or 2 types of Mo and W (Mo + W / 2): 0 0.5 to 1.7%, V: less than 0.7% (including 0%), Ni: 0.3 to 1.5%, Cu: 0.1 to 1.0%, Al: 0.1 to 0.1% In a manufacturing method of a press-molded product, in which a work material is press-molded by a press mold made of martensitic steel containing 0.7% and the balance Fe and unavoidable impurities, the mold being pressed and production workpiece is at the time of sliding, the maximum processing speed of the die and the workpiece is press-formed product, which comprises press molding under conditions of greater than 0.37 m / s It is the law. The maximum processing speed referred to in the present invention is the processing speed when the speed of sliding between the mold and the workpiece during press molding is maximum.

そして、本発明のプレス成形品の製造方法が使用する、優れた自己潤滑特性を有するプレス金型は、質量%で、0.3%以下のNbを含有してもよい。 And the press die which has the outstanding self-lubricating property used by the manufacturing method of the press-formed product of the present invention may contain 0.3% or less Nb in mass%.

本発明によれば、コーティングをすることなく、優れた自己潤滑特性を有するプレス金型によるプレス成形品の製造方法を提供することにより、金型の低コスト、且つ長寿命化が図れることから、特に摺動環境にあるプレス金型等の分野において欠くことのできない技術となる。 According to the present invention, by providing a method for producing a press-formed product with a press mold having excellent self-lubricating properties without coating, the cost of the mold can be reduced and the life can be extended. In particular, this technology is indispensable in the field of press dies in a sliding environment.

上述したように、本発明の重要な特徴は、母材とコーティング膜との密着性の問題があり、さらに手間、及びコストのかかるコーティングをすることなく、優れた潤滑特性、及び耐摩耗性を有するプレス金型によるプレス成形品の製造方法を達成したことにある。具体的には、プレス成形中に、CuとMoの複合酸化物(以下、Cu−Mo複合酸化物とも記す)を最表面に自己生成している状態を目標とした、プレス金型である。 As described above, an important feature of the present invention is the problem of adhesion between the base material and the coating film, and further, excellent lubrication characteristics and wear resistance can be achieved without troublesome and costly coating. The present invention has achieved a method for producing a press-formed product by using a press die . Specifically, it is a press die aimed at a state in which a complex oxide of Cu and Mo (hereinafter also referred to as Cu-Mo complex oxide) is self-generated on the outermost surface during press molding .

まず、Cu−Mo複合酸化物の優れた潤滑機構特性について説明する。
Cu−Mo複合酸化物は、CuおよびMo存在下での、300℃以上の環境においてCuO+MoOの複合酸化物の形態として生成されるものである。そして、高温になるに伴って多く生成される。この複合酸化物は、二硫化モリブデンやグラファイト等固体潤滑剤のように層状構造を持ち、特定の結晶面または分子間の結合力が弱く、小さい摩擦係数を与える自己潤滑特性を持っている。
First, the excellent lubrication mechanism characteristics of the Cu—Mo composite oxide will be described.
The Cu—Mo composite oxide is produced as a CuO + MoO 3 composite oxide in an environment of 300 ° C. or higher in the presence of Cu and Mo. And many are produced | generated as it becomes high temperature. This composite oxide has a layered structure like a solid lubricant such as molybdenum disulfide and graphite, has a weak self-lubricating property that gives a small coefficient of friction, and has a weak bonding force between specific crystal planes or molecules.

本発明のプレス金型にとっては、母材自身の内部酸化によるCu−Mo複合酸化膜が最表面に自己形成されることで、優れた潤滑特性を有すると思われるが、その母材自体も耐摩耗性に優れることで総括的な摺動特性の向上が達成される。そこで、本発明を構成する母材は、本発明の根幹であるCu−Mo複合酸化物を自己形成するための、CuおよびMoの内部酸化が進行するものとして、それぞれ3.0質量%以下のMoおよびCuを含む高硬度のマルテンサイト系鋼であることが好ましい。   For the press die of the present invention, it is considered that the Cu—Mo composite oxide film by the internal oxidation of the base material itself is self-formed on the outermost surface, so that it has excellent lubrication characteristics. The overall improvement in sliding characteristics is achieved by being excellent in abrasion. Therefore, the base material constituting the present invention is such that the internal oxidation of Cu and Mo proceeds to self-form the Cu—Mo composite oxide that is the basis of the present invention, and each is 3.0 mass% or less. A high-hardness martensitic steel containing Mo and Cu is preferable.

そして、本発明のプレス金型は、その使用条件として、プレス加工中の被加工材との最大加工速度が0.37m/sを超えることが好ましい。0.37m/s以下であると、摺動による発熱が少なく、Cu−Mo複合酸化膜の自己形成が不十分であると推測される。よって、最大加工速度は0.37m/sを超える条件が好ましい。好ましくは、0.56m/sを超える最大加工速度である。   And as for the press metal mold | die of this invention, it is preferable that the maximum processing speed with the to-be-processed material in press processing exceeds 0.37 m / s as the use conditions. If it is 0.37 m / s or less, heat generation due to sliding is small, and it is presumed that the self-formation of the Cu—Mo composite oxide film is insufficient. Therefore, it is preferable that the maximum processing speed is more than 0.37 m / s. Preferably, the maximum processing speed exceeds 0.56 m / s.

そして、本発明を構成する母材は、質量%で、C:0.7〜1.6%未満、Si:0.5〜3.0%、Mn:0.1〜3.0%未満、P:0.05%未満(0%を含む)、S:0.01〜0.12%、Cr:7.0〜13.0%、Moの1種またはMoとWの2種を(Mo+W/2):0.5〜1.7%、V:0.7%未満(0%を含む)、Ni:0.3〜1.5%、Cu:0.1〜1.0%、Al:0.1〜0.7%を含み、残部Feおよび不可避的不純物でなる鋼であり、上記の内部酸化が円滑に進むことの期待されるマルテンサイト系鋼である。0.3%以下のNbを含有してもよい。 Then, the base material constituting the present invention, in mass%, C: less than 0.7~1.6%, Si: 0.5~3.0%, Mn: less than 0.1 to 3.0% , P: less than 0.05% (including 0%), S: 0.01 to 0.12%, Cr: 7.0 to 13.0%, one kind of Mo or two kinds of Mo and W ( Mo + W / 2): 0.5 to 1.7%, V: less than 0.7% (including 0%), Ni: 0.3 to 1.5%, Cu: 0.1 to 1.0%, al: 0.1 to 0.7% only containing a steel consisting of balance of Fe and unavoidable impurities, a martensitic steel is expected that the internal oxidation of the proceeds smoothly. You may contain 0.3% or less of Nb.

以下、本発明のプレス金型にとっての、上記母材の成分組成について説明する。なお、各元素の含有量を示す%の表記は、質量%である。
Cは一部が基地中に固溶して強度を付与し、一部は炭化物を形成することで耐摩耗性や耐焼付き性を高める重要な元素である。ここで、鋼中のCが固溶Cと炭化物になる割合は主にCrとの相互作用で決まるため、CはCrとの相互作用を認識して同時に規定することが望ましい。よって、被削性と熱処理変形安定性の両者をバランスよく満たす実用的な母材とするためにも、Cの成分範囲は下記のCr量をも鑑みて0.7〜1.6%未満がよい。好ましくは、0.9〜1.3%である。
Hereinafter, for the press die of the present invention, the component composition of the upper Kihaha material will be described. In addition, the description of% which shows content of each element is the mass%.
C is an important element that partly dissolves in the base to give strength, and partly forms carbides to increase wear resistance and seizure resistance. Here, since the ratio of C in steel to solute C and carbide is mainly determined by the interaction with Cr, it is desirable to define C simultaneously by recognizing the interaction with Cr. Therefore, in order to make a practical base material that satisfies both machinability and heat treatment deformation stability in a well-balanced manner, the component range of C is 0.7 to less than 1.6% in view of the following Cr content. Good. Preferably, it is 0.9 to 1.3%.

Siは本発明の母材にとって重要な元素である。Siは通常、脱酸剤として0.3%程度が添加されるが、本発明では焼入れ時の膨張を抑えた成分設計を好ましいとしている結果として焼入れ硬さの低下が懸念されるので、焼戻し時の490℃付近までの軟化現象を抑制するために通常よりも高い0.5%以上とすることが望ましい。なお、過多の含有はデルタフェライトの形成を起こすため、上限は3.0%がよい。より好ましくは、0.9〜2.0%である。   Si is an important element for the base material of the present invention. Si is usually added in an amount of about 0.3% as a deoxidizer. However, in the present invention, it is feared that the quenching hardness is lowered as a result of favoring a component design that suppresses expansion during quenching. In order to suppress the softening phenomenon up to around 490 ° C., it is desirable to set it to 0.5% or more higher than usual. In addition, since excessive inclusion causes formation of delta ferrite, the upper limit is preferably 3.0%. More preferably, it is 0.9 to 2.0%.

MnもSiと同様、脱酸剤として使用され、この場合、最低でも0.1%を含有する。しかし、過度に含有すると切削性を阻害するので、上限を3.0%に規定することが望ましい。より好ましくは、0.1〜1.0%である。   Mn, like Si, is used as a deoxidizer, and in this case, it contains at least 0.1%. However, since an excessive content impairs machinability, it is desirable to set the upper limit to 3.0%. More preferably, it is 0.1 to 1.0%.

Sは被削性を向上させる場合に有益な元素である。しかし、過多に含有すると靭性を低下させるので、多くとも0.12%以下が望ましく、添加するとすれば0.01〜0.12%がよい。好ましくは、0.03〜0.09%である。   S is an element useful for improving machinability. However, if contained in excess, the toughness is reduced, so at most 0.12% or less is desirable, and if added, 0.01 to 0.12% is good. Preferably, it is 0.03 to 0.09%.

Crは、母材の焼入れ性を高めるとともに、炭化物を形成するのに欠かせない元素である。ここで、Cの時に同様、鋼中のCrが固溶Crと炭化物になる割合はCとの相互作用によって決まるため、やはりその含有量はCとの相互作用を認識して同時に規定することが望ましい。よって、被削性と熱処理変形安定性の両者をバランスよく満たす実用的な摺動部材とするためにも、Crの成分範囲は上記のC量をも鑑みて7.0〜13.0%がよい。好ましくは、8.0〜11.0%である。   Cr is an element indispensable for improving the hardenability of the base material and forming carbide. Here, as in the case of C, since the ratio of Cr in the steel to solute Cr and carbide is determined by the interaction with C, the content can also be defined simultaneously by recognizing the interaction with C. desirable. Therefore, in order to provide a practical sliding member that satisfies both the machinability and the heat treatment deformation stability in a well-balanced manner, the component range of Cr is 7.0 to 13.0% in view of the above C content. Good. Preferably, it is 8.0 to 11.0%.

Moは、3.0%以下を含むことで本発明の自己潤滑機構特性の発揮が期待される必須元素であるが、母材としての機械的特性を調整する上では、MoとWは同様の作用効果を付与し、その程度は原子量の関係から(Mo+W/2)で規定することができる。Mo,Wは工具鋼の二次硬化を担う元素とされ、特にバイト、ドリル等の小物製品への適用で高硬度を必要とする高速度工具鋼に多く添加される。本発明においても、Mo,Wは二次硬化を発揮するマトリックス状態に大きく寄与するものとして添加が可能であるが、0.5%より少ないと十分な効果が得られず、一方、これらの元素は変寸を助長することから、冷間金型等の大物製品にとって過多の添加はよくない。よって、本発明のプレス金型では、母材はMoの1種またはMoとWの2種を(Mo+W/2)で0.5〜1.7%が好ましい。より好ましくは、0.75〜1.5%である。 Mo is an essential element that is expected to exhibit the self-lubricating mechanism characteristics of the present invention by including 3.0% or less. However, in adjusting the mechanical characteristics as a base material, Mo and W are the same. The effect is imparted, and the degree thereof can be defined by (Mo + W / 2) from the relationship of atomic weight. Mo and W are elements that are responsible for secondary hardening of tool steel, and are often added to high-speed tool steel that requires high hardness especially in application to small products such as tools and drills. Also in the present invention, Mo and W can be added as greatly contributing to a matrix state exhibiting secondary curing, but if less than 0.5%, a sufficient effect cannot be obtained, while these elements are not obtained. Since it promotes change in size, excessive addition is not good for large products such as cold molds. Therefore, in the press die of the present invention, the base material is preferably 0.5 to 1.7% of one kind of Mo or two kinds of Mo and W (Mo + W / 2). More preferably, it is 0.75 to 1.5%.

Niは、後述のAlと結合してNi−Al系金属間化合物を形成・析出し、二次硬化と変寸の抑制を同時に達成する、本発明にとっては含有の好ましい元素である。また、後述のCuを含有する場合、赤熱脆性を抑える有益な元素でもある。しかし、0.3%より少ないと十分な効果は得られず、一方、1.5%を越える過多の含有はFe中のCの固溶限を上げ、焼鈍状態の加工性を阻害するため、0.3〜1.5%が好ましい。より好ましくは、0.4〜1.5%、さらに好ましくは、0.5〜1.3%である。   Ni is a preferable element for inclusion in the present invention, which combines with Al, which will be described later, to form and precipitate a Ni—Al-based intermetallic compound, thereby achieving secondary curing and suppression of deformation at the same time. Moreover, when it contains the below-mentioned Cu, it is also a useful element which suppresses red heat | fever brittleness. However, if it is less than 0.3%, a sufficient effect cannot be obtained. On the other hand, an excessive content exceeding 1.5% raises the solid solubility limit of C in Fe and inhibits workability in the annealed state. 0.3 to 1.5% is preferable. More preferably, it is 0.4 to 1.5%, and still more preferably 0.5 to 1.3%.

Cuは、Moに同様、3.0%以下を含むことで本発明の自己潤滑機構特性の発揮が期待される必須元素であるが、その適量の含有によっては、Cu金属相が約480℃以上から析出し始め、これが金属間化合物の析出核になることから、本来はより高温で析出する上記のNi−Al系金属間化合物をちょうど工具鋼の二次硬化温度付近で析出させることを可能にする。よって、Ni−Al系金属間化合物の析出による変寸相殺効果および二次硬化を最大限に発揮するには含有の好ましい元素である。しかし、Cuは多量に添加すると赤熱脆性が起こるため、本発明では0.1〜1.0%に規定することが好ましい。より好ましくは、0.2〜0.8%である。 Cu is an essential element that is expected to exhibit the self-lubricating mechanism characteristics of the present invention by containing 3.0% or less as in Mo, but depending on the content of the appropriate amount, Cu metal phase is about 480 ° C. or more. Since this becomes a precipitation nucleus of the intermetallic compound, it is possible to precipitate the Ni-Al intermetallic compound, which originally precipitates at a higher temperature, just near the secondary hardening temperature of the tool steel. To do. Therefore, it is a preferable element to contain in order to maximize the effect of canceling the size change due to precipitation of the Ni—Al intermetallic compound and the secondary hardening. However, when Cu is added in a large amount, red heat embrittlement occurs. Therefore, in the present invention, it is preferable to specify 0.1 to 1.0%. More preferably, it is 0.2 to 0.8%.

Alは、上記の通り、Niと結合してNiAlもしくはNiAlといったNi−Al系金属間化合物を形成し、析出による二次硬化を担う。また、この析出反応によりマトリックスが収縮するため、工具鋼における二次硬化時の膨張反応を相殺し、その結果、変寸を抑制する、本発明にとっての含有が好ましい元素である。しかし、0.1%より少ないと十分な効果は得られず、一方、0.7%を超える過多のAlは著しいデルタフェライトの形成を起こすので、0.1〜0.7%に規定することが好ましい。より好ましくは、0.1〜0.5%、さらに好ましくは、0.15〜0.45%である。 As described above, Al combines with Ni to form a Ni—Al-based intermetallic compound such as Ni 3 Al or NiAl, and is responsible for secondary hardening by precipitation. Further, since the matrix shrinks due to this precipitation reaction, the element is a preferable element for inclusion in the present invention, which cancels out the expansion reaction at the time of secondary hardening in the tool steel and consequently suppresses deformation. However, if it is less than 0.1%, a sufficient effect cannot be obtained. On the other hand, excessive Al exceeding 0.7% causes remarkable delta ferrite formation. Is preferred. More preferably, it is 0.1-0.5%, More preferably, it is 0.15-0.45%.

Nbは組織中の炭化物の分布を均一化し、熱処理変形を小さくする働きがあることから、本発明のプレス金型にとっては、その母材に含有の好ましい元素である。特に0.03%以上の含有が好ましいが、その含有により形成されるMX化合物の量が多すぎると被削性を害するので、0.3%以下の含有が望ましい。   Nb is a preferable element contained in the base material for the press die of the present invention because it has a function of making the distribution of carbides in the structure uniform and reducing heat treatment deformation. In particular, a content of 0.03% or more is preferable. However, if the amount of the MX compound formed by the content is too large, the machinability is impaired.

また、以下の元素は下記の範囲内であれば本発明の母材に含まれてもよい。
Pは靭性を阻害する元素であることから、0.05%未満、好ましくは0.02%以下に規制する。Vは焼入れ性の向上の上で添加することができるが、被削性を阻害する元素であることから、含有する場合であっても0.7%未満、好ましくは0.5%以下に制限する。
The following elements may be included in the base material of the present invention as long as they are within the following ranges.
Since P is an element that inhibits toughness, it is limited to less than 0.05%, preferably 0.02% or less. V can be added to improve hardenability, but is an element that hinders machinability, so even if it is contained, it is limited to less than 0.7%, preferably 0.5% or less. To do.

本発明の母材は、好ましくは、以上を満たす成分組成であって、残部を実質的にFeとする鋼とすることができる。例えば上述の元素種以外はFeと他の元素は総計で20%以下、10%以下、5%以下といった鋼や、残部はFeおよび不可避的不純物で構成される鋼であれば、優れた自己潤滑機構特性が期待され、さらに変寸抑制特性と二次硬化をも同時に達成した、機械的特性の優れるプレス金型となる。   The base material of the present invention preferably has a component composition satisfying the above and can be made of steel with the balance being substantially Fe. For example, other than the above-mentioned element types, if Fe and other elements are steels with a total of 20% or less, 10% or less, 5% or less, and the balance is steel composed of Fe and inevitable impurities, excellent self-lubrication A press die having excellent mechanical properties, which is expected to have mechanical properties, and further achieves size change suppression properties and secondary curing at the same time.

本実施例1では、実際にプレス成形に使用される時の金型温度を想定し、内部酸化によるCu−Mo複合酸化物の自己生成について評価する。
まず、真空溶解後の造塊によって得た鋼塊を熱間加工して、表1に示す化学成分(質量%)の、残部Fe、及び不可避的不純物でなるマルテンサイト系鋼の試料(寸法は15×15×3mm)を準備した。そして、これら試料に焼入れ(1030℃×1h)、焼戻し(500℃×1hを2回)を施した後、鏡面研磨を行い、その後、使用中の実金型温度を想定した、500℃の熱処理(酸化雰囲気)を施して、評価試料とした。そして、得た試料の表面状態(自己生成膜の構成)をX線光電子分光分析装置(ESCA)により測定し、評価した。
In the present Example 1, the die temperature at the time of actually using for press molding is assumed, and self-generation of Cu—Mo composite oxide by internal oxidation is evaluated.
First, a steel ingot obtained by ingot-making after vacuum melting is hot-worked, and a sample of martensitic steel (the size is the balance) of the chemical components (mass%) shown in Table 1 and the balance Fe and inevitable impurities. 15 × 15 × 3 mm). These samples were quenched (1030 ° C. × 1 h) and tempered (500 ° C. × 1 h twice), then mirror-polished, and then heat treated at 500 ° C. assuming the actual mold temperature in use. (Oxidizing atmosphere) was applied to obtain an evaluation sample. And the surface state (configuration of the self-generated film) of the obtained sample was measured and evaluated by an X-ray photoelectron spectrometer (ESCA).

ESCA測定は、表面スパッタを、積算で0(最表面),3,6,9,12,15,30,45,60,75,90,105,120分行い、それぞれのスパッタ時間に相当する、最表面、及び深さ方向位置の成分状態について評価した。試料No.1については、図1にスパッタ0分、及び3分後のCuの結合状態を、図2にスパッタ0分、及び120分後のMoの結合状態を示しておく。   In ESCA measurement, surface sputtering is performed by integrating 0 (outermost surface), 3, 6, 9, 12, 15, 30, 45, 60, 75, 90, 105, 120 minutes, corresponding to the respective sputtering times. The component states at the outermost surface and the position in the depth direction were evaluated. Sample No. As for 1, the bonding state of Cu after 0 minutes and 3 minutes after sputtering is shown in FIG. 1, and the bonding state of Mo after 0 minutes and 120 minutes after sputtering is shown in FIG.

試料No.1の場合、図1より、スパッタ3分後の深さ部位においては、オージェピークが不明瞭のため、Cuの状態は判断できないが、スパッタ0分の最表面には、CuOが形成されていることがわかる。また、図2より、Moはスパッタ0分の最表面でMoOを形成しており、スパッタ120分後の深さ位置ではMoの状態にある。 Sample No. In the case of 1, the state of Cu cannot be determined because the Auger peak is unclear at a depth of 3 minutes after sputtering as shown in FIG. 1, but CuO is formed on the outermost surface of 0 minutes of sputtering. I understand that. In addition, as shown in FIG. 2, Mo forms MoO 3 on the outermost surface of 0 minutes of sputtering, and is in the Mo state at a depth position after 120 minutes of sputtering.

一方、試料No.2の場合、CuO、MoO共に検出されなかった。 On the other hand, sample No. In the case of 2, neither CuO nor MoO 3 was detected.

上述した結果より、試料No.1においてのみ、その最表面にCuO−MoOの複合酸化膜が生成していることがわかる。 From the results described above, sample No. 1 only shows that a CuO—MoO 3 composite oxide film is formed on the outermost surface.

本実施例2では、前記実施例1の試験結果に基づいての、表2に示す部材No.3,4をプレス金型に適用して、それによるプレス成形を行った時の焼付き性の評価をする。   In the present Example 2, the member Nos. Shown in Table 2 based on the test results of Example 1 were used. 3 and 4 are applied to a press die, and the seizure property when press molding is performed is evaluated.

本評価では、部材No.3,4の金型を用いての、図3に示す成形条件による焼付き性評価試験を実施した。リンク機構によりパンチが上下運動する図3の装置においては、そのパンチ先端がワーク(被加工材)に当接する瞬間に、パンチとワークが接触している条件下においてパンチが最大加工速度に達する。   In this evaluation, the member No. A seizure evaluation test was carried out under the molding conditions shown in FIG. In the apparatus of FIG. 3 in which the punch moves up and down by the link mechanism, the punch reaches the maximum machining speed under the condition that the punch and the workpiece are in contact with each other at the moment when the tip of the punch comes into contact with the workpiece (workpiece).

一方、このプレス成形中において、ワークに発生する“しわ”を抑制するためには、ワーク端部を固定する“しわ押さえ力”を大きくすることが有効であるが、この力が大きくなればなる程、逆に焼付きが発生しやすくなる。そこで、本試験では、一定の最大加工速度でのパンチ成形において、その焼付きなしにプレス成形が可能な“最大しわ押さえ力”を測定した。つまり、ワーク端部を押さえる力が、最大しわ押さえ力を超えると焼付きが発生することから、この最大しわ押さえ力を大きくできるものである程、耐焼付き性に優れ、しわが発生せず、様々な形状の高速成形が可能である。   On the other hand, in order to suppress “wrinkles” generated in the workpiece during press forming, it is effective to increase the “wrinkle holding force” for fixing the end portion of the workpiece. However, if this force increases. Conversely, seizure is more likely to occur. Therefore, in this test, the “maximum wrinkle pressing force” capable of press forming without seizure was measured in punch forming at a constant maximum processing speed. In other words, seizure occurs when the force that presses the end of the workpiece exceeds the maximum wrinkle holding force, so the greater the maximum wrinkle holding force, the better the seizure resistance, and no wrinkle occurs. Various shapes can be formed at high speed.

図4に試験結果を示す。なお、図3の装置においては、その加工速度は、成形速度[単位分当たりの成形ショット回数(spm)]をもって制御するので、その際の成形速度も併記しておく。   FIG. 4 shows the test results. In the apparatus of FIG. 3, the processing speed is controlled by the molding speed [number of molding shots per unit (spm)], and the molding speed at that time is also shown.

図4より、本発明のプレス金型である部材No.3は、焼付きがなく成形できる最大しわ押さえ力が、加工速度を上げる程に、1.2kgf/cmから1.4kgf/cmへ上がった。部材No.3は、その金型使用前には、Cu−Mo複合酸化膜を自己生成させるような加熱処理はしておらず、成形開始時には該酸化膜は生成していないが、成形時の発熱によって徐々にCu−Mo複合酸化膜が自己生成することが期待される。よって、加工速度が遅い時の最大しわ押さえ力は少し小さいが、加工速度が速くなると、発熱によるCu−Mo複合酸化膜の自己生成が促進され、耐焼付き性が向上するので、最大しわ押さえ力が大きくなると思われる。 From FIG. 4, member No. which is the press die of the present invention is shown. 3, the maximum blank holding force can be molded without seizure, enough to raise the processing rate was up from 1.2 kgf / cm 2 to 1.4 kgf / cm 2. Member No. No. 3 was not subjected to heat treatment to self-generate a Cu—Mo composite oxide film before using the mold, and the oxide film was not generated at the start of molding, but gradually due to heat generated during molding. It is expected that the Cu—Mo composite oxide film is self-generated. Therefore, the maximum wrinkle holding force when the processing speed is slow is a little small, but when the processing speed is increased, the self-generation of the Cu-Mo composite oxide film due to heat generation is promoted and the seizure resistance is improved. Seems to grow.

一方、部材No.4においては、焼付きがなく成形できる最大しわ押さえ力は、加工速度を上げる程、1.0kgf/cmから0.4kgf/cmへと下がった。これについては、母材の鋼にCuが添加されていないため、成形時の発熱によってもCu−Mo複合酸化膜が形成されることがない。したがって、成形速度を上げて使用環境が苛酷になるに伴って、耐焼付き性が劣化し、最大しわ押さえ力は小さくなる。 On the other hand, member No. In 4, the maximum blank holding force can be molded without sticking the higher the machining speed was lowered from 1.0 kgf / cm 2 to 0.4 kgf / cm 2. About this, since Cu is not added to the steel of the base material, the Cu—Mo composite oxide film is not formed even by heat generation during forming. Accordingly, as the molding speed is increased and the use environment becomes severe, the seizure resistance deteriorates and the maximum wrinkle holding force decreases.

本発明組成の鋼を加熱酸化処理した時の、表面の電子結合状態を示す図であり、本発明の効果の一例を説明する図である。It is a figure which shows the surface electronic bonding state when the steel of this invention composition is heat-oxidized, and is a figure explaining an example of the effect of this invention. 本発明組成の鋼を加熱酸化処理した時の、表面の電子結合状態を示す図であり、本発明の効果の一例を説明する図である。It is a figure which shows the surface electronic bonding state when the steel of this invention composition is heat-oxidized, and is a figure explaining an example of the effect of this invention. 本発明の実施例で用いた、焼付き評価試験装置の模式図である。It is a schematic diagram of the seizure evaluation test apparatus used in the examples of the present invention. 本発明例、及び比較例のプレス金型の、焼付き評価試験の結果を示す図である。It is a figure which shows the result of the seizure evaluation test of the press metal mold | die of this invention example and a comparative example.

Claims (2)

質量%で、C:0.7〜1.6%未満、Si:0.5〜3.0%、Mn:0.1〜3.0%未満、P:0.05%未満(0%を含む)、S:0.01〜0.12%、Cr:7.0〜13.0%、Moの1種またはMoとWの2種を(Mo+W/2):0.5〜1.7%、V:0.7%未満(0%を含む)、Ni:0.3〜1.5%、Cu:0.1〜1.0%、Al:0.1〜0.7%を含み、残部Feおよび不可避的不純物でなるマルテンサイト系鋼からなるプレス金型によって、被加工材をプレス成形する、プレス成形品の製造方法において、
プレス成形中の金型と被加工材が摺動するときの、金型と被加工材との最大加工速度が0.37m/sを超える条件下でプレス成形することを特徴とするプレス成形品の製造方法
In mass%, C: 0.7 to less than 1.6%, Si: 0.5 to 3.0%, Mn: less than 0.1 to 3.0%, P: less than 0.05% (0% S): 0.01 to 0.12%, Cr: 7.0 to 13.0%, 1 type of Mo or 2 types of Mo and W (Mo + W / 2): 0.5 to 1.7 %, V: Less than 0.7% (including 0%), Ni: 0.3 to 1.5%, Cu: 0.1 to 1.0%, Al: 0.1 to 0.7% included In a manufacturing method of a press-formed product, press-molding a workpiece by a press die made of martensitic steel composed of the remaining Fe and inevitable impurities ,
Press-molded product characterized in that press-molding is performed under a condition in which the maximum working speed between the mold and the workpiece exceeds 0.37 m / s when the mold and the workpiece during press molding slide. Manufacturing method .
プレス金型は、質量%で、0.3%以下のNbを含有する鋼であることを特徴とする請求項1に記載のプレス成形品の製造方法 The method for producing a press-formed product according to claim 1, wherein the press die is steel containing 0.3% or less Nb in mass%.
JP2006120210A 2005-05-26 2006-04-25 Manufacturing method of press-molded products Expired - Fee Related JP4844874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120210A JP4844874B2 (en) 2005-05-26 2006-04-25 Manufacturing method of press-molded products

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005153774 2005-05-26
JP2005153774 2005-05-26
JP2006120210A JP4844874B2 (en) 2005-05-26 2006-04-25 Manufacturing method of press-molded products

Publications (3)

Publication Number Publication Date
JP2007002333A JP2007002333A (en) 2007-01-11
JP2007002333A5 JP2007002333A5 (en) 2009-04-23
JP4844874B2 true JP4844874B2 (en) 2011-12-28

Family

ID=37688201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120210A Expired - Fee Related JP4844874B2 (en) 2005-05-26 2006-04-25 Manufacturing method of press-molded products

Country Status (1)

Country Link
JP (1) JP4844874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640654A (en) * 2012-08-20 2015-05-20 日立金属株式会社 Method for cutting cold work tool steel, and method for producing cold-working die material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403206B (en) * 2011-02-21 2015-11-25 日立金属株式会社 The cold work tool steel of excellent in machinability
JP5843173B2 (en) * 2011-02-21 2016-01-13 日立金属株式会社 Manufacturing method of cold working mold
CN107429356B (en) * 2015-03-26 2019-09-20 日立金属株式会社 Sliding structure body
JP6422044B2 (en) * 2016-09-20 2018-11-14 日立金属株式会社 Sliding structure and sliding method of sliding structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580290B1 (en) * 2002-12-25 2012-03-14 Hitachi Metals, Ltd. Cold die steel excellent in characteristic of suppressing dimensional change

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640654A (en) * 2012-08-20 2015-05-20 日立金属株式会社 Method for cutting cold work tool steel, and method for producing cold-working die material

Also Published As

Publication number Publication date
JP2007002333A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
RU2469120C2 (en) Control method of steel thermal conductivity, instrument steel, and namely, instrument steel for hot types of treatment, use of instrument steel and steel product
EP2679697B1 (en) Manufacturing method for cold-working die
JP5276330B2 (en) Cold mold steel and cold press mold
JP5143531B2 (en) Cold mold steel and molds
JP4737606B2 (en) Cold die steel with excellent deformation suppression characteristics and galling resistance
WO2006004529A1 (en) Stainless steel powder
JP4844874B2 (en) Manufacturing method of press-molded products
JP4771223B2 (en) Durable hard material coated mold for plastic working
KR20080049097A (en) A maraging steel article and method of manufacture
EP3467128A1 (en) Extrusion die made of hot working steel
KR100987685B1 (en) Hard-material-coated member excellent in durability
JP5045972B2 (en) High speed steel manufactured by powder metallurgy
EP1151146B1 (en) High-hardness powder metallurgy tool steel and article made therefrom
EP2679698B1 (en) Cold-work tool steel exhibiting superior machinability
JP2631262B2 (en) Manufacturing method of cold die steel
JP5316425B2 (en) Alloy for surface coating treatment and sliding member
JP4322239B2 (en) Cold tool steel and manufacturing method thereof
JP4411594B2 (en) Cold working mold
JP6692005B1 (en) Manufacturing method of forged products
JP2005187900A (en) Cold tool steel having excellent surface treatability, component for die, and die
JPH06172943A (en) Die for hot working excellent in wear resistance
JP2001073087A (en) Nitrided die for warm and hot working, excellent in wear resistance
JP2000301279A (en) Complex material-made forging die
JP2005290517A (en) Steel for cold die and cold die appropriate to surface treatment
JP2602903B2 (en) Tool steel for warm and hot working

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees