JPH10216702A - Fresh water making method - Google Patents

Fresh water making method

Info

Publication number
JPH10216702A
JPH10216702A JP9052200A JP5220097A JPH10216702A JP H10216702 A JPH10216702 A JP H10216702A JP 9052200 A JP9052200 A JP 9052200A JP 5220097 A JP5220097 A JP 5220097A JP H10216702 A JPH10216702 A JP H10216702A
Authority
JP
Japan
Prior art keywords
distillation tank
fresh water
water
seawater
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9052200A
Other languages
Japanese (ja)
Inventor
Yasutaka Imashiro
康隆 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
II M II KK
M S K KK
MSK KK
Original Assignee
II M II KK
M S K KK
MSK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by II M II KK, M S K KK, MSK KK filed Critical II M II KK
Priority to JP9052200A priority Critical patent/JPH10216702A/en
Publication of JPH10216702A publication Critical patent/JPH10216702A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Abstract

PROBLEM TO BE SOLVED: To efficiently and inexpensively produce fresh water by reducing energy consumption to a large extent. SOLUTION: Raw water 1 is allowed to pass through a distillation tank 2 and the distillation tank 2 is reduced in pressure to generate steam which is, in turn, condensed by a chiller 7 to recover fresh water. At this time, raw water 1 is passed through the multistage distillation tank 2 and the vacuum pump 9 arranged in the respective distillation tanks 2 are driven to reduce the pressure in the distillation tanks 2 to generate steam which is, in turn, condensed and recovered by the chiller 7 or raw water heated by a heat exchange means is introduced into the distillation tank 2 and energy required in the reduction of pressure is supplied from a solar cell 6 or a solar hot water device may be utilized as the heat exchange means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海水や泥水等の濁
り水から安価に真水を得る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for obtaining inexpensive fresh water from turbid water such as seawater or muddy water.

【0002】[0002]

【従来の技術】従来から船舶や砂漠においては、海水を
蒸発させてその蒸留水を飲料水等の生活用水や、保水剤
を利用した砂漠の緑化などに利用されている。これに用
いられる従来の真水製造装置は、石油を燃焼させて常温
の海水を沸騰させ、これによって発生する水蒸気を冷却
回収したり、イオン交換樹脂や逆浸透膜によって直接海
水から真水を得るものである。
2. Description of the Related Art Conventionally, in ships and deserts, seawater is evaporated and the distilled water is used for domestic water such as drinking water and desert greening using a water retention agent. The conventional fresh water production equipment used for this purpose is to burn sea oil at normal temperature by burning oil, cool and recover the steam generated by this, and obtain fresh water directly from sea water by ion exchange resin or reverse osmosis membrane. is there.

【0003】[0003]

【発明が解決しようとする課題】前者の方法では、海水
を加熱して蒸気を得るために多大な熱エネルギーが必要
であり、しかもこれを石油の燃焼に頼っている。従っ
て、本来は砂漠の緑化のために真水が必要となっている
ところに、それを製造するために膨大な量の炭酸ガスを
排出するという、本末転倒な実態となっている。また、
コストも非常に高くなり、中近東においてはガソリンよ
りも真水の方が高価になっている。
In the former method, a large amount of heat energy is required to heat seawater to obtain steam, and the heat energy is relied on oil combustion. Therefore, where fresh water is originally required for desert greening, an enormous amount of carbon dioxide is discharged in order to produce it. Also,
The cost is also very high, and fresh water is more expensive than gasoline in the Middle East.

【0004】後者の方法では、海水中のイオン濃度が極
めて高いためにイオン交換樹脂の交換頻度が極めて高く
なり、これによってコストが嵩む結果、前者の方法と同
様、真水がガソリンよりも高くなる、と言った現況を招
いている。
[0004] In the latter method, the exchange frequency of the ion-exchange resin becomes extremely high due to the extremely high ion concentration in seawater, which increases the cost. As a result, as in the former method, fresh water becomes higher than gasoline. Inviting the current situation.

【0005】[0005]

【課題を解決するための手段】このような現状を受け、
本発明は消費エネルギーを大幅に低減して効率的に且つ
安価に真水を製造することを目的としてなされた。前述
の課題は、原料水を蒸留槽内に通過させるとともに、こ
の蒸留槽を減圧して上記を発生させ、これをチラーによ
って凝縮させて真水を回収することによって解決でき
る。ここで、原料水を多段の蒸留槽内に通過させ、各々
の蒸留槽に設置された真空ポンプを駆動して蒸留槽内を
減圧して蒸気を発生させ、これをチラーによって凝縮回
収して真水を得る方法を取ってもよいし、蒸留槽内に、
熱交換手段によって加温された原料水を導入するととも
に、減圧に要するエネルギーを太陽電池より供給する方
法を取ってもよいし、熱交換手段として太陽熱温水器を
利用してもよい。
[Means for Solving the Problems] In response to the current situation,
An object of the present invention is to produce fresh water efficiently and inexpensively by greatly reducing energy consumption. The above-mentioned problem can be solved by allowing the raw water to pass through the distillation tank, depressurizing the distillation tank to generate the above-mentioned water, and condensing this by a chiller to recover fresh water. Here, the raw water is passed through the multi-stage distillation tanks, and the vacuum pumps installed in the respective distillation tanks are driven to reduce the pressure in the distillation tanks to generate steam. Or in the distillation tank,
A method may be adopted in which the raw water heated by the heat exchange means is introduced and the energy required for decompression is supplied from a solar cell, or a solar water heater may be used as the heat exchange means.

【0006】次に、本発明の作用を説明する。例えば海
水は、標準的な大気圧である760torrにおいて
は、100℃で沸騰し、水蒸気となる。一方、減圧下に
おいてはその圧力によって沸点降下が起こり、圧力が低
い程低温で沸騰する。従って、加温された水をある程度
閉鎖された蒸留槽内に導入し、真空ポンプ等て減圧する
と、極めて少ないエネルギー量で水を沸騰させることが
可能となる。一方、ある程度の処理量を維持しようとす
れば、蒸留槽をできるだけ大きく設定しなければならな
いが、蒸留槽が大きくなると減圧に使用する真空ポンプ
も大きくしなければならないため、本発明では、蒸留槽
を多段に分割することも考慮に入れている。このような
構成を取ることにより、安価で且つ汎用性の高い真空ポ
ンプを用いることが可能となる。このような本発明の作
用によって、従来の大気圧下での燃焼方式に比べて蒸気
発生に要するエネルギーを、大幅に低減することが可能
となるのである。
Next, the operation of the present invention will be described. For example, seawater boils at 100 ° C. at a standard atmospheric pressure of 760 torr and becomes steam. On the other hand, under reduced pressure, the pressure causes a boiling point drop, and the lower the pressure, the lower the boiling point. Therefore, when heated water is introduced into a distillation tank which is closed to some extent, and the pressure is reduced by a vacuum pump or the like, the water can be boiled with an extremely small amount of energy. On the other hand, in order to maintain a certain amount of processing, the distillation tank must be set as large as possible.However, when the distillation tank is large, the vacuum pump used for decompression must be large. Is also taken into account. By adopting such a configuration, it is possible to use an inexpensive and highly versatile vacuum pump. By the operation of the present invention, the energy required for generating steam can be significantly reduced as compared with the conventional combustion method under the atmospheric pressure.

【0007】海水は隔壁でセパレートされた蒸留槽内を
移動し、最終蒸留槽内が最も海水が濃縮された状態とな
る。しかし、塩分を採取することなくある程度濃縮され
た海水を排水管を通して海に戻すことにより、排水管が
析出した塩分によって詰まることを未然に回避すること
ができる。そして、分離された各蒸留槽に配置された真
空ポンプを駆動することにより、効率的に海水を沸騰さ
せ、蒸気を発生させることができる。従って、蒸留槽に
供給される海水温度が高い時ほど、真空ポンプを小型化
することができる。すなわち、海水が何らかの手段でそ
の沸点である100℃近辺に加熱されていれば、大気圧
である760torrで沸騰する。一方、中近東をはじ
めとする砂漠地帯などでは、ドラム缶の溜まり水が日中
の昇温で70℃〜80℃程度になることはよく見られる
現象である。このような場合には、真空ポンプで200
〜300torr程度に減圧するだけで、海水は容易に
沸騰して真水を得ることができる。
Seawater moves in a distillation tank separated by a partition wall, and the final distillation tank is in a state where seawater is most concentrated. However, by returning seawater that has been concentrated to some extent to the sea through a drain pipe without collecting salt, it is possible to prevent the drain pipe from being clogged with precipitated salt. By driving a vacuum pump arranged in each of the separated distillation tanks, seawater can be efficiently boiled and steam can be generated. Therefore, the higher the temperature of the seawater supplied to the distillation tank, the smaller the vacuum pump can be. That is, if the seawater is heated to around its boiling point of 100 ° C. by some means, it will boil at the atmospheric pressure of 760 torr. On the other hand, in desert areas such as the Middle and Near East, it is a common phenomenon that accumulated water in drums reaches about 70 ° C. to 80 ° C. during daytime when the temperature rises. In such a case, use a vacuum pump for 200
By reducing the pressure to about 300 torr, seawater can easily boil to obtain fresh water.

【0008】日本でも最近は夏場の水不足に悩まされる
地域が増加しているが、これは単に都市部にのみ見られ
る現象ではなく、九州や四国などをはじめ、いたるとこ
ろで発生している。国内の場合でも、夏場では上記ドラ
ム缶内の溜まり水は容易に30℃以上の温度に達するの
で、40torr程度に減圧することで沸点に達して真
水を得ることができる。
[0008] In Japan, the number of areas suffering from water shortages in summer has recently increased, but this phenomenon is not merely a phenomenon observed only in urban areas but occurs everywhere in Kyushu and Shikoku. Even in Japan, the accumulated water in the drum can easily reach a temperature of 30 ° C. or more in summer, so that by reducing the pressure to about 40 torr, the boiling point is reached and fresh water can be obtained.

【0009】真空ポンプは一般に、容器が十分密閉保持
されている限り、初期排気にこそ多少の駆動エネルギー
をひつようとするものの、定常状態においては真空度を
維持するだけのエネルギーがあれば十分である。ここ
で、蒸留槽内に導入された海水が沸騰すると気化熱が奪
われる結果、海水の温度がいくぶんか低下する。温度が
低下すると同じ真空度では沸騰しなくなるため、例えば
温度低下分を補償するだけの新たな加熱海水を供給すれ
ばよい。従って蒸留槽への海水の供給量と真空ポンプの
能力を、上述のバランスが取れるよう、適宜に設定すれ
ばよい。このような構成であるためにランニングに必要
なエネルギー量は少なく、従来より行われていた、海水
を常圧(大気圧)の沸点(100℃)まで昇温させる方
式と比較すると、極めて小さいエネルギーで蒸気を効率
良く発生させることができる。
In general, a vacuum pump requires some drive energy for initial evacuation as long as the container is kept sufficiently sealed. However, in a steady state, sufficient energy is required to maintain the degree of vacuum. is there. Here, when the seawater introduced into the distillation tank boils, the heat of vaporization is taken away, so that the temperature of the seawater decreases somewhat. When the temperature is lowered, the boiling point is not maintained at the same degree of vacuum. Therefore, for example, new heated seawater only to compensate for the temperature reduction may be supplied. Therefore, the supply amount of seawater to the distillation tank and the capacity of the vacuum pump may be appropriately set so as to achieve the above balance. Due to such a configuration, the amount of energy required for running is small. Compared with the conventional method of increasing the temperature of seawater to the boiling point (100 ° C.) of normal pressure (atmospheric pressure), the energy is extremely small. Thus, steam can be generated efficiently.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施例を説明する。図1は、本発明を実現するための
一実施形態を模式的に表したものである。1は海水、2
は複数の隔壁でセパレートされた蒸留槽(槽数はn)で
あり、主流海水吸入パイプ3よりポンプ4によって海水
1を汲み上げ、太陽熱温水器の原理を利用した熱交換手
段となる支流熱交換パネル部を5介して、蒸留槽2内に
導入される。海水1は支流熱交換パネル5で太陽熱によ
って加熱され、日本でも夏場であれば約30℃、中近東
などの地域では70℃程度にまで昇温した後、蒸留槽2
内に導入されることになる。6は真空ポンプ駆動用の太
陽電池アレイであり、図例のものでは、蒸留槽2の屋根
に配置している。7は冷却用チラー装置であり、チラー
管8を蒸留槽2内の上部天井付近に配置している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows an embodiment for realizing the present invention. 1 is seawater, 2
Is a distillation tank (the number of tanks is n) separated by a plurality of partition walls, which pumps seawater 1 from a mainstream seawater suction pipe 3 by a pump 4 and serves as a tributary heat exchange panel serving as a heat exchange means using the principle of a solar water heater. It is introduced into the distillation tank 2 through the section 5. The seawater 1 is heated by the solar heat in the tributary heat exchange panel 5, and in Japan, the temperature is raised to about 30 ° C. in summer and to about 70 ° C. in regions such as the Middle and Near East.
Will be introduced within. Reference numeral 6 denotes a solar cell array for driving a vacuum pump, which is arranged on the roof of the distillation tank 2 in the illustrated example. Reference numeral 7 denotes a cooling chiller device, and a chiller tube 8 is arranged near the upper ceiling in the distillation tank 2.

【0011】海水は、蒸留槽2内を図の左側から右側の
槽に向かってゆっくりと移動する。各々の隔壁でセパレ
ートされた蒸留槽2内は、太陽電池アレイからの電力で
駆動する真空ポンプ9によって減圧状態に保持される。
減圧蒸留された真水の蒸気は冷却チラー装置7で凝縮さ
れ、これが蒸留槽2の上部に多数配置されたトイ10に
より、真水として回収される。蒸留槽2内で塩分が濃縮
された残液は、最終槽に直結している支流排水パイプ1
1および主流排水パイプ12を通して排水として海中に
戻される。13は、太陽電池アレイ6からの電力を貯蔵
しておくためのバッテリーを収納した電気制御ボックス
である。この実施例では、砂漠14に設置されるもので
あるが、これが洋上を航海する船舶上でも全く同様に実
施可能である。また本図例のように、1本の主流海水吸
入パイプ3と主流排水パイプ12に、複数の図例の真水
製造ユニットAを接続することもできる。
Seawater slowly moves in the distillation tank 2 from the left side to the right side tank in the drawing. The inside of the distillation tank 2 separated by each partition is kept in a reduced pressure state by a vacuum pump 9 driven by electric power from a solar cell array.
Vapor of fresh water distilled under reduced pressure is condensed in the cooling chiller device 7 and is recovered as fresh water by a large number of toys 10 arranged above the distillation tank 2. The residual liquid in which the salt is concentrated in the distillation tank 2 is supplied to the tributary drain pipe 1 directly connected to the final tank.
1 and returned to the sea as drainage through the mainstream drainage pipe 12. Reference numeral 13 denotes an electric control box containing a battery for storing power from the solar cell array 6. In this embodiment, it is installed in the desert 14, but this can be carried out on a ship sailing on the ocean. Also, as shown in this example, a plurality of freshwater production units A of the example shown can be connected to one mainstream seawater suction pipe 3 and one mainstream drainage pipe 12.

【0012】ここで、海水から蒸留によって真水を製造
する原理について、再度詳細に説明する。海水と一般の
水の蒸気圧特性は厳密には異なるが、各地各様の複雑な
組成物系からなる海水の蒸気圧特性を引用しなくともそ
れほど問題にはならない。従って、図2に示す水の蒸気
圧特性により、本発明の原理を次のように説明すること
ができる。図2において、海水が100℃に加熱されて
いるならば、1気圧の常圧である760torrで沸騰
し、蒸発気化して真水が得られる。しかし中近東などの
熱帯地域では、汲み置きの海水は太陽光照射により短時
間で70℃前後にまで加熱される。従って、図中A点の
約250torrで沸騰させることができる。一方、日
本において夏場では汲み置き水の温度は30℃程度であ
り、B点の45torrで沸騰することになる。
Here, the principle of producing fresh water from seawater by distillation will be described again in detail. Although the vapor pressure characteristics of seawater and general water are strictly different, it does not matter much without citing the vapor pressure characteristics of seawater composed of various complex composition systems in various places. Therefore, the principle of the present invention can be explained as follows by the vapor pressure characteristics of water shown in FIG. In FIG. 2, if the seawater is heated to 100 ° C., it boils at 760 torr, which is a normal pressure of 1 atm, and is evaporated and vaporized to obtain fresh water. However, in tropical regions such as the Middle East, the seawater that is pumped is heated to around 70 ° C. in a short time by irradiation with sunlight. Therefore, it can be boiled at about 250 torr at point A in the figure. On the other hand, in Japan in summer, the temperature of the pumping water is about 30 ° C., and the water boils at point B of 45 torr.

【0013】本発明の実施例では、使用されるポンプや
真空ポンプ、さらに図示されていない温度センサーや液
面センサー等のセンサー類などの電気部品の全ては、太
陽電池によって駆動される。太陽電池アレイ6により電
気エネルギーに変換され、電気制御ボックス13に収納
されたバッテリーに蓄積される。海水1はポンプ4で汲
み上げられ、支流熱交換パネル5の中をゆっくりと流れ
る間に、太陽光照射によって加熱される。加熱された海
水は、ゆっくりと蒸留槽2内を左から右に移動する。隔
壁で仕切られた各々の蒸留槽2に設置された真空ポンプ
9は、検出した液温に基づく図2の蒸気圧特性に従った
真空度に、蒸留槽2の空間の圧力を維持し、蒸留槽2の
空間に蒸気を発生させる。上部には冷却チラー管8が設
置されているので、蒸気は上部で凝縮して真水となる。
この真水を複数個多段に配置したトイ10で受け、収納
槽に集めて飲料水や生活用水、あるいは砂漠の緑化に供
される。
In the embodiment of the present invention, all of the electric components such as a pump and a vacuum pump, and sensors (not shown) such as a temperature sensor and a liquid level sensor are driven by solar cells. The electric energy is converted into electric energy by the solar cell array 6 and stored in the battery housed in the electric control box 13. The seawater 1 is pumped by the pump 4 and is heated by the irradiation of sunlight while slowly flowing through the tributary heat exchange panel 5. The heated seawater slowly moves inside the distillation tank 2 from left to right. The vacuum pump 9 installed in each distillation tank 2 partitioned by the partition wall maintains the pressure in the space of the distillation tank 2 at a vacuum degree according to the vapor pressure characteristic of FIG. Steam is generated in the space of the tank 2. Since the cooling chiller tube 8 is provided at the upper portion, the steam condenses at the upper portion to become fresh water.
The fresh water is received by a plurality of toys 10 arranged in multiple stages, collected in a storage tank, and used for drinking water, living water, or desert greening.

【0014】複数個の真空ポンプP1、P2・・Pnが
配置されているので、各々の隔壁で区切られた蒸留槽2
内から真水が取り出されるが、左から流入した海水の塩
分は右に進むほど濃縮される。最終槽内の海水は、速や
かに支流排水パイプ11および主流排水パイプ12によ
り海に戻し、塩分によるパイプの詰まりなどの不具合を
回避している。もっとも、造塩を行う場合には、この濃
縮された海水を、さらに別の容器で煮詰めればよい。
Since a plurality of vacuum pumps P1, P2,... Pn are arranged, the distillation tank 2 divided by each partition is provided.
Fresh water is extracted from the inside, but the salt in the seawater that flows in from the left is concentrated as it goes to the right. The seawater in the final tank is quickly returned to the sea by the tributary drainage pipe 11 and the mainstream drainage pipe 12 to avoid problems such as clogging of the pipe due to salt. However, when salt formation is performed, the concentrated seawater may be boiled down in another container.

【0015】[0015]

【発明の効果】以上に説明したように本発明によれば、
減圧によって効率的に蒸気を発生させて真水を製造する
ので、従来の加熱方法に比べて大幅なコストダウンが図
れる。これは、常圧下で石油燃焼によって蒸気を発生さ
せるより、減圧に要するエネルギーの方が大幅に少なく
て済むからである。また複数の隔壁でセパレートされた
蒸留槽を、太陽電池を利用した真空ポンプで減圧状態に
保持することにより、極めて安価に且つ炭酸ガスを排出
することなく、真水を得ることができる。この方法を利
用し、船上にこの装置を設置した移動可能な海水淡水化
船を建造して夏場の水不足に対処したり、航海に必要な
船舶の飲料水や生活用水を簡単に作りだしたり、さらに
は砂漠の緑化に寄与させるなど、その用途や利用範囲は
多岐にわたる。
According to the present invention as described above,
Since fresh water is produced by efficiently generating steam by reducing the pressure, the cost can be significantly reduced as compared with the conventional heating method. This is because much less energy is required for depressurization than generating steam by oil combustion under normal pressure. In addition, by keeping the distillation tank separated by a plurality of partition walls in a reduced pressure state with a vacuum pump using a solar cell, fresh water can be obtained extremely inexpensively and without discharging carbon dioxide gas. Using this method, a mobile desalination ship equipped with this device can be built on board to deal with the water shortage in summer, to easily produce drinking water and living water for ships required for navigation, and Has a wide variety of uses and uses, such as contributing to greening of the desert.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実現するための真水製造装置の一実施
例を表す説明図
FIG. 1 is an explanatory view showing an embodiment of a fresh water producing apparatus for realizing the present invention.

【図2】水の蒸気圧特性の説明図FIG. 2 is an explanatory diagram of vapor pressure characteristics of water.

【符号の説明】[Explanation of symbols]

1 海水 2 蒸留槽 3 主流海水吸入パイプ 4 ポンプ 5 支流熱交換パネル部 6 太陽電池アレイ 7 冷却チラー装置 8 チラー管 9 真空ポンプ 10 トイ 11 支流排水パイプ 12 主流排水パイプ 13 電気制御ボックス 14 砂漠 A 真水製造ユニット REFERENCE SIGNS LIST 1 seawater 2 distillation tank 3 mainstream seawater suction pipe 4 pump 5 tributary heat exchange panel section 6 solar cell array 7 cooling chiller device 8 chiller tube 9 vacuum pump 10 toy 11 tributary drainage pipe 12 mainstream drainage pipe 13 electric control box 14 desert A fresh water Production unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原料水を蒸留槽内に通過させるとともに、
この蒸留槽を減圧して蒸気を発生させ、これをチラーに
よって凝縮させて真水を回収する真水製造方法。
Claims: 1. A feed water is passed through a distillation tank.
A fresh water production method in which the distillation tank is depressurized to generate steam, which is condensed by a chiller to recover fresh water.
【請求項2】原料水を多段の蒸留槽内に通過させ、各々
の蒸留槽に設置された真空ポンプを駆動して蒸留槽内を
減圧して蒸気を発生させ、これをチラーによって凝縮回
収して真水を得る請求項1記載の真水製造方法。
2. The raw water is passed through a multi-stage distillation tank, and a vacuum pump installed in each distillation tank is driven to reduce the pressure in the distillation tank to generate steam, which is condensed and recovered by a chiller. The fresh water production method according to claim 1, wherein fresh water is obtained by heating.
【請求項3】蒸留槽内に、熱交換手段によって加温され
た原料水を導入するとともに、減圧に要するエネルギー
を太陽電池より供給する、請求項1または2記載の真水
製造方法。
3. The fresh water production method according to claim 1, wherein the raw water heated by the heat exchange means is introduced into the distillation tank, and energy required for decompression is supplied from the solar cell.
【請求項4】熱交換手段として太陽熱温水器を利用す
る、請求項3記載の真水製造方法。
4. The method for producing fresh water according to claim 3, wherein a solar water heater is used as the heat exchange means.
JP9052200A 1997-01-31 1997-01-31 Fresh water making method Pending JPH10216702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9052200A JPH10216702A (en) 1997-01-31 1997-01-31 Fresh water making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9052200A JPH10216702A (en) 1997-01-31 1997-01-31 Fresh water making method

Publications (1)

Publication Number Publication Date
JPH10216702A true JPH10216702A (en) 1998-08-18

Family

ID=12908152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9052200A Pending JPH10216702A (en) 1997-01-31 1997-01-31 Fresh water making method

Country Status (1)

Country Link
JP (1) JPH10216702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222451B1 (en) 2011-02-01 2013-01-15 아즈마 솔라 가부시키카이샤 Solar water heating device for simultaneously collecting drinking water/hot water
CN102923801A (en) * 2012-11-20 2013-02-13 汪砚秋 Seawater desalination system by using wind energy and solar energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222451B1 (en) 2011-02-01 2013-01-15 아즈마 솔라 가부시키카이샤 Solar water heating device for simultaneously collecting drinking water/hot water
CN102923801A (en) * 2012-11-20 2013-02-13 汪砚秋 Seawater desalination system by using wind energy and solar energy

Similar Documents

Publication Publication Date Title
CN107089697B (en) Floatation type solar energy sea water desalination apparatus
CN102674490B (en) Self-sufficient water supply disc type solar sea water desalting device
AU759283B2 (en) Desalination method and desalination apparatus
US6391162B1 (en) Desalination apparatus and method of operating the same
Kalogirou Survey of solar desalination systems and system selection
Rabiee et al. Energy-water nexus: renewable-integrated hybridized desalination systems
EP2804682B1 (en) Desalination station using a heat pump and photovoltaic energy
US4235678A (en) Solar powered water desalination system with a regenerative fixture
WO2004074187A1 (en) A process, system and design for desalination of sea water
CN104261498A (en) Wave energy driven seawater temperature difference energy seawater desalination device and method
KR101683602B1 (en) Marine power plant using evaporative desalination system
CN107522307A (en) A kind of Oversea wind fresh-water generator and its application process
KR100905944B1 (en) Seawater desalination equipment using solar complex modules
JP2002303454A (en) Floater type hydrogen and oxygen production system
CN202080914U (en) Composite solar seawater desalting device
US20070080100A1 (en) Hybrid water and power system
Mehrabian-Nejad et al. Application of PV and solar energy in water desalination system
CN202671244U (en) Disk type solar seawater desalting plant with self water feeding and replenishing functions
CN105461133A (en) Wind-solar complementary seawater desalination system
JPH10216702A (en) Fresh water making method
CN102134138B (en) Solar multi-effect utilization seawater desalting method and device
US10315933B1 (en) Pressure differential water distiller
CN207347207U (en) Sea solar energy desalinator
CN109205720B (en) Back is from multistage solar still of water storage formula
KR101384207B1 (en) Seawater Desalination System Using Solar Energy For Off-shore Facilities