JPH10216465A - Thermal decomposition of waste - Google Patents

Thermal decomposition of waste

Info

Publication number
JPH10216465A
JPH10216465A JP9032619A JP3261997A JPH10216465A JP H10216465 A JPH10216465 A JP H10216465A JP 9032619 A JP9032619 A JP 9032619A JP 3261997 A JP3261997 A JP 3261997A JP H10216465 A JPH10216465 A JP H10216465A
Authority
JP
Japan
Prior art keywords
gas
furnace
refuse
waste
tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9032619A
Other languages
Japanese (ja)
Inventor
Hirotomo Yasuno
博朋 安野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIC Co Ltd
Original Assignee
MIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIC Co Ltd filed Critical MIC Co Ltd
Priority to JP9032619A priority Critical patent/JPH10216465A/en
Publication of JPH10216465A publication Critical patent/JPH10216465A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a long term continuous operation of a carbonizing furnace by allowing a produced gas by thermal decomposition to contact with a water or a solvent containing a radical generation preventing agent and/or a radical capturing agent in the case when a waste constituted mainly by an org. matter is decomposed thermally in a state deficient with oxygen. SOLUTION: In the case when a refuse charged into a refuse box for a combustible substance is decomposed thermally in the carbonizing furnace 1, the refuse is charged into the furnace by interposing a rotary valve 4 after charging the refuse into a hopper 2 and compressing the refuse with a pressing machine 3. Then an inside of the carbonizing furnace 1 is vacuumized by sucking with a blower 15 through a gas discharge port 10 and a piping 13 and heated by energizing to a heater 8 provided at a heating part 7 of a lower part outer wall of the carbonizing furnace 1. In this way, a pyrolysis product gas generated by this method is suck with the blower 15 to introduce the water containing the radical generation preventing agent and/or the radical capturing agent to storage tanks 11 and 12, then a part is cooled and condensed, and a noncondensable gas and low b.p. tar, etc., are burned with a city gas range 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機物を主体とす
る廃棄物を減容、減量、消毒及び無臭化するために、該
廃棄物を酸素欠乏状態で加熱して炭化させる熱分解法に
関し、詳しくは、該熱分解により生成するガス中のター
ル分による配管の詰まり、回転機器の運転不能等による
熱分解の中断を解消して長時間の連続運転を可能とする
熱分解法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyrolysis method for heating and carbonizing waste mainly composed of organic substances in order to reduce the volume, weight, disinfect and deodorize the waste. More specifically, the present invention relates to a pyrolysis method that eliminates interruption of pyrolysis due to clogging of a pipe due to a tar component in a gas generated by the pyrolysis and an inability to operate a rotating device and enables continuous operation for a long time.

【0002】[0002]

【従来の技術】主として有機物から構成される廃棄物を
減量、減容するために、廃棄物を燃焼あるいは炭化する
ことが従来から実施されている。ところで、煙や煤、悪
臭の発生が問題となる市街地で、特に比較的小規模の有
機性廃棄物処理装置を設置する場合、通常の燃焼炉より
酸素欠乏状態で加熱する炭化炉の方がいろいろな理由で
有利である。
2. Description of the Related Art In order to reduce the volume and volume of waste mainly composed of organic matter, burning or carbonizing the waste has been conventionally performed. By the way, in urban areas where the generation of smoke, soot and odor is a problem, especially when installing relatively small organic waste treatment equipment, carbonization furnaces that heat in an oxygen-deficient state are more various than ordinary combustion furnaces. It is advantageous for various reasons.

【0003】その理由の一つは生成ガス量が少ないこと
である。燃焼炉では空気中の酸素によりポリマーは全量
酸化されるので、生成ガスの成分は炭酸ガス、水蒸気、
残存窒素である。これに対し、炭化炉では酸素欠乏雰囲
気での熱分解反応が起こるので、ポリマーは主鎖の切断
と架橋により炭化物とタール及びガスに変化する。この
ため、炭化炉の方が燃焼炉よりも処理すべき生成ガス量
がはるかに少ないので、生成ガス中の塩化水素等を水洗
により除去することが容易である。もう一つの理由は、
無酸素状態で廃棄物を熱分解させるため、廃棄物中に塩
素や塩素化合物を含有する物質が含まれていてもダイオ
キシンの発生量が少ないことである。
One of the reasons is that the amount of generated gas is small. In the combustion furnace, the polymer is completely oxidized by oxygen in the air, so the components of the product gas are carbon dioxide, steam,
Residual nitrogen. On the other hand, in a carbonization furnace, a thermal decomposition reaction occurs in an oxygen-deficient atmosphere, so that the polymer is changed into carbide, tar, and gas by cutting and crosslinking of the main chain. For this reason, the amount of generated gas to be processed is much smaller in the carbonization furnace than in the combustion furnace, so that hydrogen chloride and the like in the generated gas can be easily removed by washing with water. Another reason is
Since the waste is thermally decomposed in an oxygen-free state, the amount of dioxin generated is small even if the waste contains a substance containing chlorine or a chlorine compound.

【0004】[0004]

【発明が解決しようとする課題】ところで、炭化炉によ
る該廃棄物の熱分解によって種々の分解物が生成する
が、この分解物は炉内温度がそれらの沸点以上になると
蒸発ガス化して炉外へ排出され、生成分解物の内、主と
して高沸点成分は水洗により凝縮して液状のタールとし
て捕捉される。しかしながら、水洗によって凝縮しない
一部のタールは配管中を移行しながら凝縮して機器内や
配管に付着する。付着したタールは経時変化によって高
粘度化し、機器を停止させたり、配管を詰まらせるため
に、頻繁に熱分解炉の運転を停止して掃除をする必要が
あった。
By the way, various decomposition products are generated by the thermal decomposition of the waste in the carbonization furnace. When the temperature in the furnace becomes higher than the boiling point, the decomposition products are converted into evaporative gas to form a gas outside the furnace. The high-boiling components are mainly condensed by washing with water and are captured as liquid tar. However, some tar that is not condensed by washing is condensed while moving in the piping and adheres to the inside of the device and the piping. The adhered tar becomes highly viscous over time, and it has been necessary to frequently stop the operation of the pyrolysis furnace and clean it in order to stop the equipment or clog the piping.

【0005】この問題を解決するために、上記の水洗で
凝縮し難いタールのガスが拡散しないように、該ガスを
帯電させて電気的に分離する装置や超音波装置等の特定
の装置で該ガスを捕集したり、機器あるいは配管をフッ
素樹脂等のタール付着性の少ない樹脂で被覆する方法等
が従来から知られているが、上記の装置は小規模の炭化
炉に併設するには非常に高価であり、フッ素樹脂等によ
る被覆も効果的な方法とはいえず、経済的かつ効果的な
タール付着防止方法が要望されている。
In order to solve this problem, a specific device such as a device for charging the gas and electrically separating the gas or an ultrasonic device so as to prevent the diffusion of the tar gas which is hardly condensed by the above-mentioned water washing, is adopted. Methods such as collecting gas and coating equipment or piping with a resin with low tar adhesion such as fluorocarbon resin have been known, but the above equipment is very difficult to install in a small-scale carbonization furnace. However, coating with a fluororesin or the like is not an effective method, and an economical and effective method for preventing tar adhesion is demanded.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、本発明の目的は、有機物を主体とする廃棄
物を炭化炉で酸素欠乏状態で熱分解させ、生成したガス
中の水洗で捕捉し難いタール等が炭化炉の配管や機器等
へ付着しても、炭化炉の長期連続運転が可能である熱分
解法を提供することである。
The present invention has been made in view of such circumstances, and an object of the present invention is to thermally decompose waste mainly composed of organic substances in a carbonization furnace in an oxygen-deficient state, and to wash the generated gas with water. An object of the present invention is to provide a pyrolysis method that enables long-term continuous operation of a carbonization furnace even when tar or the like that is difficult to be trapped adheres to piping or equipment of the carbonization furnace.

【0007】従来の技術は、タールの配管等への付着を
防止して炭化炉の連続運転時間を延長しようという考え
方に基づくものが多い。ところで、主として有機物から
構成される廃棄物を炭化炉で熱分解させたときに非凝縮
性ガスとともに生成するタールは、常温では液体である
場合が多く、タールは種々の沸点成分の混合物である。
一方、機器や配管等に付着したタールは、粘度が高く、
指触では乾燥している場合が多く、これは経時的にター
ル中の低沸点成分が蒸発し、比較的高沸点の成分が残留
するためと考えられていた。本発明者はタールが付着し
てもその粘度が低ければ連続運転の障害とはならないの
ではないかという発想で、有機物を主体とする廃棄物中
にはプラスチックが多く含まれていることに着目して鋭
意検討した結果本発明に至ったものである。
[0007] Many of the conventional techniques are based on the idea that the continuous operation time of a carbonization furnace is extended by preventing tar from adhering to a pipe or the like. By the way, tar generated together with a non-condensable gas when pyrolysis of waste mainly composed of organic matter in a carbonization furnace is often liquid at room temperature, and tar is a mixture of various boiling components.
On the other hand, tar attached to equipment and pipes has high viscosity,
It was often dry to the touch, which was thought to be due to evaporation of the low-boiling components in the tar over time, leaving relatively high-boiling components. The present inventor thought that if the viscosity of the tar is low, it may not hinder continuous operation if the viscosity is low, and pays attention to the fact that waste mainly composed of organic matter contains a lot of plastic. As a result of intensive studies, the present invention has been achieved.

【0008】[0008]

【課題を解決するための手段】上記の本発明の目的は、
主として有機物から構成される廃棄物を酸素欠乏状態で
熱分解する方法において、熱分解生成ガスをラジカル発
生抑制剤及び/又はラジカル捕捉剤を含有する水又は溶
剤と接触させることを特徴とする廃棄物の熱分解方法を
用いることによって達せられる。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
What is claimed is: 1. A method for thermally decomposing waste mainly composed of organic matter in an oxygen-deficient state, comprising contacting a pyrolysis product gas with water or a solvent containing a radical generation inhibitor and / or a radical scavenger. By using a thermal decomposition method.

【0009】[0009]

【発明の実施の形態】次に本発明を好ましい実施形態を
挙げて詳細に説明する。本発明において廃棄物の減容、
減量、消毒、無臭化等のために、廃棄物を酸素欠乏状態
で熱分解させて炭化するために使用する炭化炉は、従来
公知の上記目的で使用されるものはいずれも使用するこ
とができ特に限定されない。上記炭化炉としては、例え
ば、廃棄物を充填した気密耐熱容器(熱分解炉)を外部
から電力、プロパンガス、都市ガス、灯油あるいは重油
等で200〜1500℃程度に加熱し、加熱分解により
生成するガスをそれ自身の圧力により、あるいはブロワ
ー等で吸引することによって排出するもの、加熱源とし
て加熱不活性ガス(窒素ガス、炭酸ガス等)を気密耐熱
容器に吹き込むもの等が挙げられる。
Next, the present invention will be described in detail with reference to preferred embodiments. In the present invention, volume reduction of waste,
For the purpose of weight reduction, disinfection, deodorization, etc., the carbonization furnace used to thermally decompose the waste in an oxygen-deficient state and carbonize can be any of those conventionally used for the above purpose. There is no particular limitation. As the carbonization furnace, for example, an airtight heat-resistant container (pyrolysis furnace) filled with waste is heated to about 200 to 1500 ° C. with electric power, propane gas, city gas, kerosene or heavy oil from the outside, and generated by thermal decomposition. The gas to be discharged may be discharged by suctioning the gas under its own pressure or by a blower or the like, or may be blown into a hermetic heat-resistant container as a heating source by heating a heated inert gas (nitrogen gas, carbon dioxide gas, etc.).

【0010】本発明における主として有機物から構成さ
れる廃棄物は、有機物を主体とするものはいずれも対象
とすることができ、例えば、家庭や飲食店等からの生ご
み、紙くず、弁当殻、各種包装材、医療機関からの輸液
セット、透析用ダイアライザー、紙おむつ、ガーゼ等繊
維製品、使い捨て手袋等が挙げられる。
In the present invention, the waste mainly composed of organic substances can be any of those mainly composed of organic substances, such as garbage from homes and restaurants, paper waste, bento shells, various kinds of waste. Examples include packaging materials, infusion sets from medical institutions, dialysers for dialysis, disposable diapers, fiber products such as gauze, and disposable gloves.

【0011】本発明においては、上記の廃棄物を炭化炉
で加熱分解させ、熱分解生成ガスを炉外へ排出させるこ
とは従来の熱分解法と全く同じである。熱分解に際して
は、加熱温度が200℃以下では発生するガス量及びタ
ール量が少なく、本発明を実施する効果は少なく、また
加熱温度が1500℃以上となると炭化炉の耐熱性の点
から特殊な炉材の使用が必要となり経済的でなくなる。
加熱温度は廃棄物の構成成分によって相違があるが、3
00〜800℃の範囲が望ましい。熱分解に際しては、
高温の炉内へ廃棄物を投入する際に酸素(空気)を混入
させないことが必要であり、酸素が混入した場合には炉
内で廃棄物の燃焼が生じ、炉内の圧力の異常上昇によっ
てトラブルを引き起こす。従って、酸素の混入が防止で
きれば、炭化炉の運転はバッチ、連続のいずれでも実施
することができる。
In the present invention, the above-mentioned waste is thermally decomposed in a carbonization furnace and the pyrolysis gas is discharged out of the furnace in exactly the same manner as the conventional pyrolysis method. At the time of thermal decomposition, when the heating temperature is 200 ° C. or less, the amount of generated gas and tar is small, and the effect of implementing the present invention is small. When the heating temperature is 1500 ° C. or more, special heat-resistant carbonizing furnaces are used. Furnace material is required, which is not economical.
The heating temperature varies depending on the components of the waste,
The range of 00-800 degreeC is desirable. For pyrolysis,
It is necessary not to mix oxygen (air) when introducing waste into a high-temperature furnace, and if oxygen is mixed, waste combustion occurs in the furnace and abnormal pressure increase in the furnace causes Cause trouble. Therefore, if the mixing of oxygen can be prevented, the operation of the carbonization furnace can be performed either batchwise or continuously.

【0012】本発明の特徴は、排出された熱分解生成ガ
スの冷却、該ガス中の塩化水素の除去、該ガス中の高沸
点タール成分等の凝縮除去等のために、該ガスをラジカ
ル発生抑制剤及び/又はラジカル捕捉剤を含む水又は溶
剤と接触させることである。この接触によって凝縮しな
かったタール成分が配管や機器等に凝縮、付着した場合
にも、経時的にタールの粘度上昇が抑制され、配管の詰
まりや機器の停止は防止される。接触のさせ方は特に限
定されないが、例えば、該ガスを噴霧状態あるいはシャ
ワー状態の上記の水又は溶剤中を通過させる方法、上記
の水又は溶剤中に該ガスを導入する(バブリングさせ
る)方法等が挙げられる。
A feature of the present invention is that the gas is used to generate radicals for cooling the discharged pyrolysis gas, removing hydrogen chloride in the gas, and condensing and removing high-boiling tar components and the like in the gas. Contacting with water or a solvent containing an inhibitor and / or a radical scavenger. Even when the tar component not condensed due to this contact condenses and adheres to the pipes and the equipment, the increase in the viscosity of the tar with time is suppressed, and the clogging of the pipes and the stop of the equipment are prevented. The method of contact is not particularly limited, and for example, a method of passing the gas through the above-mentioned water or solvent in a spray state or a shower state, a method of introducing (bubbling) the gas into the above-mentioned water or solvent, and the like. Is mentioned.

【0013】本発明で使用するラジカル発生抑制剤及び
ラジカル捕捉剤は、それぞれラジカルの発生を抑制する
化合物及び生成したラジカルと反応し得る化合物はいず
れも使用可能であり、ラジカル発生抑制剤としては、例
えば、ラジカル重合抑制・禁止剤等が、ラジカル捕捉剤
としては、例えば、ラジカル重合停止剤及び酸化劣化防
止剤等が挙げられ、これらの少なくとも1種が用いられ
る。ラジカル重合抑制・禁止剤としては、例えば、ジフ
ェニルピクリルヒドラジル、トリ−p−ニトロフェニル
メチル、N−(3−N−オキシアニリノ−1,3−ジメ
チルブチリデン)アニリンオキシド等のそれ自身安定な
遊離基、ハイドロキノン、p−ベンゾキノン、ジクロロ
−ベンゾキノン、p−ter−ブチルカテコール、ニト
ロソベンゼン、ピクリン酸、ジチオベンゾイルジスルフ
ィド、塩化銅(II)、塩化鉄(II)、硫黄等等が挙
げられる。
As the radical generation inhibitor and the radical scavenger used in the present invention, any of compounds capable of suppressing the generation of radicals and compounds capable of reacting with the generated radicals can be used. For example, radical polymerization inhibitors / inhibitors, etc., and radical scavengers, for example, a radical polymerization terminator, an oxidation deterioration inhibitor, etc., and at least one of them is used. Examples of the radical polymerization inhibitor / inhibitor include, for example, diphenylpicrylhydrazyl, tri-p-nitrophenylmethyl, N- (3-N-oxyanilino-1,3-dimethylbutylidene) aniline oxide and the like which are themselves stable. Free radicals, hydroquinone, p-benzoquinone, dichloro-benzoquinone, p-ter-butylcatechol, nitrosobenzene, picric acid, dithiobenzoyl disulfide, copper (II) chloride, iron (II) chloride, sulfur and the like can be mentioned.

【0014】ラジカル重合停止剤としては、例えば、ジ
メチルジチオカルバミン酸ナトリウム等のジアルキルジ
チオカルバミン酸塩、硫酸ヒドロキルアミン等の通常の
ラジカル重合で使用される重合停止剤が挙げられる。
Examples of the radical polymerization terminator include a polymerization terminator used in ordinary radical polymerization such as dialkyldithiocarbamate such as sodium dimethyldithiocarbamate, and hydroxylamine sulfate.

【0015】酸化劣化防止剤としては、高分子の酸化安
定剤として公知の活性水素を有する有機化合物、例え
ば、フェノール系化合物、アミン系化合物が挙げられ
る。フェノール系化合物としては、例えば、2,6−ジ
−ter−ブチルフェノール、2,5ージter−ブチ
ルヒドロキノン、2,6ージ−ter−ブチル−pーク
レゾール等のヒンダードフェノール類等が挙げられる。
アミン系化合物としては、例えば、フェニル−α−ナフ
チルアミン;p−フェニレンジアミン、N,N′−ジフ
ェニル−p−フェニレンジアミン等のp−フェニレンジ
アミン類等が挙げられる。
Examples of the antioxidant include organic compounds having active hydrogen known as high molecular oxidation stabilizers, for example, phenol compounds and amine compounds. Examples of the phenolic compound include hindered phenols such as 2,6-di-tert-butylphenol, 2,5-di-tert-butylhydroquinone, and 2,6-di-tert-butyl-p-cresol. .
Examples of the amine-based compound include phenyl-α-naphthylamine; p-phenylenediamines such as p-phenylenediamine and N, N′-diphenyl-p-phenylenediamine.

【0016】上記のラジカル発生抑制及びラジカル剤捕
捉剤の使用量は水または溶剤に対して5ppm〜5%の
範囲であり、5ppm未満では付着タールの経時的粘度
上昇抑制は不充分となり、5%を超えて使用しても効果
は変わらず不経済である。好ましくは10〜50ppm
である。
The amount of the above-mentioned radical generation inhibitor and the radical agent scavenger used is in the range of 5 ppm to 5% with respect to water or the solvent. The effect is unchanged and uneconomical even if used beyond. Preferably 10 to 50 ppm
It is.

【0017】ラジカル発生抑制及びラジカル剤捕捉剤の
なかで好ましいのは、水溶性の化合物である。水不溶性
のものは、その可溶性溶剤であり、タール成分を溶解す
る溶剤に溶解して使用するが、沸点が低い溶剤は、高温
の熱分解生成ガスと接触して蒸発するので好ましくな
い。少なくとも該ガス温度よりも高い沸点の溶剤の使用
が望ましい。又、水に対する溶解性の低い化合物を用い
る場合には、親水性の可溶性溶剤に溶解し、水と混合し
て使用することができる。尚、本発明においては、熱分
解生成ガスを水で冷却した後、ラジカル発生抑制及び/
又はラジカル捕捉剤を溶解したタールの可溶性溶剤と接
触させることで付着タールの経時的粘度上昇抑制効果は
更に向上するので好ましい。
Preferred among the radical generation suppressing and radical agent scavengers are water-soluble compounds. The water-insoluble one is a soluble solvent thereof, and is used by dissolving it in a solvent that dissolves the tar component. However, a solvent having a low boiling point is not preferred because it evaporates upon contact with a high-temperature pyrolysis gas. It is desirable to use a solvent having a boiling point at least higher than the gas temperature. When a compound having low solubility in water is used, the compound can be dissolved in a hydrophilic soluble solvent and mixed with water before use. In the present invention, after the pyrolysis gas is cooled with water, radical generation is suppressed and / or
Alternatively, it is preferable to bring the radical scavenger into contact with a soluble solvent for the tar in which the radical scavenger is dissolved, since the effect of suppressing the increase in viscosity of the adhered tar with time is further improved.

【0018】[0018]

【実施例】以下に実施例及び比較例を挙げて本発明をさ
らに詳細に説明する。実施例及び比較例では、主として
有機物から構成される廃棄物として、可燃物用ごみ箱に
投じられたゴミを用い、以下に記す炭化炉で熱分解させ
た。このごみは、目視の結果、ポリ袋、プラスチック製
のトレイ及びコップ、ジュウス箱、ちり紙、プラスチッ
ク製ボトル、果物の、弁当の食べ残し等から構成されて
いた。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. In Examples and Comparative Examples, refuse dumped in a combustible waste bin was used as waste mainly composed of organic matter, and pyrolyzed in a carbonization furnace described below. This garbage was, as a result of visual inspection, composed of plastic bags, plastic trays and cups, juus boxes, dustpaper, plastic bottles, fruits, leftovers of lunch boxes, and the like.

【0019】上記のゴミを図1に示す炭化炉(内容積4
00リットル)1のホッパー2に入れ、嵩比重の小さい
該ゴミの炉内への投入を助けるためにホッパーに取りつ
けたプレス装置3でゴミ圧縮し、ロータリーバルブ4を
介して炉内に投入した。炉底にはロータリーバルブ6の
過熱を防止するために予め約20リットルの砂を充填し
た。尚、ゴミの充填量は35kgであり、炉内容積の約
80%である。次いで、炭化炉内を、ガス排出口10、
配管13を経由生してブロアー(排気量0.4m3
分:富士電機社製リングブロアーVFC106PN)1
5で吸引して水柱75cmの減圧とし、炭化炉の下部外
壁の加熱部7に設置した8KW時の加熱ヒーター8に通
電して加熱を開始した。
The above refuse is transferred to a carbonization furnace (with an internal volume of 4) shown in FIG.
(00 liters), and the dust was compressed by a pressing device 3 attached to the hopper in order to help the dust having a small bulk specificity into the furnace, and then put into the furnace via a rotary valve 4. The furnace bottom was previously filled with about 20 liters of sand to prevent the rotary valve 6 from overheating. The amount of dust is 35 kg, which is about 80% of the furnace volume. Next, the gas discharge port 10,
Blower (displacement 0.4m 3 /
Minute: Fuji Electric's ring blower VFC106PN) 1
The pressure was reduced to 75 cm in water column by suction at 5, and the heating was started by energizing the heating heater 8 at 8 KW installed in the heating section 7 on the lower outer wall of the carbonization furnace.

【0020】炭化炉と配管13で連結された2基のタン
ク(容量は20リットルで、10リットルの水を充填)
11、12は、炭化炉の連続運転中、切り換えバルブ1
3により交互に切り換えて使用し、使用していないタン
クから溜った凝縮したタールを排出する。炭化炉の熱分
解生成ガスは、ブロアー15で吸引されてガス排出口1
0を経由してタンク11又は12に導入され、そこで冷
却されて一部は凝縮し、非凝縮性ガスやガス状の低沸点
タール等を都市ガスコンロ16で燃焼させる。
Two tanks connected to a carbonization furnace by a pipe 13 (capacity is 20 liters, filled with 10 liters of water)
11 and 12 are switching valves 1 during continuous operation of the carbonization furnace.
3. Use alternately by 3 to discharge condensed tar from unused tanks. The pyrolysis product gas from the carbonization furnace is sucked by the blower 15 and
The fuel gas is introduced into the tank 11 or 12 via the cooling gas tank 0, where it is cooled and partially condensed, and non-condensable gas and gaseous low-boiling tar are burned in the city gas stove 16.

【0021】加熱開始後35分で炉内の温度は350℃
に上り、この温度を保つように制御する。温度計Tの温
度が350℃となってから1時間後に炉上下のロータリ
ーバルブ4、6の運転を開始した。上のロータリーバル
ブの排出容量/下のロータリーバルブの排出容量は4/
1である。上下ロータリーバルブの運転は、炉内への酸
素の混入を避けるために間欠的に行う。ロータリーバル
ブ運転中はホッパー2又は残渣受け入れタンク5を密閉
し、ホッパー2へのゴミの補給又は残渣受け入れタンク
5から残渣を排出するときには、それぞれのロータリー
バルブの運転は停止する。この炭化炉のゴミ処理能力
は、熱分解残渣として7〜10kg/hrである。
35 minutes after the start of heating, the temperature in the furnace is 350 ° C.
And control to keep this temperature. One hour after the temperature of the thermometer T reached 350 ° C., the operation of the rotary valves 4 and 6 above and below the furnace was started. The discharge capacity of the upper rotary valve / the discharge capacity of the lower rotary valve is 4 /
It is one. The operation of the upper and lower rotary valves is performed intermittently to avoid mixing of oxygen into the furnace. During operation of the rotary valve, the hopper 2 or the residue receiving tank 5 is closed, and when the hopper 2 is replenished with dust or the residue is discharged from the residue receiving tank 5, the operation of each rotary valve is stopped. The waste treatment capacity of this carbonization furnace is 7 to 10 kg / hr as a pyrolysis residue.

【0022】実施例1 上記炭化炉のタンク11及びタンク12の水にハイドロ
キノンをそれぞれ500ppm添加溶解させ、これに熱
分解生成ガスをバブリングさせた。加熱開始後5時間で
炭化炉の運転を停止し、翌日(約10時間後)、同様に
5時間の炭化炉の運転を実施した。このような運転を繰
り返し、合計運転時間は50時間に達したが、この間ブ
ロアーの停止、配管の詰まりは見られなかった。
Example 1 Hydroquinone was added and dissolved in water in the tanks 11 and 12 of the carbonization furnace, respectively, and a pyrolysis gas was bubbled therein. Five hours after the start of heating, the operation of the carbonization furnace was stopped, and the next day (about 10 hours later), the operation of the carbonization furnace was similarly performed for five hours. This operation was repeated, and the total operation time reached 50 hours. During this time, no stoppage of the blower and no clogging of the piping were observed.

【0023】運転期間中に各タンクのタール及び水の一
部抜き取り、水の補充を及び水の半分の入れ替えを3回
行ったため、運転終了後のハイドロキノンの濃度は、い
ずれのタンクも約50ppmに減少した。また、期間中
の各運転終了後のタンク中の水のpHは3〜7であり、
pHが5以下のときは水酸化ナトリウムでpHを6〜7
に調整した。
During the operation period, a part of the tar and water in each tank was removed, the water was replenished, and half of the water was replaced three times, so that the concentration of hydroquinone after the operation was completed was reduced to about 50 ppm in each tank. Diminished. The pH of the water in the tank after the end of each operation during the period is 3 to 7,
When the pH is 5 or less, the pH is adjusted to 6 to 7 with sodium hydroxide.
Was adjusted.

【0024】運転時間50時間後、ブロアーを分解して
タールノ付着状態を調べたが、タールの付着は下記の比
較例1と比べて格段に少なく、付着タールには液状成分
が含まれており乾燥していなかった。付着タールには指
触乾燥したものもわずかであるが認められたが、このも
のは脆く、指触で容易に破壊し、粘りのないものであっ
た。
After an operation time of 50 hours, the blower was decomposed and the state of adhesion of tarno was examined. The adhesion of tar was remarkably less than that of Comparative Example 1 described below. I didn't. Some of the adhering tar was dry to the touch, but it was found to be brittle, easily broken by touch and had no stickiness.

【0025】実施例2 本実施例では、実施例1のゴミに農業用塩化ビニル樹脂
フィルムを全ゴミ中に15重量%加えたものを用い、タ
ンク11及びタンク12のそれぞれの水に塩化第2鉄を
500ppm溶解させた以外は、実施例1と同様にして
炭化炉の運転を実施し、運転時間の合計が26時間に達
した時点で運転を打ち切った。この間ブロアーの停止、
配管の詰まりは見られなかった。また、期間中の各運転
終了後の各タンクの水のpHはいずれも1〜3であり、
pHが2以下のときには水酸化ナトリウムでpHを2に
調整した。
Example 2 In this example, the garbage of Example 1 was used in which 15% by weight of an agricultural vinyl chloride resin film was added to the total garbage. The operation of the carbonization furnace was performed in the same manner as in Example 1 except that 500 ppm of iron was dissolved, and the operation was stopped when the total operation time reached 26 hours. During this time, the blower stopped,
No clogging of the piping was observed. Further, the pH of the water in each tank after each operation during the period is 1 to 3,
When the pH was 2 or less, the pH was adjusted to 2 with sodium hydroxide.

【0026】運転時間26時間後、ブロアーを分解して
タールノ付着状態を調べたが、タールの付着は下記の比
較例1と比べて格段に少なく、付着タールには液状成分
が含まれており乾燥していなかった。付着タールには指
触乾燥したものもわずかであるが認められたが、このも
のは脆く、指触で容易に破壊し、粘りのないものであっ
た。
After a running time of 26 hours, the blower was disassembled and the state of adhesion of tarno was examined. The adhesion of tar was remarkably less than that of Comparative Example 1 described below. I didn't. Some of the adhering tar was dry to the touch, but it was found to be brittle, easily broken by touch and had no stickiness.

【0027】比較例1 タンク11、12にハイドロキノンを添加しないこと以
外は実施例1と同様にして炭化炉の運転を5時間で停止
し、翌日運転を再開したが、ブロアーが動かなかった。
ブロアーを分解したところ、ブロアーのケーシングや羽
根に指触乾燥した餅状のタールが多量に付着しており、
このためにブロアーが動かないことがわかった。このよ
うな運転を5回実施したが、一度2日続けて運転できた
が、他の3回はいずれも1日の運転でブロアーの掃除が
必要であった。また、5回目の運転においては、運転中
にタンクからブロアーまでの配管が詰まり、ブロアーに
よる吸引が不十分となり、炉内の減圧度が低下したので
運転を停止した。実施例2のゴミについても熱分解を行
ったが、結果は上記と同じであった。
Comparative Example 1 The operation of the carbonizing furnace was stopped in 5 hours in the same manner as in Example 1 except that no hydroquinone was added to the tanks 11 and 12, and the operation was restarted the next day, but the blower did not move.
When the blower was disassembled, a large amount of touch-dried rice cake-like tar adhered to the casing and blades of the blower,
It turned out that the blower did not move. Such an operation was performed five times, and the operation could be continued once for two days, but the other three times required the cleaning of the blower in one day of operation. In the fifth operation, the piping from the tank to the blower was clogged during the operation, the suction by the blower became insufficient, and the operation was stopped because the degree of pressure reduction in the furnace was reduced. The garbage of Example 2 was also thermally decomposed, and the result was the same as above.

【0028】[0028]

【発明の効果】本発明方法を用いることにより、主とし
て有機物から構成される廃棄物の炭化処理において、タ
ールの配管等への付着も低減され、タールが付着した場
合にも、付着したタールは経時的粘度上昇が抑制され、
液状のタールが含まれているために指触乾燥することが
なく、機器の停止や配管の詰まりもなく、該廃棄物の炭
化処理を連続して実施することができる。
By using the method of the present invention, in the carbonization treatment of waste mainly composed of organic substances, the adhesion of tar to pipes and the like is reduced, and even if the tar is attached, the attached tar can be removed with time. Viscosity increase is suppressed,
Since the liquid tar is included, the carbonization of the waste can be continuously performed without drying out to the touch, without stopping the equipment or clogging the piping.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例で使用する熱分解炉(炭化炉)の概略
を示す図である。
FIG. 1 is a view schematically showing a pyrolysis furnace (carbonization furnace) used in Examples.

【符号の説明】[Explanation of symbols]

1:分解炉(炭化炉) 2:ホッパー 3:ゴミ押し込み用プレス装置 4:ロータリーバルブ 5:残渣受け入れタンク 6:ロータリーバルブ 7:加熱部 8:電熱ヒーター 9:ゴミ 10:ガス排出部 11:水洗タンク 12:水洗タンク 13:切り換えバルブ 14:配管 15:ブロワー 16:ガスコンロ T:温度計 P:圧力計 1: Decomposition furnace (carbonization furnace) 2: Hopper 3: Press device for pushing dusts 4: Rotary valve 5: Residue receiving tank 6: Rotary valve 7: Heating unit 8: Electric heater 9: Dust 10: Gas discharge unit 11: Water washing Tank 12: Rinse tank 13: Switching valve 14: Piping 15: Blower 16: Gas stove T: Thermometer P: Pressure gauge

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C10B 53/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C10B 53/00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主として有機物から構成される廃棄物を
酸素欠乏状態で熱分解する方法において、生成ガスをラ
ジカル発生抑制剤及び/又はラジカル捕捉剤を含有する
水又は溶剤と接触させることを特徴とする廃棄物の熱分
解方法。
1. A method for thermally decomposing waste mainly composed of organic matter in an oxygen-deficient state, wherein a produced gas is contacted with water or a solvent containing a radical generation inhibitor and / or a radical scavenger. Thermal decomposition method of waste.
【請求項2】 生成ガスを、上記の水又は溶剤中を通過
させる請求項1に記載の廃棄物の熱分解方法。
2. The method for thermal decomposition of waste according to claim 1, wherein the produced gas is passed through the water or the solvent.
【請求項3】 ラジカ発生抑制剤がラジカル重合抑制・
禁止剤であり、ラジカル捕捉剤がラジカル重合停止剤及
び/又は酸化劣化防止剤である請求項1又は2に記載の
廃棄物の熱分解方法。
3. The method of claim 1, wherein the radioactive substance generation inhibitor is capable of inhibiting radical polymerization.
The method for thermal decomposition of waste according to claim 1, wherein the inhibitor is a radical scavenger and / or an antioxidant is a radical polymerization inhibitor.
JP9032619A 1997-02-03 1997-02-03 Thermal decomposition of waste Pending JPH10216465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9032619A JPH10216465A (en) 1997-02-03 1997-02-03 Thermal decomposition of waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9032619A JPH10216465A (en) 1997-02-03 1997-02-03 Thermal decomposition of waste

Publications (1)

Publication Number Publication Date
JPH10216465A true JPH10216465A (en) 1998-08-18

Family

ID=12363876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9032619A Pending JPH10216465A (en) 1997-02-03 1997-02-03 Thermal decomposition of waste

Country Status (1)

Country Link
JP (1) JPH10216465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106145A (en) * 2008-10-30 2010-05-13 Jfe Engineering Corp Recovery apparatus for biomass liquefied material and method for recovery
CN102277183A (en) * 2011-07-15 2011-12-14 陈自强 High-temperature and high-pressure carbonization device in an anoxic state
JP2015108503A (en) * 2013-10-21 2015-06-11 剛太郎 石川 Continuous pressure reduction solid-liquid separator
CN106015594A (en) * 2015-02-13 2016-10-12 山东汉菱电气有限公司 Material handling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106145A (en) * 2008-10-30 2010-05-13 Jfe Engineering Corp Recovery apparatus for biomass liquefied material and method for recovery
CN102277183A (en) * 2011-07-15 2011-12-14 陈自强 High-temperature and high-pressure carbonization device in an anoxic state
JP2015108503A (en) * 2013-10-21 2015-06-11 剛太郎 石川 Continuous pressure reduction solid-liquid separator
CN106015594A (en) * 2015-02-13 2016-10-12 山东汉菱电气有限公司 Material handling device
CN106015594B (en) * 2015-02-13 2018-03-27 山东汉菱电气有限公司 Material handling apparatus

Similar Documents

Publication Publication Date Title
Dharmaraj et al. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes
CN102433139B (en) Garbage cracking purification device and garbage cracking purification treatment process
JP4294088B2 (en) Organic waste treatment method and apparatus
TW200537055A (en) Method and apparatus for treating waste
JPWO2008038361A1 (en) Organic waste treatment system
JP2018501080A (en) Infectious waste disposal
JP2007007622A5 (en)
JP2007075807A (en) Continuous recycling device for organic matter and wastewater treatment apparatus
EP3489294A1 (en) Method for treatment of carbonated materials by vapothermolysis
CN113546946A (en) Anaerobic dry distillation treatment method for medical waste
JPH10216465A (en) Thermal decomposition of waste
KR100736248B1 (en) Apparatus for controlling odor and hydrocarbons in exhaust air stream in tire manufacturing plant
CN102039297B (en) Medical waste subcritical hydrolysis processing apparatus
US4031192A (en) Method of hygienic disposal of chlorine-containing plastic material
JP2004243281A (en) Method for drying/carbonizing organic waste
JP4908914B2 (en) Processing equipment such as aluminum chips
CN202359072U (en) Refuse cracking-purifying equipment
JPH07100196A (en) Method to make waste harmless and equipment therefor
JP7311935B2 (en) Organic waste treatment equipment and organic waste treatment system
KR200400259Y1 (en) Equipment for disposing of waste materials using pyrolysis process
JP2005076007A (en) Method of thermally decomposing medical waste including chlorine-containing plastic and thermal decomposition apparatus
JP2002192115A (en) Garbage treatment method and fertilizer
JP7469751B2 (en) Pyrolysis Equipment
KR19980079397A (en) Food waste carbonization
KR20000063399A (en) The waste food of vacuum drying and feed making apparatus