JPH10214673A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPH10214673A
JPH10214673A JP1830097A JP1830097A JPH10214673A JP H10214673 A JPH10214673 A JP H10214673A JP 1830097 A JP1830097 A JP 1830097A JP 1830097 A JP1830097 A JP 1830097A JP H10214673 A JPH10214673 A JP H10214673A
Authority
JP
Japan
Prior art keywords
substrate
heater
heating element
hole
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1830097A
Other languages
Japanese (ja)
Inventor
Masuhiro Natsuhara
益宏 夏原
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1830097A priority Critical patent/JPH10214673A/en
Publication of JPH10214673A publication Critical patent/JPH10214673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic heater having a structure with an exothermic body layer which generates heat by energization and with a conducting layer for energizing said exothermic body layer arranged on an insulative ceramic base board, and provide a heater structure for preventing a fire accident and for shutting off energization when said heater is overheated and overdriven. SOLUTION: In a ceramic heater having a basic structure, a through hole 4 charged with a material having a thermal expansion coefficient larger than that of a ceramic base board 1 is arranged at a location excluding an exothermic body layer 2 and a conducting layer 3 on the ceramic base board 1. This structure is shaped such that a cross-section of the through hole 4 have a corner forming at least one acute angle. Alternatively, a plurality of through holes 4 are arranged on the base board 1, and a heater structure bridges the plurality of through holes 4 by using the material having a thermal expansion coefficient larger than that of the base board 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気絶縁性セラミッ
クス基板上に発熱体層を設けたヒーターの構造に関し、
具体的には同ヒーターが過熱暴走した際に、通電を遮断
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a heater in which a heating element layer is provided on an electrically insulating ceramic substrate.
More specifically, the present invention relates to a method for interrupting energization when the heater overruns.

【0002】[0002]

【従来の技術】従来絶縁性のセラミックスを基板とし、
その表面に層状の発熱体層及び同層に通電するための電
極である導電層を設けた抵抗加熱式ヒーターでは、発熱
体回路に過電流が流れた場合、通常は同ヒーターに併設
された温度制御回路が働いて、通電が遮断されるように
なっている。しかしながら何らかの原因で通電が遮断さ
れないと通電が継続され、回路が発火したり、火災を引
き起こす恐れがある。
2. Description of the Related Art Conventionally, an insulating ceramic is used as a substrate,
In the case of a resistance heating type heater provided with a layered heating element layer on its surface and a conductive layer which is an electrode for supplying electricity to the layer, when an overcurrent flows in the heating element circuit, the temperature usually provided in the heater The control circuit operates to cut off the power supply. However, if the power supply is not interrupted for some reason, the power supply is continued, and there is a possibility that the circuit may ignite or a fire may occur.

【0003】このため温度制御回路に頼らない通電の強
制遮断方法が、特開平5−205851号公報及び特開
平8−186340号公報に開示されている。前者の場
合には、基板上の発熱体層及び導電層以外の場所にスル
ーホールまたは溝を設けるか、さらには同スルーホール
内に基板よりも熱膨張係数の大きい物質を充填してお
く。そして発熱体層が過熱暴走しかけると、スルーホー
ルや溝自体を破壊起点にして、またはスルーホール内の
充填物質の膨張による局部応力によって、基板を破壊す
るというものである。また後者の場合には、基板表面と
発熱体層との間に加熱により昇華する物質の層を形成し
ておく。そして発熱体層が加熱暴走しかけると昇華性物
質層が昇華して無くなり空洞が生じる。回路中で発生し
た熱は基板上に伝わらず、回路は異常加熱されてその表
面の酸化と抵抗値の増加が相乗して進み、回路が溶断さ
れ、通電が遮断されるというものである。
For this reason, a method for forcibly interrupting energization without relying on a temperature control circuit is disclosed in JP-A-5-205851 and JP-A-8-186340. In the former case, a through hole or a groove is provided in a place other than the heating element layer and the conductive layer on the substrate, or a substance having a larger thermal expansion coefficient than the substrate is filled in the through hole. When the heating element layer overruns, the substrate is broken by using the through hole or the groove itself as a fracture starting point or by local stress due to expansion of a filling material in the through hole. In the latter case, a layer of a substance that sublimates by heating is formed between the substrate surface and the heating element layer. When the heating element layer runs out of heat, the sublimable substance layer sublimates and disappears, and a cavity is generated. The heat generated in the circuit is not transferred to the substrate, and the circuit is abnormally heated, oxidation of the surface thereof and increase in resistance proceed in synergy, and the circuit is melted and the current is cut off.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこのよう
な方法でも、過熱暴走初期の昇温では基板のセラミック
ス材質によっては、破断に至らない場合もある。例えば
アルミナでは破断するが、窒化アルミニウム、窒化珪素
のように熱衝撃性の高いものでは、破断しないことがあ
る。本発明はこの種のセラミックスを基板に用いた場合
でも、確実に基板を破断しうるヒーター構造を提供する
ものである。
However, even in such a method, the temperature may not be broken depending on the ceramic material of the substrate in the early stage of the overheating runaway. For example, it may break in alumina, but may not break in a material having high thermal shock such as aluminum nitride and silicon nitride. The present invention provides a heater structure capable of reliably breaking the substrate even when this type of ceramic is used for the substrate.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明では以下の手段をとる。すなわち本発明によ
れば、上記構造のセラミックスヒーターにおいて、同ヒ
ーターの基板上の発熱体層及び導電層以外の場所に、同
基板よりも熱膨張係数の大きい物質を充填したスルーホ
ールを配置し、鋭角をなすコーナーを少なくとも一箇所
有する断面形状でスルーホールを形成する。
Means for Solving the Problems To solve the above problems, the present invention takes the following means. That is, according to the present invention, in a ceramic heater having the above structure, a through-hole filled with a substance having a larger thermal expansion coefficient than that of the substrate is disposed in a place other than the heating element layer and the conductive layer on the substrate of the heater, A through hole is formed in a cross-sectional shape having at least one acute angle corner.

【0006】さらに本発明の好ましい一態様によれば、
上記構成のヒーターにおいて、スルーホールが複数個形
成されており、鋭角をなすコーナー同士が互いに対向す
るような組み合わせ配置が、少なくとも一組なされてい
る構造とする。
According to a further preferred aspect of the present invention,
In the heater having the above-described configuration, a plurality of through holes are formed, and at least one set of a combination arrangement in which acute-angled corners face each other is formed.

【0007】また本発明の別の好ましい一態様によれ
ば、上記のスルーホールを複数個形成し、これら複数個
のスルーホール間が、基板よりも熱膨張係数の大きな物
質によって繋がれている構造とする。
According to another preferred embodiment of the present invention, there is provided a structure in which a plurality of the above-mentioned through holes are formed, and the plurality of the through holes are connected by a substance having a larger thermal expansion coefficient than that of the substrate. And

【0008】さらには複数個のスルーホール間の基板面
上に、溝部が形成されている構造とする。
Further, the structure is such that a groove is formed on the substrate surface between the plurality of through holes.

【0009】[0009]

【発明の実施の形態】以上述べたような手段をとること
によって、高い熱衝撃性を有し、急激な加熱によっても
容易には破断しないセラミックスを基板に用いた場合に
おいても、過熱暴走初期に同セラミックス基板を確実に
破断させることができる。なお熱衝撃性を有するセラミ
ックスとしては、例えば熱衝撃破壊抵抗係数が20ca
l/cm・sec以上のものである。ちなみにアルミナ
は、通常同じ単位の数値で4程度であり、20以上のも
のには窒化珪素、窒化アルミニウム、炭化珪素、ベリリ
ア、窒化硼素等がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By using the above-described means, even when ceramics having high thermal shock resistance and not easily broken by rapid heating are used for a substrate, the ceramics can be used in the early stage of overheat runaway. The ceramic substrate can be reliably broken. In addition, as ceramics having thermal shock resistance, for example, a thermal shock fracture resistance coefficient is 20 ca.
1 / cm · sec or more. Incidentally, alumina is usually about 4 in the same unit, and 20 or more include silicon nitride, aluminum nitride, silicon carbide, beryllia, boron nitride and the like.

【0010】本発明によれば、先ず基板を貫通するスル
ーホールの断面形状は、鋭角をなすコーナーを少なくと
も一箇所有するものとするとともに、その中に基板より
も熱膨張係数の大きな物質を充填する。このような物質
をスルーホール内に充填することにより、物質に応じて
ある一定の温度での破断が可能となる。さらにスルーホ
ールの断面形状を以上の形状とすることにより、スルー
ホール内に充填した上記物質の熱膨張により発生する応
力を、そのコーナー部で集中して受けることになり、セ
ラミックスの破断は容易となる。
According to the present invention, first, the cross-sectional shape of the through-hole penetrating the substrate has at least one acute-angled corner and is filled with a substance having a larger thermal expansion coefficient than the substrate. . By filling such a substance in the through hole, it is possible to break at a certain temperature depending on the substance. Furthermore, by making the cross-sectional shape of the through hole as described above, the stress generated by the thermal expansion of the above-mentioned substance filled in the through hole is concentrated at the corner thereof, and it is easy to break the ceramic. Become.

【0011】この場合のスルーホールの断面形状として
は、例えば図1a〜hのようにする。なおそのコーナー
のなす角度(但しb、cのようにコーナーが曲面交差の
場合は同図記載のように、その接線のなす角度)は20
度以上、80度以下とするのが望ましい。20度未満で
はスルーホールのコーナー形状加工がし難くなる。また
80度を越えると、後述のように基板を破断するための
コーナーでの応力集中効果が薄れることがある。
In this case, the cross-sectional shape of the through hole is, for example, as shown in FIGS. Note that the angle between the corners (however, when the corners intersect a curved surface as in b and c, the angle between the tangents as shown in the figure) is 20.
It is desirable that the temperature be not less than 80 degrees and not more than 80 degrees. If the angle is less than 20 degrees, it becomes difficult to form a corner of the through hole. If it exceeds 80 degrees, the effect of stress concentration at a corner for breaking the substrate may be reduced as described later.

【0012】この場合さらにスルーホールを複数個形成
し、その頂点すなわち鋭角をなすコーナーを互いに向き
合った方向で配置した構成にすると、向き合ったスルー
ホールの頂点間に応力が集中するので、破断はより容易
となる。このような組み合わせ配置部分は少なくとも一
箇所設ける。この場合基板の短い長さ方向(例えば矩形
の基板面であれば、その幅方向)に平行な方向に、組み
合わせ配置した方が破断効果は増す。
In this case, when a plurality of through holes are further formed and the vertices, that is, the corners forming an acute angle are arranged in the directions facing each other, stress is concentrated between the vertices of the facing through holes, so that the fracture is more likely to occur. It will be easier. At least one such combination arrangement portion is provided. In this case, the rupture effect is increased by combining and arranging the substrates in a direction parallel to the short length direction of the substrate (for example, the width direction of a rectangular substrate surface).

【0013】またスルーホール間に、基板よりも熱膨張
係数の大きい物質を介在させスルーホール同士を繋ぐこ
とによっても、本発明の目的は達成される。この場合に
はスルーホールの断面形状に、必ずしも鋭角のコーナー
を設ける必要はない。スルーホール間に介在させる物質
は、スルーホール内に充填する物質と同じ物質としても
よいし、全く別の物質にしてもよい。同じ物質であれば
一体物として配設することができる。図2にその一事例
を示す。同図で一番上の図はヒーターの上面図、中央が
基板の裏面を示す下面図、一番下が下面図のAA′断面
図である。なお同図で1はセラミックス基板、2はその
上に配設された発熱体層、3はそれに通電を行う導電
層、4はスルーホール、5は基板よりも熱膨張係数の大
きい物質である。介在させる物質5の本体をの配設する
面は、発熱体層の熱効率を考えると図のように基板の発
熱体層配置側とは反対側の裏面が好ましい。しかしなが
ら実用上または機能上配置可能であれば発熱体層と同じ
面上に配置してもよい。以上のように基板より熱膨張係
数の大きい物質を配設することにより、スルーホール間
には基板を圧縮曲げ方向に応力が働く。したがって基板
の破断はより容易になる。ただしヒーターの熱効率を考
えると、介在物質の乗った部分の面積は可能な限り小面
積とし、厚みも可能な限り薄くするのが望ましい。
The object of the present invention can also be achieved by interposing a substance having a larger thermal expansion coefficient than that of the substrate between the through holes and connecting the through holes. In this case, it is not always necessary to provide sharp corners in the cross-sectional shape of the through hole. The substance to be interposed between the through holes may be the same substance as the substance filling the through holes, or may be a completely different substance. The same substance can be provided as a single body. FIG. 2 shows an example. In the figure, the uppermost figure is a top view of the heater, the center is a bottom view showing the back side of the substrate, and the bottom is a cross-sectional view taken along the line AA 'of the bottom view. In FIG. 1, reference numeral 1 denotes a ceramic substrate, 2 denotes a heating element layer disposed thereon, 3 denotes a conductive layer that conducts electricity, 4 denotes through holes, and 5 denotes a substance having a larger thermal expansion coefficient than the substrate. Considering the thermal efficiency of the heating element layer, the surface on which the main body of the substance 5 to be interposed is preferably a rear surface opposite to the heating element layer arrangement side of the substrate as shown in the figure. However, if it can be arranged practically or functionally, it may be arranged on the same surface as the heating element layer. By arranging a substance having a larger thermal expansion coefficient than the substrate as described above, stress acts between the through holes in the direction of compressive bending of the substrate. Therefore, the breaking of the substrate becomes easier. However, in consideration of the thermal efficiency of the heater, it is desirable that the area of the portion on which the intervening substance is mounted is as small as possible and the thickness is as small as possible.

【0014】さらに上記の構造に加え、スルーホール間
の基板上に溝部を形成することによって、基板の破断は
さらに容易になる。この場合の溝の形成方向は、スルー
ホールの配列方向に対し直角方向とする方が望ましい。
スルーホールの配列方向で基板に対し圧縮曲げ応力がか
かるので、溝のノッチ効果が相乗され破断が容易になる
からである。但しスルーホールの配列方向に直角に溝を
形成する場合には、溝が発熱体層を横切ることになるの
で、発熱体層の熱効率を考慮すると、基板の裏面側に形
成するのが望ましい。
Further, in addition to the above structure, by forming a groove on the substrate between the through holes, the substrate can be more easily broken. In this case, it is desirable that the direction in which the grooves are formed be perpendicular to the direction in which the through holes are arranged.
This is because compressive bending stress is applied to the substrate in the direction in which the through holes are arranged, so that the notch effect of the groove is synergistic and breakage is facilitated. However, when the groove is formed at right angles to the arrangement direction of the through holes, the groove crosses the heating element layer. Therefore, it is preferable to form the groove on the back side of the substrate in consideration of the thermal efficiency of the heating element layer.

【0015】スルーホールの形成は、セラミックスを焼
結した後でもよいし、焼結前の生成形体の時点で行なっ
てもよく、その方法は切削加工、レーザー加工等種々の
手段を利用できる。
The formation of the through holes may be performed after sintering the ceramics or at the time of the formed body before sintering, and various methods such as cutting and laser processing can be used.

【0016】基板よりも熱膨張係数の大きな物質を、ス
ルーホール内に充填する方法は、同物質を必要な形状に
した後、樹脂で固定することも考えられるが、同ホール
が過熱された場合、樹脂では発煙または発火する恐れが
あるので、充填する物質を液体窒素等の冷媒で十分に冷
却し、常温よりも幾分小さいサイズにして挿入固定する
のが望ましい。所望する破断温度での熱膨張係数の下限
値が設計できるので、それを満たす適当な充填物質を決
めればよい。また所望する破断温度によっては、どうし
ても適当な物質が手に入らないこともありうるが、この
ような場合にはスルーホールと充填する物質の寸法差
で、逆に破断温度を調整することも十分可能である。以
下実施例によって本発明を説明する。
A method of filling a substance having a larger thermal expansion coefficient than the substrate into the through-hole may be to fix the substance to a required shape and then fix it with a resin. However, when the hole is overheated, Since the resin may emit smoke or fire, it is desirable to sufficiently cool the substance to be charged with a refrigerant such as liquid nitrogen and insert and fix the substance to a size slightly smaller than room temperature. Since the lower limit of the coefficient of thermal expansion at a desired breaking temperature can be designed, an appropriate filler material satisfying the lower limit may be determined. Depending on the desired breaking temperature, an appropriate substance may not always be available, but in such a case, it is sufficient to adjust the breaking temperature conversely by the dimensional difference between the through hole and the filling material. It is possible. Hereinafter, the present invention will be described by way of examples.

【0017】[0017]

【実施例】【Example】

(実施例1) 長さが50mm、幅が5mm、厚みが
0.635mmに加工された熱衝撃抵抗係数80cal
/cm・secのAlN焼結体および熱衝撃抵抗係数2
0cal/cm・secのSi34焼結体からなるセラ
ミックス基板を用意し、図3aのようにそれぞれの基板
1上に発熱体層2、導電層3及びスルーホール4を形成
した。発熱体層の長手方向の全長は35mmとし、スル
ーホールは発熱体層の片方の端付近に、一辺が0.4m
mの正三角形の形状で形成した。最初にレーザーでスル
ーホールを形成し、次いでAgペーストで導電層パター
ンを、Ag−Pdペーストで発熱体層パターンを印刷
し、これを大気中830℃で焼成してヒーター試料とし
た。
(Example 1) A thermal shock resistance coefficient of 80 cal processed to a length of 50 mm, a width of 5 mm, and a thickness of 0.635 mm.
/N·sec./AlN sintered body and thermal shock resistance coefficient 2
A ceramic substrate made of a Si 3 N 4 sintered body of 0 cal / cm · sec was prepared, and a heating element layer 2, a conductive layer 3 and a through hole 4 were formed on each substrate 1 as shown in FIG. The total length in the longitudinal direction of the heating element layer was 35 mm, and the through hole was 0.4 m on one side near one end of the heating element layer.
m was formed in the shape of an equilateral triangle. First, a through hole was formed with a laser, and then a conductive layer pattern was printed with an Ag paste, and a heating element layer pattern was printed with an Ag-Pd paste, and this was fired at 830 ° C. in air to obtain a heater sample.

【0018】さらにスルーホールの断面形状を一辺0.
3mmの正方形、直径0.3mmの円形としたこと以外
は上記と同様の手順で、別のヒーター試料を用意した。
但し断面が正方形のものは、図3bのように二つの頂点
対が、それぞれ基板の長さ方向と幅方向に平行に並ぶよ
うに形成した。その後それぞれの試料のスルーホール外
形と同じ形状の三角柱状、角柱状、円柱状、のCu塊
を、液体窒素で十分冷却の後スルーホール内に充填し
た。これらのヒーターにそれぞれ100Vの電圧を印加
して加熱し、基板の破断までの状況及び破断時のヒータ
ー表面温度を観察した。なお表面温度はサーモグラフィ
ーによって確認した。
Further, the cross-sectional shape of the through hole is set at 0.1 mm on each side.
Another heater sample was prepared in the same procedure as above, except that it was a 3 mm square and a 0.3 mm diameter circle.
However, in the case of a square cross section, as shown in FIG. 3B, two pairs of vertices were formed so as to be arranged in parallel in the length direction and width direction of the substrate. Thereafter, triangular prisms, prisms, and cylinders having the same shape as the outer shape of the through hole of each sample were sufficiently cooled with liquid nitrogen and filled in the through holes. Each of these heaters was heated by applying a voltage of 100 V, and the condition until the substrate was broken and the heater surface temperature at the time of breaking were observed. The surface temperature was confirmed by thermography.

【0019】その結果AlN基板の試料では、スルーホ
ールの形状が正三角形のものは発熱体層の表面温度が4
20℃になった時点で破断し、正方形のものは同温度が
650℃の時点で破断したが、円形のものでは同温度が
900℃になっても破断しなかった。またSi34基板
の試料では、正三角形、正方形のもので同様の破断温度
がそれぞれ550℃、700℃であり、円形のものでは
AlN基板同様900℃に昇温しても破断しなかった。
破断したものは、いずれも基板の幅方向のクラックによ
るものであった。
As a result, in the case of the AlN substrate sample, the through-hole having a regular triangular shape has a heating element layer surface temperature of 4.
When the temperature reached 20 ° C., the sample broke at a temperature of 650 ° C. for a square one, but did not break at 900 ° C. for a circular one. In the sample of the Si 3 N 4 substrate, the same rupture temperature was 550 ° C. and 700 ° C. for the equilateral triangle and the square, respectively, and the circular one did not rupture even when heated to 900 ° C. like the AlN substrate. .
All the fractures were caused by cracks in the width direction of the substrate.

【0020】なお正方形断面のものは、コーナーが90
度のため応力集中効果が不十分となり、破断するヒータ
ーの表面温度が600℃を越える結果となった。このよ
うな高温での破断では本発明の課題を解消するには至ら
ず、実用は困難であることが分かった。ちなみに上記と
同じ手順でAlN基板上に、ほぼ同じ大きさで一つのコ
ーナーの角度を88度、85度、80度、75度した菱
形断面のスルーホールを形成した試料を(但し同角度の
コーナーを基板の幅方向に平行な方向に向けた配置で)
作り、上記と同様の評価をしたところ、破断時の発熱体
層の表面温度は、それぞれの試料で順に520℃、50
0℃、480℃、450℃であった。破断時の温度が6
00℃未満のこの程度の温度であれば、本発明の目的は
達成できる。
In the case of a square cross section, the corners are 90
As a result, the effect of stress concentration was insufficient, and the surface temperature of the ruptured heater exceeded 600 ° C. It has been found that such a high temperature fracture does not solve the problem of the present invention, and that practical use is difficult. Incidentally, on the AlN substrate in the same procedure as above, a sample in which a through-hole of a rhombic cross section having substantially the same size and one corner angle of 88 °, 85 °, 80 °, and 75 ° was formed (however, a corner having the same angle) In the direction parallel to the width direction of the substrate)
And the same evaluation as above, the surface temperature of the heating element layer at the time of fracture was 520 ° C., 50
It was 0 ° C, 480 ° C, and 450 ° C. Temperature at break is 6
At such a temperature of less than 00 ° C., the object of the present invention can be achieved.

【0021】(実施例2) 長さ60mm、幅6.0m
m、厚み0.8mmの実施例1と同材質のAlNグリー
ンシートに、先ず断面が二等辺三角形のスルーホールを
形成し、その後実施例1と同様の方法で発熱体層・導電
層を形成し、ヒーターとした。なお焼成後の基板サイズ
は長さ50mm、幅5.0mm、厚み0.6mmであ
り、スルーホールの断面形状は頂角90度、他の二角4
5度、等辺の長さ0.4mmであり、45度の一方の頂
点が図4に示すように基板の幅方向を向いており、その
全体の配置場所は発熱体層寄りとなるようにした。これ
にスルーホールと同形状のNiを実施例1と同様に充填
した。このヒーターに100Vの電圧をかけ加熱したと
ころ、基板はスルーホールの発熱体層寄りの45度の頂
点部を起点として、発熱体層の表面温度が420℃にな
ったところで、その幅方向に破断した。
(Embodiment 2) Length 60 mm, width 6.0 m
First, a through hole having a cross section of an isosceles triangle is formed in an AlN green sheet having the same material as that of Example 1 having a thickness of 0.8 mm and a thickness of 0.8 mm, and then a heating element layer and a conductive layer are formed in the same manner as in Example 1. , And a heater. The size of the substrate after firing was 50 mm in length, 5.0 mm in width and 0.6 mm in thickness.
5 degrees, the equilateral length is 0.4 mm, and one vertex of 45 degrees is oriented in the width direction of the substrate as shown in FIG. 4, and the entire arrangement position is closer to the heating element layer. . This was filled with Ni having the same shape as the through hole as in Example 1. When a voltage of 100 V was applied to the heater and the substrate was heated, the substrate was fractured in the width direction when the surface temperature of the heating element layer reached 420 ° C. starting from the top of the through hole near the heating element layer at 45 degrees. did.

【0022】(実施例3) 図5のスルーホール形状・
配置とした以外は実施例2と同じ手順で、AlN基板の
ヒーターを作製した。スルーホール断面形状については
実施例1と同じとし、図5のようにその互いの頂点が向
かい合うように配置した。スルーホール内の充填材・充
填方法は実施例1と同じ方法で行った。その後実施例1
と同様にヒーターを通電加熱したところ、発熱体層の表
面温度が367℃になったところで、スルーホールの対
向頂点間にクラックが入り、基板が破断した。
(Embodiment 3) The through-hole shape shown in FIG.
An AlN substrate heater was manufactured in the same procedure as in Example 2 except that the heater was arranged. The cross-sectional shape of the through-hole was the same as in Example 1, and was arranged such that the vertices faced each other as shown in FIG. The filling material and the filling method in the through hole were the same as in Example 1. Then Example 1
When the heater was energized and heated in the same manner as described above, when the surface temperature of the heating element layer reached 367 ° C., cracks entered between the opposing vertices of the through holes, and the substrate was broken.

【0023】(実施例4) 長さ50mm、幅5.0m
m、厚み0.635mmで、実施例1と同材質のAlN
焼結体・Si34焼結体からなる基板をそれぞれ用意
し、図6に示すように発熱体層の両端部付近に直径0.
3mmのスルーホールを、40mmスパンでレーザー加
工によって形成した。これに実施例1と同様に発熱体
層、導電層を焼き付けした。次に同図中段の裏面図に示
す上面形状、下段の断面図に示す断面形状をなすCu板
を準備した。このCu板はその本体部の厚みが1.0m
m、幅が1.0mmであり、基板に形成したスルーホー
ルスパンに合わせた配置で形成され、直径0.3mm、
厚み0.635mmの突起部を有したものとした。なお
突起部の外径は嵌合できるようにスルーホール内径より
も、小さめに加工した。この板を同図記載のように発熱
体層を配していない基板裏面から、突起部で基板のスル
ーホールが充填される様に圧入した。その後実施例1と
同様に加熱したところ、AlN基板のものは250℃
で、Si34基板のものは298℃でそれぞれ基板がそ
の中央部で幅方向の亀裂が生じて破断した。なおCu板
を基板の発熱体面から圧入した場合についても、ほぼ同
様の結果が得られた。
(Embodiment 4) Length 50 mm, width 5.0 m
m, thickness 0.635 mm, AlN of the same material as in Example 1.
Substrates each made of a sintered body and a Si 3 N 4 sintered body were prepared, and as shown in FIG.
A 3 mm through hole was formed by laser processing at a span of 40 mm. A heating element layer and a conductive layer were baked thereon in the same manner as in Example 1. Next, a Cu plate having an upper surface shape shown in a back view in the middle part and a sectional shape shown in a sectional view in the lower part was prepared. This Cu plate has a body thickness of 1.0 m.
m, the width is 1.0 mm, formed in an arrangement corresponding to the through-hole span formed in the substrate, the diameter is 0.3 mm,
The projections had a thickness of 0.635 mm. In addition, the outer diameter of the projection was processed to be smaller than the inner diameter of the through hole so as to be fitted. This plate was press-fitted from the back surface of the substrate on which the heating element layer was not arranged as shown in FIG. Thereafter, when heating was performed in the same manner as in Example 1, the temperature of the AlN substrate was 250 ° C.
In the case of the Si 3 N 4 substrate, the substrate was broken at 298 ° C. by a crack in the width direction at the center thereof. It should be noted that substantially the same results were obtained when the Cu plate was press-fitted from the heating element surface of the substrate.

【0024】(実施例5) 実施例4とほぼ同様の手順
を経て、図7のようなAlN基板ヒーターを用意した。
但し同図にも記載のように、基板の発熱体層形成面とは
反対側の基板裏面中央に、基板の幅方向に向け幅0.2
mm、深さ0.2mm矩形断面の溝6を形成した。次い
で実施例4と同様のCu板を用意し、実施例4と同様の
方法で上記溝を形成した基板の裏面側からCu板を圧入
した。実施例4同様に加熱したところ、基板はその溝形
成部で、ヒーター表面温度が247℃になった時点で破
断した。
Example 5 An AlN substrate heater as shown in FIG. 7 was prepared through substantially the same procedure as in Example 4.
However, as shown in the figure, a width of 0.2 in the width direction of the substrate is provided at the center of the rear surface of the substrate opposite to the surface on which the heating element layer is formed.
A groove 6 having a rectangular cross section of 0.2 mm in depth and 0.2 mm in depth was formed. Next, a Cu plate similar to that of Example 4 was prepared, and the Cu plate was press-fitted from the back surface side of the substrate on which the groove was formed in the same manner as in Example 4. When the substrate was heated in the same manner as in Example 4, the substrate was broken at the point where the heater surface temperature reached 247 ° C. at the groove forming portion.

【0025】[0025]

【発明の効果】絶縁性セラミックス基板上に、通電によ
り発熱する発熱体層と、同発熱体層に通電するための導
電層とを配したセラミックスヒーター、特にセラミック
ス基板材が高い熱衝撃性のものである場合、そのヒータ
ー構造を本発明の構成とすることにより、ヒーターが過
熱暴走しても確実にセラミックス基板を破断して、ヒー
ターへの通電を遮断できるので、火気事故を未然に防止
することができる。
According to the present invention, a ceramic heater in which a heating element layer that generates heat by energization and a conductive layer for energizing the heating element layer is disposed on an insulating ceramic substrate, particularly a ceramic substrate material having high thermal shock resistance In this case, by adopting the structure of the present invention in the heater structure, even if the heater overheats and runs away, the ceramic substrate can be reliably broken and the power supply to the heater can be cut off, thereby preventing a fire accident. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の対象とするヒーターの基板に形成する
スルーホールの種々の断面形状を示す模式図である。
FIG. 1 is a schematic view showing various cross-sectional shapes of a through hole formed in a substrate of a heater to which the present invention is applied.

【図2】本発明の対象とするヒーターの一構造事例を示
す模式図である。なお図の上段はその上面図、中段はそ
の下面図、下段は同下面図のAA′断面図である。
FIG. 2 is a schematic view showing one structural example of a heater to which the present invention is applied. Note that the upper part of the figure is a top view, the middle part is a bottom view, and the lower part is a cross-sectional view taken along the line AA 'of the bottom view.

【図3】本発明の実施例1のヒーター構造を示す模式図
である。
FIG. 3 is a schematic diagram illustrating a heater structure according to the first embodiment of the present invention.

【図4】本発明の実施例2のヒーター構造を示す模式図
である。
FIG. 4 is a schematic diagram illustrating a heater structure according to a second embodiment of the present invention.

【図5】本発明の実施例3のヒーター構造を示す模式図
である。
FIG. 5 is a schematic diagram illustrating a heater structure according to a third embodiment of the present invention.

【図6】本発明の実施例4のヒーター構造を示す模式図
である。なお図の上段はその上面図、中段はその下面
図、下段は同下面図のAA′断面図である。
FIG. 6 is a schematic diagram illustrating a heater structure according to a fourth embodiment of the present invention. Note that the upper part of the figure is a top view, the middle part is a bottom view, and the lower part is a cross-sectional view taken along the line AA 'of the bottom view.

【図7】本発明の実施例5のヒーター構造を示す模式図
である。なお図の上段はその上面図、中段はその下面
図、下段は同下面図のAA′断面図である。
FIG. 7 is a schematic diagram illustrating a heater structure according to a fifth embodiment of the present invention. Note that the upper part of the figure is a top view, the middle part is a bottom view, and the lower part is a cross-sectional view taken along the line AA 'of the bottom view.

【符号の説明】[Explanation of symbols]

1:セラミックス基板 2:発熱体層 3:導電層 4:基板に形成されたスルーホール 5:基板よりも熱膨張係数の大きい物質 6:基板上に形成された溝 1: Ceramic substrate 2: Heating element layer 3: Conductive layer 4: Through hole formed in substrate 5: Material having a larger coefficient of thermal expansion than substrate 6: Groove formed in substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性セラミックス基板上に、通電によ
り発熱する発熱体層と、該発熱体層に通電するための導
電層とを配したセラミックスヒーターであって、該基板
の発熱体層及び導電層以外の場所に、該基板よりも熱膨
張係数の大きい物質を充填したスルーホールが配置され
ており、該スルーホールの断面が少なくとも一箇所の鋭
角をなすコーナーを有する形状であることを特徴とする
セラミックスヒーター。
1. A ceramic heater comprising: a heating element layer that generates heat when energized; and a conductive layer for applying current to the heating element layer on an insulative ceramic substrate. In a place other than the layer, a through hole filled with a substance having a larger thermal expansion coefficient than the substrate is arranged, and the cross section of the through hole has a shape having at least one acute angled corner. Ceramic heater.
【請求項2】 前記スルーホールが複数個形成されてお
り、前記鋭角をなすコーナー同士が互いに対向するよう
な組み合わせ配置が、少なくとも一組なされていること
を特徴とする請求項1に記載のセラミックスヒーター。
2. The ceramic according to claim 1, wherein a plurality of said through holes are formed, and at least one combination arrangement is made so that said acute-angled corners face each other. heater.
【請求項3】 絶縁性セラミックス基板上に、通電によ
り発熱する発熱体層と、該発熱体層に通電するための導
電層とを配したセラミックスヒーターであって、該基板
の発熱体層及び導電層以外の場所に、該基板よりも熱膨
張係数の大きい物質を充填した複数個のスルーホールが
形成されており、該複数個のスルーホール間が、基板よ
りも熱膨張係数の大きな物質によって繋がれていること
を特徴とするセラミックスヒーター。
3. A ceramic heater comprising: a heating element layer for generating heat when energized; and a conductive layer for energizing the heating element layer on an insulating ceramic substrate. A plurality of through holes filled with a substance having a larger coefficient of thermal expansion than the substrate are formed in places other than the layers, and the plurality of through holes are connected by a substance having a larger coefficient of thermal expansion than the substrate. A ceramic heater characterized in that:
【請求項4】 前記複数個のスルーホール間の基板面上
に、溝部が形成されていることを特徴とする請求項3に
記載のセラミックスヒーター。
4. The ceramic heater according to claim 3, wherein a groove is formed on the substrate surface between the plurality of through holes.
JP1830097A 1997-01-31 1997-01-31 Ceramic heater Pending JPH10214673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1830097A JPH10214673A (en) 1997-01-31 1997-01-31 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1830097A JPH10214673A (en) 1997-01-31 1997-01-31 Ceramic heater

Publications (1)

Publication Number Publication Date
JPH10214673A true JPH10214673A (en) 1998-08-11

Family

ID=11967769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1830097A Pending JPH10214673A (en) 1997-01-31 1997-01-31 Ceramic heater

Country Status (1)

Country Link
JP (1) JPH10214673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698799A (en) * 2020-05-14 2020-09-22 佛山市也牛科技有限公司 Non-metal heating plate for cooking and preparation method and heating device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698799A (en) * 2020-05-14 2020-09-22 佛山市也牛科技有限公司 Non-metal heating plate for cooking and preparation method and heating device thereof

Similar Documents

Publication Publication Date Title
AU711898B2 (en) Match head ceramic igniter and method of using same
US11013066B2 (en) Heater
JPH10214673A (en) Ceramic heater
JP3935017B2 (en) Ceramic heater
JPH0275188A (en) Ceramic heating element
JPH0745357A (en) Ceramic heater
JP4905019B2 (en) Power module substrate manufacturing method, power module substrate, and power module
JP2713794B2 (en) Ceramic heater
JPS6019687Y2 (en) heated electric scalpel
JP2000173747A (en) Press-heating type ceramic heater
JPH0410376A (en) Far infrared radiation heater
KR20070032668A (en) Igniter system
JP6336849B2 (en) Heater and ignition device provided with the same
JP2003100421A (en) Ceramic heater
JPS63285907A (en) Laminated ceramic varistor
JPH07106055A (en) Quick temperature raising heating element and manufacture thereof
JP2556097Y2 (en) Laminated structure of paste wiring and surge absorber using the same
JP3366546B2 (en) Ceramic heater
JP2530349Y2 (en) Ceramic heater
JPS632775Y2 (en)
JP2005135793A (en) Ceramic heater and lamination type gas sensor element
JP2022153882A (en) Ceramic heater and manufacturing method for the same
JPH0963750A (en) Ceramic heater
JPS60141569A (en) Thermal head
JPH07296953A (en) Method for formation of silicon oxide protection film on surface of silicide conductor and ceramic heater element