JPH10213828A - Optical parametric oscillation laser device - Google Patents

Optical parametric oscillation laser device

Info

Publication number
JPH10213828A
JPH10213828A JP1821897A JP1821897A JPH10213828A JP H10213828 A JPH10213828 A JP H10213828A JP 1821897 A JP1821897 A JP 1821897A JP 1821897 A JP1821897 A JP 1821897A JP H10213828 A JPH10213828 A JP H10213828A
Authority
JP
Japan
Prior art keywords
resonator
laser
semiconductor laser
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1821897A
Other languages
Japanese (ja)
Inventor
Yoshihiro Deguchi
祥啓 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1821897A priority Critical patent/JPH10213828A/en
Publication of JPH10213828A publication Critical patent/JPH10213828A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove the complicatedness of an optical system and to relax restrictions on its use environment by making the output light of a narrow-band semiconductor laser incident on an optical parametric resonator(OPO resonator) in addition to a pump wave. SOLUTION: The laser light from a pump laser 1 is inputted to the OPO resonator 10, which performs laser oscillation by utilizing the parametric effect of nonlinear crystal NOC to obtain signal light S and idler light I. In addition to the OPO resonator 10, the narrow-band semiconductor laser 11 is provided which has, for example, relaxed usable temperature variation of ±5 deg.C and is superior in stability. The narrow-band semiconductor laser 11 oscillates the same wavelength as the oscillation wavelength λ2 or λ3 of the signal light S or idler light I by the OPO resonator 10 and the laser light is made incident on the OPO resonator 10 to equalize the oscillation wavelength λ2 or λ3 in the resonator 10 to the wavelength of the narrow-band semiconductor laser 11, thereby narrowing down the oscillation wavelength of the OPO resonator 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザの発振線幅
を狭くかつ波長可変とした光パラメトリック発振レーザ
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical parametric oscillation laser device in which the laser oscillation line width is narrow and the wavelength is variable.

【0002】[0002]

【従来の技術】レーザ光にあってその発振線幅を狭くす
る(狭帯域化する)ことは、装置の分解能を向上するこ
とになり、このためレーザ光を用いた分光学の分野、光
の干渉、光分解能計測の分野等で線幅の狭いレーザ光の
出現が要望されている。例えば、分光学の分野では、レ
ーザの発振線幅を狭くすることにより、原子や分子のエ
ネルギ構造を正確に把握することができることになる。
2. Description of the Related Art Reducing the oscillation line width (narrowing the band) of a laser beam will improve the resolution of the device, and therefore, the field of spectroscopy using the laser beam, In the fields of interference, optical resolution measurement, and the like, the emergence of laser light having a narrow line width has been demanded. For example, in the field of spectroscopy, the energy structure of atoms and molecules can be accurately grasped by reducing the oscillation line width of a laser.

【0003】一方、非線形結晶を利用した光パラメトリ
ック発振を利用してレーザ光の波長を変化させる技術が
ある。光パラメトリック発振(以下OPO:Optical Pa
rametric Oscillationと称す)は、図7に示すように単
一波長λ1 のレーザ光(ポンプ波P)をBBO(β−B
aB2 4 :ベータバリウムボレート)等の非線形結晶
NOCに入射すると、エネルギが保存される形で二つの
波長(λ2 ,λ3 )の光が発生することであり、λ2
λ3 とするとき波長λ2 をシグナル光S、波長λ3 をア
イドラー光Iと呼んでいる。このシグナル光S及びアイ
ドラー光Iを増幅するようにレーザ共振器を構成するこ
とにより、波長λ1 のポンプ波Pから波長λ2 ,λ3
光S,Iを発生することが可能となる。この場合、波長
λ1 ,λ 2 ,λ3 には次の関係式が存在する。 1/λ1 =1/λ2 +1/λ3 この式を充足するλ2 ,λ3 は位相整合過程により決定
され、具体的には入射レーザ光Pに対する非線形結晶N
OCの角度によって決まる。
On the other hand, optical parameters using nonlinear crystals
Technology that changes the wavelength of laser light using
is there. Optical parametric oscillation (OPO: Optical Pa
rametric Oscillation), as shown in FIG.
One wavelength λ1Of the laser beam (pump wave P) of BBO (β-B
aBTwoOFour: Beta barium borate) and other nonlinear crystals
When incident on the NOC, two energy conserving forms
Wavelength (λTwo, ΛThree) Is generated, and λTwo<
λThreeAnd the wavelength λTwoIs the signal light S, the wavelength λThreeA
Called Idler Hikari I. This signal light S and the eye
The laser resonator is configured to amplify the drr light I.
And the wavelength λ1From the pump wave P ofTwo, ΛThreeof
Light S and I can be generated. In this case, the wavelength
λ1, Λ Two, ΛThreeHas the following relational expression: 1 / λ1= 1 / λTwo+ 1 / λThree Λ satisfying this equationTwo, ΛThreeIs determined by the phase matching process
Specifically, the nonlinear crystal N with respect to the incident laser light P
It depends on the OC angle.

【0004】このようなOPOレーザ装置にあって、ラ
イン線幅を狭くする狭帯域化OPOレーザ装置について
は、図8に示すようなものがある。図8(a)は装置の
簡略構成図、図8(b)は図8(a)のうち狭帯域化共
振器の光路と構造を示す図である。この図から判明する
ようにポンプレーザ1のレーザ光をOPOレーザ装置で
ある狭帯域化共振器2に入射してライン幅の狭いレーザ
光を発振させ、そのレーザ光を別のOPOレーザ装置で
あるアンプ共振器3にて増幅するものであり、狭帯域化
共振器2では共振器の一端にグレーティングdgを配置
してグレーティングdgの角度調整によって選択された
線幅の狭い光のみ増幅されるものである。この場合、波
長の変化に応じて狭帯域化共振器2及びアンプ共振器3
双方の非線形結晶NOCの角度調整も必要となる。
[0004] Among such OPO laser devices, there is a narrow band OPO laser device for reducing the line line width as shown in FIG. FIG. 8A is a simplified configuration diagram of the device, and FIG. 8B is a diagram showing the optical path and structure of the narrow-band resonator in FIG. 8A. As can be seen from this figure, the laser light of the pump laser 1 is incident on the narrow-band resonator 2 which is an OPO laser device to oscillate the laser light having a narrow line width, and the laser light is used as another OPO laser device. Amplification is performed by the amplifier resonator 3. In the narrow-band resonator 2, a grating dg is disposed at one end of the resonator, and only light having a narrow line width selected by adjusting the angle of the grating dg is amplified. is there. In this case, the band-narrowing resonator 2 and the amplifier resonator 3
Angle adjustment of both nonlinear crystal NOCs is also required.

【0005】[0005]

【発明が解決しようとする課題】図8に示す如く従来で
は狭帯域化のためのOPO発振器と増幅のためのOPO
発振器とを組み合せており、グレーティングの調整及び
2個の非線形結晶の角度調整を同期させて行なう必要が
生じ、光学系の制御及び操作が複雑になる。また、狭帯
域化につきOPO共振器を用いているため、ポンプレー
ザ1と共振器全体とのユニットにつき温度を安定させる
必要が生じるが、大きなユニットにて温度コントロール
が困難であり、逆に言えば使用環境(特に温度)制限を
非常に厳しくする必要がある。具体的には使用可能な温
度変化は±2℃に限られる。
As shown in FIG. 8, an OPO oscillator for narrowing the band and an OPO for amplification are conventionally used as shown in FIG.
Since the oscillator and the oscillator are combined, it is necessary to perform the adjustment of the grating and the angle adjustment of the two nonlinear crystals in synchronization with each other, which complicates the control and operation of the optical system. In addition, since an OPO resonator is used for narrowing the band, it is necessary to stabilize the temperature of the unit including the pump laser 1 and the entire resonator. However, it is difficult to control the temperature with a large unit. The use environment (especially temperature) must be very strict. Specifically, the usable temperature change is limited to ± 2 ° C.

【0006】本発明は、上述の問題に鑑み、光学系の複
雑さを除き使用環境を緩くするようにした光パラメトリ
ック発振レーザ装置の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an optical parametric oscillation laser device in which the use environment is relaxed except for the complexity of an optical system.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
め本発明は、次の発明特定事項を有する。 (1)狭帯域化半導体レーザの出力光をポンプ波以外に
光パラメトリック共振器に入射させたことを特徴とす
る。 (2)上記(1)において、上記狭帯域化半導体レーザ
の出力光に応じて光パラメトリック共振器の共振器長を
変え非線形結晶の角度を変えるようにしたことを特徴と
する。 (3)上記(1)において、上記狭帯域化半導体レーザ
では、発振波長域の異なる材料組成の半導体を取り替え
るようにしたことを特徴とする。
In order to achieve the above-mentioned object, the present invention has the following matters specifying the invention. (1) The output light of the band-narrowed semiconductor laser is incident on an optical parametric resonator other than the pump wave. (2) In the above (1), the resonator length of the optical parametric resonator is changed in accordance with the output light of the band-narrowed semiconductor laser to change the angle of the nonlinear crystal. (3) In the above (1), the narrow band semiconductor laser is characterized in that semiconductors having different material compositions having different oscillation wavelength ranges are replaced.

【0008】[0008]

【発明の実施の形態】ここで、本発明の実施の形態を図
1〜図6を参照して説明する。図1は、一例の簡略構成
(a)と光路説明(b)とを示しており、ポンプレーザ
(YAGレーザ等)1からのレーザ光がOPO共振器1
0内に入力され、このOPO共振器10では非線形結晶
NOCのパラメトリック効果を利用してレーザ発振を行
なわせ、シグナル光S及びアイドラー光Iを得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an example of a simplified configuration (a) and an explanation of an optical path (b). A laser beam from a pump laser (YAG laser or the like) 1 is supplied to an OPO resonator 1.
0, and the OPO resonator 10 performs laser oscillation using the parametric effect of the nonlinear crystal NOC to obtain the signal light S and the idler light I.

【0009】他方、OPO共振器10とは別に例えば使
用可能な温度変化が±5℃と緩くて安定性に優れた狭帯
域化半導体レーザ11が備えられる。この狭帯域化半導
体レーザ11は、図2に示すように半導体レーザ11a
の外側に共振器を有し、一端にグレーティング11dg
を設置しており、このグレーティング11dgの単一波
長を入射方向に反射させるという現象を利用して入射光
に対するグレーティング角度を変化させることにより反
射光の波長を変化させることができる。また、半導体レ
ーザ11aは構造上小形化することができるので、狭帯
域化半導体レーザ11全体を温度調節して室温の変化に
対して影響を受けにくくすることが簡単にできしかも低
コストにできる。
On the other hand, apart from the OPO resonator 10, there is provided a narrow-bandwidth semiconductor laser 11 which can be used, for example, has a gentle temperature change of ± 5 ° C. and is excellent in stability. As shown in FIG. 2, the semiconductor laser 11a
Having a resonator on one side and a grating of 11dg at one end
The wavelength of the reflected light can be changed by changing the grating angle with respect to the incident light by utilizing the phenomenon of reflecting a single wavelength of the grating 11dg in the incident direction. Further, since the semiconductor laser 11a can be miniaturized in structure, the temperature of the entire narrow band semiconductor laser 11 can be adjusted to be less affected by a change in room temperature, and the cost can be reduced easily.

【0010】狭帯域化半導体レーザ11によりOPO共
振器10によるシグナル光S又はアイドラ光Iの発振波
長λ2 ,λ3 と同一波長を発振させ、そのレーザ光をO
PO共振器10に入射(シード)することにより、図3
に示すようにこの共振器10内の発振波長λ2 又はλ3
を狭帯域化半導体レーザ11の波長に一致させることが
でき、OPO共振器10の発振波長を狭帯域化すること
ができる。
[0010] The narrow band semiconductor laser 11 oscillates the same wavelength as the oscillation wavelengths λ 2 and λ 3 of the signal light S or the idler light I by the OPO resonator 10, and the laser light is oscillated.
By incident (seed) on the PO resonator 10, FIG.
As shown in FIG. 3 , the oscillation wavelength λ 2 or λ 3
Can be matched with the wavelength of the semiconductor laser 11 having a narrow band, and the oscillation wavelength of the OPO resonator 10 can be narrowed.

【0011】なお、狭帯域化半導体レーザ11のレーザ
光線幅は非常に狭い(例えば0.01cm-1以下)ため、こ
の狭帯域化半導体レーザ11の波長にOPO共振器10
の発振出力を同調させるためOPO共振器10の共振器
長を制御することが必要であり、このため、図1(b)
に示すようにピエゾ素子PZを使用して共振器長を変化
させOPO共振器10の発振波長の安定と狭帯域化の維
持が図られる。具体的には、図1(b)の如くOPO共
振器10に線幅モニタ10aを備え、このモニタ10a
の線幅に対応させてエンドミラーに備えられたピエゾ素
子PZの印加電圧を変えエンドミラー位置を微少(nm
オーダ)に変化させるものである。
Since the laser beam width of the narrow band semiconductor laser 11 is very narrow (for example, 0.01 cm -1 or less), the wavelength of the narrow band semiconductor laser 11 is
It is necessary to control the resonator length of the OPO resonator 10 in order to tune the oscillation output of FIG.
As shown in (2), the resonator length is changed by using the piezo element PZ, thereby stabilizing the oscillation wavelength of the OPO resonator 10 and maintaining the narrow band. Specifically, as shown in FIG. 1B, the OPO resonator 10 is provided with a line width monitor 10a.
The voltage applied to the piezo element PZ provided in the end mirror is changed in accordance with the line width of
Order).

【0012】また、OPO共振器10の発振波長の狭帯
域化に伴って非線形結晶NOCの同調も必要であり、実
際上OPO共振器10の発振モードの狭帯域化を維持す
るように発振器長がピエゾ素子PZにより制御されつ
つ、狭帯域化半導体レーザ11の波長と非線形結晶NO
Cの角度とが同調されることになる。
Also, tuning of the nonlinear crystal NOC is required along with the narrowing of the oscillation wavelength of the OPO resonator 10, and the length of the oscillator is actually increased so that the narrowing of the oscillation mode of the OPO resonator 10 is maintained. While being controlled by the piezo element PZ, the wavelength of the narrow-band semiconductor laser 11 and the nonlinear crystal NO
The angle of C will be tuned.

【0013】更に、波長を変化するに当っては、狭帯域
化半導体レーザ11のグレーティング11dgの角度を
変え、これによって得られた波長と非線形結晶NOCの
角度を同期させて制御し、狭帯域化を維持するようにO
PO共振器10の共振器長をピエゾ素子PZを用いて制
御することになる。
Further, in changing the wavelength, the angle of the grating 11dg of the band-narrowed semiconductor laser 11 is changed, and the obtained wavelength and the angle of the nonlinear crystal NOC are controlled in synchronization to control the band. O to maintain
The resonator length of the PO resonator 10 is controlled using the piezo element PZ.

【0014】本発明の狭帯域化半導体レーザ11では、
更に広範囲な発振波長を得ることができる。すなわち、
図4に示すように半導体レーザの材料組成の変更によっ
て発振波長域が変更する。図4において、InGaAl
Pはαの範囲、AlGaAs/GaAsはβの範囲、I
nGaAsはγの範囲、InGaAsPはδの範囲の波
長域を採る。したがって、この材料組成の異なる種類の
半導体レーザを取り替えることにより、広範囲な波長域
での狭帯域発振が可能となる。この結果、半導体の組成
変化により、α,β,γ,δの広範囲な発振が可能とな
り、しかもグレーティング等の角度調節にて微調整波長
変化が可能となり、そして狭帯域発振波長を得ることが
できる。
In the narrow band semiconductor laser 11 of the present invention,
A wider range of oscillation wavelengths can be obtained. That is,
As shown in FIG. 4, the oscillation wavelength range is changed by changing the material composition of the semiconductor laser. In FIG. 4, InGaAl
P is in the range of α, AlGaAs / GaAs is in the range of β, I
nGaAs has a wavelength range of γ, and InGaAsP has a wavelength range of δ. Therefore, by replacing a semiconductor laser of a different type with this material composition, narrow band oscillation in a wide wavelength range becomes possible. As a result, a wide range of oscillation of α, β, γ, δ becomes possible due to a change in the composition of the semiconductor, and a fine adjustment wavelength can be changed by adjusting the angle of a grating or the like, and a narrow band oscillation wavelength can be obtained. .

【0015】図5,図6は、OPO共振器10の構造例
を示しており、図5は直線型の共振器構造、図6は図5
に比べて小型化でき安定性に優れるリング型の共振器構
造を示す。
5 and 6 show examples of the structure of the OPO resonator 10. FIG. 5 shows a linear resonator structure, and FIG.
This shows a ring-shaped resonator structure that is smaller and has better stability than that of FIG.

【0016】[0016]

【発明の効果】以上説明したように、まず第1に狭帯域
化半導体レーザの出力光をポンプ波以外に光パラメトリ
ック共振器に入射させたことにより、狭帯域化半導体レ
ーザ単体にて狭帯域発振を行なうため、従来のOPOを
用いた場合とは異なりパルスポンプ光の影響を受けにく
くコンパクト化が図れ、また狭帯域化半導体レーザとO
PO共振器とは別々に制御されるため、従来法のような
精密に同期した作動が不要となり、安定したレーザ発振
が得られ、また、狭帯域化半導体レーザ自体安定性に優
れ、広い使用環境(緩和した温度条件)にて使用可能と
なる。
As described above, first, the output light of the narrow band semiconductor laser is made incident on the optical parametric resonator in addition to the pump wave, so that the narrow band oscillation of the narrow band semiconductor laser alone is achieved. Therefore, unlike the conventional case using the OPO, the device is hardly affected by the pulse pump light, and the device can be made compact.
Since it is controlled separately from the PO resonator, precise synchronized operation as in the conventional method is not required, stable laser oscillation can be obtained, and the narrow band semiconductor laser itself has excellent stability. (Relaxed temperature conditions).

【0017】更に、第2に狭帯域化半導体レーザの出力
光に応じて光パラメトリック共振器の共振器長を変え非
線形結晶の角度を変えるようにしたことにより、従来法
のような精密な同期制御は必要なくて、簡易な調整が可
能となる。
Secondly, by changing the resonator length of the optical parametric resonator and changing the angle of the nonlinear crystal in accordance with the output light of the narrow-band semiconductor laser, precise synchronization control as in the conventional method is achieved. Is not necessary, and simple adjustment is possible.

【0018】また、第3に狭帯域化半導体レーザでは、
発振波長域の異なる材料組成の半導体を取り替えるよう
にしたことにより、広範囲の波長域での発振が可能とな
る。
Third, in a semiconductor laser having a narrow band,
By replacing a semiconductor having a material composition with a different oscillation wavelength range, oscillation in a wide wavelength range becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例の構成と共振器構造
図。
FIG. 1 is a diagram showing a configuration and a resonator structure according to an example of an embodiment of the present invention.

【図2】狭帯域化半導体レーザの簡略構成図。FIG. 2 is a simplified configuration diagram of a band narrowed semiconductor laser.

【図3】ポンプ波とシグナル光及びアイドラー光の関係
を示す原理図。
FIG. 3 is a principle diagram showing a relationship between a pump wave and signal light and idler light.

【図4】材料組成と発振波長との関係図。FIG. 4 is a graph showing a relationship between a material composition and an oscillation wavelength.

【図5】直線型の共振構造図。FIG. 5 is a diagram of a linear resonance structure.

【図6】リング型の共振構造図。FIG. 6 is a diagram of a ring-shaped resonance structure.

【図7】パラメトリック発振の原理図。FIG. 7 is a diagram illustrating the principle of parametric oscillation.

【図8】従来例の全体構成と狭帯域化共振器構造図。FIG. 8 is a diagram showing the overall configuration and a narrowed-band resonator structure of a conventional example.

【符号の説明】[Explanation of symbols]

1 ポンプレーザ 10 OPO共振器 11 狭帯域化半導体レーザ 11a 半導体レーザ 11dg グレーティング NOC 非線形結晶 PZ ピエゾ素子 S シグナル光 I アイドラー光 DESCRIPTION OF SYMBOLS 1 Pump laser 10 OPO resonator 11 Narrow band semiconductor laser 11a Semiconductor laser 11dg Grating NOC Nonlinear crystal PZ Piezo element S Signal light I Idler light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 狭帯域化半導体レーザの出力光をポンプ
波以外に光パラメトリック共振器に入射させた光パラメ
トリック発振レーザ装置。
1. An optical parametric oscillation laser device in which output light of a narrow band semiconductor laser is incident on an optical parametric resonator other than a pump wave.
【請求項2】 上記狭帯域化半導体レーザの出力光に応
じて光パラメトリック共振器の共振器長を変え非線形結
晶の角度を変えるようにした請求項1記載の光パラメト
リック発振レーザ装置。
2. The optical parametric oscillation laser device according to claim 1, wherein the resonator length of the optical parametric resonator is changed in accordance with the output light of the band-narrowed semiconductor laser to change the angle of the nonlinear crystal.
【請求項3】 上記狭帯域化半導体レーザでは、発振波
長域の異なる材料組成の半導体を取り替えるようにした
請求項1記載の光パラメトリック発振レーザ装置。
3. The optical parametric oscillation laser device according to claim 1, wherein said narrow band semiconductor laser is configured such that semiconductors having different material compositions having different oscillation wavelength ranges are replaced.
JP1821897A 1997-01-31 1997-01-31 Optical parametric oscillation laser device Withdrawn JPH10213828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1821897A JPH10213828A (en) 1997-01-31 1997-01-31 Optical parametric oscillation laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1821897A JPH10213828A (en) 1997-01-31 1997-01-31 Optical parametric oscillation laser device

Publications (1)

Publication Number Publication Date
JPH10213828A true JPH10213828A (en) 1998-08-11

Family

ID=11965515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1821897A Withdrawn JPH10213828A (en) 1997-01-31 1997-01-31 Optical parametric oscillation laser device

Country Status (1)

Country Link
JP (1) JPH10213828A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051312A (en) * 1999-08-06 2001-02-23 Hamamatsu Photonics Kk Optical parametric oscillator
WO2005053119A1 (en) * 2003-11-25 2005-06-09 Yabai He An injection-seeded self-adaptive optical resonant cavity and a method of generating coherent light
JP2005208472A (en) * 2004-01-26 2005-08-04 Hamamatsu Photonics Kk Coherent light source
WO2005073795A1 (en) * 2004-01-29 2005-08-11 Zaidan Hojin Handotai Kenkyu Shinkokai Electromagnetic wave generating device
JP2007052288A (en) * 2005-08-18 2007-03-01 Advantest Corp Beam generator and terahertz beam generator provided with the same
JP2007052289A (en) * 2005-08-18 2007-03-01 Advantest Corp Beam generator and terahertz beam generator provided with the same
US7386018B2 (en) 2004-02-04 2008-06-10 Nippon Telegraph And Telephone Corporation Mode-locked laser and optical multi-carrier source using same
JP2021533421A (en) * 2018-07-27 2021-12-02 クー.アント ゲー・エム・ベー・ハーQ.ant GmbH A laser light source, and a laser projector with a laser light source

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531163B2 (en) * 1999-08-06 2010-08-25 浜松ホトニクス株式会社 Optical parametric oscillator
JP2001051312A (en) * 1999-08-06 2001-02-23 Hamamatsu Photonics Kk Optical parametric oscillator
WO2005053119A1 (en) * 2003-11-25 2005-06-09 Yabai He An injection-seeded self-adaptive optical resonant cavity and a method of generating coherent light
JP2005208472A (en) * 2004-01-26 2005-08-04 Hamamatsu Photonics Kk Coherent light source
WO2005073795A1 (en) * 2004-01-29 2005-08-11 Zaidan Hojin Handotai Kenkyu Shinkokai Electromagnetic wave generating device
JPWO2005073795A1 (en) * 2004-01-29 2008-01-10 財団法人半導体研究振興会 Electromagnetic wave generator
US7599409B2 (en) 2004-01-29 2009-10-06 Jun-ichi Nishizawa Electromagnetic wave generating device
JP4749156B2 (en) * 2004-01-29 2011-08-17 潤一 西澤 Electromagnetic wave generator
US7386018B2 (en) 2004-02-04 2008-06-10 Nippon Telegraph And Telephone Corporation Mode-locked laser and optical multi-carrier source using same
JP2007052289A (en) * 2005-08-18 2007-03-01 Advantest Corp Beam generator and terahertz beam generator provided with the same
JP2007052288A (en) * 2005-08-18 2007-03-01 Advantest Corp Beam generator and terahertz beam generator provided with the same
JP4676279B2 (en) * 2005-08-18 2011-04-27 株式会社アドバンテスト Light generation device and terahertz light generation device including the device
JP4676280B2 (en) * 2005-08-18 2011-04-27 株式会社アドバンテスト Light generation device and terahertz light generation device including the device
JP2021533421A (en) * 2018-07-27 2021-12-02 クー.アント ゲー・エム・ベー・ハーQ.ant GmbH A laser light source, and a laser projector with a laser light source

Similar Documents

Publication Publication Date Title
JPH0766482A (en) Variable wavelength light source
US9362711B2 (en) Phase-continuous tunable laser
Smith A study of factors affecting the performance of continuously pumped doubly resonant optical parametric oscillator
Hayasaka Frequency stabilization of an extended-cavity violet diode laser by resonant optical feedback
JP2008536333A (en) Mode matching system for tunable external cavity lasers
US9685753B2 (en) Tunable optical parametric oscillator
CA2660263A1 (en) Wavelength-agile laser transmitter using optical parametric oscillator
CA2873535C (en) Method and apparatus for locking and scanning the output frequency from a laser cavity
JPH10213828A (en) Optical parametric oscillation laser device
US5995522A (en) Pulsed optical parametric oscillator
JPH03272188A (en) Solid laser
US4897843A (en) Frequency-agile laser systems
JP2000261086A (en) Wavelength variable light source
US6751010B1 (en) Low finesse, tri-etalon, optical parametric oscillator
JP2008198725A (en) Wavelength variable light source
JP4531163B2 (en) Optical parametric oscillator
JP3255366B2 (en) Optical parametric oscillator
JP2007515765A (en) Laser resonator and frequency conversion laser
US9478932B2 (en) Method and apparatus for locking and scanning the output frequency from a laser cavity
WO2011058599A1 (en) Wavelength conversion light source device
CN111082300A (en) Cavity length locking method and system of double-resonance optical parametric oscillator
JPH0528915B2 (en)
JPH06175175A (en) Second higher harmonic generator
JPH01168085A (en) Frequency stabilizing light source
Guilbaud et al. Double-pass single mode ECOPO with achromatic phase-adaptation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406