JPH10211412A - Method for separating mixed gas - Google Patents

Method for separating mixed gas

Info

Publication number
JPH10211412A
JPH10211412A JP9016154A JP1615497A JPH10211412A JP H10211412 A JPH10211412 A JP H10211412A JP 9016154 A JP9016154 A JP 9016154A JP 1615497 A JP1615497 A JP 1615497A JP H10211412 A JPH10211412 A JP H10211412A
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
adsorption
mixed gas
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9016154A
Other languages
Japanese (ja)
Other versions
JP3369424B2 (en
Inventor
Hiromi Kiyama
洋実 木山
Takeji Shimamoto
武治 嶋本
Takahiko Yasuda
貴彦 安田
Nobuyuki Oyagi
信之 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP01615497A priority Critical patent/JP3369424B2/en
Publication of JPH10211412A publication Critical patent/JPH10211412A/en
Application granted granted Critical
Publication of JP3369424B2 publication Critical patent/JP3369424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for separating a mixed gas which is capable of regulating a gas concentration gradient in an adsorption tower. SOLUTION: This method for separating a mixed gas comprises repeating the cycle of an adsorptive separation step, a vacuum regeneration step and a pressure restoration step in that order, in a pair of right/left adsorption towers 3, 4. A feedstock air is supplied to the right adsorption tower 4 which is already through with the vacuum regeneration step from the inlet end 4a of the tower 4, and a finished product oxygen gas is supplied from the outlet end 4b of the tower 4. Further, a residual gas contained in the left adsorption tower 3 which is already through with the adsorptive separation step is supplied to the right adsorption tower 4 from its intermediate part, and thereby the pressure restoration step is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧力スイング吸着
法(PSA法)による混合ガス分離方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating a mixed gas by a pressure swing adsorption method (PSA method).

【0002】[0002]

【従来の技術】従来から、空気等の混合ガスから窒素,
酸素等の製品ガスを分離する方法として種々の方法が用
いられているが、最近では、装置の設計の容易さや設備
費の安価なことから、PSA法による分離方法が広く用
いられている。このような分離方法として、特開平1−
236914号公報に示す濃縮酸素回収方法が提案され
ている。この濃縮酸素回収方法は、2槽の吸着槽30,
31と濃縮酸素ガス溜め槽32とブロアー33と真空ポ
ンプ34とを用い、まず工程1(図14参照)では、ブ
ロアー33により混合ガスを昇圧して一方の吸着槽30
に導入し、窒素ガスを吸着除去して酸素ガスを濃縮し、
この濃縮酸素ガスを濃縮酸素ガス溜め槽32に蓄える。
一方、吸着の終わった他方の吸着槽31を真空ポンプ3
4により減圧脱着し吸着剤を再生する。ついで工程2
(図15参照)では、他方の吸着槽31の脱着工程の末
期に濃縮酸素ガス溜め槽32より濃縮酸素ガスの一部を
逆流させて他方の吸着槽31を洗浄する。つぎに工程3
(図16参照)では、吸着の終了した一方の吸着槽30
内の残留酸素ガスの一部を他方の吸着槽31の出口端へ
回収する。このとき、他方の吸着槽31は未だ真空ポン
プ34により脱着を続けている。つぎに工程4(図17
参照)では、一方の吸着槽30内の残留酸素ガスを他方
の吸着槽31の入口端へ回収する。同時に、濃縮酸素ガ
ス溜め槽32より濃縮酸素ガスの一部を他方の吸着槽3
1の出口端へ逆流させる。このとき、一方の吸着槽30
では入口端より真空ポンプ34による減圧脱着を開始す
る。つぎに工程5(図18参照)では、濃縮酸素ガス溜
め槽32より濃縮酸素ガスの逆流を続け、一方の吸着槽
30からのガス回収が終了した時点で、他方の吸着槽3
1の入口端にブロアー33を通じて混合ガスを導入し、
吸着工程の準備として昇圧を行う。これらの工程を繰り
返し行い、混合ガスから濃縮酸素ガスを回収する。
2. Description of the Related Art Conventionally, nitrogen,
Various methods have been used as a method for separating product gas such as oxygen, but recently, the separation method by the PSA method has been widely used because of the easiness of apparatus design and the low equipment cost. As such a separation method, Japanese Patent Laid-Open No.
A concentrated oxygen recovery method disclosed in JP-A-236914 has been proposed. This concentrated oxygen recovery method includes two adsorption tanks 30,
First, in step 1 (see FIG. 14), the mixed gas is pressurized by the blower 33 and the one adsorber tank 30 is used.
To adsorb and remove nitrogen gas to concentrate oxygen gas.
This concentrated oxygen gas is stored in the concentrated oxygen gas storage tank 32.
On the other hand, a vacuum pump 3
4 to desorb under reduced pressure to regenerate the adsorbent. Then process 2
In (see FIG. 15), at the end of the desorption step of the other adsorption tank 31, a part of the concentrated oxygen gas flows backward from the concentrated oxygen gas storage tank 32 to wash the other adsorption tank 31. Next, step 3
(See FIG. 16) In one of the adsorption tanks 30 where the adsorption has been completed.
A part of the residual oxygen gas in the inside is recovered to the outlet end of the other adsorption tank 31. At this time, the other adsorption tank 31 is still being desorbed by the vacuum pump 34. Next, step 4 (FIG. 17)
), The residual oxygen gas in one adsorption tank 30 is collected at the inlet end of the other adsorption tank 31. At the same time, a part of the concentrated oxygen gas is transferred from the concentrated oxygen gas storage tank 32 to the other adsorption tank 3.
1 to the outlet end. At this time, one adsorption tank 30
Then, vacuum desorption by the vacuum pump 34 is started from the inlet end. Next, in step 5 (see FIG. 18), the reverse flow of the concentrated oxygen gas is continued from the concentrated oxygen gas storage tank 32, and when the gas recovery from one adsorption tank 30 is completed, the other adsorption tank 3
A mixed gas is introduced into the inlet end of the first through a blower 33,
The pressure is increased in preparation for the adsorption step. These steps are repeated to collect the concentrated oxygen gas from the mixed gas.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
方法では、他方の吸着槽31(30)の復圧の際に、こ
の吸着槽31(30)の上部や下部に一方の吸着槽30
(31)の残留酸素ガスを導入しなければならず、他方
の吸着槽31(30)内の酸素ガスの濃度勾配が不均一
になる。このため、各吸着槽30,31の吸着剤の性能
を充分に利用することができず、吸着剤量を増加させた
り、再生圧力を低下(真空ポンプ容量を増加)させたり
することにより濃縮酸素ガスの純度と流量を確保する必
要があり、その結果として、装置のイニシャル・ランニ
ングコストの増加をもたらす。
However, according to the above method, when the pressure of the other adsorption tank 31 (30) is restored, one of the adsorption tanks 30 (30) is placed above or below this adsorption tank 31 (30).
The residual oxygen gas of (31) must be introduced, and the concentration gradient of the oxygen gas in the other adsorption tank 31 (30) becomes uneven. For this reason, the performance of the adsorbent in each of the adsorption tanks 30 and 31 cannot be fully utilized, and the concentrated oxygen is reduced by increasing the amount of the adsorbent or reducing the regeneration pressure (increase the vacuum pump capacity). It is necessary to ensure gas purity and flow, which results in increased initial running costs of the device.

【0004】本発明は、このような事情に鑑みなされた
もので、吸着塔内のガス濃度勾配を調整することのでき
る混合ガス分離方法の提供をその目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a mixed gas separation method capable of adjusting a gas concentration gradient in an adsorption tower.

【0005】上記の目的を達成するため、本発明の混合
ガス分離方法は、複数個の吸着塔を設け、各吸着塔が吸
着分離工程と減圧再生工程と復圧工程とを、この順で繰
り返し行うようにした混合ガス分離方法であって、減圧
再生工程を終了した吸着塔に対し、その入口端から原料
混合ガスを供給し、その出口端から製品ガスを供給し、
その中間部から、吸着分離工程を終了した他の吸着塔の
残留ガスを供給することにより、復圧工程を行うように
したという構成をとる。
[0005] In order to achieve the above object, the mixed gas separation method of the present invention comprises a plurality of adsorption towers, and each adsorption tower repeats an adsorption separation step, a decompression regeneration step, and a pressure recovery step in this order. In the mixed gas separation method so as to be performed, the raw material mixed gas is supplied from the inlet end to the adsorption tower after the reduced pressure regeneration step, and the product gas is supplied from the outlet end,
A configuration is adopted in which the pressure recovery step is performed by supplying the residual gas of another adsorption tower that has completed the adsorption separation step from the intermediate portion.

【0006】すなわち、本発明の混合ガス分離方法は、
減圧再生工程を終了した吸着塔に対し、その入口端から
原料混合ガスを供給し、その出口端から製品ガスを供給
し、その中間部から、吸着分離工程を終了した他の吸着
塔の残留ガス(この残留ガスは、吸着分離工程が終了し
た時点で、吸着分離の途中にある原料混合ガスであり、
比較的純度が高い。特に出口端の近傍部分に残留してい
るガスは純度が高い。このため、上記残留ガスの導入に
際しては、上記他の吸着塔の出口端から行うことが望ま
しい)を供給することにより、復圧工程を行うようにし
ている。したがって、復圧工程の終了した吸着塔内の吸
着剤では、原料混合ガスを供給した入口端寄り部分と、
残留ガスを供給した中間部寄り部分と、製品ガスを供給
した出口端寄り部分とで、その順にガス濃度が濃くな
り、均一な(入口端から出口端に向かってガス濃度が濃
くなる)ガス濃度分布となる。このような状態に濃度勾
配を調整することにより、つぎの吸着分離工程において
吸着剤の利用効率を上げることができ、吸着剤性能を充
分に発揮させることができる。また、吸着剤の利用効率
が向上することにより、吸着剤充填量の削減および真空
ポンプ容量の低下を実現することができ、その結果、装
置のイニシャル・ランニングコストを削減することがで
きる。
[0006] That is, the mixed gas separation method of the present invention comprises:
To the adsorption tower that has completed the decompression regeneration step, a raw material mixed gas is supplied from its inlet end, a product gas is supplied from its outlet end, and residual gas from another adsorption tower that has completed the adsorption separation step is supplied from its intermediate part. (This residual gas is a raw material mixed gas in the middle of the adsorption separation when the adsorption separation step is completed,
Relatively high purity. Particularly, the gas remaining in the vicinity of the outlet end has high purity. Therefore, when the residual gas is introduced, it is preferable to supply the residual gas from the outlet end of the other adsorption tower. Therefore, in the adsorbent in the adsorption tower after the pressure recovery step, a portion near the inlet end where the raw material mixed gas is supplied,
In the middle portion where the residual gas is supplied, and in the portion near the outlet end where the product gas is supplied, the gas concentration increases in that order, and the gas concentration becomes uniform (the gas concentration increases from the inlet end to the outlet end). Distribution. By adjusting the concentration gradient to such a state, the utilization efficiency of the adsorbent in the next adsorption separation step can be increased, and the adsorbent performance can be sufficiently exhibited. In addition, since the utilization efficiency of the adsorbent is improved, the amount of adsorbent to be charged can be reduced and the capacity of the vacuum pump can be reduced. As a result, the initial running cost of the apparatus can be reduced.

【0007】また、本発明において、上記復圧工程を、
上記製品ガスの供給と残留ガスの供給を同時に行う前工
程と、上記原料混合ガスの供給と製品ガスの供給を同時
に行う後工程とに分ける場合には、確実にガス濃度勾配
を調整することができる。特に、出口端寄り部分でのガ
ス濃度を確実に高くすることができ、一層吸着剤の利用
効率を上げることができる。また、本発明において、上
記復圧工程で、上記原料混合ガスの供給と製品ガスの供
給と残留ガスの供給を同時に行う場合には、工程の簡素
化を図ることができる。
Further, in the present invention, the above-mentioned pressure recovery step includes
When dividing into a pre-process in which the supply of the product gas and the supply of the residual gas are simultaneously performed, and a post-process in which the supply of the raw material mixed gas and the supply of the product gas are simultaneously performed, the gas concentration gradient is surely adjusted. it can. In particular, the gas concentration near the outlet end can be reliably increased, and the utilization efficiency of the adsorbent can be further increased. In the present invention, when the supply of the raw material mixed gas, the supply of the product gas, and the supply of the residual gas are simultaneously performed in the pressure recovery step, the steps can be simplified.

【0008】[0008]

【発明の実施の形態】つぎに、本発明の実施の形態を図
面にもとづいて詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0009】図1は本発明の混合ガス分離方法に用いる
混合ガス分離装置を示している。図において、1は原空
ブロワであり、外部から原料空気(大気空気)を取り入
れて圧縮したのち原料空気取入パイプ11に送り込む。
2はクーラーであり、その内部を通る冷却水の冷熱によ
り、原料空気取入パイプ11を通る原料空気を冷却して
所定温度に(20〜40℃に)まで降温させる。3,4
は同様構造に作製された左右一対の吸着塔である。両吸
着塔3,4には、図2(この図2は、左吸着塔3の内部
構造を示すものであるが、右吸着塔4の内部構造も同様
構造である)に示すように、その内部に、除湿用の吸着
剤(活性アルミナ)が充填されてなる下側アルミナ層5
(各吸着塔3,4の下部に配設されている)と、窒素吸
着用の吸着剤(ゼオライト)が充填されてなる上側吸着
剤層6(上記下側アルミナ層5上に載置され、上面が各
吸着塔3,4の上部に達している)とが上下積層状に収
容されており、この上側吸着剤層6の内部中央に、上下
両側面および横四側面(前後両側面および左右両側面)
に多数の吐出口(図示せず)が開口しているとともに横
一側面(左吸着塔3では右側面であり、右吸着塔4では
左側面である)からガス入口端7aが突出している(こ
のガス入口端7aの突出位置は、各吸着塔3,4の中間
高さ位置に略対応している)中空平板状のガス吐出部7
が配設されている。8はレシーバータンク(製品酸素ガ
ス貯蔵槽)であり、両吸着塔3,4で製造された製品酸
素ガスを貯留する。9は酸素ブロワであり、レシーバー
タンク8内の製品酸素ガスを取り出して所定の圧力まで
昇温させ、需要側に供給する。10は真空ポンプであ
り、両吸着塔3,4内を減圧排気する。
FIG. 1 shows a mixed gas separation apparatus used in the mixed gas separation method of the present invention. In the drawing, reference numeral 1 denotes a raw air blower which takes in raw air (atmospheric air) from the outside, compresses the raw air, and sends it to a raw air intake pipe 11.
Reference numeral 2 denotes a cooler, which cools the raw material air passing through the raw material air intake pipe 11 and cools the raw material air to a predetermined temperature (20 to 40 ° C.) by the cooling heat of the cooling water passing therethrough. 3,4
Is a pair of left and right adsorption towers having the same structure. As shown in FIG. 2 (this FIG. 2 shows the internal structure of the left adsorption tower 3, the internal structure of the right adsorption tower 4 has the same structure) as shown in FIG. 2. Lower alumina layer 5 in which an adsorbent (activated alumina) for dehumidification is filled.
(Disposed below the adsorption towers 3 and 4) and an upper adsorbent layer 6 filled with an adsorbent (zeolite) for nitrogen adsorption (placed on the lower alumina layer 5, The upper surface of each of the adsorption towers 3 and 4 is accommodated in a vertically stacked manner. Both sides)
The gas inlet end 7a protrudes from one lateral side (the right side in the left adsorption tower 3 and the left side in the right adsorption tower 4), as well as a large number of discharge ports (not shown). The projecting position of the gas inlet end 7a substantially corresponds to the intermediate height position of each of the adsorption towers 3 and 4.)
Are arranged. Reference numeral 8 denotes a receiver tank (product oxygen gas storage tank) which stores the product oxygen gas produced in both adsorption towers 3 and 4. Reference numeral 9 denotes an oxygen blower which takes out product oxygen gas from the receiver tank 8, raises the temperature to a predetermined pressure, and supplies it to the demand side. Reference numeral 10 denotes a vacuum pump, which evacuates the insides of both adsorption towers 3 and 4 under reduced pressure.

【0010】12は原料空気取入パイプ11と左吸着塔
3の入口端3aとを連結する自動開閉弁12a付き第1
導入パイプであり、13は原料空気取入パイプ11と右
吸着塔4の入口端4aとを連結する自動開閉弁13a付
き第2導入パイプである。14は左吸着塔3の入口端3
aと真空ポンプ10の入口パイプ10aとを連結する自
動開閉弁14a付き第1排気パイプであり、15は右吸
着塔4の入口端4aと真空ポンプ10の入口パイプ10
aとを連結する自動開閉弁15a付き第2排気パイプで
ある。図において、22は原空ブロワ1の上流側部分と
下流側部分とを連結する自動開閉弁22a付き戻しパイ
プである。
Reference numeral 12 denotes a first equipped with an automatic opening / closing valve 12a for connecting the raw material air intake pipe 11 and the inlet end 3a of the left adsorption tower 3.
An introduction pipe 13 is a second introduction pipe with an automatic opening / closing valve 13a for connecting the raw material air intake pipe 11 and the inlet end 4a of the right adsorption tower 4. 14 is the inlet end 3 of the left adsorption tower 3
is a first exhaust pipe with an automatic opening / closing valve 14a connecting the inlet pipe 10a of the vacuum pump 10 with the inlet end 4a of the right adsorption tower 4 and the inlet pipe 10 of the vacuum pump 10.
and a second exhaust pipe with an automatic opening / closing valve 15a for connecting the first exhaust pipe to the second exhaust pipe. In the drawing, reference numeral 22 denotes a return pipe with an automatic opening / closing valve 22a for connecting the upstream portion and the downstream portion of the original air blower 1.

【0011】16は左吸着塔3の出口端3bとレシーバ
ータンク8の入口パイプ8aとを連結する自動開閉弁1
6a付き第1復圧用パイプであり、17は右吸着塔4の
出口端4bと第1復圧用パイプ16の自動開閉弁16a
上流側部分とを連結する自動開閉弁17a付き第2復圧
用パイプである。18は左吸着塔3の出口端3bとレシ
ーバータンク8の入口パイプ8aとを連結する自動開閉
弁18a付き第1導出パイプであり、19は右吸着塔4
の出口端4bと第1導出パイプ18の自動開閉弁18a
下流側部分とを連結する自動開閉弁19a付き第2導出
パイプである。20は左吸着塔3の出口端3bと右吸着
塔4の中間高さ部(ガス吐出部7のガス入口端7a)と
を連結する自動開閉弁20a,流量調節弁20b付き第
1連結パイプであり、21は右吸着塔4の出口端4bと
左吸着塔3の中間高さ部(ガス吐出部7のガス入口端7
a)とを連結する自動開閉弁21a,流量調節弁21b
付き第2連結パイプである。上記各流量調整弁20b,
21bは、これを取り付けた連結パイプ20,21を通
る後述の残留ガス流量を調整する。図において、23は
第1復圧用パイプ16の第2復圧用パイプ17合流点上
流側部分に設けた自動開閉弁であり、この自動開閉弁2
3の上流側部分と下流側部分が手動調節弁24a付きバ
イパス用パイプ24で連結されている。上記手動調節弁
24aは、減圧再生工程の最終段階において製品酸素ガ
スによる製品パージを行う際に、製品酸素ガスの流量を
調整するための弁であり、予め開度は調整されている。
また、上記自動開閉弁23は、復圧工程において製品酸
素ガスの導入を行う際に使用する弁であり、このときに
は手動調節弁24aにも製品酸素ガスが流れる。
Reference numeral 16 denotes an automatic on-off valve 1 for connecting the outlet end 3b of the left adsorption tower 3 and the inlet pipe 8a of the receiver tank 8.
Reference numeral 6 denotes a first pressure-reducing pipe with a reference numeral 17 denotes an outlet end 4b of the right adsorption tower 4 and an automatic opening / closing valve 16a of the first pressure-reducing pipe 16.
It is a second pressure recovery pipe with an automatic opening / closing valve 17a connecting the upstream side portion. Reference numeral 18 denotes a first outlet pipe with an automatic opening / closing valve 18a connecting the outlet end 3b of the left adsorption tower 3 and the inlet pipe 8a of the receiver tank 8, and 19 denotes a right adsorption tower 4
End 4b and the automatic opening / closing valve 18a of the first outlet pipe 18
It is a second outlet pipe with an automatic on-off valve 19a for connecting to a downstream portion. Reference numeral 20 denotes a first connection pipe having an automatic opening / closing valve 20a and a flow control valve 20b for connecting the outlet end 3b of the left adsorption tower 3 and the intermediate height portion (the gas inlet end 7a of the gas discharge section 7) of the right adsorption tower 4. And 21 is an intermediate height portion between the outlet end 4b of the right adsorption tower 4 and the left adsorption tower 3 (the gas inlet end 7 of the gas discharge section 7).
a) an automatic on-off valve 21a and a flow control valve 21b
Attached second connecting pipe. Each of the flow control valves 20b,
21b regulates a flow rate of a residual gas, which will be described later, passing through the connecting pipes 20, 21 to which the pipe 21b is attached. In the figure, reference numeral 23 denotes an automatic opening / closing valve provided at an upstream portion of the first condensing pipe 16 to the second condensing pipe 17.
The upstream side part and the downstream side part 3 are connected by a bypass pipe 24 with a manual control valve 24a. The manual control valve 24a is a valve for adjusting the flow rate of the product oxygen gas when purging the product with the product oxygen gas at the final stage of the pressure reduction regeneration process, and has an opening degree previously adjusted.
The automatic on-off valve 23 is a valve used when introducing product oxygen gas in the pressure recovery step. At this time, the product oxygen gas also flows through the manual control valve 24a.

【0012】上記の混合ガス分離装置を用い、つぎのよ
うにして原料空気から酸素ガスと窒素ガスとを分離する
ことができる。すなわち、第1工程(図3参照)では、
自動開閉弁12a,15a,18aを開弁し、自動開閉
弁13a,14a,16a,17a,19a,20a,
21a,22a,23を閉弁する。その状態で、原空ブ
ロワ1により取り入れた原料空気を圧縮して原料空気取
入パイプ11に送り出し、クーラー2に導入して所定温
度に降温させたのち、原料空気取入パイプ11,第1導
入パイプ12を経て入口端3aから左吸着塔3に供給す
る。この左吸着塔3においては、供給された原料空気
(圧縮空気)をさきに下側アルミナ層5に通し、この下
側アルミナ層5の吸着剤で原料空気中の水分,炭酸ガス
等を吸着除去し、つぎに上側吸着剤層6に通し、この上
側吸着剤層6で圧縮空気中の窒素を主に吸着したのち、
下側アルミナ層5および上側吸着剤層6で吸着されない
酸素を製品酸素ガス(純度93%程度)として出口端3
bから抜き出す(吸着分離工程)。そして、この出口端
3bから抜き出した製品酸素ガスを第1導出パイプ1
8,入口パイプ8aを経てレシーバータンク8に貯蔵す
る。一方、右吸着塔4においては、その内部を第2排気
パイプ15,入口パイプ10aを介して真空ポンプ10
により減圧排気し、下側アルミナ層5の吸着剤に吸着さ
れている水分,炭酸ガス等と、上側吸着剤層6の吸着剤
に吸着されている窒素等を脱着させる(減圧再生工
程)。
Using the above mixed gas separation apparatus, oxygen gas and nitrogen gas can be separated from raw air in the following manner. That is, in the first step (see FIG. 3),
The automatic opening / closing valves 12a, 15a, 18a are opened, and the automatic opening / closing valves 13a, 14a, 16a, 17a, 19a, 20a,
The valves 21a, 22a and 23 are closed. In this state, the raw air taken in by the raw air blower 1 is compressed, sent out to the raw air intake pipe 11, introduced into the cooler 2, cooled down to a predetermined temperature, and then fed into the raw air intake pipe 11, the first introduction. The water is supplied to the left adsorption tower 3 from the inlet end 3a via the pipe 12. In the left adsorption tower 3, the supplied raw material air (compressed air) is first passed through the lower alumina layer 5, and the adsorbent of the lower alumina layer 5 adsorbs and removes moisture, carbon dioxide gas, and the like in the raw material air. After passing through the upper adsorbent layer 6, the upper adsorbent layer 6 mainly adsorbs nitrogen in the compressed air.
Oxygen not adsorbed by the lower alumina layer 5 and the upper adsorbent layer 6 is used as product oxygen gas (purity of about 93%) as the outlet end 3.
b) (adsorption separation step). Then, the product oxygen gas extracted from the outlet end 3b is passed through the first outlet pipe 1
8. Store in the receiver tank 8 via the inlet pipe 8a. On the other hand, in the right adsorption tower 4, the inside thereof is connected to the vacuum pump 10 through the second exhaust pipe 15 and the inlet pipe 10a.
To desorb water, carbon dioxide, etc. adsorbed by the adsorbent of the lower alumina layer 5 and nitrogen etc. adsorbed by the adsorbent of the upper adsorbent layer 6 (decompression step).

【0013】第2工程(図4参照)では、左吸着塔3に
おいて、上記の吸着分離工程を継続している。一方、右
吸着塔4においては、上記の減圧再生工程の最終段階
で、自動開閉弁17aを開弁し、レシーバータンク8に
回収した製品酸素ガスの一部を入口パイプ8a,第1復
圧用パイプ16,バイパス用パイプ24,第2復圧用パ
イプ17を経由して出口端4bから右吸着塔4に供給す
る。この製品酸素ガスの供給により、上側吸着剤層6の
吸着剤からの窒素の脱着が促進され、再生効率が向上す
る(製品パージ工程)。
In the second step (see FIG. 4), the above-mentioned adsorption separation step is continued in the left adsorption tower 3. On the other hand, in the right adsorption tower 4, in the final stage of the above-mentioned decompression regeneration step, the automatic opening / closing valve 17a is opened, and a part of the product oxygen gas collected in the receiver tank 8 is supplied to the inlet pipe 8a and the first pressure reducing pipe. The water is supplied from the outlet end 4b to the right adsorption tower 4 via the bypass pipe 16, the bypass pipe 24, and the second pressure recovery pipe 17. By supplying the product oxygen gas, the desorption of nitrogen from the adsorbent of the upper adsorbent layer 6 is promoted, and the regeneration efficiency is improved (product purging step).

【0014】第3工程(図5参照)では、自動開閉弁1
4a,20a,23を開弁し、自動開閉弁12a,15
a,18aを閉弁し、(上記の吸着分離工程が終了し
た)左吸着塔3の塔頂に残留している比較的酸素純度が
高いガス(酸素純度:21〜93%程度)を第1連結パ
イプ20を経由して(上記の減圧再生工程が終了した)
右吸着塔4の復圧ガスとしてガス入口端7a(すなわ
ち、右吸着塔4の中間高さ部)からガス吐出部7に供給
し、このガス吐出部7の多数の吐出口から上側吸着剤層
6内に送り込む。このとき、右吸着塔4の出口端4bか
らは、引き続きレシーバータンク8内の製品酸素ガスを
供給する(この製品酸素ガスを復圧ガスとしても利用す
る)。この第3工程では、自動開閉弁23を開弁してい
るため、第2工程より多量の製品酸素ガスが右吸着塔4
に供給される。このように、第3工程では、ガス吐出部
7からの残留ガスの供給と、出口端4bからの製品酸素
ガスの供給とを同時に行う(復圧工程の前半段階)。一
方、左吸着塔3においては、その内部を第1排気パイプ
14,入口パイプ10aを介して真空ポンプ10により
減圧排気する。このため、自動開閉弁22aを開弁し、
左吸着塔3に対する原空ブロワ1からの原料空気の供給
を停止する。
In the third step (see FIG. 5), the automatic on-off valve 1
4a, 20a and 23 are opened, and the automatic on-off valves 12a and 15 are opened.
The valves a and 18a are closed, and the gas having a relatively high oxygen purity (oxygen purity: about 21 to 93%) remaining at the top of the left adsorption tower 3 (where the above-mentioned adsorption / separation step has been completed) is taken as the first gas. Via the connecting pipe 20 (the above-mentioned reduced pressure regeneration step has been completed)
The gas is supplied to the gas discharge section 7 from the gas inlet end 7a (that is, the middle height of the right adsorption tower 4) as the recompressed gas of the right adsorption tower 4, and the upper adsorbent layer is supplied from a number of discharge ports of the gas discharge section 7. Send it into 6. At this time, the product oxygen gas in the receiver tank 8 is continuously supplied from the outlet end 4b of the right adsorption tower 4 (this product oxygen gas is also used as a decompression gas). In the third step, since the automatic on-off valve 23 is opened, a larger amount of product oxygen gas is supplied than in the second step.
Supplied to As described above, in the third step, the supply of the residual gas from the gas discharge unit 7 and the supply of the product oxygen gas from the outlet end 4b are performed simultaneously (the first half of the pressure recovery step). On the other hand, the inside of the left adsorption tower 3 is evacuated and evacuated by the vacuum pump 10 through the first exhaust pipe 14 and the inlet pipe 10a. Therefore, the automatic on-off valve 22a is opened,
The supply of raw air from the raw air blower 1 to the left adsorption tower 3 is stopped.

【0015】第4工程(図6参照)では、自動開閉弁2
0aを閉弁し、左吸着塔3から右吸着塔4のガス吐出部
7への残留ガスの供給を終了する。この時点で、右吸着
塔4の内部はまだ負圧の状態にあり、これを大気圧付近
にまで復圧するために、自動開閉弁13aを開弁し、自
動開閉弁22aを閉弁し、原空ブロワ1により取り入れ
(クーラー2を経由し)た原料空気を入口端4aから右
吸着塔4に供給する。このとき、右吸着塔4の出口端4
bからは、引き続きレシーバータンク8内の製品酸素ガ
スを供給する。このように、第4工程では、入口端4a
からの原料空気の供給と、出口端4bからの製品酸素ガ
スの供給とを同時に行う(復圧工程の後半段階)。この
ような第4工程が終了した時点では、右吸着塔4の上側
吸着剤層6のガス濃度分布は、図7に示すようになって
いる。すなわち、製品酸素ガスが送り込まれる上側吸着
剤層6の上部は酸素濃度93%程度に、左吸着塔3から
残留ガスが送り込まれる上側吸着剤層6の中間部は酸素
濃度21〜93%程度に、原料空気が送り込まれる上側
吸着剤層6の下部は酸素濃度21%程度になっている。
In the fourth step (see FIG. 6), the automatic on-off valve 2
The valve 0a is closed, and the supply of the residual gas from the left adsorption tower 3 to the gas discharge section 7 of the right adsorption tower 4 is terminated. At this point, the inside of the right adsorption tower 4 is still under a negative pressure, and in order to restore the pressure to near atmospheric pressure, the automatic opening and closing valve 13a is opened, the automatic opening and closing valve 22a is closed, and the original pressure is reduced. Raw air taken in by the empty blower 1 (via the cooler 2) is supplied to the right adsorption tower 4 from the inlet end 4a. At this time, the outlet end 4 of the right adsorption tower 4
From b, the product oxygen gas in the receiver tank 8 is continuously supplied. Thus, in the fourth step, the inlet end 4a
And the supply of the product oxygen gas from the outlet end 4b are performed simultaneously (the latter half of the pressure recovery step). When the fourth step is completed, the gas concentration distribution in the upper adsorbent layer 6 of the right adsorption tower 4 is as shown in FIG. That is, the upper part of the upper adsorbent layer 6 into which the product oxygen gas is sent has an oxygen concentration of about 93%, and the middle part of the upper adsorbent layer 6 into which the residual gas is sent from the left adsorption tower 3 has an oxygen concentration of about 21 to 93%. The lower portion of the upper adsorbent layer 6 into which the raw material air is sent has an oxygen concentration of about 21%.

【0016】第5工程(図8参照)では、自動開閉弁1
9aを開弁し、自動開閉弁17a,23を閉弁する。す
なわち、全体としては、自動開閉弁13a,14a,1
9aを開弁し、自動開閉弁12a,15a,16a,1
7a,18a,20a,21a,22a,23を閉弁す
る。その状態で、原空ブロワ1から送りだした圧縮空気
をクーラー2により所定温度にまで降温させたのち、原
料空気取入パイプ11,第2導入パイプ13を経て入口
端4aから右吸着塔4に供給し、出口端4bから製品酸
素ガスを抜き出す。この第5工程は、上記の第1工程に
相当する工程であり、両吸着塔3,4の作用が入れ替わ
ったものである。そして、第5工程以降も、第2〜第4
工程と同様の工程(第2〜第4工程において、両吸着塔
3,4の作用が入れ替わった工程)を行う。このように
して第1〜第4の工程を繰り返し行い、原料空気から酸
素ガスと窒素ガスとを分離する。そして、第5工程(す
なわち、上記の第1工程)において、吸着塔3,4内の
上側吸着剤層6が、図7に示す酸素ガスの濃度勾配にな
っているため、製品酸素ガスの発生効率が向上する。
In the fifth step (see FIG. 8), the automatic on-off valve 1
9a is opened and the automatic on-off valves 17a and 23 are closed. That is, as a whole, the automatic on-off valves 13a, 14a, 1
9a is opened and the automatic on-off valves 12a, 15a, 16a, 1
7a, 18a, 20a, 21a, 22a and 23 are closed. In this state, the compressed air sent from the raw air blower 1 is cooled to a predetermined temperature by the cooler 2 and then supplied to the right adsorption tower 4 from the inlet end 4a via the raw air intake pipe 11 and the second introduction pipe 13. Then, product oxygen gas is extracted from the outlet end 4b. This fifth step is a step corresponding to the above-mentioned first step, in which the operations of both adsorption towers 3 and 4 are interchanged. Then, in the fifth and subsequent steps, the second to fourth steps are also performed.
The same step as the step (the step in which the operations of the adsorption towers 3 and 4 are switched in the second to fourth steps) is performed. In this way, the first to fourth steps are repeated to separate oxygen gas and nitrogen gas from the raw material air. In the fifth step (that is, the first step), the upper adsorbent layer 6 in the adsorption towers 3 and 4 has the oxygen gas concentration gradient shown in FIG. Efficiency is improved.

【0017】上記のように、この実施の形態では、一方
の吸着塔4(3)の減圧再生工程が終了し、他方の吸着
塔3(4)の吸着分離工程が終了した時点で、一方の吸
着塔4(3)内の圧力を復元させるために、一方の吸着
塔4(3)の入口端4a(3a)から原料空気を供給
し、出口端4b(3b)からレシーバータンク8内の製
品酸素ガスを供給し、中間高さ部(すなわち、ガス吐出
部7)から他方の吸着塔3(4)の塔頂の残留ガスを供
給している。このため、一方の吸着塔4(3)の上側吸
着剤層6の酸素ガスの濃度勾配を調整することができ、
つぎの吸着分離工程において上側吸着剤層6の吸着剤の
利用効率を上げて、吸着剤性能を十分に発揮させること
ができる。また、このように、吸着剤の利用効率を向上
させることにより、吸着剤充填量の削減や真空ポンプ容
量の低下を行うことができ、その結果、装置のイニシャ
ル・ランニングコストを削減することができる。しか
も、他方の吸着塔3(4)から一方の吸着塔4(3)に
残留ガスを供給している間も、他方の吸着塔3(4)の
減圧排気を行っているため、減圧再生工程に要する時間
を短縮することができるうえ、真空ポンプ10の無負荷
運転を行う必要がなく、減圧再生が効率的になる。
As described above, in this embodiment, when the pressure reduction regeneration step of one adsorption tower 4 (3) ends and the adsorption separation step of the other adsorption tower 3 (4) ends, one of the adsorption towers 3 (4) ends. In order to restore the pressure in the adsorption tower 4 (3), the raw material air is supplied from the inlet end 4a (3a) of one of the adsorption towers 4 (3), and the product in the receiver tank 8 is supplied from the outlet end 4b (3b). Oxygen gas is supplied, and residual gas at the top of the other adsorption tower 3 (4) is supplied from the intermediate height part (that is, the gas discharge part 7). Therefore, the concentration gradient of the oxygen gas in the upper adsorbent layer 6 of one adsorption tower 4 (3) can be adjusted,
In the next adsorption / separation step, the utilization efficiency of the adsorbent in the upper adsorbent layer 6 can be increased, and the adsorbent performance can be sufficiently exhibited. In addition, by improving the utilization efficiency of the adsorbent, it is possible to reduce the amount of adsorbent and reduce the capacity of the vacuum pump, thereby reducing the initial running cost of the apparatus. . In addition, while the residual gas is being supplied from the other adsorption tower 3 (4) to the one adsorption tower 4 (3), the other adsorption tower 3 (4) is depressurized and exhausted. Can be shortened, and there is no need to perform a no-load operation of the vacuum pump 10, and the pressure reduction regeneration becomes efficient.

【0018】図9は本発明の他の実施の形態を示してい
る。この実施の形態では、上記の第3工程において、自
動開閉弁13aを開弁し、自動開閉弁22aを閉弁し、
原空ブロワ1により外部から取り入れたのちクーラー2
により冷却した原料空気を、第2導入パイプ13を経由
して入口端4aから右吸着塔4に供給している。それ以
外の部分は図1に示す実施の形態と同様であり、同様の
部分には同じ符号を付している(すなわち、第3工程以
外の工程は、図3,図4,図6,図8に示す工程と同様
である)。
FIG. 9 shows another embodiment of the present invention. In this embodiment, in the third step, the automatic opening / closing valve 13a is opened and the automatic opening / closing valve 22a is closed,
Cooler 2 after taking in from outside with original sky blower 1
Is supplied from the inlet end 4a to the right adsorption tower 4 via the second introduction pipe 13. The other parts are the same as those of the embodiment shown in FIG. 1, and the same parts are denoted by the same reference numerals (that is, the steps other than the third step are the same as those of FIGS. 3, 4, 6, and 6). 8 is the same as the step shown in FIG. 8).

【0019】この実施の形態でも、図1に示す実施の形
態と同様の作用効果を奏する。しかも、この実施の形態
では、原空ブロワ1により原料空気を右吸着塔4に供給
しているため、第3工程において、右吸着塔4が早く復
圧する。したがって、レシーバータンク8から右吸着塔
4に供給する製品酸素ガス量が減少し、その分酸素ブロ
ワ9によりレシーバータンク8から取り出せる製品酸素
ガス量が増加する。
This embodiment has the same operation and effect as the embodiment shown in FIG. Moreover, in this embodiment, since the raw air is supplied to the right adsorption tower 4 by the raw air blower 1, the pressure of the right adsorption tower 4 is quickly restored in the third step. Therefore, the amount of product oxygen gas supplied from the receiver tank 8 to the right adsorption tower 4 decreases, and the amount of product oxygen gas that can be taken out of the receiver tank 8 by the oxygen blower 9 increases accordingly.

【0020】図10は本発明のさらに他の実施の形態を
示している。この実施の形態では、上記の第3工程にお
いて、自動開閉弁14aを閉弁し、真空ポンプ10を休
止運転している。それ以外の部分は図1に示す実施の形
態と同様であり、同様の部分には同じ符号を付している
(すなわち、第3工程以外の工程は、図3,図4,図
6,図8に示す工程と同様である)。
FIG. 10 shows still another embodiment of the present invention. In this embodiment, in the above-described third step, the automatic on-off valve 14a is closed, and the vacuum pump 10 is in the idle operation. The other parts are the same as those of the embodiment shown in FIG. 1, and the same parts are denoted by the same reference numerals (that is, the steps other than the third step are the same as those of FIGS. 3, 4, 6, and 6). 8 is the same as the step shown in FIG. 8).

【0021】この実施の形態でも、図1に示す実施の形
態と同様の作用効果を奏する。しかも、この実施の形態
では、真空ポンプ10を休止運転しているため、第3工
程において、左吸着塔3の塔頂の残留ガスが殆ど全て右
吸着塔4に導入され、酸素ガスの濃度勾配が確実に行わ
れて、製品酸素ガスの発生効率が向上する。
This embodiment has the same operation and effect as the embodiment shown in FIG. Moreover, in this embodiment, since the vacuum pump 10 is stopped, almost all the residual gas at the top of the left adsorption tower 3 is introduced into the right adsorption tower 4 in the third step, and the oxygen gas concentration gradient Is performed reliably, and the efficiency of generating product oxygen gas is improved.

【0022】図11は本発明のさらに他の実施の形態を
示している。この実施の形態では、図1の混合ガス分離
装置において、第2導入パイプ13の自動開閉弁13a
上流側部分から自動開閉弁27a付き分岐パイプ27が
分岐し、フィルター26に連結している。この実施の形
態では、上記の第4工程において、自動開閉弁27aが
開弁し、右吸着塔4内の負圧を利用することにより、フ
ィルター26により精製した大気空気を分岐パイプ27
に自然流入させたのち、第2導入パイプ13を経由して
入口端4aから右吸着塔4に導入するようにしている
(図12参照)。それ以外の部分は図1に示す実施の形
態と同様であり、同様の部分には同じ符号を付してい
る。(すなわち、第4工程以外の工程は、図3〜図5,
図8に示す工程と同様である)
FIG. 11 shows still another embodiment of the present invention. In this embodiment, in the mixed gas separator of FIG. 1, the automatic opening / closing valve 13a of the second introduction pipe 13 is used.
A branch pipe 27 with an automatic opening / closing valve 27 a branches from the upstream portion and is connected to a filter 26. In this embodiment, in the above-described fourth step, the automatic on-off valve 27a is opened, and the negative air in the right adsorption tower 4 is used to separate the atmospheric air purified by the filter 26 into the branch pipe 27.
, And is introduced into the right adsorption tower 4 from the inlet end 4a via the second introduction pipe 13 (see FIG. 12). Other parts are the same as those of the embodiment shown in FIG. 1, and the same parts are denoted by the same reference numerals. (That is, steps other than the fourth step are described in FIGS. 3 to 5.
(Same as the process shown in FIG. 8)

【0023】この実施の形態でも、図1に示す実施の形
態と同様の作用効果を奏する。しかも、この実施の形態
では、第4工程において、原空ブロワ1により原料空気
を右吸着塔4に供給する際に、右吸着塔4内の負圧によ
り大気空気をも(原空ブロワ1を通さずに)同時に供給
しているため、原空ブロワ1の容量を小さくすることが
できる。したがって、従来と同容量の原空ブロワ1を用
いる場合には、製品酸素ガスの製造効率が向上する。
This embodiment has the same operation and effect as the embodiment shown in FIG. In addition, in this embodiment, when the raw air is supplied to the right adsorption tower 4 by the raw air blower 1 in the fourth step, the atmospheric air is also released by the negative pressure in the right adsorption tower 4 (the raw air blower 1 is removed). Since they are supplied simultaneously (without passing through), the capacity of the original air blower 1 can be reduced. Therefore, when the original air blower 1 having the same capacity as the conventional one is used, the production efficiency of the product oxygen gas is improved.

【0024】図13は吸着塔3,4の変形例を示してい
る。この変形例では、両吸着塔3,4の上側吸着剤層6
に配設されるガス吐出部7には、その上側面および横四
側面に多数の吐出口(図示せず)が開口しているが、下
側面には開口していない。それ以外の部分は図2に示す
吸着塔3と同様であり、同様の部分には同じ符号を付し
ている。また、吸着塔3,4の他の変形例として、上記
ガス吐出部7の下側面および横四側面に多数の吐出口を
開口し、上側面に吐出口を開口しないようにしてもよ
い。このような両変形例を用いても、上記各実施の形態
と同様の作用効果を奏する。
FIG. 13 shows a modification of the adsorption towers 3 and 4. In this modification, the upper adsorbent layers 6 of both adsorption towers 3 and 4 are
The gas discharge unit 7 disposed at the top has a large number of discharge ports (not shown) opened on the upper side and four lateral sides, but not on the lower side. The other parts are the same as those of the adsorption tower 3 shown in FIG. 2, and the same parts are denoted by the same reference numerals. Further, as another modified example of the adsorption towers 3, 4, a large number of discharge ports may be opened on the lower side and four lateral sides of the gas discharge section 7, and the discharge ports may not be opened on the upper side. The same operation and effect as those of the above-described embodiments can be obtained by using both of these modified examples.

【0025】なお、上記各実施の形態において、上側吸
着剤層6にガス吐出部7を配設する位置としては、上側
吸着剤層6の高さ方向における中央部に限定するもので
はなく、少し上側寄りの位置でも、また少し下側寄りの
位置でもよい。また、図11に示す混合ガス分離装置に
おいて、第3工程を図9もしくは図10に示す工程に代
えてもよい。
In each of the above embodiments, the position where the gas discharge section 7 is disposed on the upper adsorbent layer 6 is not limited to the center of the upper adsorbent layer 6 in the height direction. The position may be closer to the upper side or slightly lower. Further, in the mixed gas separation device shown in FIG. 11, the third step may be replaced with the step shown in FIG. 9 or FIG.

【0026】また、本発明が対象とする混合ガスの分離
としては、例えば、空気からの酸素ガスの分離、または
工業用ガス製造中の混合ガスからの特定有効ガス(例え
ば、水素,一酸化炭素,ハイドロカーボン類等のあらゆ
る有効ガス)の濃縮,回収あるいは有毒ガスを含んだガ
スの浄化等を挙げることができる。また、本発明で用い
る吸着剤としては、ゼオライト,シリカゲル,活性アル
ミナ,活性炭等の粒状物が挙げられ、単独でもしくは併
せて用いられる。例えば、窒素の吸着剤としてはゼオラ
イト,酸素の吸着剤としてはカーボン,炭酸ガスに対し
てはゼオライト等が用いられる。また、除湿用としては
シリカゲル,活性アルミナが好適に用いられ、空気中の
ハイドロカーボンの吸着に対しては活性炭等が用いられ
る。
The separation of the mixed gas targeted by the present invention includes, for example, separation of oxygen gas from air or specific effective gas (for example, hydrogen, carbon monoxide) from mixed gas during industrial gas production. , Hydrocarbons, etc.), and purification of gas containing toxic gas. Examples of the adsorbent used in the present invention include granules such as zeolite, silica gel, activated alumina, and activated carbon, and they are used alone or in combination. For example, zeolite is used as a nitrogen adsorbent, carbon is used as an oxygen adsorbent, zeolite is used as a carbon dioxide adsorbent, and the like. Silica gel and activated alumina are preferably used for dehumidification, and activated carbon or the like is used for adsorption of hydrocarbons in the air.

【0027】[0027]

【発明の効果】以上のように、本発明の混合ガス分離方
法によれば、復圧工程の終了した吸着塔内の吸着剤で
は、原料混合ガスを供給した入口端寄り部分と、残留ガ
スを供給した中間部寄り部分と、製品ガスを供給した出
口端寄り部分とで、その順にガス濃度が濃くなり、均一
な(入口端から出口端に向かってガス濃度が濃くなる)
ガス濃度分布となる。このような状態に濃度勾配を調整
することにより、つぎの吸着分離工程において吸着剤の
利用効率を上げることができ、吸着剤性能を充分に発揮
させることができる。また、吸着剤の利用効率が向上す
ることにより、吸着剤充填量の削減および真空ポンプ容
量の低下を実現することができ、その結果、装置のイニ
シャル・ランニングコストを削減することができる。ま
た、本発明において、上記復圧工程を、上記製品ガスの
供給と残留ガスの供給を同時に行う前工程と、上記原料
混合ガスの供給と製品ガスの供給を同時に行う後工程と
に分ける場合には、確実にガス濃度勾配を調整すること
ができる。特に、出口端寄り部分でのガス濃度を確実に
高くすることができ、一層吸着剤の利用効率を上げるこ
とができる。また、本発明において、上記復圧工程で、
上記原料混合ガスの供給と製品ガスの供給と残留ガスの
供給を同時に行う場合には、工程の簡素化を図ることが
できる。
As described above, according to the mixed gas separation method of the present invention, in the adsorbent in the adsorption tower after the pressure recovery step, the portion near the inlet end where the raw material mixed gas is supplied and the residual gas are removed. The gas concentration becomes higher and uniform (the gas concentration becomes higher from the inlet end to the outlet end) in that order in the portion near the supplied intermediate portion and the portion near the outlet end where the product gas is supplied.
It becomes a gas concentration distribution. By adjusting the concentration gradient to such a state, the utilization efficiency of the adsorbent in the next adsorption separation step can be increased, and the adsorbent performance can be sufficiently exhibited. In addition, since the utilization efficiency of the adsorbent is improved, the amount of adsorbent to be charged can be reduced and the capacity of the vacuum pump can be reduced. As a result, the initial running cost of the apparatus can be reduced. Further, in the present invention, when the pressure recovery step is divided into a pre-process in which the supply of the product gas and the supply of the residual gas are simultaneously performed, and a post-process in which the supply of the raw material mixed gas and the supply of the product gas are simultaneously performed. Can reliably adjust the gas concentration gradient. In particular, the gas concentration near the outlet end can be reliably increased, and the utilization efficiency of the adsorbent can be further increased. In the present invention, in the pressure recovery step,
When the supply of the raw material mixed gas, the supply of the product gas, and the supply of the residual gas are performed at the same time, the process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる混合ガス分離装置の構成図であ
る。
FIG. 1 is a configuration diagram of a mixed gas separation device used in the present invention.

【図2】上記混合ガス分離装置に用いる吸着塔の内部の
説明図である。
FIG. 2 is an explanatory diagram of the inside of an adsorption tower used in the mixed gas separation device.

【図3】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an operation of the mixed gas separation device.

【図4】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the operation of the mixed gas separation device.

【図5】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing the operation of the mixed gas separation device.

【図6】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 6 is an explanatory view showing the operation of the mixed gas separation device.

【図7】上側吸着剤層のガス濃度分布の説明図である。FIG. 7 is an explanatory diagram of a gas concentration distribution of an upper adsorbent layer.

【図8】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 8 is an explanatory view showing the operation of the mixed gas separation device.

【図9】上記混合ガス分離装置の他の実施の形態を示す
工程図である。
FIG. 9 is a process chart showing another embodiment of the mixed gas separation device.

【図10】上記混合ガス分離装置のさらに他の実施の形
態を示す工程図である。
FIG. 10 is a process chart showing still another embodiment of the mixed gas separation device.

【図11】上記混合ガス分離装置のさらに他の実施の形
態を示す構成図である。
FIG. 11 is a configuration diagram showing still another embodiment of the mixed gas separation device.

【図12】上記さらに他の実施の形態の工程図である。FIG. 12 is a process chart of the still another embodiment.

【図13】吸着塔の変形例を示す説明図である。FIG. 13 is an explanatory view showing a modification of the adsorption tower.

【図14】従来例の作用を示す説明図である。FIG. 14 is an explanatory diagram showing the operation of a conventional example.

【図15】従来例の作用を示す説明図である。FIG. 15 is an explanatory diagram showing the operation of a conventional example.

【図16】従来例の作用を示す説明図である。FIG. 16 is an explanatory diagram showing the operation of a conventional example.

【図17】従来例の作用を示す説明図である。FIG. 17 is an explanatory view showing the operation of the conventional example.

【図18】従来例の作用を示す説明図である。FIG. 18 is an explanatory diagram showing the operation of a conventional example.

【符号の説明】[Explanation of symbols]

1 原空ブロワ 3,4 吸着塔 4a 入口端 4b 出口端 8 レシーバータンク 10 真空ポンプ DESCRIPTION OF SYMBOLS 1 Original air blower 3, 4 Adsorption tower 4a Inlet end 4b Outlet end 8 Receiver tank 10 Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大八木 信之 大阪府堺市築港新町2丁6番地40 大同ほ くさん株式会社堺工場内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Nobuyuki Oyagi, Inventor 2-6-6 Chikushinmachi, Sakai-shi, Osaka Daido Hokusan Co., Ltd. Sakai Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数個の吸着塔を設け、各吸着塔が吸着
分離工程と減圧再生工程と復圧工程とを、この順で繰り
返し行うようにした混合ガス分離方法であって、減圧再
生工程を終了した吸着塔に対し、その入口端から原料混
合ガスを供給し、その出口端から製品ガスを供給し、そ
の中間部から、吸着分離工程を終了した他の吸着塔の残
留ガスを供給することにより、復圧工程を行うようにし
たことを特徴とする混合ガス分離方法。
1. A mixed gas separation method comprising a plurality of adsorption towers, each of which repeatedly performs an adsorption separation step, a decompression regeneration step, and a pressure recovery step in this order. The mixed gas is supplied from the inlet end of the adsorption tower, the product gas is supplied from the outlet end, and the residual gas of the other adsorption tower that has completed the adsorption / separation step is supplied from an intermediate portion thereof. A mixed gas separation method, wherein a pressure recovery step is performed.
【請求項2】 上記復圧工程を、上記製品ガスの供給と
残留ガスの供給を同時に行う前工程と、上記原料混合ガ
スの供給と製品ガスの供給を同時に行う後工程とに分け
るようにした請求項1記載の混合ガス分離方法。
2. The pressure recovery step is divided into a pre-process in which the supply of the product gas and the supply of the residual gas are simultaneously performed, and a post-process in which the supply of the raw material mixed gas and the supply of the product gas are simultaneously performed. The method for separating a mixed gas according to claim 1.
【請求項3】 上記復圧工程で、上記原料混合ガスの供
給と製品ガスの供給と残留ガスの供給を同時に行うよう
にした請求項1記載の混合ガス分離方法。
3. The mixed gas separation method according to claim 1, wherein in the pressure recovery step, the supply of the raw material mixed gas, the supply of the product gas, and the supply of the residual gas are performed simultaneously.
JP01615497A 1997-01-30 1997-01-30 Mixed gas separation method Expired - Fee Related JP3369424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01615497A JP3369424B2 (en) 1997-01-30 1997-01-30 Mixed gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01615497A JP3369424B2 (en) 1997-01-30 1997-01-30 Mixed gas separation method

Publications (2)

Publication Number Publication Date
JPH10211412A true JPH10211412A (en) 1998-08-11
JP3369424B2 JP3369424B2 (en) 2003-01-20

Family

ID=11908599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01615497A Expired - Fee Related JP3369424B2 (en) 1997-01-30 1997-01-30 Mixed gas separation method

Country Status (1)

Country Link
JP (1) JP3369424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190054742A (en) * 2017-11-14 2019-05-22 한국에너지기술연구원 Adsorber system for adsorption process and method of separating mixture gas using its adsorption process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190054742A (en) * 2017-11-14 2019-05-22 한국에너지기술연구원 Adsorber system for adsorption process and method of separating mixture gas using its adsorption process

Also Published As

Publication number Publication date
JP3369424B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
JP2634022B2 (en) Separation method of gas components by vacuum swing adsorption method
JP2744596B2 (en) Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture
JPH09103630A (en) Method and apparatus for pressure swing adsorption
US5620501A (en) Recovery of trace gases from gas streams
EP1359120A1 (en) Ozone production methods
KR100838166B1 (en) Method And System for Separating Gas
JPH02281096A (en) Carbon dioxide and moisture remover for methane-enriched mixed gas
JPH11239711A (en) Psa method using simultaneous evacuation of top and bottom of adsorbent bed
US4482362A (en) Method for producing purified gases
JPS6391120A (en) Pressure change-over apparatus
CN112295360A (en) Pressure swing adsorption nitrogen preparation system
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus
JPH10272332A (en) Gas separation device and its operation method
JP3369424B2 (en) Mixed gas separation method
JPH01266831A (en) Device for purifying light gas
JP2004148270A (en) Pressure swing adsorption equipment and production method of high concentration oxygen and high concentration nitrogen using the same
JPH10194708A (en) Oxygen enricher
JPWO2020105242A1 (en) Gas separation device and gas separation method
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
US11786859B2 (en) Air separation sorbent and vacuum assisted pressure swing adsorption process using the same
JP3755622B2 (en) Mixed gas separation method
JP4171392B2 (en) Gas separation and recovery method and pressure swing adsorption gas separation and recovery system
JPS6238281B2 (en)
JPH0517135Y2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000321

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees