JPH10209412A - Solid-state imaging element and its manufacturing method - Google Patents

Solid-state imaging element and its manufacturing method

Info

Publication number
JPH10209412A
JPH10209412A JP9007661A JP766197A JPH10209412A JP H10209412 A JPH10209412 A JP H10209412A JP 9007661 A JP9007661 A JP 9007661A JP 766197 A JP766197 A JP 766197A JP H10209412 A JPH10209412 A JP H10209412A
Authority
JP
Japan
Prior art keywords
opening
light
shielding film
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9007661A
Other languages
Japanese (ja)
Other versions
JP2897745B2 (en
Inventor
Takashi Sato
高 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9007661A priority Critical patent/JP2897745B2/en
Publication of JPH10209412A publication Critical patent/JPH10209412A/en
Application granted granted Critical
Publication of JP2897745B2 publication Critical patent/JP2897745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress falling of energy density of an electromagnetic field and to increase the number of photons incident on a photo-detecting element, by specifying a minimum width of an opening-part lower end of right-shielding film on a photoelectric transfer element and the shape of an opening end part. SOLUTION: On an N-type semiconductor substrate 1, a P-type well 2 is formed and a photo-detecting element 3 is formed, then, a transfer element 4 of N-type embedded channel is formed and an element separation region 12 is formed. Then a read-out region 11 for reading out an electric charge from the photo-detecting element 3 to a transfer element array 4 is formed, with a gate insulating film 5 formed on the surface of transfer element array 4. Further, a transfer electrode 6 is formed on the gate insulating film 5. Then, an inter-layer insulating film 7 is formed on the surface of N-type semiconductor substrate 1 including the upper part of transfer electrode 6, and a light-shielding film 8 comprising tungsten, etc., is formed, with an opening 9 for allowing the photodetecting element 3 to be irradiated with light is formed. The minimum width at the lower end of the opening is 1μm or less while the end part of the opening is tapered, at least at a part, where an opening width succeedingly increases as approaching an upper end.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像素子、特
にはインターライン転送型あるいはフレームインターラ
イン転送型固体撮像素子の高感度化を図るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims at improving the sensitivity of a solid-state image pickup device, particularly an interline transfer type or frame interline transfer type solid-state image pickup device.

【0002】[0002]

【従来の技術】従来のインターライン型固体撮像素子は
1987年7月、テレビジョン学会全国大会予稿集23
頁などに開示されている。この固体撮像素子の単位画素
の断面構造を図3に示す。同図に示すように、インター
ライン型固体撮像素子は、N型半導体基板1中にP型ウ
エル2、受光素子3、転送素子列4、読み出し領域11
および素子分離領域12が形成された後、前記転送素子
列4の上部にはゲート絶縁膜5を介して転送電極6が形
成され、更にその上には前記転送電極6を含む前記N型
半導体基板上に層間絶縁膜7が形成された後、スミアの
発生を抑制するために遮光膜8が形成され、その後、前
記受光素子3に光を入射させるための開口9が形成され
ている。このとき遮光膜端部は前記受光素子3以外には
光が入射しないように前記受光素子3より内側に位置す
るように形成される。
2. Description of the Related Art A conventional interline-type solid-state image pickup device has been published in July 1987 at the National Convention of the Institute of Television Engineers of Japan.
Page. FIG. 3 shows a sectional structure of a unit pixel of the solid-state imaging device. As shown in FIG. 1, an interline solid-state imaging device includes a P-type well 2, a light-receiving element 3, a transfer element array 4, and a readout area 11 in an N-type semiconductor substrate 1.
After the element isolation region 12 is formed, a transfer electrode 6 is formed above the transfer element column 4 via a gate insulating film 5, and the N-type semiconductor substrate including the transfer electrode 6 is further formed thereon. After an interlayer insulating film 7 is formed thereon, a light-shielding film 8 is formed to suppress the occurrence of smear, and thereafter, an opening 9 for allowing light to enter the light receiving element 3 is formed. At this time, the end of the light shielding film is formed so as to be located inside the light receiving element 3 so that light does not enter the light receiving element 3.

【0003】この時、「1995年、アイ・イー.ディ
ー・エム・テクニカルダイジェスト、160頁、図2
(IEDM Technical Digest, pp. 160, Fig. 2, 1
995)」で報告されているように前記遮光膜端部の形状
は前記N型半導体基板に対してほぼ垂直(90度)にな
っている。その後、通常、平担化膜を形成し、光の集光
率を上げ感度向上を図るため、マイクロレンズが形成さ
れる。
At this time, "1995 IEDM Technical Digest, 160 pages, FIG.
(IEDM Technical Digest, pp. 160, Fig. 2, 1
995) ", the shape of the light-shielding film end is substantially perpendicular (90 degrees) to the N-type semiconductor substrate. After that, usually, a flattening film is formed, and a microlens is formed to increase the light collection rate and improve the sensitivity.

【0004】従来のマイクロレンズ付き固体撮像素子と
しては、特開平5−183136号公報に開示されてい
るように、マイクロレンズにより集光された光が遮光膜
で遮られずに効率よく取得できるようするために、遮光
膜の開口端部を外側に広がるようテーパ状に形成するこ
とが提案されている。
As a conventional solid-state imaging device with a microlens, as disclosed in Japanese Patent Application Laid-Open No. Hei 5-183136, light condensed by a microlens can be efficiently obtained without being blocked by a light-shielding film. For this purpose, it has been proposed to form the opening end of the light-shielding film in a tapered shape so as to spread outward.

【0005】[0005]

【発明が解決しようとする課題】このような構造の固体
撮像素子では、感度は画素面積に比例して低下する。こ
こで受光素子、転送素子および開口等の画素を構成する
部分も単位画素寸法と同じ比率で縮小するとする。特に
開口は受光素子に光を入射させるために重要な部分であ
り、開口が縮小すると受光素子が縮小しなくとも感度は
開口の縮小に比例して低下する。感度を向上させるため
に開口を広くすると、感度は向上するがそれと共にスミ
アも増加してしまう。そこで、開口は、感度とスミアの
関係を考慮して、出来る限り広くなるようにする必要が
ある。しかしながら、画素面積が縮小し、可能な限り開
口を大きくしても開口間の幅、例えば、開口形状が長方
形の場合は短い方の辺が入射光の波長(0.4μm〜
0.8μm)と同程度になる。つまり、画素寸法が3.
5μm角の場合、開口幅は約0.8μmとなる。このよ
うに開口幅が入射光の波長とほぼ同等になる場合、開口
を通過する光のエネルギーが低下し、開口の縮小比率以
上に感度が低下する。
In the solid-state imaging device having such a structure, the sensitivity decreases in proportion to the pixel area. Here, it is assumed that the portions constituting the pixel such as the light receiving element, the transfer element and the aperture are also reduced at the same ratio as the unit pixel size. In particular, the aperture is an important part for allowing light to enter the light receiving element. When the aperture is reduced, the sensitivity decreases in proportion to the reduction of the aperture even if the light receiving element is not reduced. If the aperture is widened to improve the sensitivity, the sensitivity is improved, but smear is also increased. Therefore, it is necessary to make the aperture as wide as possible in consideration of the relationship between sensitivity and smear. However, even if the pixel area is reduced and the apertures are made as large as possible, the width between the apertures, for example, when the aperture shape is rectangular, the shorter side is the wavelength of the incident light (0.4 μm to
0.8 μm). That is, the pixel size is 3.
In the case of a 5 μm square, the opening width is about 0.8 μm. When the aperture width is substantially equal to the wavelength of the incident light, the energy of the light passing through the aperture decreases, and the sensitivity decreases to a rate equal to or more than the reduction ratio of the aperture.

【0006】開口幅が入射光の波長と同程度の幅になる
ような微細なセルを設計する際は、開口を通過する光の
エネルギーの低下を抑制し、感度が低下するのを抑制す
る必要があるが、このような微細なセルの場合、感度低
下を抑制するために従来技術にあるようなマイクロレン
ズを設けて入射光を集光して感度を高めることは、セル
サイズが5μm角以下になると設計通りにマイクロレン
ズを製造できないために不可能となる。従って、何らか
別の手段を講じる必要がある。
When designing a fine cell in which the opening width is about the same as the wavelength of the incident light, it is necessary to suppress a decrease in the energy of light passing through the opening and a decrease in sensitivity. However, in the case of such a fine cell, in order to suppress the decrease in sensitivity, providing a microlens as in the related art and condensing incident light to increase sensitivity requires a cell size of 5 μm square or less. Becomes impossible because a microlens cannot be manufactured as designed. Therefore, some other measures need to be taken.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するべく
鋭意検討した結果、半導体基板上に形成した複数の光電
変換素子上の少なくとも一部に開口を設けた遮光膜を備
えており、前記遮光膜の開口部下端の最小幅が1μm以
下で開口端部の形状が少なくとも一部が開口幅が上端に
向かって徐々に広がるテーパを有することを特徴とする
固体撮像素子に到達したのである。
As a result of intensive studies to solve the above-mentioned problems, a light-shielding film having an opening in at least a part of a plurality of photoelectric conversion elements formed on a semiconductor substrate is provided. The solid-state imaging device is characterized in that the minimum width of the lower end of the opening of the film is 1 μm or less, and the shape of the opening end has a taper in which at least a part of the opening gradually widens toward the upper end.

【0008】特にテーパの角度が、半導体基板に対し
て、60〜70度の範囲あることは好ましい。また、遮
光膜の材料がタングステンであることは好ましい。
It is particularly preferable that the angle of the taper be in the range of 60 to 70 degrees with respect to the semiconductor substrate. Further, it is preferable that the material of the light shielding film is tungsten.

【0009】本発明の固体撮像素子の製造においては、
前記遮光膜の開口を、SF6等の等方性エッチングガス
及びO2、Cl2などの異方性エッチングガスを含む混合
ガスを用いドライエッチングにて形成することを特徴と
するものである。
In manufacturing the solid-state imaging device of the present invention,
The opening of the light-shielding film is formed by dry etching using a mixed gas containing an isotropic etching gas such as SF 6 and an anisotropic etching gas such as O 2 and Cl 2 .

【0010】[0010]

【発明の実施の形態】光が受光素子に入射し光電変換に
より発生する電子数は、半導体基板に入射する光子の数
に比例する。光子の数は、光のエネルギーすなわち電磁
場のエネルギー、特に電場のエネルギーに依存する。例
えば、波長λ[m]の光がエネルギーU0[W]で半導
体基板に入射したとすると、単位時間に入射してくる光
子の数は、エネルギーU0[W]を光子一個当たりのエ
ネルギーhc/λ[J]で除算した値で与えられる。こ
こでhはプランク定数(6.6262×10-34[J
s])、cは真空中の光速(2.9979×108[m
-1])である。電場は開口を通過する際に干渉により
開口内に全層表面である遮光膜端で必ず節すなわち振幅
がゼロとなるような定在波を生じる。開口が十分に入射
光の波長より広い場合、定在波は、開口の縮小に対し
て、開口を通過する電磁場のエネルギー密度が一定にな
るように複数の腹を生じる。開口を通過する電場すなわ
ち光のエネルギー密度が一定であるうちは、開口を通過
する光のエネルギーはすなわち受光素子に入射する光子
数は、開口の縮小比率に比例して減少し、その結果、感
度も同様に同じ縮小比率で低下する。しかしながら、開
口幅が入射光の波長とほぼ等しいか又はそれ以下になる
ような場合、定在波の腹は一つしか生じることが出来な
いため、開口が縮小すると、定在波のエネルギー密度が
開口幅の縮小とともに小さくなってしまう。このため、
開口を通過する光のエネルギーすなわちは受光素子に入
射する光子数は開口の縮小比率以上に減少し、その結
果、感度も同様に開口の縮小比率以上に低下する。そこ
で、本発明は開口幅が入射光の波長とほぼ等しくなる1
μm以下の開口幅を有する固体撮像素子、例えば単位画
素寸法が3.5μm角で開口幅が0.8μm程度になる
ような固体撮像素子の遮光膜端部の形状をテーパとする
ことで、開口(テーパの下端で決定され、先端の間の距
離を開口幅とする)は入射光の波長と同じかそれ以下で
あるが、先端以外は徐々に広くなるため、腹の数が一つ
以上の定在波を生じることができ、電磁場のエネルギー
密度の低下が抑制され、感度の急激な低下を抑制出来
る。図4に開口幅が0.8μmと0.5μmの場合に対
するテーパ角依存性のシミュレーション結果を示す。こ
こで遮光膜の膜厚は0.4μmとし、遮光膜下の層間絶
縁膜の膜厚は0.3μmとした。感度は、開口端形状を
テーパとすることにより従来の開口端形状が、半導体基
板に対して、ほぼ垂直(90度)のときより向上してい
ることが分かる。特にテーパ角が60〜70度で最大の
効果が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The number of electrons generated by photoelectric conversion when light is incident on a light receiving element is proportional to the number of photons incident on a semiconductor substrate. The number of photons depends on the energy of light, ie the energy of the electromagnetic field, in particular the energy of the electric field. For example, if light having a wavelength λ [m] is incident on a semiconductor substrate with energy U 0 [W], the number of photons incident per unit time is determined by converting energy U 0 [W] to energy hc per photon. / Λ [J]. Here, h is Planck's constant (6.6262 × 10 −34 [J
s]) and c are the speed of light in vacuum (2.9997 × 10 8 [m
s -1 ]). When passing through the opening, the electric field generates a node, that is, a standing wave whose amplitude becomes zero at the end of the light-shielding film, which is the surface of all layers, due to interference in the opening. If the aperture is sufficiently wider than the wavelength of the incident light, the standing wave will create multiple antinodes so that the energy density of the electromagnetic field passing through the aperture will be constant with the reduction of the aperture. As long as the electric field passing through the opening, that is, the energy density of the light is constant, the energy of the light passing through the opening, that is, the number of photons incident on the light receiving element decreases in proportion to the reduction ratio of the opening, and as a result, the sensitivity Also decrease at the same reduction ratio. However, when the aperture width is substantially equal to or smaller than the wavelength of the incident light, only one antinode of the standing wave can be generated. It becomes smaller as the opening width decreases. For this reason,
The energy of light passing through the aperture, that is, the number of photons incident on the light-receiving element, is reduced to be equal to or greater than the aperture reduction ratio, and as a result, the sensitivity is also reduced to be equal to or greater than the aperture reduction ratio. Therefore, the present invention provides a method in which the aperture width is substantially equal to the wavelength of the incident light.
A solid-state imaging device having an opening width of μm or less, for example, a solid-state imaging device having a unit pixel size of 3.5 μm square and an opening width of about 0.8 μm is formed by tapering the end portion of the light-shielding film so that the opening is tapered. (Determined by the lower end of the taper, and the distance between the tips is defined as the opening width) is equal to or less than the wavelength of the incident light, but gradually becomes wider except at the tip, so that the number of antinodes is one or more. A standing wave can be generated, a decrease in the energy density of the electromagnetic field can be suppressed, and a sharp decrease in sensitivity can be suppressed. FIG. 4 shows a simulation result of the taper angle dependence when the opening width is 0.8 μm and 0.5 μm. Here, the thickness of the light-shielding film was 0.4 μm, and the thickness of the interlayer insulating film below the light-shielding film was 0.3 μm. It can be seen that the sensitivity is improved when the conventional open end shape is substantially perpendicular (90 degrees) to the semiconductor substrate by tapering the open end shape. In particular, the maximum effect is obtained when the taper angle is 60 to 70 degrees.

【0011】本発明において、開口端形状をテーパとす
る構成は、一見すれば従来技術の構成に類似している。
しかしながら、従来技術では、マイクロレンズにより集
光された光の光路を遮るのを回避するためにテーパ形状
としており、本発明のようにマイクロレンズの設けられ
ない構成において、開口端形状をテーパとすることによ
り感度の急激な低下を抑制できることは全く知られてい
なかった。本発明はこのように全く新規な知見に基づき
完成されたものである。
In the present invention, the configuration in which the shape of the opening end is tapered is, at first glance, similar to the configuration of the prior art.
However, in the related art, the shape of the opening end is tapered in order to avoid blocking the optical path of the light condensed by the microlens, and in the configuration in which the microlens is not provided as in the present invention, the opening end shape is tapered. It was not known at all that the rapid decrease in sensitivity could be suppressed. The present invention has been completed based on such completely new findings.

【0012】次に本発明の固体撮像素子の製造方法につ
いて説明する。
Next, a method for manufacturing the solid-state imaging device of the present invention will be described.

【0013】図1は本発明の固体撮像素子の製造過程の
一例を示す断面図である。まずN型半導体基板に例えば
ボロン等のP型不純物とリン等のN型不純物を注入する
ことで、P型ウエル2、PNP接合型フォトダイオード
(受光素子)3、N型埋め込みチャネル層の転送素子列
4、読み出し領域11、p型素子分離領域12を形成す
る。表面には、例えば熱酸化膜や酸化膜−窒化膜−酸化
膜の3層構造の膜(ONO膜)等のゲート絶縁膜5を形
成し、更にゲート絶縁膜5の上に、例えば、化学気相成
長(CVD)法等により多結晶シリコンを堆積させ、パ
ターニングおよびエッチングを行い転送電極6を形成す
る。その後、例えばCVD法等により層間絶縁膜7を形
成する(図1(a))。次に、スミア低減を目的とし
て、例えばタングステン等を材料にして、例えばスパッ
タ法により遮光膜8が形成される(図1(b))。その
後、レジスト13を塗布し、開口9を形成するため、レ
ジスト13をパターニングする。この時、光の斜め入射
によるスミアを低減するため、開口端10の位置は受光
素子領域の内側になるようにパターニングする。そし
て、エッチングを行い開口9を形成する。この時、例え
ば等方性エッチングガスと異方性エッチングガスの併用
とガス圧、平行平板間のバイアス高周波電力等を変化さ
せることにより開口端10の形状をテーパとする(図1
(c))。
FIG. 1 is a sectional view showing an example of a manufacturing process of the solid-state imaging device of the present invention. First, a P-type well 2, a PNP junction photodiode (light-receiving element) 3, and a transfer element of an N-type buried channel layer are implanted into an N-type semiconductor substrate by implanting a P-type impurity such as boron and an N-type impurity such as phosphorus. A column 4, a readout region 11, and a p-type element isolation region 12 are formed. On the surface, for example, a gate insulating film 5 such as a thermal oxide film or a three-layer film (ONO film) of an oxide film-nitride film-oxide film is formed. Polycrystalline silicon is deposited by a phase growth (CVD) method or the like, and is patterned and etched to form a transfer electrode 6. Thereafter, an interlayer insulating film 7 is formed by, for example, a CVD method or the like (FIG. 1A). Next, for the purpose of smear reduction, the light-shielding film 8 is formed by, for example, sputtering using a material such as tungsten (FIG. 1B). After that, a resist 13 is applied, and the resist 13 is patterned to form the opening 9. At this time, in order to reduce smear due to oblique incidence of light, patterning is performed so that the position of the opening end 10 is inside the light receiving element region. Then, an opening 9 is formed by etching. At this time, the shape of the opening end 10 is tapered by, for example, using a combination of an isotropic etching gas and an anisotropic etching gas, and changing the gas pressure, the bias high-frequency power between the parallel plates, and the like (FIG. 1).
(C)).

【0014】[0014]

【実施例】以下、実施例を参照して本発明を具体的に説
明するが、本発明はこれらの実施例のみに限定されるも
のではない。
The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1 本発明の第1の実施例を図1を用いて説明する。Embodiment 1 A first embodiment of the present invention will be described with reference to FIG.

【0016】まず、N型半導体基板1にボロンを不純物
濃度3×1015cm-3、接合深さ6μmとなるように注
入してP型ウエル2を形成し、その後、リンを不純物濃
度5×1016cm-3、接合深さ1.5μmで、ボロンを
不純物濃度1×1017cm-3、接合深さ0.2μmとな
るように注入してPNP接合型フォトダイオード(受光
素子)3を形成する。次に、リンを8×1016cm-3
接合深さlμmになるように注入してN型埋め込みチャ
ネルの転送素子4を形成する。次に、ボロンを不純物濃
度1×1017cm-3、接合深さ1.0μmとなるように
注入して素子分離領域12を形成する。そして、ボロン
を不純物濃度3×1016cm-3、接合深さ1.0μmと
なるように注入して受光素子3から転送素子列4に電荷
を読み出すための読み出し領域11を形成する。転送素
子列4の表面にはゲート絶縁膜5としてONO膜を、ゲ
ート容量が膜厚750Åの酸化膜と等価であるような膜
厚で形成し、さらに、ゲート絶縁膜5上にはリン拡散に
よりシート抵抗を20〜30Ω/□まで低抵抗化された
多結晶シリコンの転送電極6を4000Åの膜厚で形成
する。次に、転送電極6の上部も含めて前記N型半導体
基板1の表面にCVD法により酸化膜を2200Å堆積
させ、層間絶縁膜7を形成する。次に、スパッタ法によ
り、例えば、タングステン等を材料として遮光膜8を形
成する。この時、この遮光膜8の厚さは光が透過しない
ように4000Åとする(図1(a))。
First, boron is implanted into the N-type semiconductor substrate 1 so as to have an impurity concentration of 3 × 10 15 cm −3 and a junction depth of 6 μm to form a P-type well 2. Boron is implanted so as to have an impurity concentration of 1 × 10 17 cm −3 and a junction depth of 0.2 μm at 10 16 cm −3 and a junction depth of 1.5 μm, and a PNP junction type photodiode (light receiving element) 3 is obtained. Form. Next, phosphorus was added to 8 × 10 16 cm −3 ,
Implantation is performed to a junction depth of 1 μm to form an N-type buried channel transfer element 4. Next, boron is implanted so as to have an impurity concentration of 1 × 10 17 cm −3 and a junction depth of 1.0 μm to form an element isolation region 12. Then, boron is implanted so as to have an impurity concentration of 3 × 10 16 cm −3 and a junction depth of 1.0 μm to form a readout region 11 for reading out charges from the light receiving element 3 to the transfer element array 4. An ONO film is formed as a gate insulating film 5 on the surface of the transfer element array 4 with a thickness such that the gate capacitance is equivalent to an oxide film having a thickness of 750 °, and phosphorus diffusion is performed on the gate insulating film 5. A transfer electrode 6 of polycrystalline silicon having a sheet resistance reduced to 20 to 30 Ω / □ is formed to a thickness of 4000 °. Next, an oxide film is deposited on the surface of the N-type semiconductor substrate 1 including the upper part of the transfer electrode 6 by a CVD method at a thickness of 2200 ° to form an interlayer insulating film 7. Next, the light-shielding film 8 is formed by sputtering, for example, using tungsten or the like as a material. At this time, the thickness of the light-shielding film 8 is set to 4000 ° so as not to transmit light (FIG. 1A).

【0017】次に、前記受光素子3に光を入射させるた
めの開口9を形成するため、フォトリソグラフィー工程
およびエッチング工程により前記開口9のパターニング
を行う(図1(b))。開口形状は、例えばストライプ
や正方形等が考えられる。単位画素の大きさが3.5μ
m角の場合、例えば、前記開口の形状がストライプの場
合、遮光膜端10の位置が、光が斜め入射した場合にお
いても直接前記転送素子4に光が入射しないように前記
受光素子の内側になるようにすると、開口幅は、ほぼ
0.8μmとなる。レジスト13をマスクとしたエッチ
ングでは、等方性エッチングガスSF6と異方性エッチ
ングガスO2およびCl2を含んだ混合ガスを用いたプラ
ズマエッチングにおいてガス圧を250mtorr、高
周波電力を100Wにして、前記遮光膜端部10の形状
がテーパとなるように行う(図1(c))。以上述べた
ように前記遮光膜端部10の形状をテーパとすることに
より前記開口9を通過する光のエネルギーの低下が抑制
でき、前記受光素子3に入射する光子の数の減少が抑制
できる。
Next, in order to form an opening 9 for allowing light to enter the light receiving element 3, the opening 9 is patterned by a photolithography step and an etching step (FIG. 1B). The opening shape may be, for example, a stripe or a square. The unit pixel size is 3.5μ
In the case of an m-square, for example, when the shape of the opening is a stripe, the position of the light-shielding film end 10 is located inside the light receiving element so that the light does not directly enter the transfer element 4 even when the light is obliquely incident. Then, the opening width becomes approximately 0.8 μm. In the etching using the resist 13 as a mask, the gas pressure is set to 250 mtorr and the high frequency power is set to 100 W in plasma etching using a mixed gas containing an isotropic etching gas SF 6 and an anisotropic etching gas O 2 and Cl 2 . This is performed so that the shape of the light-shielding film end portion 10 is tapered (FIG. 1C). As described above, by making the shape of the light-shielding film end portion 10 tapered, a decrease in energy of light passing through the opening 9 can be suppressed, and a decrease in the number of photons incident on the light receiving element 3 can be suppressed.

【0018】実施例2 次に、本発明の第2の実施例を図2を用いて説明する。Embodiment 2 Next, a second embodiment of the present invention will be described with reference to FIG.

【0019】開口9を形成するためのレジスト13をパ
ターニングするまでの工程は、第1実施例と同様であ
る。遮光膜8をエッチングする際の、等方性エッチング
ガスSF6と異方性エッチングガスO2およびCl2の混
合比を15:5:1としたプラズマエッチングにおいて
ガス圧を250mtorr、高周波電力を100Wにし
て、テーパの角度を60〜70度の範囲になるようにす
る。この時、本発明の最大の効果が得られ、遮光膜端部
10の形状が90度である現状の構造と比較して、開口
幅が0.8μmの場合で40%感度が向上する。また、
インターライン転送型およびフレーム転送型固体撮像素
子以外にも光電変換素子上に開口幅が1μm以下の開口
を有する遮光膜が形成されている固体撮像素子におい
て、遮光膜端部の形状をテーパとすることにより同様な
効果が得られる。
The steps up to patterning the resist 13 for forming the opening 9 are the same as in the first embodiment. When etching the light shielding film 8, the plasma pressure is set to 250 mtorr and the high-frequency power is set to 100 W in the plasma etching in which the mixture ratio of the isotropic etching gas SF 6 and the anisotropic etching gas O 2 and Cl 2 is 15: 5: 1. Then, the angle of the taper is set in the range of 60 to 70 degrees. At this time, the maximum effect of the present invention is obtained, and the sensitivity is improved by 40% when the opening width is 0.8 μm, as compared with the existing structure in which the shape of the light-shielding film end 10 is 90 degrees. Also,
In addition to the interline transfer type and frame transfer type solid-state imaging devices, in a solid-state imaging device in which a light-shielding film having an opening with a width of 1 μm or less is formed on a photoelectric conversion element, the shape of the light-shielding film end is tapered. Thereby, a similar effect can be obtained.

【0020】[0020]

【発明の効果】本発明の効果は、開口幅が1μm以下に
なるような、微細な画素に対して、マイクロレンズを設
けていないにもかかわらず感度が向上すると言うことで
ある。これは、遮光膜端部の形状が半導体基板から離れ
るにつれ広がるようにテーパとすることにより、開口幅
(開口はテーパの下端で決定され、先端の間の距離を開
口幅とする)が入射光の波長と同じかそれ以下である
が、先端以外は徐々に広くなるため、開口間には、腹の
数が一つ以上の定在波が生じ,電磁場のエネルギー密度
の低下を抑制でき、開口を通過し、受光素子に入射する
光子の数が、遮光膜端部の形状が90度の時と比較し
て、増加し、感度が向上する。特にテーパの角度を60
〜70度の範囲に設定することにより最大の効果が得ら
れ、この時、感度は40%以上向上する。このことは、
例えば、画素面積を5.0μm角から3.5μm角に縮
小した場合、暗電流は画素面積に比例して小さくなる事
と前記した感度の向上と併せることにより、画素面積縮
小前の遮光膜端部の形状が垂直の場合と同等の実力とな
る。また、画素面積縮小によるチップ面積の縮小は歩留
まりを向上させ、さらに、カメラの小型化が可能で、家
庭用カメラサイズで業務用カメラの実力が得ることが出
来る。
The effect of the present invention is that the sensitivity is improved for a fine pixel having an opening width of 1 μm or less even though no microlens is provided. This is because the opening width (the opening is determined by the lower end of the taper and the distance between the tips is the opening width) by making the shape of the end portion of the light-shielding film taper so as to increase as the distance from the semiconductor substrate increases. The wavelength is the same as or less than the wavelength, but becomes gradually wider except at the tip. As a result, a standing wave with one or more antinodes is generated between the apertures, which can suppress the decrease in the energy density of the electromagnetic field. And the number of photons incident on the light receiving element increases as compared with the case where the shape of the end portion of the light shielding film is 90 degrees, and the sensitivity is improved. Especially, when the taper angle is 60
The maximum effect is obtained by setting the angle in the range of -70 degrees. At this time, the sensitivity is improved by 40% or more. This means
For example, when the pixel area is reduced from 5.0 μm square to 3.5 μm square, the dark current is reduced in proportion to the pixel area, and in addition to the above-mentioned improvement in sensitivity, the light shielding film edge before the pixel area is reduced. The ability is the same as when the shape of the part is vertical. In addition, the reduction in the chip area due to the reduction in the pixel area improves the yield, and further, the size of the camera can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は本発明の固体撮像素子の製造
過程の一例を示す模式的断面図である。
FIGS. 1A to 1C are schematic cross-sectional views illustrating an example of a manufacturing process of a solid-state imaging device of the present invention.

【図2】本発明の第二の固体撮像素子の実施の形態を示
す模式的断面図である。
FIG. 2 is a schematic sectional view showing an embodiment of the second solid-state imaging device according to the present invention.

【図3】従来のインターライン型固体撮像素子の単位画
素を示す模式的断面図である。
FIG. 3 is a schematic cross-sectional view showing a unit pixel of a conventional interline solid-state imaging device.

【図4】開口幅が0.8μmと0.5μmの場合に対す
るテーパ角依存性のシミュレーション結果を示すグラフ
である。
FIG. 4 is a graph showing simulation results of taper angle dependence when the opening width is 0.8 μm and 0.5 μm.

【符号の説明】[Explanation of symbols]

1…N型半導体基板 2…P型ウエル 3…光電変換素子 4…信号電送素子 5…ゲート絶縁膜 6…転送電極 7…層間絶縁膜 8…遮光膜 9…開口 10…遮光膜端部 11…読み出し領域 12…素子分離領域 13…レジスト DESCRIPTION OF SYMBOLS 1 ... N-type semiconductor substrate 2 ... P-type well 3 ... photoelectric conversion element 4 ... signal transmission element 5 ... gate insulating film 6 ... transfer electrode 7 ... interlayer insulating film 8 ... light shielding film 9 ... opening 10 ... light shielding film end 11 ... Readout area 12: Element isolation area 13: Resist

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成した複数の光電変換
素子上の少なくとも一部に開口を設けた遮光膜を備えて
おり、前記遮光膜の開口部下端の最小幅が1μm以下で
開口端部の形状を開口幅が上端に向かって徐々に広がる
テーパとなるよう形成したことを特徴とする固体撮像素
子。
1. A light-shielding film having an opening provided on at least a part of a plurality of photoelectric conversion elements formed on a semiconductor substrate, wherein a minimum width of a lower end of the opening of the light-shielding film is 1 μm or less and an opening end of the opening is formed. A solid-state imaging device characterized in that an opening width is gradually tapered toward an upper end.
【請求項2】 遮光膜端のテーパの角度が60〜70度
の範囲内であることを特徴とする請求項1記載の固体撮
像素子。
2. The solid-state imaging device according to claim 1, wherein the angle of the taper at the end of the light shielding film is within a range of 60 to 70 degrees.
【請求項3】 遮光膜の材料がタングステンであること
を特徴とする請求項1または請求項2記載の固体撮像素
子。
3. The solid-state imaging device according to claim 1, wherein the material of the light-shielding film is tungsten.
【請求項4】 開口を等方性エッチングガスと異方性エ
ッチングガスを含む混合ガスを用いドライエッチングに
て形成することを特徴とする請求項1〜3のいずれかに
記載の固体撮像素子の製造方法。
4. The solid-state imaging device according to claim 1, wherein the opening is formed by dry etching using a mixed gas containing an isotropic etching gas and an anisotropic etching gas. Production method.
【請求項5】 等方性エッチングガスがSF6であり、
異方性エッチングガスがO2およびCl2であることを特
徴とする請求項4に記載の固体撮像素子の製造方法。
5. The method according to claim 1, wherein the isotropic etching gas is SF 6 ,
Method for manufacturing a solid-state imaging device according to claim 4, anisotropic etching gas being a O 2 and Cl 2.
JP9007661A 1997-01-20 1997-01-20 Solid-state imaging device and method of manufacturing the same Expired - Fee Related JP2897745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9007661A JP2897745B2 (en) 1997-01-20 1997-01-20 Solid-state imaging device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9007661A JP2897745B2 (en) 1997-01-20 1997-01-20 Solid-state imaging device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10209412A true JPH10209412A (en) 1998-08-07
JP2897745B2 JP2897745B2 (en) 1999-05-31

Family

ID=11672004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9007661A Expired - Fee Related JP2897745B2 (en) 1997-01-20 1997-01-20 Solid-state imaging device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2897745B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229116A (en) * 2004-02-13 2005-08-25 Samsung Electronics Co Ltd Solid imaging device and its manufacturing method
WO2011148574A1 (en) * 2010-05-28 2011-12-01 パナソニック株式会社 Solid-state image pickup device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229116A (en) * 2004-02-13 2005-08-25 Samsung Electronics Co Ltd Solid imaging device and its manufacturing method
WO2011148574A1 (en) * 2010-05-28 2011-12-01 パナソニック株式会社 Solid-state image pickup device
JPWO2011148574A1 (en) * 2010-05-28 2013-07-25 パナソニック株式会社 Solid-state imaging device
US8698064B2 (en) 2010-05-28 2014-04-15 Panasonic Corporation Solid-state imaging device

Also Published As

Publication number Publication date
JP2897745B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US5877040A (en) Method of making charge-coupled device with microlens
JP2848268B2 (en) Solid-state imaging device and method of manufacturing the same
US6025585A (en) Low-resistivity photon-transparent window attached to photo-sensitive silicon detector
JP3766734B2 (en) Solid-state image sensor
US7385238B2 (en) Low dark current image sensors with epitaxial SiC and/or carbonated channels for array transistors
US6710370B2 (en) Image sensor with performance enhancing structures
JP3723124B2 (en) Solid-state imaging device
US7732845B2 (en) Pixel sensor with reduced image lag
JPH04355964A (en) Solid-state image pickup device and manufacture thereof
JPH0318793B2 (en)
JP3471394B2 (en) Semiconductor UV sensor
US20070023796A1 (en) Pinning layer for pixel sensor cell and method thereof
US6278102B1 (en) Method of detecting electromagnetic radiation with bandgap engineered active pixel cell design
JP2858179B2 (en) CCD image element
JP2866328B2 (en) Solid-state imaging device
JP3008163B2 (en) Solid-state imaging device and method of manufacturing the same
JP2897745B2 (en) Solid-state imaging device and method of manufacturing the same
JP2959460B2 (en) Solid-state imaging device
JPH0828493B2 (en) Light detector
JPH08255888A (en) Solid state image sensor and fabrication thereof
KR0136924B1 (en) Fabricating method of ccd image sensor
KR0172849B1 (en) Solid state image sensing device and manufacturing method thereof
JP4824241B2 (en) Semiconductor energy detector
JP2795241B2 (en) Solid-state imaging device and method of manufacturing the same
Chikamura et al. A high-sensitivity solid-state image sensor using a thin-film ZnSe-Zn 1-x Cd x Te heterojunction photosensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees