JPH10209335A - Ceramic circuit board - Google Patents

Ceramic circuit board

Info

Publication number
JPH10209335A
JPH10209335A JP9007297A JP729797A JPH10209335A JP H10209335 A JPH10209335 A JP H10209335A JP 9007297 A JP9007297 A JP 9007297A JP 729797 A JP729797 A JP 729797A JP H10209335 A JPH10209335 A JP H10209335A
Authority
JP
Japan
Prior art keywords
ceramic
thermal expansion
low
layer
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9007297A
Other languages
Japanese (ja)
Other versions
JP3846651B2 (en
Inventor
Tomoko Matsuo
知子 松尾
Masashi Fukaya
昌志 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP00729797A priority Critical patent/JP3846651B2/en
Publication of JPH10209335A publication Critical patent/JPH10209335A/en
Application granted granted Critical
Publication of JP3846651B2 publication Critical patent/JP3846651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Abstract

PROBLEM TO BE SOLVED: To improve the reliability on the junction of a chip to be joined to a ceramic board. SOLUTION: At the green sheet 12 in the surface layer of a low-temperature baked ceramic board 11, a ceramic layer 16 having intermediate thermal expansion coefficient between that of low-temperature baked ceramic and a semiconductor chip 15 is printed at the section to mount the semiconductor chip 15. The green sheet 12 is made of the low-temperature baked ceramic material consisting of the mixture between CaO-Al2 O3 -SiO2 -B2 O3 glass powder and alumina powder, and the ceramic layer 16 is made of low-temperature baked ceramic material where Bi2 O3 is mixed by 0.5-15wt.% outwardly to this low-temperature baked ceramic material, and there the thermal expansion coefficient is smaller than that of the low-temperature baked ceramics not containing Bi2 O3 . After simultaneous baking of the low-temperature baked ceramic board 11 and the ceramic layer 16, a surface resistor 18 is printed and baked on the topside of the low-temperature baked ceramic substrate 11, and a semiconductor chip 16 is mounted on the ceramic layer 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミック基板の
実装面に接合される半導体チップ、表層抵抗体、表層導
体等の回路要素の接合部に生じる熱応力を緩和できるよ
うにしたセラミック回路基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic circuit board capable of relieving thermal stress generated at a joint between circuit elements such as a semiconductor chip, a surface resistor, and a surface conductor, which are joined to a mounting surface of a ceramic substrate. Things.

【0002】[0002]

【従来の技術】一般に、セラミック基板は、プラスチッ
ク基板と比較して耐熱性に優れると共に、熱膨張係数が
小さく、ファインパターン化が容易である等の利点があ
るため、半導体パッケージやハイブリッドICの基板と
して幅広く用いられている。近年の高密度化・小型化に
伴い、セラミック基板に半導体のベアチップを直接実装
するフリップチップ実装が増加する傾向がある。このフ
リップチップ実装では、チップ(Si)とセラミック基
板との熱膨張係数の差が大きいと、チップ接合部に実装
時の熱膨張差による残留応力が発生したり、通常使用時
の発熱により比較的大きな熱応力が発生し、その繰り返
しによりチップ接合部が熱疲労破壊しやすく、接合信頼
性が低下してしまう。
2. Description of the Related Art In general, a ceramic substrate has advantages such as excellent heat resistance as compared with a plastic substrate, a small coefficient of thermal expansion, and easy fine patterning. Widely used as. With the recent increase in density and miniaturization, flip chip mounting in which a semiconductor bare chip is directly mounted on a ceramic substrate tends to increase. In this flip-chip mounting, if the difference in thermal expansion coefficient between the chip (Si) and the ceramic substrate is large, a residual stress due to the difference in thermal expansion during mounting occurs at the chip bonding portion, or the chip is relatively heated due to heat generation during normal use. A large thermal stress is generated, and the repetition of the thermal stress easily causes thermal fatigue failure of the chip bonding portion, thereby lowering bonding reliability.

【0003】現在のセラミック基板の中で、最も多く使
用されているアルミナ基板は、熱膨張係数が7.0×1
-6/degであり、プラスチック基板と比較して熱膨
張係数がかなり小さいが、それでも、アルミナ基板の熱
膨張係数は、Siの熱膨張係数(3.5×10-6/de
g)と比較すればかなり大きく、両者の熱膨張係数の差
が3.5×10-6/degにもなってしまう。このた
め、アルミナ基板では、フリップチップ実装の信頼性が
低くなってしまう。
[0003] Among the current ceramic substrates, the most used alumina substrate has a thermal expansion coefficient of 7.0 × 1.
0 -6 / deg, which is considerably smaller than the plastic substrate in thermal expansion coefficient. Nevertheless, the thermal expansion coefficient of the alumina substrate is still lower than that of Si (3.5 × 10 -6 / de).
Compared with g), the difference in thermal expansion coefficient between them is as large as 3.5 × 10 −6 / deg. For this reason, in the case of the alumina substrate, the reliability of flip-chip mounting is reduced.

【0004】[0004]

【発明が解決しようとする課題】そこで、近年、特公平
3−53269号公報に示すようにアルミナ基板よりも
熱膨張係数が小さい、1000℃以下で焼成可能な低温
焼成セラミック基板が開発されている。この低温焼成セ
ラミック基板は、熱膨張係数が約5.5×10-6/de
gであり、Siとの熱膨張係数の差がアルミナ基板より
も小さくなっているが、それでも、Siとの熱膨張係数
の差がまだ約2.0×10-6/degもあり、大型のフ
リップチップでは、チップ接合部の残留応力や熱応力を
十分に緩和するまでには至らない。従って、最近のフリ
ップチップの大型化の傾向に伴い、低温焼成セラミック
基板でも、フリップチップ実装の一層の信頼性向上が望
まれるようになってきている。
Therefore, in recent years, as shown in Japanese Patent Publication No. 3-53269, a low-temperature fired ceramic substrate which has a smaller thermal expansion coefficient than an alumina substrate and can be fired at 1000 ° C. or lower has been developed. . This low-temperature fired ceramic substrate has a thermal expansion coefficient of about 5.5 × 10 −6 / de.
g, and the difference in thermal expansion coefficient from Si is smaller than that of the alumina substrate. However, the difference in thermal expansion coefficient from Si is still about 2.0 × 10 −6 / deg. In the case of flip chips, the residual stress and the thermal stress at the chip joint are not sufficiently reduced. Accordingly, with the recent trend toward larger flip-chips, it has been desired to further improve the reliability of flip-chip mounting even on low-temperature fired ceramic substrates.

【0005】尚、セラミック基板の実装面に厚膜ペース
トで印刷・焼成する表層抵抗体や表層導体等の表層厚膜
パターン部についても、セラミック基板との間の熱膨張
係数の差を少なくすることが表層厚膜パターン部の信頼
性向上につながる。一般に、RuO2 系抵抗体ペースト
で形成される表層抵抗体の熱膨張係数は5.5〜7.5
×10-6/degであり、Ag,Cu,Au,Ag/P
d等の低導電損失の導体ペーストで形成される表層導体
の熱膨張係数は、一般に14〜20×10-6/degで
あり、いずれも、半導体チップの熱膨張係数とは大きく
異なる。
The difference in the coefficient of thermal expansion between the ceramic substrate and the surface layer thick film pattern portion such as a surface resistor or a surface conductor, which is printed and fired with a thick film paste on the mounting surface of the ceramic substrate, must be reduced. Leads to an improvement in the reliability of the surface layer thick film pattern portion. Generally, the coefficient of thermal expansion of a surface resistor formed of a RuO 2 -based resistor paste is 5.5 to 7.5.
× 10 -6 / deg, Ag, Cu, Au, Ag / P
The thermal expansion coefficient of the surface conductor formed of a conductive paste having a low conductive loss such as d is generally 14 to 20 × 10 −6 / deg, and each of them is significantly different from the thermal expansion coefficient of the semiconductor chip.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、フリップチップや表
層厚膜パターン部等、セラミック基板の実装面に接合さ
れる回路要素の信頼性を向上することができるセラミッ
ク回路基板を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and accordingly, an object of the present invention is to improve the reliability of circuit elements, such as flip chips and surface layer thick film pattern portions, which are bonded to the mounting surface of a ceramic substrate. An object of the present invention is to provide a ceramic circuit board that can be improved.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1のセラミック回路基板は、セラミ
ック基板の実装面に、該セラミック基板と異なる熱膨張
係数のセラミック層を有する構成となっている。この構
成では、セラミック基板の実装面に接合される回路要素
(フリップチップ等)の熱膨張係数とセラミック基板の
熱膨張係数との差が大きくても、両者間にその中間的な
熱膨張係数のセラミック層を介在させることで、当該回
路要素の接合部に生じる残留応力や熱応力を該セラミッ
ク層によって緩和できる。
According to a first aspect of the present invention, there is provided a ceramic circuit board having a ceramic layer having a thermal expansion coefficient different from that of the ceramic substrate on a mounting surface of the ceramic substrate. It has become. With this configuration, even if the difference between the coefficient of thermal expansion of the circuit element (flip chip or the like) bonded to the mounting surface of the ceramic substrate and the coefficient of thermal expansion of the ceramic substrate is large, an intermediate coefficient of thermal expansion between the two is provided between the two. With the ceramic layer interposed, residual stress and thermal stress generated at the joint of the circuit element can be reduced by the ceramic layer.

【0008】この場合、請求項2のように、前記セラミ
ック層を、セラミック基板の実装面に部分的に形成し、
熱膨張係数が異なる複数種の回路要素を、前記セラミッ
ク層とそれ以外のセラミック基板の実装面のうち、熱膨
張係数が近い方に配置するようにすることが好ましい。
このようにすれば、熱膨張係数が異なる複数種の回路要
素を1つのセラミック基板に配置する場合でも、各々の
回路要素とその接合面との熱膨張係数の差を少なくする
ように配置することができ、良好な接合性を得ることが
できる。しかも、セラミック基板に部分的にセラミック
層を設けるだけであるので、セラミック層を基板全面に
設ける場合と比較して、焼成時にセラミック層とセラミ
ック基板との間に発生する応力も小さくできる(この応
力が大きいとセラミック基板に反りが発生する)。
In this case, the ceramic layer is partially formed on the mounting surface of the ceramic substrate,
It is preferable that a plurality of types of circuit elements having different coefficients of thermal expansion be arranged closer to one of the mounting surfaces of the ceramic layer and the other ceramic substrate than those having a smaller coefficient of thermal expansion.
With this configuration, even when a plurality of types of circuit elements having different coefficients of thermal expansion are arranged on one ceramic substrate, the circuit elements are arranged so as to reduce the difference in coefficient of thermal expansion between each circuit element and its joint surface. And good bonding properties can be obtained. In addition, since only the ceramic layer is provided partially on the ceramic substrate, the stress generated between the ceramic layer and the ceramic substrate during firing can be reduced as compared with the case where the ceramic layer is provided on the entire surface of the substrate (this stress). Is large, the ceramic substrate is warped).

【0009】更に、請求項3のように、前記セラミック
層の熱膨張係数を、前記セラミック基板の熱膨張係数よ
りも小さく且つ該セラミック層に実装する半導体チップ
の熱膨張係数よりも大きく設定することが好ましい。こ
のようにすれば、セラミック基板と半導体チップとの熱
膨張係数の差が大きくても、両者間にその中間的な熱膨
張係数のセラミック層を介在させることで、半導体のベ
アチップを直接実装するフリップチップ実装が可能とな
る。
Further, the thermal expansion coefficient of the ceramic layer is set smaller than the thermal expansion coefficient of the ceramic substrate and larger than the thermal expansion coefficient of a semiconductor chip mounted on the ceramic layer. Is preferred. In this way, even if the difference in thermal expansion coefficient between the ceramic substrate and the semiconductor chip is large, a ceramic bare chip is directly mounted by interposing a ceramic layer having an intermediate thermal expansion coefficient therebetween. Chip mounting becomes possible.

【0010】ところで、セラミック基板とセラミック層
との熱膨張係数の差が大きいと、焼成時の応力によって
セラミック基板が反ったり、セラミック層が剥がれてし
まうおそれがある。
If the difference in thermal expansion coefficient between the ceramic substrate and the ceramic layer is large, the ceramic substrate may warp or the ceramic layer may be peeled off due to stress during firing.

【0011】この対策として、請求項4のように、セラ
ミック基板とセラミック層との熱膨張係数の差を1.5
×10-6/deg以下に設定することが好ましい。この
ようにすれば、焼成時のセラミック基板の反りやセラミ
ック層の剥がれを抑えることができる。
As a countermeasure against this, the difference in the coefficient of thermal expansion between the ceramic substrate and the ceramic layer is reduced by 1.5.
It is preferable to set it to 10-6 / deg or less. In this case, warpage of the ceramic substrate and peeling of the ceramic layer during firing can be suppressed.

【0012】また、セラミック層は、焼成後のセラミッ
ク基板に後付けで焼成しても良いが、請求項5のよう
に、セラミック基板とセラミック層とを同時焼成しても
良い。このようにすれば、焼成工程数が増えずに済み、
生産性が低下せずに済む。
The ceramic layer may be fired after the firing of the fired ceramic substrate, but the ceramic substrate and the ceramic layer may be fired simultaneously. In this way, the number of firing steps does not increase,
Productivity does not decrease.

【0013】また、本発明を低温焼成セラミック基板に
適用する場合には、請求項6のように、セラミック基板
を、CaO−Al2 3 −SiO2 −B2 3 系ガラス
粉末とアルミナ粉末との混合物よりなる低温焼成セラミ
ック材料により形成し、セラミック層を、前記低温焼成
セラミック材料に対してBi2 3 を外掛けで0.5〜
15重量%配合した低温焼成セラミック材料により形成
しても良い。後述する表1,表2に示すように、Bi2
3 を含まない低温焼成セラミックの熱膨張係数は、
5.2〜5.7×10-6/degであるのに対し、Bi
2 3 を外掛けで0.5〜15重量%を含む低温焼成セ
ラミックの熱膨張係数は、4.6〜5.0×10-6/d
egであり、Siの熱膨張係数(3.5×10-6/de
g)に近くなる。これにより、低温焼成セラミックの利
点の1つである低熱膨張係数の特長を更に向上でき、フ
リップチップ実装の信頼性を向上できる。
Further, in the case of applying the present invention to the low-temperature fired ceramic substrate, as in claim 6, a ceramic substrate, CaO-Al 2 O 3 -SiO 2 -B 2 O 3 based glass powder and alumina powder , And a ceramic layer is formed by externally applying Bi 2 O 3 to the low-temperature fired ceramic material in a range of 0.5 to 0.5.
It may be formed of a low-temperature fired ceramic material blended at 15% by weight. As shown in Tables 1 and 2 below, Bi 2
The thermal expansion coefficient of a low-temperature fired ceramic not containing O 3 is
In contrast to 5.2 to 5.7 × 10 −6 / deg, Bi
The coefficient of thermal expansion of a low-temperature fired ceramic containing 0.5 to 15% by weight of 2 O 3 on an outer basis is 4.6 to 5.0 × 10 −6 / d.
eg, the thermal expansion coefficient of Si (3.5 × 10 −6 / de)
g). As a result, the advantage of low thermal expansion coefficient, which is one of the advantages of the low-temperature fired ceramic, can be further improved, and the reliability of flip-chip mounting can be improved.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[第1の実施形態]まず、図1に基づいて本発明の第1
の実施形態における低温焼成セラミック回路基板の構成
例を説明する。低温焼成セラミック基板11は、複数枚
の低温焼成セラミックのグリーンシート12を積層・熱
圧着して800〜1000℃で焼成したものである。
[First Embodiment] First, a first embodiment of the present invention will be described with reference to FIG.
A configuration example of the low-temperature fired ceramic circuit board according to the embodiment will be described. The low-temperature fired ceramic substrate 11 is obtained by laminating a plurality of low-temperature fired ceramic green sheets 12, thermocompression bonding, and firing at 800 to 1000 ° C.

【0015】低温焼成セラミックのグリーンシート12
は、次のような手順で製造される。まず、CaO:10
〜55重量%、SiO2 :45〜70重量%、Al2
3 :0〜30重量%、不純物:0〜10重量%及び外掛
けでB2 3 :5〜20重量%を含む混合物を1450
℃で溶融してガラス化した後、水中で急冷し、これを粉
砕してCaO−Al2 3 −SiO2 −B2 3 系ガラ
ス粉末を作製する。このガラス粉末50〜65重量%
(好ましくは60重量%)と、不純物が0〜10重量%
のAl2 3 粉末50〜35重量%(好ましくは40重
量%)とを混合して低温焼成セラミック粉末を作製し、
この低温焼成セラミック粉末に溶剤(例えばトルエン、
キシレン)、バインダー樹脂(例えばアクリル樹脂)及
び可塑剤を加え、十分に混練してスラリーを作製し、通
常のドクターブレード法を用いてグリーンシートを作製
する。
Green sheet 12 of low-temperature fired ceramic
Is manufactured by the following procedure. First, CaO: 10
55 wt%, SiO 2: 45~70 wt%, Al 2 O
3: 0-30 wt%, impurities: 0 to 10% by weight and in outer percentage B 2 O 3: A mixture containing 5 to 20 wt% 1450
After vitrified by melting at ° C., quenched in water, which was triturated to prepare a CaO-Al 2 O 3 -SiO 2 -B 2 O 3 based glass powder. 50-65% by weight of this glass powder
(Preferably 60% by weight) and 0 to 10% by weight of impurities
Of Al 2 O 3 powder of 50 to 35% by weight (preferably 40% by weight) to produce a low-temperature fired ceramic powder,
A solvent (for example, toluene,
Xylene), a binder resin (for example, an acrylic resin) and a plasticizer are added and sufficiently kneaded to prepare a slurry, and a green sheet is prepared using a normal doctor blade method.

【0016】このグリーンシートを所定寸法に切断し、
その所定位置にビアホール(図示せず)を打ち抜いて、
各層のグリーンシート12を形成する。そして、各層の
グリーンシート12のビアホールにAg、Ag/Pd、
Ag/Pt等のAg系導体ペーストを充填し、これと同
じ組成のAg系導体ペーストを使用して内層のグリーン
シート12に内層導体パターン13をスクリーン印刷
し、最上層(表層)のグリーンシート12に表層導体パ
ターン14をスクリーン印刷する。この際、使用する導
体ペーストとして、Ag系導体ペーストに代えて、C
u、Au等、他の低融点金属を用いても良い。
The green sheet is cut into a predetermined size,
A via hole (not shown) is punched at the predetermined position,
The green sheet 12 of each layer is formed. Then, Ag, Ag / Pd,
An Ag-based conductor paste such as Ag / Pt is filled, and an inner-layer conductor pattern 13 is screen-printed on the inner-layer green sheet 12 using an Ag-based conductor paste having the same composition as the above. The surface conductor pattern 14 is screen printed. In this case, the conductor paste to be used is C instead of Ag-based conductor paste.
Other low melting point metals such as u and Au may be used.

【0017】更に、最上層のグリーンシート12には、
半導体チップ15を搭載する部位に低温焼成セラミック
の熱膨張係数と半導体チップ15の熱膨張係数の中間的
な熱膨張係数のセラミック層16をスクリーン印刷して
形成する。このセラミック層16の組成は、上述したグ
リーンシート12と同じ組成の低温焼成セラミック材料
に対してBi2 3 を外掛けで0.5〜15重量%配合
したものであり、この低温焼成セラミック材料にバイン
ダー樹脂(エチルセルローズ又はポリビニルブチラー
ル)と溶剤を加え、十分に混練して作製した低温焼成セ
ラミック材料のペーストを最上層のグリーンシート12
の所定位置に部分的にスクリーン印刷してセラミック層
16を形成する。このセラミック層16の表面には、半
導体チップ15(フリップチップ)を接続するためのパ
ッド17をAg系導体ペーストでスクリーン印刷する。
尚、このセラミック層16には、各パッド17を導体パ
ターン13,14に接続するためのビア導体(図示せ
ず)が予めAg系導体ペーストでスクリーン印刷されて
いる。
Further, the uppermost green sheet 12 includes
A ceramic layer 16 having a coefficient of thermal expansion intermediate between the coefficient of thermal expansion of the low-temperature fired ceramic and the coefficient of thermal expansion of the semiconductor chip 15 is formed by screen printing on a portion where the semiconductor chip 15 is mounted. The composition of the ceramic layer 16 is for the Bi 2 O 3 with respect to the low-temperature co-fired ceramic material having the same composition as the green sheet 12 described above and by outer percentage blending 0.5 to 15 wt%, the low-temperature co-fired ceramic material A binder resin (ethyl cellulose or polyvinyl butyral) and a solvent are added to the mixture, and the mixture is sufficiently kneaded to produce a paste of a low-temperature fired ceramic material.
Is partially screen-printed at a predetermined position to form a ceramic layer 16. Pads 17 for connecting the semiconductor chip 15 (flip chip) are screen-printed on the surface of the ceramic layer 16 with an Ag-based conductor paste.
Note that via conductors (not shown) for connecting the pads 17 to the conductor patterns 13 and 14 are screen-printed in advance on the ceramic layer 16 with an Ag-based conductor paste.

【0018】以上のような印刷工程の終了後、各層のグ
リーンシート12を積層し、これを例えば80〜150
℃(好ましくは110℃)、50〜250kg/cm2
の条件で熱圧着して一体化する。そして、この積層体を
基板焼成温度である800〜1000℃(好ましくは9
00℃)で、20分ホールドの条件で焼成し、低温焼成
セラミック基板11とセラミック層16とを同時焼成す
る。この焼成過程で、セラミック層16に含まれるBi
2 3 の一部が表層のグリーンシート12に拡散し、セ
ラミック層16の周辺に中間的な熱膨張係数のセラミッ
クを形成する。これにより、低温焼成セラミック基板1
1とセラミック層16との間の熱膨張係数が連続的に変
化し、焼成時の応力を緩和して、低温焼成セラミック基
板11の反りを防ぐ。
After the above-described printing process is completed, the green sheets 12 of each layer are laminated, and the green sheets 12 are, for example, 80 to 150.
° C (preferably 110 ° C), 50 to 250 kg / cm 2
Thermocompression bonding under the conditions described above. Then, the laminated body is heated at a substrate firing temperature of 800 to 1000 ° C. (preferably 9 ° C.).
(At 00 ° C.) for 20 minutes, and the low-temperature fired ceramic substrate 11 and the ceramic layer 16 are fired simultaneously. In this firing process, Bi contained in the ceramic layer 16
Part of the 2 O 3 diffuses into the surface green sheet 12 to form a ceramic having an intermediate thermal expansion coefficient around the ceramic layer 16. Thereby, the low temperature fired ceramic substrate 1
The coefficient of thermal expansion between the ceramic substrate 1 and the ceramic layer 16 changes continuously, thereby relaxing the stress during firing and preventing the low-temperature fired ceramic substrate 11 from warping.

【0019】この後、低温焼成セラミック基板11の上
面に、RuO2 系抵抗体ペーストを用いて表層抵抗体1
8をスクリーン印刷し、この表層抵抗体18上に、オー
バーコートペーストを用いてオーバーコート(図示せ
ず)をスクリーン印刷する。この後、この低温焼成セラ
ミック基板11を上記基板焼成温度よりも僅かに低い温
度(例えば890℃)で、10分ホールドの条件で表層
抵抗体18とオーバーコートを焼成する。これにて、低
温焼成セラミック基板11の製造が完了する。
Thereafter, the surface resistor 1 is formed on the upper surface of the low-temperature fired ceramic substrate 11 by using a RuO 2 -based resistor paste.
8 is screen-printed, and an overcoat (not shown) is screen-printed on the surface resistor 18 using an overcoat paste. Thereafter, the surface resistor 18 and the overcoat are fired on the low-temperature fired ceramic substrate 11 at a temperature slightly lower than the substrate firing temperature (for example, 890 ° C.) for 10 minutes. Thus, the manufacture of the low-temperature fired ceramic substrate 11 is completed.

【0020】この後、この低温焼成セラミック基板11
に半導体チップ15をフリップチップ実装する場合に
は、低温焼成セラミック基板11のセラミック層16の
パッド17に、半導体チップ15の下面の電極をAgエ
ポキシ19又は半田バンプによって接続する。
Thereafter, the low-temperature fired ceramic substrate 11
When the semiconductor chip 15 is flip-chip mounted on the substrate, the electrode on the lower surface of the semiconductor chip 15 is connected to the pad 17 of the ceramic layer 16 of the low-temperature fired ceramic substrate 11 by Ag epoxy 19 or solder bump.

【0021】本発明者は、次の表1に示す3種類の組成
A,B,Cの低温焼成セラミックの熱膨張係数を測定し
た。
The present inventor measured the thermal expansion coefficients of low-temperature fired ceramics having three types of compositions A, B and C shown in Table 1 below.

【0022】[0022]

【表1】 [Table 1]

【0023】この表1においてガラス粉末の各成分(C
aO,Al2 3 ,SiO2 ,B23 )の重量比は、
低温焼成セラミックに対する重量比で表されている。組
成Aは、CaO−Al2 3 −SiO2 −B2 3 系ガ
ラス粉末60重量%とAl2 3 粉末40重量%との混
合物であり、熱膨張係数は5.5×10-6/degであ
る。
In Table 1, each component (C
aO, Al 2 O 3 , SiO 2 , B 2 O 3 )
Expressed as a weight ratio to the low-temperature fired ceramic. Composition A is a mixture of CaO-Al 2 O 3 -SiO 2 -B 2 O 3 based glass powder 60 wt% and Al 2 O 3 powder 40 wt%, the thermal expansion coefficient of 5.5 × 10 -6 / Deg.

【0024】組成Bは、CaO−Al2 3 −SiO2
−B2 3 系ガラス粉末55重量%とAl2 3 粉末4
5重量%との混合物であり、熱膨張係数は5.7×10
-6/degである。
Composition B is composed of CaO—Al 2 O 3 —SiO 2
-B 2 O 3 based glass powder 55 wt% and Al 2 O 3 powder 4
5% by weight, and has a thermal expansion coefficient of 5.7 × 10
−6 / deg.

【0025】組成Cは、CaO−Al2 3 −SiO2
−B2 3 系ガラス粉末65重量%とAl2 3 粉末3
5重量%との混合物であり、熱膨張係数は5.2×10
-6/degである。これらの組成A,B,Cの低温焼成
セラミックの熱膨張係数は、アルミナ基板の熱膨張係数
(7.0×10-6/deg)と比較すれば、いずれも小
さい。
The composition C is CaO--Al 2 O 3 --SiO 2
-B 2 O 3 system 65 wt% glass powder and the Al 2 O 3 powder 3
5% by weight, and has a coefficient of thermal expansion of 5.2 × 10
−6 / deg. The thermal expansion coefficients of the low-temperature fired ceramics of these compositions A, B, and C are all smaller than the thermal expansion coefficient of the alumina substrate (7.0 × 10 −6 / deg).

【0026】更に、本発明者は、セラミック層16を形
成する低温焼成セラミック材料の組成と熱膨張係数との
関係を評価する試験を行ったので、その試験結果を次の
表2に示す。
Further, the present inventor conducted a test for evaluating the relationship between the composition of the low-temperature fired ceramic material forming the ceramic layer 16 and the coefficient of thermal expansion. The test results are shown in Table 2 below.

【0027】[0027]

【表2】 [Table 2]

【0028】この表2は、前記表1の各組成A,B,C
の低温焼成セラミックにBi2 3を添加した場合、B
2 3 の添加量によって熱膨張係数がどの程度変化す
るかを測定したものである。この測定結果から、Bi2
3 の添加量が外掛けで0.5〜15重量%であれば、
いずれの組成でも、熱膨張係数が5.0×10-6/de
g以下となり、Bi2 3 を含まない低温焼成セラミッ
クよりも熱膨張係数が小さくなる。
Table 2 shows the compositions A, B, and C of Table 1 described above.
When Bi 2 O 3 is added to the low temperature firing ceramic of
It is a measure of how much the coefficient of thermal expansion changes with the amount of i 2 O 3 added. From this measurement result, Bi 2
If the added amount of O 3 is 0.5 to 15% by weight on the outside,
In any of the compositions, the coefficient of thermal expansion is 5.0 × 10 −6 / de.
g or less, and the coefficient of thermal expansion is smaller than that of the low-temperature fired ceramic containing no Bi 2 O 3 .

【0029】本発明者は、低温焼成セラミック基板11
のセラミック層16に実装する半導体チップ15の接合
信頼性を評価するために、前記組成Aの低温焼成セラミ
ックにBi2 3 を添加して作ったペーストで低温焼成
セラミック基板11の表層にセラミック層16を印刷
し、これを焼成した後、このセラミック層16上に半導
体チップ15をAgエポキシ19で実装して、温度サイ
クル試験(−55℃30分/+150℃30分:100
サイクル)を行い、チップ接合部の故障率を測定したの
で、その測定結果を次の表3に示す。
The present inventor has proposed a low-temperature fired ceramic substrate 11.
In order to evaluate the bonding reliability of the semiconductor chip 15 mounted on the ceramic layer 16 of the above, a ceramic layer was added to the surface layer of the low-temperature fired ceramic substrate 11 using a paste made by adding Bi 2 O 3 to the low-temperature fired ceramic of the composition A. After printing and firing this, the semiconductor chip 15 is mounted on the ceramic layer 16 with an Ag epoxy 19, and subjected to a temperature cycle test (−55 ° C. 30 minutes / + 150 ° C. 30 minutes: 100).
Cycle), and the failure rate of the chip junction was measured. The measurement results are shown in Table 3 below.

【0030】[0030]

【表3】 [Table 3]

【0031】この表3の試験結果から明らかなように、
Bi2 3 の添加量が0重量%(セラミック層16が無
い場合と実質的に同じ)の場合には、故障率が0.5%
であるが、Bi2 3 の添加量が外掛けで0.5〜15
重量%であれば、熱膨張係数が4.9×10-6/deg
以下となり、半導体チップ15(Si)の熱膨張係数
(3.5×10-6/deg)に近くなるため、故障率が
0%であり、極めて高い接合信頼性が得られる。Bi2
3 の添加量が外掛けで20重量%以上になるとSiと
の熱膨張係数の差が大きくなるため、故障率が0.2%
以上となり、接合信頼性が低下する。従って、十分な接
合信頼性を確保するには、Bi2 3 の添加量を外掛け
で0.5〜15重量%の範囲内に設定することが好まし
い。この場合、セラミック層16とSiとの熱膨張係数
の差が1.2〜1.4×10-6/degであるが、この
程度の差であれば、チップ接合部(Agエポキシ19)
の弾性によって残留応力や熱応力を十分に緩和でき、故
障率を0%に維持できる。
As is clear from the test results in Table 3,
When the addition amount of Bi 2 O 3 is 0% by weight (substantially the same as when there is no ceramic layer 16), the failure rate is 0.5%.
However, the added amount of Bi 2 O 3 is 0.5 to 15
If it is% by weight, the thermal expansion coefficient is 4.9 × 10 −6 / deg.
Since it is close to the thermal expansion coefficient (3.5 × 10 −6 / deg) of the semiconductor chip 15 (Si), the failure rate is 0%, and extremely high bonding reliability can be obtained. Bi 2
When the added amount of O 3 is 20% by weight or more on the outside, the difference in thermal expansion coefficient from Si becomes large, so that the failure rate is 0.2%.
As a result, the bonding reliability decreases. Accordingly, to ensure sufficient bonding reliability, it is preferable to set the addition amount of Bi 2 O 3 in outer percentage in the range of 0.5 to 15 wt%. In this case, the difference in the coefficient of thermal expansion between the ceramic layer 16 and the Si is 1.2 to 1.4 × 10 −6 / deg.
The elasticity of the resin can sufficiently reduce the residual stress and the thermal stress, and can maintain the failure rate at 0%.

【0032】ところで、低温焼成セラミック基板11と
セラミック層16との熱膨張係数の差が大きいと、焼成
時の応力によって低温焼成セラミック基板11が反った
り、セラミック層16が剥がれてしまうおそれがある。
If the difference in thermal expansion coefficient between the low-temperature fired ceramic substrate 11 and the ceramic layer 16 is large, the low-temperature fired ceramic substrate 11 may warp or the ceramic layer 16 may be peeled off due to stress during firing.

【0033】上述したように、Bi2 3 の添加量を外
掛けで0.5〜15重量%の範囲内に設定すると、セラ
ミック層16の熱膨張係数が4.6〜5.0×10-6
deg(表2参照)となり、セラミック層16と低温焼
成セラミック基板11との熱膨張係数の差が0.9×1
-6/deg以下となる。この程度の熱膨張係数の差で
あれば、焼成時のBi2 3 の拡散によってセラミック
層16の周辺に中間的な熱膨張係数のセラミックを形成
することで、焼成時の応力を十分に緩和でき、低温焼成
セラミック基板11の反りやセラミック層16の剥がれ
を十分に抑えることができる。一般には、セラミック層
16と低温焼成セラミック基板11との熱膨張係数の差
が1.5×10-6/deg以下であれば、低温焼成セラ
ミック基板11の反りやセラミック層16の剥がれを十
分に抑えることができる。
As described above, when the additive amount of Bi 2 O 3 is set within the range of 0.5 to 15% by weight, the thermal expansion coefficient of the ceramic layer 16 becomes 4.6 to 5.0 × 10 5. -6 /
deg (see Table 2), and the difference in thermal expansion coefficient between the ceramic layer 16 and the low-temperature fired ceramic substrate 11 is 0.9 × 1.
0 −6 / deg or less. With such a difference in the coefficient of thermal expansion, the stress during the firing is sufficiently relaxed by forming a ceramic having an intermediate coefficient of thermal expansion around the ceramic layer 16 by diffusion of Bi 2 O 3 during the firing. Thus, warpage of the low-temperature fired ceramic substrate 11 and peeling of the ceramic layer 16 can be sufficiently suppressed. In general, if the difference in the thermal expansion coefficient between the ceramic layer 16 and the low-temperature fired ceramic substrate 11 is 1.5 × 10 −6 / deg or less, the warpage of the low-temperature fired ceramic substrate 11 and the peeling of the ceramic layer 16 can be sufficiently reduced. Can be suppressed.

【0034】次に、表層抵抗体18の信頼性について考
察する。一般に、焼成後の表層抵抗体18は、抵抗値が
ばらついているので、焼成後に表層抵抗体18をレーザ
トリミング法等でトリミングして抵抗値を調整するよう
にしているが、トリミング時の熱歪により表層抵抗体1
8にマイクロクラックが入ることがあり、このマイクロ
クラックが実使用環境下で徐々に進行して抵抗値が経時
変化し、回路の信頼性を低下させるおそれがある。この
マイクロクラックの進行は、表層抵抗体18に引張応力
が作用している状態で発生しやすい。従って、マイクロ
クラックの進行を防ぐには、表層抵抗体18に圧縮力が
加わるように、低温焼成セラミック基板11の熱膨張係
数>表層抵抗体18の熱膨張係数の関係に設定すること
が望ましい。
Next, the reliability of the surface resistor 18 will be considered. In general, the resistance of the surface resistor 18 after firing varies, so that the resistance is adjusted by trimming the surface resistor 18 by laser trimming or the like after firing. Surface resistor 1
In some cases, microcracks may be formed in 8 and the microcracks gradually progress in an actual use environment, causing the resistance value to change with time, thereby possibly lowering the reliability of the circuit. The progress of the microcracks is likely to occur in a state where a tensile stress is acting on the surface layer resistor 18. Therefore, in order to prevent the progress of microcracks, it is desirable to set the relationship of the thermal expansion coefficient of the low-temperature fired ceramic substrate 11> the thermal expansion coefficient of the surface resistor 18 so that a compressive force is applied to the surface resistor 18.

【0035】一般に、表層抵抗体18を形成するRuO
2 系抵抗体ペーストは、RuO2 粉末(熱膨張係数:
6.0×10-6/deg)とガラス粉末との混合物であ
るため、熱膨張係数の小さいガラス粉末を使用しても、
表層抵抗体18の熱膨張係数を5.0×10-6/deg
より小さくするのは困難である。従って、表層抵抗体1
8を形成する部分のセラミックは、5.0×10-6/d
eg以上の熱膨張係数が望ましい。この観点から、上記
実施形態では、低温焼成セラミック基板11の表面に表
層抵抗体18を形成している。
Generally, RuO for forming the surface layer resistor 18 is used.
The 2- system resistor paste is made of RuO 2 powder (thermal expansion coefficient:
6.0 × 10 −6 / deg) and a glass powder, so that even if a glass powder having a small coefficient of thermal expansion is used,
The thermal expansion coefficient of the surface layer resistor 18 is set to 5.0 × 10 −6 / deg.
It is difficult to make smaller. Therefore, the surface resistor 1
8 is 5.0 × 10 −6 / d
A thermal expansion coefficient of at least eg is desirable. From this viewpoint, in the above embodiment, the surface resistor 18 is formed on the surface of the low-temperature fired ceramic substrate 11.

【0036】尚、Bi2 3 を含むセラミック層16の
熱膨張係数の影響を受けないように、表層抵抗体18は
セラミック層16より0.5mm以上(好ましくは1m
m以上)の距離をおくのが良い。
The surface resistor 18 is 0.5 mm or more (preferably 1 m) from the ceramic layer 16 so as not to be affected by the coefficient of thermal expansion of the ceramic layer 16 containing Bi 2 O 3.
m or more).

【0037】本発明者は、この表層抵抗体18の信頼性
を評価するために、次のような試験を行った。図2に示
すように、低温焼成セラミック基板21(熱膨張係数:
5.5×10-6/deg)の表面に、抵抗体電極用のA
g導体22を2mm間隔で印刷・焼成し、更に、その上
から、熱膨張係数が5.3×10-6/degの表層抵抗
体23(幅1mm)を印刷・焼成した。この後、表層抵
抗体23をレーザトリミングして、その抵抗値を初期値
の2倍の値に調整した後、温度サイクル試験(−55℃
30分/+150℃30分:100サイクル)を行い、
表層抵抗体23の抵抗値の変化率を測定した。この測定
をサンプル数100個について行ったところ、次の表4
の結果が得られた。
The present inventor conducted the following test in order to evaluate the reliability of the surface resistor 18. As shown in FIG. 2, the low-temperature fired ceramic substrate 21 (thermal expansion coefficient:
5.5 × 10 −6 / deg) on the surface of resistor electrode A
g conductors 22 were printed and fired at 2 mm intervals, and a surface resistor 23 (width 1 mm) having a thermal expansion coefficient of 5.3 × 10 −6 / deg was printed and fired thereon. Thereafter, the surface resistor 23 is laser-trimmed to adjust its resistance to twice the initial value, and then subjected to a temperature cycle test (−55 ° C.).
30 minutes / + 150 ° C. 30 minutes: 100 cycles)
The rate of change of the resistance value of the surface resistor 23 was measured. When this measurement was performed for 100 samples, the following Table 4
Was obtained.

【0038】[0038]

【表4】 [Table 4]

【0039】この試験で測定された表層抵抗体23の抵
抗値の変化率は、最大値でも0.23%と小さく、要求
値(1%以内)を十分に満たす。従って、低温焼成セラ
ミック基板21の表面に部分的に異なる熱膨張係数のセ
ラミック層が存在していても、表層抵抗体23の信頼性
に全く影響を及ぼさない。
The rate of change of the resistance value of the surface resistor 23 measured in this test is as small as 0.23% at the maximum, and sufficiently satisfies the required value (within 1%). Therefore, even if a ceramic layer having a different thermal expansion coefficient partially exists on the surface of the low-temperature fired ceramic substrate 21, the reliability of the surface layer resistor 23 is not affected at all.

【0040】尚、本実施形態(図1)では、低温焼成セ
ラミック基板11の表面にセラミック層16を印刷した
が、セラミック層16と同じ組成の材料で形成したグリ
ーンシートを積層しても良い。
In the present embodiment (FIG. 1), the ceramic layer 16 is printed on the surface of the low-temperature fired ceramic substrate 11, but a green sheet formed of a material having the same composition as the ceramic layer 16 may be laminated.

【0041】[第2の実施形態]上記第1の実施形態で
は、低温焼成セラミック基板11の表面にセラミック層
16を印刷したが、図3に示す第2の実施形態では、表
層のグリーンシート12のうちの半導体チップ15を搭
載する部位に開口部25を形成し、この開口部25に、
低温焼成セラミック基板11と半導体チップ15との中
間的な熱膨張係数のセラミック層26を充填して焼成
し、このセラミック層26上に半導体チップ15を実装
する。セラミック層26は、前記第1の実施形態と同じ
組成であり、そのペーストを印刷して形成しても良い
し、後述する第3の実施形態で用いるグリーンシートを
所定寸法に切断して開口部25に嵌め込んでも良い。こ
れ以外の構成は、前述した第1の実施形態と同じである
ので、同一符号を付して説明を省略する。
[Second Embodiment] In the first embodiment, the ceramic layer 16 is printed on the surface of the low-temperature fired ceramic substrate 11, but in the second embodiment shown in FIG. An opening 25 is formed at a portion where the semiconductor chip 15 is mounted, and the opening 25 is
A ceramic layer 26 having an intermediate thermal expansion coefficient between the low-temperature fired ceramic substrate 11 and the semiconductor chip 15 is filled and fired, and the semiconductor chip 15 is mounted on the ceramic layer 26. The ceramic layer 26 has the same composition as that of the first embodiment, and may be formed by printing a paste of the ceramic layer 26, or may be formed by cutting a green sheet used in a third embodiment described later into predetermined dimensions and opening the green sheet. 25 may be fitted. The other configuration is the same as that of the first embodiment described above.

【0042】尚、上記第1及び第2の実施形態では、表
層抵抗体18を形成しているが、これを省いた構成とし
ても良いことは言うまでもない。また、1枚の低温焼成
セラミック基板11について複数箇所にセラミック層1
6,26を形成しても良く、また、1箇所のセラミック
層16,26に複数個のフリップチップを実装するよう
にしても良い。
Although the surface resistor 18 is formed in the first and second embodiments, it goes without saying that the structure may be omitted. Further, the ceramic layers 1 are formed at a plurality of locations on one low-temperature fired ceramic substrate 11.
6 and 26 may be formed, and a plurality of flip chips may be mounted on one ceramic layer 16 and 26.

【0043】[第3の実施形態]上記第1及び第2の実
施形態では、低温焼成セラミック基板11の表面の一部
のみにセラミック層16,26を形成したが、図4に示
す第3の実施形態では、低温焼成セラミック基板11の
最上層(表層)に、低温焼成セラミック基板11と半導
体チップ15との中間的な熱膨張係数のグリーンシート
27を“セラミック層”として積層することで、低温焼
成セラミック基板11の表面全面に熱膨張係数の異なる
セラミック層27を形成している。このセラミック層2
7の組成は前記第1の実施形態と同じである。セラミッ
ク層27を形成するグリーンシートは、Bi2 3 を外
掛けで0.5〜15重量%含む低温焼成セラミック材料
に、バインダー樹脂、溶剤及び可塑剤を加えて作製した
スラリーをテープ成形したものであり、バインダー樹脂
としては、アクリル樹脂又はポリビニルブチラールを用
いれば良い。
[Third Embodiment] In the first and second embodiments, the ceramic layers 16 and 26 are formed only on a part of the surface of the low-temperature fired ceramic substrate 11, but the third embodiment shown in FIG. In the embodiment, the green sheet 27 having an intermediate thermal expansion coefficient between the low-temperature fired ceramic substrate 11 and the semiconductor chip 15 is laminated as a “ceramic layer” on the uppermost layer (surface layer) of the low-temperature fired ceramic substrate 11 so that the low-temperature fired ceramic substrate 11 and the semiconductor chip 15 are stacked. Ceramic layers 27 having different thermal expansion coefficients are formed on the entire surface of the fired ceramic substrate 11. This ceramic layer 2
The composition of No. 7 is the same as that of the first embodiment. The green sheet forming the ceramic layer 27 is formed by tape-forming a slurry prepared by adding a binder resin, a solvent, and a plasticizer to a low-temperature fired ceramic material containing 0.5 to 15% by weight of Bi 2 O 3 on an outer surface. As the binder resin, an acrylic resin or polyvinyl butyral may be used.

【0044】この第3の実施形態では、熱膨張係数の異
なる2種類のグリーンシート12,27を積層して焼成
するため、通常の焼成方法では、低温焼成セラミック基
板11が反ったり、セラミック層27が剥がれてしまう
おそれがある。この対策として、グリーンシート12,
27の積層体を加圧しながら焼成すれば良い。この加圧
焼成により、低温焼成セラミック基板11の反りやセラ
ミック層27の剥がれを防止できる。
In the third embodiment, two types of green sheets 12 and 27 having different coefficients of thermal expansion are stacked and fired. Therefore, in a normal firing method, the low-temperature fired ceramic substrate 11 is warped or the ceramic layer 27 is warped. May be peeled off. Green sheet 12,
What is necessary is just to bake while pressurizing the 27 laminated bodies. By this pressure firing, warpage of the low-temperature fired ceramic substrate 11 and peeling of the ceramic layer 27 can be prevented.

【0045】尚、この第3の実施形態は、基板表面に表
層抵抗体を設けない回路基板に適用することが好まし
い。表層抵抗体を設けると、基板表面の熱膨張係数<表
層抵抗体の熱膨張係数の関係となり、表層抵抗体に引張
応力が作用して表層抵抗体にマイクロクラックが発生し
やすくなり、表層抵抗体の抵抗値の変化率が大きくなる
ためである。
It should be noted that the third embodiment is preferably applied to a circuit board having no surface layer resistor on the board surface. When the surface resistor is provided, the thermal expansion coefficient of the substrate surface is smaller than the coefficient of thermal expansion of the surface resistor, and a tensile stress acts on the surface resistor to easily cause microcracks in the surface resistor. This is because the rate of change of the resistance value becomes large.

【0046】上記第1乃至第3の各実施形態では、低温
焼成セラミック材料として、CaO−Al2 3 −Si
2 −B2 3 系ガラス粉末とアルミナ粉末との混合物
を用いたが、MgO−Al2 3 −SiO2 −B2 3
系ガラス粉末とアルミナ粉末との混合物等、800〜1
000℃で焼成可能な他の低温焼成セラミックを用いて
も良い。
In each of the first to third embodiments, the low-temperature fired ceramic material is CaO—Al 2 O 3 —Si
A mixture of an O 2 —B 2 O 3 -based glass powder and an alumina powder was used, but MgO—Al 2 O 3 —SiO 2 —B 2 O 3
800-1 such as a mixture of base glass powder and alumina powder
Other low-temperature fired ceramics that can be fired at 000 ° C. may be used.

【0047】また、本発明のセラミック回路基板は、低
温焼成セラミック回路基板に限定されず、アルミナ回路
基板等、他のセラミックで形成された回路基板にも適用
可能である。
The ceramic circuit board of the present invention is not limited to a low-temperature fired ceramic circuit board, but can be applied to a circuit board formed of another ceramic such as an alumina circuit board.

【0048】[0048]

【発明の効果】以上の説明から明らかなように、本発明
の請求項1の構成によれば、セラミック基板と回路要素
(フリップチップ等)との間にその中間的な熱膨張係数
のセラミック層を介在させることができるので、当該回
路要素の接合部に生じる残留応力や熱応力をセラミック
層によって緩和できて、当該回路要素の信頼性を向上す
ることができる。
As is apparent from the above description, according to the first aspect of the present invention, a ceramic layer having an intermediate thermal expansion coefficient is provided between a ceramic substrate and a circuit element (flip chip or the like). Can be interposed, the residual stress and the thermal stress generated at the joint of the circuit element can be reduced by the ceramic layer, and the reliability of the circuit element can be improved.

【0049】更に、請求項2では、前記セラミック層
を、セラミック基板の実装面に部分的に形成したので、
熱膨張係数が異なる複数種の回路要素を1つのセラミッ
ク基板に配置する場合でも、各々の回路要素とその接合
面との熱膨張係数の差を少なくするように配置すること
ができ、良好な接合性を得ることができる。
Further, in the present invention, the ceramic layer is partially formed on the mounting surface of the ceramic substrate.
Even when a plurality of types of circuit elements having different coefficients of thermal expansion are arranged on one ceramic substrate, the circuit elements can be arranged so as to reduce the difference in the coefficient of thermal expansion between each circuit element and its joint surface. Sex can be obtained.

【0050】また、請求項3では、前記セラミック層の
熱膨張係数を、前記セラミック基板の熱膨張係数よりも
小さく且つ半導体チップの熱膨張係数よりも大きく設定
したので、該セラミック層を介して信頼性の高いフリッ
プチップ実装を行うことができる。
According to the third aspect, the coefficient of thermal expansion of the ceramic layer is set to be smaller than the coefficient of thermal expansion of the ceramic substrate and larger than the coefficient of thermal expansion of the semiconductor chip. High-performance flip-chip mounting can be performed.

【0051】さらに、請求項4では、セラミック基板と
セラミック層との熱膨張係数の差を1.5×10-6/d
eg以下に設定したので、加圧焼成しなくても、焼成時
のセラミック基板の反りやセラミック層の剥がれを抑え
ることができ、セラミック回路基板の品質を向上でき
る。
Further, the difference in the coefficient of thermal expansion between the ceramic substrate and the ceramic layer is 1.5 × 10 −6 / d.
Since it is set to be equal to or less than eg, the warpage of the ceramic substrate and the peeling of the ceramic layer during firing can be suppressed without firing under pressure, and the quality of the ceramic circuit board can be improved.

【0052】また、請求項5では、セラミック基板とセ
ラミック層とを同時焼成するようにしたので、焼成工程
数が増えずに済み、品質の良いセラミック回路基板を能
率良く製造できる。
According to the fifth aspect, since the ceramic substrate and the ceramic layer are simultaneously fired, the number of firing steps is not increased, and a high quality ceramic circuit board can be manufactured efficiently.

【0053】また、請求項6では、セラミック基板をC
aO−Al2 3 −SiO2 −B23 系ガラス粉末と
アルミナ粉末との混合物よりなる低温焼成セラミック材
料により形成し、セラミック層を、上記低温焼成セラミ
ック材料に対してBi2 3を外掛けで0.5〜15重
量%配合した低温焼成セラミック材料により形成したの
で、セラミック基板とセラミック層との焼結性を良好に
保ちながら、低温焼成セラミックの利点の1つである低
熱膨張係数の特長を更に向上でき、フリップチップ実装
の信頼性を向上できる。
According to claim 6, the ceramic substrate is made of C
aO-Al 2 O 3 —SiO 2 —B 2 O 3 A low-temperature fired ceramic material made of a mixture of a glass powder and an alumina powder, and a ceramic layer is formed by applying Bi 2 O 3 to the low-temperature fired ceramic material. Low thermal expansion coefficient, which is one of the advantages of the low temperature firing ceramic, is formed by using a low temperature firing ceramic material mixed with 0.5 to 15% by weight on the outside, while maintaining good sinterability between the ceramic substrate and the ceramic layer. Can be further improved, and the reliability of flip chip mounting can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態におけるセラミック回
路基板の構造を模式的に示す拡大縦断面図
FIG. 1 is an enlarged vertical sectional view schematically showing a structure of a ceramic circuit board according to a first embodiment of the present invention.

【図2】表層抵抗体の信頼性評価試験に用いた表層抵抗
体と導体のパターンを示す拡大平面図
FIG. 2 is an enlarged plan view showing a pattern of a surface resistor and a conductor used in a reliability evaluation test of the surface resistor.

【図3】本発明の第2の実施形態におけるセラミック回
路基板の構造を模式的に示す拡大縦断面図
FIG. 3 is an enlarged longitudinal sectional view schematically showing the structure of a ceramic circuit board according to a second embodiment of the present invention.

【図4】本発明の第3の実施形態におけるセラミック回
路基板の構造を模式的に示す拡大縦断面図
FIG. 4 is an enlarged longitudinal sectional view schematically showing the structure of a ceramic circuit board according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…低温焼成セラミック基板、12…グリーンシー
ト、13…内層導体パターン、14…表層導体パター
ン、15…半導体チップ、16…セラミック層、17…
パッド、18…表層抵抗体、19…Agエポキシ、21
…低温焼成セラミック基板、22…Ag導体、23…表
層抵抗体、26…セラミック層、27…グリーンシート
(セラミック層)。
11: low-temperature fired ceramic substrate, 12: green sheet, 13: inner conductor pattern, 14: surface conductor pattern, 15: semiconductor chip, 16: ceramic layer, 17 ...
Pad, 18: Surface resistor, 19: Ag epoxy, 21
... Low-temperature fired ceramic substrate, 22 Ag conductor, 23 surface resistor, 26 ceramic layer, 27 green sheet (ceramic layer).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基板の実装面に、該セラミッ
ク基板と異なる熱膨張係数のセラミック層を有するセラ
ミック回路基板。
1. A ceramic circuit board having, on a mounting surface of a ceramic substrate, a ceramic layer having a thermal expansion coefficient different from that of the ceramic substrate.
【請求項2】 前記セラミック層は、前記セラミック基
板の実装面に部分的に形成され、熱膨張係数が異なる複
数種の回路要素を、前記セラミック層とそれ以外のセラ
ミック基板の実装面のうち、熱膨張係数が近い方に配置
したこと特徴とする請求項1に記載のセラミック回路基
板。
2. The ceramic layer is partially formed on a mounting surface of the ceramic substrate, and includes a plurality of circuit elements having different coefficients of thermal expansion between the ceramic layer and other mounting surfaces of the ceramic substrate. 2. The ceramic circuit board according to claim 1, wherein the ceramic circuit board has a thermal expansion coefficient close to that of the ceramic circuit board.
【請求項3】 前記セラミック層の熱膨張係数は、前記
セラミック基板の熱膨張係数よりも小さく且つ該セラミ
ック層に実装する半導体チップの熱膨張係数よりも大き
いことを特徴とする請求項1又は2に記載のセラミック
回路基板。
3. The thermal expansion coefficient of the ceramic layer is smaller than the thermal expansion coefficient of the ceramic substrate and larger than the thermal expansion coefficient of a semiconductor chip mounted on the ceramic layer. 4. The ceramic circuit board according to claim 1.
【請求項4】 前記セラミック基板と前記セラミック層
との熱膨張係数の差は、1.5×10-6/deg以下で
あることを特徴とする請求項1乃至3のいずれかに記載
のセラミック回路基板。
4. The ceramic according to claim 1, wherein a difference in thermal expansion coefficient between the ceramic substrate and the ceramic layer is 1.5 × 10 −6 / deg or less. Circuit board.
【請求項5】 前記セラミック基板と前記セラミック層
は同時焼成されていることを特徴とする請求項1乃至4
のいずれかに記載のセラミック回路基板。
5. The ceramic substrate according to claim 1, wherein said ceramic substrate and said ceramic layer are co-fired.
The ceramic circuit board according to any one of the above.
【請求項6】 前記セラミック基板は、CaO−Al2
3 −SiO2 −B2 3 系ガラス粉末とアルミナ粉末
との混合物よりなる低温焼成セラミック材料により形成
され、 前記セラミック層は、前記低温焼成セラミック材料に対
してBi2 3 を外掛けで0.5〜15重量%配合した
低温焼成セラミック材料により形成されていることを特
徴とする請求項1乃至5のいずれかに記載のセラミック
回路基板。
6. The ceramic substrate is made of CaO—Al 2.
The ceramic layer is formed of a low-temperature fired ceramic material made of a mixture of an O 3 —SiO 2 —B 2 O 3 -based glass powder and an alumina powder, and the ceramic layer is formed by applying Bi 2 O 3 to the low-temperature fired ceramic material. 6. The ceramic circuit board according to claim 1, wherein said ceramic circuit board is formed of a low-temperature fired ceramic material containing 0.5 to 15% by weight.
JP00729797A 1997-01-20 1997-01-20 Ceramic circuit board Expired - Lifetime JP3846651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00729797A JP3846651B2 (en) 1997-01-20 1997-01-20 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00729797A JP3846651B2 (en) 1997-01-20 1997-01-20 Ceramic circuit board

Publications (2)

Publication Number Publication Date
JPH10209335A true JPH10209335A (en) 1998-08-07
JP3846651B2 JP3846651B2 (en) 2006-11-15

Family

ID=11662099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00729797A Expired - Lifetime JP3846651B2 (en) 1997-01-20 1997-01-20 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JP3846651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151727A (en) * 2004-11-26 2006-06-15 Sekisui Chem Co Ltd Manufacturing method of sintered compact
JP2006206378A (en) * 2005-01-28 2006-08-10 Murata Mfg Co Ltd Ceramic raw material composition and ceramic circuit component
CN114956868A (en) * 2021-02-27 2022-08-30 Oppo广东移动通信有限公司 Ceramic shell, preparation method and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151727A (en) * 2004-11-26 2006-06-15 Sekisui Chem Co Ltd Manufacturing method of sintered compact
JP2006206378A (en) * 2005-01-28 2006-08-10 Murata Mfg Co Ltd Ceramic raw material composition and ceramic circuit component
CN114956868A (en) * 2021-02-27 2022-08-30 Oppo广东移动通信有限公司 Ceramic shell, preparation method and electronic equipment
CN114956868B (en) * 2021-02-27 2024-04-02 Oppo广东移动通信有限公司 Ceramic shell, preparation method and electronic equipment

Also Published As

Publication number Publication date
JP3846651B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JPS6014494A (en) Ceramic multilayer wiring board and method of producing same
JP3331083B2 (en) Low temperature firing ceramic circuit board
JPH09246723A (en) Low-temp. baked ceramic circuit substrate
EP0997941A2 (en) Conductive paste and ceramic printed circuit substrate using the same
KR100617436B1 (en) Thick film conductor paste compositions for ltcc tape
JP4752612B2 (en) Manufacturing method of circuit board with protruding electrode
JP3265996B2 (en) Low temperature fired glass-ceramic multilayer wiring board and its manufacturing method
KR100744855B1 (en) High Thermal Cycle Conductor System
JP3846651B2 (en) Ceramic circuit board
JPH0288471A (en) Ceramic joining body
JPH0613755A (en) Ceramic multilayer wiring board and manufacture thereof
JPH05152463A (en) Mullite-alumina multilayer board, its production and ceramic package
JP2002043758A (en) Multilayer board and manufacturing method
JPH10203863A (en) Ceramic material baked at low temperature, green sheet and insulation paste
JPH09102560A (en) External lead pin joining structure for low-temperature baked ceramic substrate
JPH1116418A (en) Copper metallized composition and glass ceramic wiring board using it
JP5383962B2 (en) Glass ceramic composition, glass ceramic sintered body, wiring board using the same, and mounting structure thereof
JP2001143527A (en) Conductive paste and ceramic wiring substrate using the same
JPH10242324A (en) Electrode-built-in ceramic substrate and manufacture thereof
JP2004327945A (en) Ceramic electronic circuit component
JP2000340716A (en) Wiring substrate
JP2002076628A (en) Manufacturing method of glass ceramic substrate
JP3934910B2 (en) Circuit board
JP2002232093A (en) Circuit board
JP2000164757A (en) Semiconductor element housing package and mounting structure thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

EXPY Cancellation because of completion of term